1a76b4fe9b9781299248a3fdaea0b81541b15a58
[platform/kernel/linux-starfive.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/dst_metadata.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/pci.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149
150 #include "net-sysfs.h"
151
152 #define MAX_GRO_SKBS 8
153
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;       /* Taps */
161 static struct list_head offload_base __read_mostly;
162
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165                                          struct netdev_notifier_info *info);
166 static int call_netdevice_notifiers_extack(unsigned long val,
167                                            struct net_device *dev,
168                                            struct netlink_ext_ack *extack);
169 static struct napi_struct *napi_by_id(unsigned int napi_id);
170
171 /*
172  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173  * semaphore.
174  *
175  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176  *
177  * Writers must hold the rtnl semaphore while they loop through the
178  * dev_base_head list, and hold dev_base_lock for writing when they do the
179  * actual updates.  This allows pure readers to access the list even
180  * while a writer is preparing to update it.
181  *
182  * To put it another way, dev_base_lock is held for writing only to
183  * protect against pure readers; the rtnl semaphore provides the
184  * protection against other writers.
185  *
186  * See, for example usages, register_netdevice() and
187  * unregister_netdevice(), which must be called with the rtnl
188  * semaphore held.
189  */
190 DEFINE_RWLOCK(dev_base_lock);
191 EXPORT_SYMBOL(dev_base_lock);
192
193 static DEFINE_MUTEX(ifalias_mutex);
194
195 /* protects napi_hash addition/deletion and napi_gen_id */
196 static DEFINE_SPINLOCK(napi_hash_lock);
197
198 static unsigned int napi_gen_id = NR_CPUS;
199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200
201 static seqcount_t devnet_rename_seq;
202
203 static inline void dev_base_seq_inc(struct net *net)
204 {
205         while (++net->dev_base_seq == 0)
206                 ;
207 }
208
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212
213         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224         spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231         spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234
235 /* Device list insertion */
236 static void list_netdevice(struct net_device *dev)
237 {
238         struct net *net = dev_net(dev);
239
240         ASSERT_RTNL();
241
242         write_lock_bh(&dev_base_lock);
243         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245         hlist_add_head_rcu(&dev->index_hlist,
246                            dev_index_hash(net, dev->ifindex));
247         write_unlock_bh(&dev_base_lock);
248
249         dev_base_seq_inc(net);
250 }
251
252 /* Device list removal
253  * caller must respect a RCU grace period before freeing/reusing dev
254  */
255 static void unlist_netdevice(struct net_device *dev)
256 {
257         ASSERT_RTNL();
258
259         /* Unlink dev from the device chain */
260         write_lock_bh(&dev_base_lock);
261         list_del_rcu(&dev->dev_list);
262         hlist_del_rcu(&dev->name_hlist);
263         hlist_del_rcu(&dev->index_hlist);
264         write_unlock_bh(&dev_base_lock);
265
266         dev_base_seq_inc(dev_net(dev));
267 }
268
269 /*
270  *      Our notifier list
271  */
272
273 static RAW_NOTIFIER_HEAD(netdev_chain);
274
275 /*
276  *      Device drivers call our routines to queue packets here. We empty the
277  *      queue in the local softnet handler.
278  */
279
280 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
281 EXPORT_PER_CPU_SYMBOL(softnet_data);
282
283 #ifdef CONFIG_LOCKDEP
284 /*
285  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
286  * according to dev->type
287  */
288 static const unsigned short netdev_lock_type[] = {
289          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
290          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
291          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
292          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
293          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
294          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
295          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
296          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
297          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
298          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
299          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
300          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
301          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
302          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
303          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
304
305 static const char *const netdev_lock_name[] = {
306         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
307         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
308         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
309         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
310         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
311         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
312         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
313         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
314         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
315         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
316         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
317         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
318         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
319         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
320         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
321
322 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
323 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
324
325 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
326 {
327         int i;
328
329         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
330                 if (netdev_lock_type[i] == dev_type)
331                         return i;
332         /* the last key is used by default */
333         return ARRAY_SIZE(netdev_lock_type) - 1;
334 }
335
336 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
337                                                  unsigned short dev_type)
338 {
339         int i;
340
341         i = netdev_lock_pos(dev_type);
342         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
343                                    netdev_lock_name[i]);
344 }
345
346 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
347 {
348         int i;
349
350         i = netdev_lock_pos(dev->type);
351         lockdep_set_class_and_name(&dev->addr_list_lock,
352                                    &netdev_addr_lock_key[i],
353                                    netdev_lock_name[i]);
354 }
355 #else
356 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
357                                                  unsigned short dev_type)
358 {
359 }
360 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
361 {
362 }
363 #endif
364
365 /*******************************************************************************
366  *
367  *              Protocol management and registration routines
368  *
369  *******************************************************************************/
370
371
372 /*
373  *      Add a protocol ID to the list. Now that the input handler is
374  *      smarter we can dispense with all the messy stuff that used to be
375  *      here.
376  *
377  *      BEWARE!!! Protocol handlers, mangling input packets,
378  *      MUST BE last in hash buckets and checking protocol handlers
379  *      MUST start from promiscuous ptype_all chain in net_bh.
380  *      It is true now, do not change it.
381  *      Explanation follows: if protocol handler, mangling packet, will
382  *      be the first on list, it is not able to sense, that packet
383  *      is cloned and should be copied-on-write, so that it will
384  *      change it and subsequent readers will get broken packet.
385  *                                                      --ANK (980803)
386  */
387
388 static inline struct list_head *ptype_head(const struct packet_type *pt)
389 {
390         if (pt->type == htons(ETH_P_ALL))
391                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
392         else
393                 return pt->dev ? &pt->dev->ptype_specific :
394                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 }
396
397 /**
398  *      dev_add_pack - add packet handler
399  *      @pt: packet type declaration
400  *
401  *      Add a protocol handler to the networking stack. The passed &packet_type
402  *      is linked into kernel lists and may not be freed until it has been
403  *      removed from the kernel lists.
404  *
405  *      This call does not sleep therefore it can not
406  *      guarantee all CPU's that are in middle of receiving packets
407  *      will see the new packet type (until the next received packet).
408  */
409
410 void dev_add_pack(struct packet_type *pt)
411 {
412         struct list_head *head = ptype_head(pt);
413
414         spin_lock(&ptype_lock);
415         list_add_rcu(&pt->list, head);
416         spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(dev_add_pack);
419
420 /**
421  *      __dev_remove_pack        - remove packet handler
422  *      @pt: packet type declaration
423  *
424  *      Remove a protocol handler that was previously added to the kernel
425  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
426  *      from the kernel lists and can be freed or reused once this function
427  *      returns.
428  *
429  *      The packet type might still be in use by receivers
430  *      and must not be freed until after all the CPU's have gone
431  *      through a quiescent state.
432  */
433 void __dev_remove_pack(struct packet_type *pt)
434 {
435         struct list_head *head = ptype_head(pt);
436         struct packet_type *pt1;
437
438         spin_lock(&ptype_lock);
439
440         list_for_each_entry(pt1, head, list) {
441                 if (pt == pt1) {
442                         list_del_rcu(&pt->list);
443                         goto out;
444                 }
445         }
446
447         pr_warn("dev_remove_pack: %p not found\n", pt);
448 out:
449         spin_unlock(&ptype_lock);
450 }
451 EXPORT_SYMBOL(__dev_remove_pack);
452
453 /**
454  *      dev_remove_pack  - remove packet handler
455  *      @pt: packet type declaration
456  *
457  *      Remove a protocol handler that was previously added to the kernel
458  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
459  *      from the kernel lists and can be freed or reused once this function
460  *      returns.
461  *
462  *      This call sleeps to guarantee that no CPU is looking at the packet
463  *      type after return.
464  */
465 void dev_remove_pack(struct packet_type *pt)
466 {
467         __dev_remove_pack(pt);
468
469         synchronize_net();
470 }
471 EXPORT_SYMBOL(dev_remove_pack);
472
473
474 /**
475  *      dev_add_offload - register offload handlers
476  *      @po: protocol offload declaration
477  *
478  *      Add protocol offload handlers to the networking stack. The passed
479  *      &proto_offload is linked into kernel lists and may not be freed until
480  *      it has been removed from the kernel lists.
481  *
482  *      This call does not sleep therefore it can not
483  *      guarantee all CPU's that are in middle of receiving packets
484  *      will see the new offload handlers (until the next received packet).
485  */
486 void dev_add_offload(struct packet_offload *po)
487 {
488         struct packet_offload *elem;
489
490         spin_lock(&offload_lock);
491         list_for_each_entry(elem, &offload_base, list) {
492                 if (po->priority < elem->priority)
493                         break;
494         }
495         list_add_rcu(&po->list, elem->list.prev);
496         spin_unlock(&offload_lock);
497 }
498 EXPORT_SYMBOL(dev_add_offload);
499
500 /**
501  *      __dev_remove_offload     - remove offload handler
502  *      @po: packet offload declaration
503  *
504  *      Remove a protocol offload handler that was previously added to the
505  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
506  *      is removed from the kernel lists and can be freed or reused once this
507  *      function returns.
508  *
509  *      The packet type might still be in use by receivers
510  *      and must not be freed until after all the CPU's have gone
511  *      through a quiescent state.
512  */
513 static void __dev_remove_offload(struct packet_offload *po)
514 {
515         struct list_head *head = &offload_base;
516         struct packet_offload *po1;
517
518         spin_lock(&offload_lock);
519
520         list_for_each_entry(po1, head, list) {
521                 if (po == po1) {
522                         list_del_rcu(&po->list);
523                         goto out;
524                 }
525         }
526
527         pr_warn("dev_remove_offload: %p not found\n", po);
528 out:
529         spin_unlock(&offload_lock);
530 }
531
532 /**
533  *      dev_remove_offload       - remove packet offload handler
534  *      @po: packet offload declaration
535  *
536  *      Remove a packet offload handler that was previously added to the kernel
537  *      offload handlers by dev_add_offload(). The passed &offload_type is
538  *      removed from the kernel lists and can be freed or reused once this
539  *      function returns.
540  *
541  *      This call sleeps to guarantee that no CPU is looking at the packet
542  *      type after return.
543  */
544 void dev_remove_offload(struct packet_offload *po)
545 {
546         __dev_remove_offload(po);
547
548         synchronize_net();
549 }
550 EXPORT_SYMBOL(dev_remove_offload);
551
552 /******************************************************************************
553  *
554  *                    Device Boot-time Settings Routines
555  *
556  ******************************************************************************/
557
558 /* Boot time configuration table */
559 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
560
561 /**
562  *      netdev_boot_setup_add   - add new setup entry
563  *      @name: name of the device
564  *      @map: configured settings for the device
565  *
566  *      Adds new setup entry to the dev_boot_setup list.  The function
567  *      returns 0 on error and 1 on success.  This is a generic routine to
568  *      all netdevices.
569  */
570 static int netdev_boot_setup_add(char *name, struct ifmap *map)
571 {
572         struct netdev_boot_setup *s;
573         int i;
574
575         s = dev_boot_setup;
576         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
577                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
578                         memset(s[i].name, 0, sizeof(s[i].name));
579                         strlcpy(s[i].name, name, IFNAMSIZ);
580                         memcpy(&s[i].map, map, sizeof(s[i].map));
581                         break;
582                 }
583         }
584
585         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
586 }
587
588 /**
589  * netdev_boot_setup_check      - check boot time settings
590  * @dev: the netdevice
591  *
592  * Check boot time settings for the device.
593  * The found settings are set for the device to be used
594  * later in the device probing.
595  * Returns 0 if no settings found, 1 if they are.
596  */
597 int netdev_boot_setup_check(struct net_device *dev)
598 {
599         struct netdev_boot_setup *s = dev_boot_setup;
600         int i;
601
602         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
603                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
604                     !strcmp(dev->name, s[i].name)) {
605                         dev->irq = s[i].map.irq;
606                         dev->base_addr = s[i].map.base_addr;
607                         dev->mem_start = s[i].map.mem_start;
608                         dev->mem_end = s[i].map.mem_end;
609                         return 1;
610                 }
611         }
612         return 0;
613 }
614 EXPORT_SYMBOL(netdev_boot_setup_check);
615
616
617 /**
618  * netdev_boot_base     - get address from boot time settings
619  * @prefix: prefix for network device
620  * @unit: id for network device
621  *
622  * Check boot time settings for the base address of device.
623  * The found settings are set for the device to be used
624  * later in the device probing.
625  * Returns 0 if no settings found.
626  */
627 unsigned long netdev_boot_base(const char *prefix, int unit)
628 {
629         const struct netdev_boot_setup *s = dev_boot_setup;
630         char name[IFNAMSIZ];
631         int i;
632
633         sprintf(name, "%s%d", prefix, unit);
634
635         /*
636          * If device already registered then return base of 1
637          * to indicate not to probe for this interface
638          */
639         if (__dev_get_by_name(&init_net, name))
640                 return 1;
641
642         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
643                 if (!strcmp(name, s[i].name))
644                         return s[i].map.base_addr;
645         return 0;
646 }
647
648 /*
649  * Saves at boot time configured settings for any netdevice.
650  */
651 int __init netdev_boot_setup(char *str)
652 {
653         int ints[5];
654         struct ifmap map;
655
656         str = get_options(str, ARRAY_SIZE(ints), ints);
657         if (!str || !*str)
658                 return 0;
659
660         /* Save settings */
661         memset(&map, 0, sizeof(map));
662         if (ints[0] > 0)
663                 map.irq = ints[1];
664         if (ints[0] > 1)
665                 map.base_addr = ints[2];
666         if (ints[0] > 2)
667                 map.mem_start = ints[3];
668         if (ints[0] > 3)
669                 map.mem_end = ints[4];
670
671         /* Add new entry to the list */
672         return netdev_boot_setup_add(str, &map);
673 }
674
675 __setup("netdev=", netdev_boot_setup);
676
677 /*******************************************************************************
678  *
679  *                          Device Interface Subroutines
680  *
681  *******************************************************************************/
682
683 /**
684  *      dev_get_iflink  - get 'iflink' value of a interface
685  *      @dev: targeted interface
686  *
687  *      Indicates the ifindex the interface is linked to.
688  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
689  */
690
691 int dev_get_iflink(const struct net_device *dev)
692 {
693         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
694                 return dev->netdev_ops->ndo_get_iflink(dev);
695
696         return dev->ifindex;
697 }
698 EXPORT_SYMBOL(dev_get_iflink);
699
700 /**
701  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
702  *      @dev: targeted interface
703  *      @skb: The packet.
704  *
705  *      For better visibility of tunnel traffic OVS needs to retrieve
706  *      egress tunnel information for a packet. Following API allows
707  *      user to get this info.
708  */
709 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
710 {
711         struct ip_tunnel_info *info;
712
713         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
714                 return -EINVAL;
715
716         info = skb_tunnel_info_unclone(skb);
717         if (!info)
718                 return -ENOMEM;
719         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
720                 return -EINVAL;
721
722         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
723 }
724 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
725
726 /**
727  *      __dev_get_by_name       - find a device by its name
728  *      @net: the applicable net namespace
729  *      @name: name to find
730  *
731  *      Find an interface by name. Must be called under RTNL semaphore
732  *      or @dev_base_lock. If the name is found a pointer to the device
733  *      is returned. If the name is not found then %NULL is returned. The
734  *      reference counters are not incremented so the caller must be
735  *      careful with locks.
736  */
737
738 struct net_device *__dev_get_by_name(struct net *net, const char *name)
739 {
740         struct net_device *dev;
741         struct hlist_head *head = dev_name_hash(net, name);
742
743         hlist_for_each_entry(dev, head, name_hlist)
744                 if (!strncmp(dev->name, name, IFNAMSIZ))
745                         return dev;
746
747         return NULL;
748 }
749 EXPORT_SYMBOL(__dev_get_by_name);
750
751 /**
752  * dev_get_by_name_rcu  - find a device by its name
753  * @net: the applicable net namespace
754  * @name: name to find
755  *
756  * Find an interface by name.
757  * If the name is found a pointer to the device is returned.
758  * If the name is not found then %NULL is returned.
759  * The reference counters are not incremented so the caller must be
760  * careful with locks. The caller must hold RCU lock.
761  */
762
763 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
764 {
765         struct net_device *dev;
766         struct hlist_head *head = dev_name_hash(net, name);
767
768         hlist_for_each_entry_rcu(dev, head, name_hlist)
769                 if (!strncmp(dev->name, name, IFNAMSIZ))
770                         return dev;
771
772         return NULL;
773 }
774 EXPORT_SYMBOL(dev_get_by_name_rcu);
775
776 /**
777  *      dev_get_by_name         - find a device by its name
778  *      @net: the applicable net namespace
779  *      @name: name to find
780  *
781  *      Find an interface by name. This can be called from any
782  *      context and does its own locking. The returned handle has
783  *      the usage count incremented and the caller must use dev_put() to
784  *      release it when it is no longer needed. %NULL is returned if no
785  *      matching device is found.
786  */
787
788 struct net_device *dev_get_by_name(struct net *net, const char *name)
789 {
790         struct net_device *dev;
791
792         rcu_read_lock();
793         dev = dev_get_by_name_rcu(net, name);
794         if (dev)
795                 dev_hold(dev);
796         rcu_read_unlock();
797         return dev;
798 }
799 EXPORT_SYMBOL(dev_get_by_name);
800
801 /**
802  *      __dev_get_by_index - find a device by its ifindex
803  *      @net: the applicable net namespace
804  *      @ifindex: index of device
805  *
806  *      Search for an interface by index. Returns %NULL if the device
807  *      is not found or a pointer to the device. The device has not
808  *      had its reference counter increased so the caller must be careful
809  *      about locking. The caller must hold either the RTNL semaphore
810  *      or @dev_base_lock.
811  */
812
813 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
814 {
815         struct net_device *dev;
816         struct hlist_head *head = dev_index_hash(net, ifindex);
817
818         hlist_for_each_entry(dev, head, index_hlist)
819                 if (dev->ifindex == ifindex)
820                         return dev;
821
822         return NULL;
823 }
824 EXPORT_SYMBOL(__dev_get_by_index);
825
826 /**
827  *      dev_get_by_index_rcu - find a device by its ifindex
828  *      @net: the applicable net namespace
829  *      @ifindex: index of device
830  *
831  *      Search for an interface by index. Returns %NULL if the device
832  *      is not found or a pointer to the device. The device has not
833  *      had its reference counter increased so the caller must be careful
834  *      about locking. The caller must hold RCU lock.
835  */
836
837 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
838 {
839         struct net_device *dev;
840         struct hlist_head *head = dev_index_hash(net, ifindex);
841
842         hlist_for_each_entry_rcu(dev, head, index_hlist)
843                 if (dev->ifindex == ifindex)
844                         return dev;
845
846         return NULL;
847 }
848 EXPORT_SYMBOL(dev_get_by_index_rcu);
849
850
851 /**
852  *      dev_get_by_index - find a device by its ifindex
853  *      @net: the applicable net namespace
854  *      @ifindex: index of device
855  *
856  *      Search for an interface by index. Returns NULL if the device
857  *      is not found or a pointer to the device. The device returned has
858  *      had a reference added and the pointer is safe until the user calls
859  *      dev_put to indicate they have finished with it.
860  */
861
862 struct net_device *dev_get_by_index(struct net *net, int ifindex)
863 {
864         struct net_device *dev;
865
866         rcu_read_lock();
867         dev = dev_get_by_index_rcu(net, ifindex);
868         if (dev)
869                 dev_hold(dev);
870         rcu_read_unlock();
871         return dev;
872 }
873 EXPORT_SYMBOL(dev_get_by_index);
874
875 /**
876  *      dev_get_by_napi_id - find a device by napi_id
877  *      @napi_id: ID of the NAPI struct
878  *
879  *      Search for an interface by NAPI ID. Returns %NULL if the device
880  *      is not found or a pointer to the device. The device has not had
881  *      its reference counter increased so the caller must be careful
882  *      about locking. The caller must hold RCU lock.
883  */
884
885 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
886 {
887         struct napi_struct *napi;
888
889         WARN_ON_ONCE(!rcu_read_lock_held());
890
891         if (napi_id < MIN_NAPI_ID)
892                 return NULL;
893
894         napi = napi_by_id(napi_id);
895
896         return napi ? napi->dev : NULL;
897 }
898 EXPORT_SYMBOL(dev_get_by_napi_id);
899
900 /**
901  *      netdev_get_name - get a netdevice name, knowing its ifindex.
902  *      @net: network namespace
903  *      @name: a pointer to the buffer where the name will be stored.
904  *      @ifindex: the ifindex of the interface to get the name from.
905  *
906  *      The use of raw_seqcount_begin() and cond_resched() before
907  *      retrying is required as we want to give the writers a chance
908  *      to complete when CONFIG_PREEMPT is not set.
909  */
910 int netdev_get_name(struct net *net, char *name, int ifindex)
911 {
912         struct net_device *dev;
913         unsigned int seq;
914
915 retry:
916         seq = raw_seqcount_begin(&devnet_rename_seq);
917         rcu_read_lock();
918         dev = dev_get_by_index_rcu(net, ifindex);
919         if (!dev) {
920                 rcu_read_unlock();
921                 return -ENODEV;
922         }
923
924         strcpy(name, dev->name);
925         rcu_read_unlock();
926         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
927                 cond_resched();
928                 goto retry;
929         }
930
931         return 0;
932 }
933
934 /**
935  *      dev_getbyhwaddr_rcu - find a device by its hardware address
936  *      @net: the applicable net namespace
937  *      @type: media type of device
938  *      @ha: hardware address
939  *
940  *      Search for an interface by MAC address. Returns NULL if the device
941  *      is not found or a pointer to the device.
942  *      The caller must hold RCU or RTNL.
943  *      The returned device has not had its ref count increased
944  *      and the caller must therefore be careful about locking
945  *
946  */
947
948 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
949                                        const char *ha)
950 {
951         struct net_device *dev;
952
953         for_each_netdev_rcu(net, dev)
954                 if (dev->type == type &&
955                     !memcmp(dev->dev_addr, ha, dev->addr_len))
956                         return dev;
957
958         return NULL;
959 }
960 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
961
962 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
963 {
964         struct net_device *dev;
965
966         ASSERT_RTNL();
967         for_each_netdev(net, dev)
968                 if (dev->type == type)
969                         return dev;
970
971         return NULL;
972 }
973 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
974
975 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
976 {
977         struct net_device *dev, *ret = NULL;
978
979         rcu_read_lock();
980         for_each_netdev_rcu(net, dev)
981                 if (dev->type == type) {
982                         dev_hold(dev);
983                         ret = dev;
984                         break;
985                 }
986         rcu_read_unlock();
987         return ret;
988 }
989 EXPORT_SYMBOL(dev_getfirstbyhwtype);
990
991 /**
992  *      __dev_get_by_flags - find any device with given flags
993  *      @net: the applicable net namespace
994  *      @if_flags: IFF_* values
995  *      @mask: bitmask of bits in if_flags to check
996  *
997  *      Search for any interface with the given flags. Returns NULL if a device
998  *      is not found or a pointer to the device. Must be called inside
999  *      rtnl_lock(), and result refcount is unchanged.
1000  */
1001
1002 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1003                                       unsigned short mask)
1004 {
1005         struct net_device *dev, *ret;
1006
1007         ASSERT_RTNL();
1008
1009         ret = NULL;
1010         for_each_netdev(net, dev) {
1011                 if (((dev->flags ^ if_flags) & mask) == 0) {
1012                         ret = dev;
1013                         break;
1014                 }
1015         }
1016         return ret;
1017 }
1018 EXPORT_SYMBOL(__dev_get_by_flags);
1019
1020 /**
1021  *      dev_valid_name - check if name is okay for network device
1022  *      @name: name string
1023  *
1024  *      Network device names need to be valid file names to
1025  *      to allow sysfs to work.  We also disallow any kind of
1026  *      whitespace.
1027  */
1028 bool dev_valid_name(const char *name)
1029 {
1030         if (*name == '\0')
1031                 return false;
1032         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1033                 return false;
1034         if (!strcmp(name, ".") || !strcmp(name, ".."))
1035                 return false;
1036
1037         while (*name) {
1038                 if (*name == '/' || *name == ':' || isspace(*name))
1039                         return false;
1040                 name++;
1041         }
1042         return true;
1043 }
1044 EXPORT_SYMBOL(dev_valid_name);
1045
1046 /**
1047  *      __dev_alloc_name - allocate a name for a device
1048  *      @net: network namespace to allocate the device name in
1049  *      @name: name format string
1050  *      @buf:  scratch buffer and result name string
1051  *
1052  *      Passed a format string - eg "lt%d" it will try and find a suitable
1053  *      id. It scans list of devices to build up a free map, then chooses
1054  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1055  *      while allocating the name and adding the device in order to avoid
1056  *      duplicates.
1057  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1058  *      Returns the number of the unit assigned or a negative errno code.
1059  */
1060
1061 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1062 {
1063         int i = 0;
1064         const char *p;
1065         const int max_netdevices = 8*PAGE_SIZE;
1066         unsigned long *inuse;
1067         struct net_device *d;
1068
1069         if (!dev_valid_name(name))
1070                 return -EINVAL;
1071
1072         p = strchr(name, '%');
1073         if (p) {
1074                 /*
1075                  * Verify the string as this thing may have come from
1076                  * the user.  There must be either one "%d" and no other "%"
1077                  * characters.
1078                  */
1079                 if (p[1] != 'd' || strchr(p + 2, '%'))
1080                         return -EINVAL;
1081
1082                 /* Use one page as a bit array of possible slots */
1083                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1084                 if (!inuse)
1085                         return -ENOMEM;
1086
1087                 for_each_netdev(net, d) {
1088                         if (!sscanf(d->name, name, &i))
1089                                 continue;
1090                         if (i < 0 || i >= max_netdevices)
1091                                 continue;
1092
1093                         /*  avoid cases where sscanf is not exact inverse of printf */
1094                         snprintf(buf, IFNAMSIZ, name, i);
1095                         if (!strncmp(buf, d->name, IFNAMSIZ))
1096                                 set_bit(i, inuse);
1097                 }
1098
1099                 i = find_first_zero_bit(inuse, max_netdevices);
1100                 free_page((unsigned long) inuse);
1101         }
1102
1103         snprintf(buf, IFNAMSIZ, name, i);
1104         if (!__dev_get_by_name(net, buf))
1105                 return i;
1106
1107         /* It is possible to run out of possible slots
1108          * when the name is long and there isn't enough space left
1109          * for the digits, or if all bits are used.
1110          */
1111         return -ENFILE;
1112 }
1113
1114 static int dev_alloc_name_ns(struct net *net,
1115                              struct net_device *dev,
1116                              const char *name)
1117 {
1118         char buf[IFNAMSIZ];
1119         int ret;
1120
1121         BUG_ON(!net);
1122         ret = __dev_alloc_name(net, name, buf);
1123         if (ret >= 0)
1124                 strlcpy(dev->name, buf, IFNAMSIZ);
1125         return ret;
1126 }
1127
1128 /**
1129  *      dev_alloc_name - allocate a name for a device
1130  *      @dev: device
1131  *      @name: name format string
1132  *
1133  *      Passed a format string - eg "lt%d" it will try and find a suitable
1134  *      id. It scans list of devices to build up a free map, then chooses
1135  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1136  *      while allocating the name and adding the device in order to avoid
1137  *      duplicates.
1138  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1139  *      Returns the number of the unit assigned or a negative errno code.
1140  */
1141
1142 int dev_alloc_name(struct net_device *dev, const char *name)
1143 {
1144         return dev_alloc_name_ns(dev_net(dev), dev, name);
1145 }
1146 EXPORT_SYMBOL(dev_alloc_name);
1147
1148 int dev_get_valid_name(struct net *net, struct net_device *dev,
1149                        const char *name)
1150 {
1151         BUG_ON(!net);
1152
1153         if (!dev_valid_name(name))
1154                 return -EINVAL;
1155
1156         if (strchr(name, '%'))
1157                 return dev_alloc_name_ns(net, dev, name);
1158         else if (__dev_get_by_name(net, name))
1159                 return -EEXIST;
1160         else if (dev->name != name)
1161                 strlcpy(dev->name, name, IFNAMSIZ);
1162
1163         return 0;
1164 }
1165 EXPORT_SYMBOL(dev_get_valid_name);
1166
1167 /**
1168  *      dev_change_name - change name of a device
1169  *      @dev: device
1170  *      @newname: name (or format string) must be at least IFNAMSIZ
1171  *
1172  *      Change name of a device, can pass format strings "eth%d".
1173  *      for wildcarding.
1174  */
1175 int dev_change_name(struct net_device *dev, const char *newname)
1176 {
1177         unsigned char old_assign_type;
1178         char oldname[IFNAMSIZ];
1179         int err = 0;
1180         int ret;
1181         struct net *net;
1182
1183         ASSERT_RTNL();
1184         BUG_ON(!dev_net(dev));
1185
1186         net = dev_net(dev);
1187         if (dev->flags & IFF_UP)
1188                 return -EBUSY;
1189
1190         write_seqcount_begin(&devnet_rename_seq);
1191
1192         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1193                 write_seqcount_end(&devnet_rename_seq);
1194                 return 0;
1195         }
1196
1197         memcpy(oldname, dev->name, IFNAMSIZ);
1198
1199         err = dev_get_valid_name(net, dev, newname);
1200         if (err < 0) {
1201                 write_seqcount_end(&devnet_rename_seq);
1202                 return err;
1203         }
1204
1205         if (oldname[0] && !strchr(oldname, '%'))
1206                 netdev_info(dev, "renamed from %s\n", oldname);
1207
1208         old_assign_type = dev->name_assign_type;
1209         dev->name_assign_type = NET_NAME_RENAMED;
1210
1211 rollback:
1212         ret = device_rename(&dev->dev, dev->name);
1213         if (ret) {
1214                 memcpy(dev->name, oldname, IFNAMSIZ);
1215                 dev->name_assign_type = old_assign_type;
1216                 write_seqcount_end(&devnet_rename_seq);
1217                 return ret;
1218         }
1219
1220         write_seqcount_end(&devnet_rename_seq);
1221
1222         netdev_adjacent_rename_links(dev, oldname);
1223
1224         write_lock_bh(&dev_base_lock);
1225         hlist_del_rcu(&dev->name_hlist);
1226         write_unlock_bh(&dev_base_lock);
1227
1228         synchronize_rcu();
1229
1230         write_lock_bh(&dev_base_lock);
1231         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1232         write_unlock_bh(&dev_base_lock);
1233
1234         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1235         ret = notifier_to_errno(ret);
1236
1237         if (ret) {
1238                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1239                 if (err >= 0) {
1240                         err = ret;
1241                         write_seqcount_begin(&devnet_rename_seq);
1242                         memcpy(dev->name, oldname, IFNAMSIZ);
1243                         memcpy(oldname, newname, IFNAMSIZ);
1244                         dev->name_assign_type = old_assign_type;
1245                         old_assign_type = NET_NAME_RENAMED;
1246                         goto rollback;
1247                 } else {
1248                         pr_err("%s: name change rollback failed: %d\n",
1249                                dev->name, ret);
1250                 }
1251         }
1252
1253         return err;
1254 }
1255
1256 /**
1257  *      dev_set_alias - change ifalias of a device
1258  *      @dev: device
1259  *      @alias: name up to IFALIASZ
1260  *      @len: limit of bytes to copy from info
1261  *
1262  *      Set ifalias for a device,
1263  */
1264 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1265 {
1266         struct dev_ifalias *new_alias = NULL;
1267
1268         if (len >= IFALIASZ)
1269                 return -EINVAL;
1270
1271         if (len) {
1272                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1273                 if (!new_alias)
1274                         return -ENOMEM;
1275
1276                 memcpy(new_alias->ifalias, alias, len);
1277                 new_alias->ifalias[len] = 0;
1278         }
1279
1280         mutex_lock(&ifalias_mutex);
1281         rcu_swap_protected(dev->ifalias, new_alias,
1282                            mutex_is_locked(&ifalias_mutex));
1283         mutex_unlock(&ifalias_mutex);
1284
1285         if (new_alias)
1286                 kfree_rcu(new_alias, rcuhead);
1287
1288         return len;
1289 }
1290 EXPORT_SYMBOL(dev_set_alias);
1291
1292 /**
1293  *      dev_get_alias - get ifalias of a device
1294  *      @dev: device
1295  *      @name: buffer to store name of ifalias
1296  *      @len: size of buffer
1297  *
1298  *      get ifalias for a device.  Caller must make sure dev cannot go
1299  *      away,  e.g. rcu read lock or own a reference count to device.
1300  */
1301 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1302 {
1303         const struct dev_ifalias *alias;
1304         int ret = 0;
1305
1306         rcu_read_lock();
1307         alias = rcu_dereference(dev->ifalias);
1308         if (alias)
1309                 ret = snprintf(name, len, "%s", alias->ifalias);
1310         rcu_read_unlock();
1311
1312         return ret;
1313 }
1314
1315 /**
1316  *      netdev_features_change - device changes features
1317  *      @dev: device to cause notification
1318  *
1319  *      Called to indicate a device has changed features.
1320  */
1321 void netdev_features_change(struct net_device *dev)
1322 {
1323         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1324 }
1325 EXPORT_SYMBOL(netdev_features_change);
1326
1327 /**
1328  *      netdev_state_change - device changes state
1329  *      @dev: device to cause notification
1330  *
1331  *      Called to indicate a device has changed state. This function calls
1332  *      the notifier chains for netdev_chain and sends a NEWLINK message
1333  *      to the routing socket.
1334  */
1335 void netdev_state_change(struct net_device *dev)
1336 {
1337         if (dev->flags & IFF_UP) {
1338                 struct netdev_notifier_change_info change_info = {
1339                         .info.dev = dev,
1340                 };
1341
1342                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1343                                               &change_info.info);
1344                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1345         }
1346 }
1347 EXPORT_SYMBOL(netdev_state_change);
1348
1349 /**
1350  * netdev_notify_peers - notify network peers about existence of @dev
1351  * @dev: network device
1352  *
1353  * Generate traffic such that interested network peers are aware of
1354  * @dev, such as by generating a gratuitous ARP. This may be used when
1355  * a device wants to inform the rest of the network about some sort of
1356  * reconfiguration such as a failover event or virtual machine
1357  * migration.
1358  */
1359 void netdev_notify_peers(struct net_device *dev)
1360 {
1361         rtnl_lock();
1362         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1363         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1364         rtnl_unlock();
1365 }
1366 EXPORT_SYMBOL(netdev_notify_peers);
1367
1368 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1369 {
1370         const struct net_device_ops *ops = dev->netdev_ops;
1371         int ret;
1372
1373         ASSERT_RTNL();
1374
1375         if (!netif_device_present(dev))
1376                 return -ENODEV;
1377
1378         /* Block netpoll from trying to do any rx path servicing.
1379          * If we don't do this there is a chance ndo_poll_controller
1380          * or ndo_poll may be running while we open the device
1381          */
1382         netpoll_poll_disable(dev);
1383
1384         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1385         ret = notifier_to_errno(ret);
1386         if (ret)
1387                 return ret;
1388
1389         set_bit(__LINK_STATE_START, &dev->state);
1390
1391         if (ops->ndo_validate_addr)
1392                 ret = ops->ndo_validate_addr(dev);
1393
1394         if (!ret && ops->ndo_open)
1395                 ret = ops->ndo_open(dev);
1396
1397         netpoll_poll_enable(dev);
1398
1399         if (ret)
1400                 clear_bit(__LINK_STATE_START, &dev->state);
1401         else {
1402                 dev->flags |= IFF_UP;
1403                 dev_set_rx_mode(dev);
1404                 dev_activate(dev);
1405                 add_device_randomness(dev->dev_addr, dev->addr_len);
1406         }
1407
1408         return ret;
1409 }
1410
1411 /**
1412  *      dev_open        - prepare an interface for use.
1413  *      @dev: device to open
1414  *      @extack: netlink extended ack
1415  *
1416  *      Takes a device from down to up state. The device's private open
1417  *      function is invoked and then the multicast lists are loaded. Finally
1418  *      the device is moved into the up state and a %NETDEV_UP message is
1419  *      sent to the netdev notifier chain.
1420  *
1421  *      Calling this function on an active interface is a nop. On a failure
1422  *      a negative errno code is returned.
1423  */
1424 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1425 {
1426         int ret;
1427
1428         if (dev->flags & IFF_UP)
1429                 return 0;
1430
1431         ret = __dev_open(dev, extack);
1432         if (ret < 0)
1433                 return ret;
1434
1435         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1436         call_netdevice_notifiers(NETDEV_UP, dev);
1437
1438         return ret;
1439 }
1440 EXPORT_SYMBOL(dev_open);
1441
1442 static void __dev_close_many(struct list_head *head)
1443 {
1444         struct net_device *dev;
1445
1446         ASSERT_RTNL();
1447         might_sleep();
1448
1449         list_for_each_entry(dev, head, close_list) {
1450                 /* Temporarily disable netpoll until the interface is down */
1451                 netpoll_poll_disable(dev);
1452
1453                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1454
1455                 clear_bit(__LINK_STATE_START, &dev->state);
1456
1457                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1458                  * can be even on different cpu. So just clear netif_running().
1459                  *
1460                  * dev->stop() will invoke napi_disable() on all of it's
1461                  * napi_struct instances on this device.
1462                  */
1463                 smp_mb__after_atomic(); /* Commit netif_running(). */
1464         }
1465
1466         dev_deactivate_many(head);
1467
1468         list_for_each_entry(dev, head, close_list) {
1469                 const struct net_device_ops *ops = dev->netdev_ops;
1470
1471                 /*
1472                  *      Call the device specific close. This cannot fail.
1473                  *      Only if device is UP
1474                  *
1475                  *      We allow it to be called even after a DETACH hot-plug
1476                  *      event.
1477                  */
1478                 if (ops->ndo_stop)
1479                         ops->ndo_stop(dev);
1480
1481                 dev->flags &= ~IFF_UP;
1482                 netpoll_poll_enable(dev);
1483         }
1484 }
1485
1486 static void __dev_close(struct net_device *dev)
1487 {
1488         LIST_HEAD(single);
1489
1490         list_add(&dev->close_list, &single);
1491         __dev_close_many(&single);
1492         list_del(&single);
1493 }
1494
1495 void dev_close_many(struct list_head *head, bool unlink)
1496 {
1497         struct net_device *dev, *tmp;
1498
1499         /* Remove the devices that don't need to be closed */
1500         list_for_each_entry_safe(dev, tmp, head, close_list)
1501                 if (!(dev->flags & IFF_UP))
1502                         list_del_init(&dev->close_list);
1503
1504         __dev_close_many(head);
1505
1506         list_for_each_entry_safe(dev, tmp, head, close_list) {
1507                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1508                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1509                 if (unlink)
1510                         list_del_init(&dev->close_list);
1511         }
1512 }
1513 EXPORT_SYMBOL(dev_close_many);
1514
1515 /**
1516  *      dev_close - shutdown an interface.
1517  *      @dev: device to shutdown
1518  *
1519  *      This function moves an active device into down state. A
1520  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1521  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1522  *      chain.
1523  */
1524 void dev_close(struct net_device *dev)
1525 {
1526         if (dev->flags & IFF_UP) {
1527                 LIST_HEAD(single);
1528
1529                 list_add(&dev->close_list, &single);
1530                 dev_close_many(&single, true);
1531                 list_del(&single);
1532         }
1533 }
1534 EXPORT_SYMBOL(dev_close);
1535
1536
1537 /**
1538  *      dev_disable_lro - disable Large Receive Offload on a device
1539  *      @dev: device
1540  *
1541  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1542  *      called under RTNL.  This is needed if received packets may be
1543  *      forwarded to another interface.
1544  */
1545 void dev_disable_lro(struct net_device *dev)
1546 {
1547         struct net_device *lower_dev;
1548         struct list_head *iter;
1549
1550         dev->wanted_features &= ~NETIF_F_LRO;
1551         netdev_update_features(dev);
1552
1553         if (unlikely(dev->features & NETIF_F_LRO))
1554                 netdev_WARN(dev, "failed to disable LRO!\n");
1555
1556         netdev_for_each_lower_dev(dev, lower_dev, iter)
1557                 dev_disable_lro(lower_dev);
1558 }
1559 EXPORT_SYMBOL(dev_disable_lro);
1560
1561 /**
1562  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1563  *      @dev: device
1564  *
1565  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1566  *      called under RTNL.  This is needed if Generic XDP is installed on
1567  *      the device.
1568  */
1569 static void dev_disable_gro_hw(struct net_device *dev)
1570 {
1571         dev->wanted_features &= ~NETIF_F_GRO_HW;
1572         netdev_update_features(dev);
1573
1574         if (unlikely(dev->features & NETIF_F_GRO_HW))
1575                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1576 }
1577
1578 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1579 {
1580 #define N(val)                                          \
1581         case NETDEV_##val:                              \
1582                 return "NETDEV_" __stringify(val);
1583         switch (cmd) {
1584         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1585         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1586         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1587         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1588         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1589         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1590         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1591         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1592         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1593         N(PRE_CHANGEADDR)
1594         }
1595 #undef N
1596         return "UNKNOWN_NETDEV_EVENT";
1597 }
1598 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1599
1600 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1601                                    struct net_device *dev)
1602 {
1603         struct netdev_notifier_info info = {
1604                 .dev = dev,
1605         };
1606
1607         return nb->notifier_call(nb, val, &info);
1608 }
1609
1610 static int dev_boot_phase = 1;
1611
1612 /**
1613  * register_netdevice_notifier - register a network notifier block
1614  * @nb: notifier
1615  *
1616  * Register a notifier to be called when network device events occur.
1617  * The notifier passed is linked into the kernel structures and must
1618  * not be reused until it has been unregistered. A negative errno code
1619  * is returned on a failure.
1620  *
1621  * When registered all registration and up events are replayed
1622  * to the new notifier to allow device to have a race free
1623  * view of the network device list.
1624  */
1625
1626 int register_netdevice_notifier(struct notifier_block *nb)
1627 {
1628         struct net_device *dev;
1629         struct net_device *last;
1630         struct net *net;
1631         int err;
1632
1633         /* Close race with setup_net() and cleanup_net() */
1634         down_write(&pernet_ops_rwsem);
1635         rtnl_lock();
1636         err = raw_notifier_chain_register(&netdev_chain, nb);
1637         if (err)
1638                 goto unlock;
1639         if (dev_boot_phase)
1640                 goto unlock;
1641         for_each_net(net) {
1642                 for_each_netdev(net, dev) {
1643                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1644                         err = notifier_to_errno(err);
1645                         if (err)
1646                                 goto rollback;
1647
1648                         if (!(dev->flags & IFF_UP))
1649                                 continue;
1650
1651                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1652                 }
1653         }
1654
1655 unlock:
1656         rtnl_unlock();
1657         up_write(&pernet_ops_rwsem);
1658         return err;
1659
1660 rollback:
1661         last = dev;
1662         for_each_net(net) {
1663                 for_each_netdev(net, dev) {
1664                         if (dev == last)
1665                                 goto outroll;
1666
1667                         if (dev->flags & IFF_UP) {
1668                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1669                                                         dev);
1670                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1671                         }
1672                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1673                 }
1674         }
1675
1676 outroll:
1677         raw_notifier_chain_unregister(&netdev_chain, nb);
1678         goto unlock;
1679 }
1680 EXPORT_SYMBOL(register_netdevice_notifier);
1681
1682 /**
1683  * unregister_netdevice_notifier - unregister a network notifier block
1684  * @nb: notifier
1685  *
1686  * Unregister a notifier previously registered by
1687  * register_netdevice_notifier(). The notifier is unlinked into the
1688  * kernel structures and may then be reused. A negative errno code
1689  * is returned on a failure.
1690  *
1691  * After unregistering unregister and down device events are synthesized
1692  * for all devices on the device list to the removed notifier to remove
1693  * the need for special case cleanup code.
1694  */
1695
1696 int unregister_netdevice_notifier(struct notifier_block *nb)
1697 {
1698         struct net_device *dev;
1699         struct net *net;
1700         int err;
1701
1702         /* Close race with setup_net() and cleanup_net() */
1703         down_write(&pernet_ops_rwsem);
1704         rtnl_lock();
1705         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1706         if (err)
1707                 goto unlock;
1708
1709         for_each_net(net) {
1710                 for_each_netdev(net, dev) {
1711                         if (dev->flags & IFF_UP) {
1712                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1713                                                         dev);
1714                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1715                         }
1716                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1717                 }
1718         }
1719 unlock:
1720         rtnl_unlock();
1721         up_write(&pernet_ops_rwsem);
1722         return err;
1723 }
1724 EXPORT_SYMBOL(unregister_netdevice_notifier);
1725
1726 /**
1727  *      call_netdevice_notifiers_info - call all network notifier blocks
1728  *      @val: value passed unmodified to notifier function
1729  *      @info: notifier information data
1730  *
1731  *      Call all network notifier blocks.  Parameters and return value
1732  *      are as for raw_notifier_call_chain().
1733  */
1734
1735 static int call_netdevice_notifiers_info(unsigned long val,
1736                                          struct netdev_notifier_info *info)
1737 {
1738         ASSERT_RTNL();
1739         return raw_notifier_call_chain(&netdev_chain, val, info);
1740 }
1741
1742 static int call_netdevice_notifiers_extack(unsigned long val,
1743                                            struct net_device *dev,
1744                                            struct netlink_ext_ack *extack)
1745 {
1746         struct netdev_notifier_info info = {
1747                 .dev = dev,
1748                 .extack = extack,
1749         };
1750
1751         return call_netdevice_notifiers_info(val, &info);
1752 }
1753
1754 /**
1755  *      call_netdevice_notifiers - call all network notifier blocks
1756  *      @val: value passed unmodified to notifier function
1757  *      @dev: net_device pointer passed unmodified to notifier function
1758  *
1759  *      Call all network notifier blocks.  Parameters and return value
1760  *      are as for raw_notifier_call_chain().
1761  */
1762
1763 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1764 {
1765         return call_netdevice_notifiers_extack(val, dev, NULL);
1766 }
1767 EXPORT_SYMBOL(call_netdevice_notifiers);
1768
1769 /**
1770  *      call_netdevice_notifiers_mtu - call all network notifier blocks
1771  *      @val: value passed unmodified to notifier function
1772  *      @dev: net_device pointer passed unmodified to notifier function
1773  *      @arg: additional u32 argument passed to the notifier function
1774  *
1775  *      Call all network notifier blocks.  Parameters and return value
1776  *      are as for raw_notifier_call_chain().
1777  */
1778 static int call_netdevice_notifiers_mtu(unsigned long val,
1779                                         struct net_device *dev, u32 arg)
1780 {
1781         struct netdev_notifier_info_ext info = {
1782                 .info.dev = dev,
1783                 .ext.mtu = arg,
1784         };
1785
1786         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1787
1788         return call_netdevice_notifiers_info(val, &info.info);
1789 }
1790
1791 #ifdef CONFIG_NET_INGRESS
1792 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1793
1794 void net_inc_ingress_queue(void)
1795 {
1796         static_branch_inc(&ingress_needed_key);
1797 }
1798 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1799
1800 void net_dec_ingress_queue(void)
1801 {
1802         static_branch_dec(&ingress_needed_key);
1803 }
1804 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1805 #endif
1806
1807 #ifdef CONFIG_NET_EGRESS
1808 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1809
1810 void net_inc_egress_queue(void)
1811 {
1812         static_branch_inc(&egress_needed_key);
1813 }
1814 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1815
1816 void net_dec_egress_queue(void)
1817 {
1818         static_branch_dec(&egress_needed_key);
1819 }
1820 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1821 #endif
1822
1823 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1824 #ifdef CONFIG_JUMP_LABEL
1825 static atomic_t netstamp_needed_deferred;
1826 static atomic_t netstamp_wanted;
1827 static void netstamp_clear(struct work_struct *work)
1828 {
1829         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1830         int wanted;
1831
1832         wanted = atomic_add_return(deferred, &netstamp_wanted);
1833         if (wanted > 0)
1834                 static_branch_enable(&netstamp_needed_key);
1835         else
1836                 static_branch_disable(&netstamp_needed_key);
1837 }
1838 static DECLARE_WORK(netstamp_work, netstamp_clear);
1839 #endif
1840
1841 void net_enable_timestamp(void)
1842 {
1843 #ifdef CONFIG_JUMP_LABEL
1844         int wanted;
1845
1846         while (1) {
1847                 wanted = atomic_read(&netstamp_wanted);
1848                 if (wanted <= 0)
1849                         break;
1850                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1851                         return;
1852         }
1853         atomic_inc(&netstamp_needed_deferred);
1854         schedule_work(&netstamp_work);
1855 #else
1856         static_branch_inc(&netstamp_needed_key);
1857 #endif
1858 }
1859 EXPORT_SYMBOL(net_enable_timestamp);
1860
1861 void net_disable_timestamp(void)
1862 {
1863 #ifdef CONFIG_JUMP_LABEL
1864         int wanted;
1865
1866         while (1) {
1867                 wanted = atomic_read(&netstamp_wanted);
1868                 if (wanted <= 1)
1869                         break;
1870                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1871                         return;
1872         }
1873         atomic_dec(&netstamp_needed_deferred);
1874         schedule_work(&netstamp_work);
1875 #else
1876         static_branch_dec(&netstamp_needed_key);
1877 #endif
1878 }
1879 EXPORT_SYMBOL(net_disable_timestamp);
1880
1881 static inline void net_timestamp_set(struct sk_buff *skb)
1882 {
1883         skb->tstamp = 0;
1884         if (static_branch_unlikely(&netstamp_needed_key))
1885                 __net_timestamp(skb);
1886 }
1887
1888 #define net_timestamp_check(COND, SKB)                          \
1889         if (static_branch_unlikely(&netstamp_needed_key)) {     \
1890                 if ((COND) && !(SKB)->tstamp)                   \
1891                         __net_timestamp(SKB);                   \
1892         }                                                       \
1893
1894 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1895 {
1896         unsigned int len;
1897
1898         if (!(dev->flags & IFF_UP))
1899                 return false;
1900
1901         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1902         if (skb->len <= len)
1903                 return true;
1904
1905         /* if TSO is enabled, we don't care about the length as the packet
1906          * could be forwarded without being segmented before
1907          */
1908         if (skb_is_gso(skb))
1909                 return true;
1910
1911         return false;
1912 }
1913 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1914
1915 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1916 {
1917         int ret = ____dev_forward_skb(dev, skb);
1918
1919         if (likely(!ret)) {
1920                 skb->protocol = eth_type_trans(skb, dev);
1921                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1922         }
1923
1924         return ret;
1925 }
1926 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1927
1928 /**
1929  * dev_forward_skb - loopback an skb to another netif
1930  *
1931  * @dev: destination network device
1932  * @skb: buffer to forward
1933  *
1934  * return values:
1935  *      NET_RX_SUCCESS  (no congestion)
1936  *      NET_RX_DROP     (packet was dropped, but freed)
1937  *
1938  * dev_forward_skb can be used for injecting an skb from the
1939  * start_xmit function of one device into the receive queue
1940  * of another device.
1941  *
1942  * The receiving device may be in another namespace, so
1943  * we have to clear all information in the skb that could
1944  * impact namespace isolation.
1945  */
1946 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1947 {
1948         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1949 }
1950 EXPORT_SYMBOL_GPL(dev_forward_skb);
1951
1952 static inline int deliver_skb(struct sk_buff *skb,
1953                               struct packet_type *pt_prev,
1954                               struct net_device *orig_dev)
1955 {
1956         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1957                 return -ENOMEM;
1958         refcount_inc(&skb->users);
1959         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1960 }
1961
1962 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1963                                           struct packet_type **pt,
1964                                           struct net_device *orig_dev,
1965                                           __be16 type,
1966                                           struct list_head *ptype_list)
1967 {
1968         struct packet_type *ptype, *pt_prev = *pt;
1969
1970         list_for_each_entry_rcu(ptype, ptype_list, list) {
1971                 if (ptype->type != type)
1972                         continue;
1973                 if (pt_prev)
1974                         deliver_skb(skb, pt_prev, orig_dev);
1975                 pt_prev = ptype;
1976         }
1977         *pt = pt_prev;
1978 }
1979
1980 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1981 {
1982         if (!ptype->af_packet_priv || !skb->sk)
1983                 return false;
1984
1985         if (ptype->id_match)
1986                 return ptype->id_match(ptype, skb->sk);
1987         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1988                 return true;
1989
1990         return false;
1991 }
1992
1993 /**
1994  * dev_nit_active - return true if any network interface taps are in use
1995  *
1996  * @dev: network device to check for the presence of taps
1997  */
1998 bool dev_nit_active(struct net_device *dev)
1999 {
2000         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2001 }
2002 EXPORT_SYMBOL_GPL(dev_nit_active);
2003
2004 /*
2005  *      Support routine. Sends outgoing frames to any network
2006  *      taps currently in use.
2007  */
2008
2009 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2010 {
2011         struct packet_type *ptype;
2012         struct sk_buff *skb2 = NULL;
2013         struct packet_type *pt_prev = NULL;
2014         struct list_head *ptype_list = &ptype_all;
2015
2016         rcu_read_lock();
2017 again:
2018         list_for_each_entry_rcu(ptype, ptype_list, list) {
2019                 if (ptype->ignore_outgoing)
2020                         continue;
2021
2022                 /* Never send packets back to the socket
2023                  * they originated from - MvS (miquels@drinkel.ow.org)
2024                  */
2025                 if (skb_loop_sk(ptype, skb))
2026                         continue;
2027
2028                 if (pt_prev) {
2029                         deliver_skb(skb2, pt_prev, skb->dev);
2030                         pt_prev = ptype;
2031                         continue;
2032                 }
2033
2034                 /* need to clone skb, done only once */
2035                 skb2 = skb_clone(skb, GFP_ATOMIC);
2036                 if (!skb2)
2037                         goto out_unlock;
2038
2039                 net_timestamp_set(skb2);
2040
2041                 /* skb->nh should be correctly
2042                  * set by sender, so that the second statement is
2043                  * just protection against buggy protocols.
2044                  */
2045                 skb_reset_mac_header(skb2);
2046
2047                 if (skb_network_header(skb2) < skb2->data ||
2048                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2049                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2050                                              ntohs(skb2->protocol),
2051                                              dev->name);
2052                         skb_reset_network_header(skb2);
2053                 }
2054
2055                 skb2->transport_header = skb2->network_header;
2056                 skb2->pkt_type = PACKET_OUTGOING;
2057                 pt_prev = ptype;
2058         }
2059
2060         if (ptype_list == &ptype_all) {
2061                 ptype_list = &dev->ptype_all;
2062                 goto again;
2063         }
2064 out_unlock:
2065         if (pt_prev) {
2066                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2067                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2068                 else
2069                         kfree_skb(skb2);
2070         }
2071         rcu_read_unlock();
2072 }
2073 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2074
2075 /**
2076  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2077  * @dev: Network device
2078  * @txq: number of queues available
2079  *
2080  * If real_num_tx_queues is changed the tc mappings may no longer be
2081  * valid. To resolve this verify the tc mapping remains valid and if
2082  * not NULL the mapping. With no priorities mapping to this
2083  * offset/count pair it will no longer be used. In the worst case TC0
2084  * is invalid nothing can be done so disable priority mappings. If is
2085  * expected that drivers will fix this mapping if they can before
2086  * calling netif_set_real_num_tx_queues.
2087  */
2088 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2089 {
2090         int i;
2091         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2092
2093         /* If TC0 is invalidated disable TC mapping */
2094         if (tc->offset + tc->count > txq) {
2095                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2096                 dev->num_tc = 0;
2097                 return;
2098         }
2099
2100         /* Invalidated prio to tc mappings set to TC0 */
2101         for (i = 1; i < TC_BITMASK + 1; i++) {
2102                 int q = netdev_get_prio_tc_map(dev, i);
2103
2104                 tc = &dev->tc_to_txq[q];
2105                 if (tc->offset + tc->count > txq) {
2106                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2107                                 i, q);
2108                         netdev_set_prio_tc_map(dev, i, 0);
2109                 }
2110         }
2111 }
2112
2113 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2114 {
2115         if (dev->num_tc) {
2116                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2117                 int i;
2118
2119                 /* walk through the TCs and see if it falls into any of them */
2120                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2121                         if ((txq - tc->offset) < tc->count)
2122                                 return i;
2123                 }
2124
2125                 /* didn't find it, just return -1 to indicate no match */
2126                 return -1;
2127         }
2128
2129         return 0;
2130 }
2131 EXPORT_SYMBOL(netdev_txq_to_tc);
2132
2133 #ifdef CONFIG_XPS
2134 struct static_key xps_needed __read_mostly;
2135 EXPORT_SYMBOL(xps_needed);
2136 struct static_key xps_rxqs_needed __read_mostly;
2137 EXPORT_SYMBOL(xps_rxqs_needed);
2138 static DEFINE_MUTEX(xps_map_mutex);
2139 #define xmap_dereference(P)             \
2140         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2141
2142 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2143                              int tci, u16 index)
2144 {
2145         struct xps_map *map = NULL;
2146         int pos;
2147
2148         if (dev_maps)
2149                 map = xmap_dereference(dev_maps->attr_map[tci]);
2150         if (!map)
2151                 return false;
2152
2153         for (pos = map->len; pos--;) {
2154                 if (map->queues[pos] != index)
2155                         continue;
2156
2157                 if (map->len > 1) {
2158                         map->queues[pos] = map->queues[--map->len];
2159                         break;
2160                 }
2161
2162                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2163                 kfree_rcu(map, rcu);
2164                 return false;
2165         }
2166
2167         return true;
2168 }
2169
2170 static bool remove_xps_queue_cpu(struct net_device *dev,
2171                                  struct xps_dev_maps *dev_maps,
2172                                  int cpu, u16 offset, u16 count)
2173 {
2174         int num_tc = dev->num_tc ? : 1;
2175         bool active = false;
2176         int tci;
2177
2178         for (tci = cpu * num_tc; num_tc--; tci++) {
2179                 int i, j;
2180
2181                 for (i = count, j = offset; i--; j++) {
2182                         if (!remove_xps_queue(dev_maps, tci, j))
2183                                 break;
2184                 }
2185
2186                 active |= i < 0;
2187         }
2188
2189         return active;
2190 }
2191
2192 static void reset_xps_maps(struct net_device *dev,
2193                            struct xps_dev_maps *dev_maps,
2194                            bool is_rxqs_map)
2195 {
2196         if (is_rxqs_map) {
2197                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2198                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2199         } else {
2200                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2201         }
2202         static_key_slow_dec_cpuslocked(&xps_needed);
2203         kfree_rcu(dev_maps, rcu);
2204 }
2205
2206 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2207                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2208                            u16 offset, u16 count, bool is_rxqs_map)
2209 {
2210         bool active = false;
2211         int i, j;
2212
2213         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2214              j < nr_ids;)
2215                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2216                                                count);
2217         if (!active)
2218                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2219
2220         if (!is_rxqs_map) {
2221                 for (i = offset + (count - 1); count--; i--) {
2222                         netdev_queue_numa_node_write(
2223                                 netdev_get_tx_queue(dev, i),
2224                                 NUMA_NO_NODE);
2225                 }
2226         }
2227 }
2228
2229 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2230                                    u16 count)
2231 {
2232         const unsigned long *possible_mask = NULL;
2233         struct xps_dev_maps *dev_maps;
2234         unsigned int nr_ids;
2235
2236         if (!static_key_false(&xps_needed))
2237                 return;
2238
2239         cpus_read_lock();
2240         mutex_lock(&xps_map_mutex);
2241
2242         if (static_key_false(&xps_rxqs_needed)) {
2243                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2244                 if (dev_maps) {
2245                         nr_ids = dev->num_rx_queues;
2246                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2247                                        offset, count, true);
2248                 }
2249         }
2250
2251         dev_maps = xmap_dereference(dev->xps_cpus_map);
2252         if (!dev_maps)
2253                 goto out_no_maps;
2254
2255         if (num_possible_cpus() > 1)
2256                 possible_mask = cpumask_bits(cpu_possible_mask);
2257         nr_ids = nr_cpu_ids;
2258         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2259                        false);
2260
2261 out_no_maps:
2262         mutex_unlock(&xps_map_mutex);
2263         cpus_read_unlock();
2264 }
2265
2266 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2267 {
2268         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2269 }
2270
2271 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2272                                       u16 index, bool is_rxqs_map)
2273 {
2274         struct xps_map *new_map;
2275         int alloc_len = XPS_MIN_MAP_ALLOC;
2276         int i, pos;
2277
2278         for (pos = 0; map && pos < map->len; pos++) {
2279                 if (map->queues[pos] != index)
2280                         continue;
2281                 return map;
2282         }
2283
2284         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2285         if (map) {
2286                 if (pos < map->alloc_len)
2287                         return map;
2288
2289                 alloc_len = map->alloc_len * 2;
2290         }
2291
2292         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2293          *  map
2294          */
2295         if (is_rxqs_map)
2296                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2297         else
2298                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2299                                        cpu_to_node(attr_index));
2300         if (!new_map)
2301                 return NULL;
2302
2303         for (i = 0; i < pos; i++)
2304                 new_map->queues[i] = map->queues[i];
2305         new_map->alloc_len = alloc_len;
2306         new_map->len = pos;
2307
2308         return new_map;
2309 }
2310
2311 /* Must be called under cpus_read_lock */
2312 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2313                           u16 index, bool is_rxqs_map)
2314 {
2315         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2316         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2317         int i, j, tci, numa_node_id = -2;
2318         int maps_sz, num_tc = 1, tc = 0;
2319         struct xps_map *map, *new_map;
2320         bool active = false;
2321         unsigned int nr_ids;
2322
2323         if (dev->num_tc) {
2324                 /* Do not allow XPS on subordinate device directly */
2325                 num_tc = dev->num_tc;
2326                 if (num_tc < 0)
2327                         return -EINVAL;
2328
2329                 /* If queue belongs to subordinate dev use its map */
2330                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2331
2332                 tc = netdev_txq_to_tc(dev, index);
2333                 if (tc < 0)
2334                         return -EINVAL;
2335         }
2336
2337         mutex_lock(&xps_map_mutex);
2338         if (is_rxqs_map) {
2339                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2340                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2341                 nr_ids = dev->num_rx_queues;
2342         } else {
2343                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2344                 if (num_possible_cpus() > 1) {
2345                         online_mask = cpumask_bits(cpu_online_mask);
2346                         possible_mask = cpumask_bits(cpu_possible_mask);
2347                 }
2348                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2349                 nr_ids = nr_cpu_ids;
2350         }
2351
2352         if (maps_sz < L1_CACHE_BYTES)
2353                 maps_sz = L1_CACHE_BYTES;
2354
2355         /* allocate memory for queue storage */
2356         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2357              j < nr_ids;) {
2358                 if (!new_dev_maps)
2359                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2360                 if (!new_dev_maps) {
2361                         mutex_unlock(&xps_map_mutex);
2362                         return -ENOMEM;
2363                 }
2364
2365                 tci = j * num_tc + tc;
2366                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2367                                  NULL;
2368
2369                 map = expand_xps_map(map, j, index, is_rxqs_map);
2370                 if (!map)
2371                         goto error;
2372
2373                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2374         }
2375
2376         if (!new_dev_maps)
2377                 goto out_no_new_maps;
2378
2379         if (!dev_maps) {
2380                 /* Increment static keys at most once per type */
2381                 static_key_slow_inc_cpuslocked(&xps_needed);
2382                 if (is_rxqs_map)
2383                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2384         }
2385
2386         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2387              j < nr_ids;) {
2388                 /* copy maps belonging to foreign traffic classes */
2389                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2390                         /* fill in the new device map from the old device map */
2391                         map = xmap_dereference(dev_maps->attr_map[tci]);
2392                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2393                 }
2394
2395                 /* We need to explicitly update tci as prevous loop
2396                  * could break out early if dev_maps is NULL.
2397                  */
2398                 tci = j * num_tc + tc;
2399
2400                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2401                     netif_attr_test_online(j, online_mask, nr_ids)) {
2402                         /* add tx-queue to CPU/rx-queue maps */
2403                         int pos = 0;
2404
2405                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2406                         while ((pos < map->len) && (map->queues[pos] != index))
2407                                 pos++;
2408
2409                         if (pos == map->len)
2410                                 map->queues[map->len++] = index;
2411 #ifdef CONFIG_NUMA
2412                         if (!is_rxqs_map) {
2413                                 if (numa_node_id == -2)
2414                                         numa_node_id = cpu_to_node(j);
2415                                 else if (numa_node_id != cpu_to_node(j))
2416                                         numa_node_id = -1;
2417                         }
2418 #endif
2419                 } else if (dev_maps) {
2420                         /* fill in the new device map from the old device map */
2421                         map = xmap_dereference(dev_maps->attr_map[tci]);
2422                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2423                 }
2424
2425                 /* copy maps belonging to foreign traffic classes */
2426                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2427                         /* fill in the new device map from the old device map */
2428                         map = xmap_dereference(dev_maps->attr_map[tci]);
2429                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2430                 }
2431         }
2432
2433         if (is_rxqs_map)
2434                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2435         else
2436                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2437
2438         /* Cleanup old maps */
2439         if (!dev_maps)
2440                 goto out_no_old_maps;
2441
2442         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2443              j < nr_ids;) {
2444                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2445                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2446                         map = xmap_dereference(dev_maps->attr_map[tci]);
2447                         if (map && map != new_map)
2448                                 kfree_rcu(map, rcu);
2449                 }
2450         }
2451
2452         kfree_rcu(dev_maps, rcu);
2453
2454 out_no_old_maps:
2455         dev_maps = new_dev_maps;
2456         active = true;
2457
2458 out_no_new_maps:
2459         if (!is_rxqs_map) {
2460                 /* update Tx queue numa node */
2461                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2462                                              (numa_node_id >= 0) ?
2463                                              numa_node_id : NUMA_NO_NODE);
2464         }
2465
2466         if (!dev_maps)
2467                 goto out_no_maps;
2468
2469         /* removes tx-queue from unused CPUs/rx-queues */
2470         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2471              j < nr_ids;) {
2472                 for (i = tc, tci = j * num_tc; i--; tci++)
2473                         active |= remove_xps_queue(dev_maps, tci, index);
2474                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2475                     !netif_attr_test_online(j, online_mask, nr_ids))
2476                         active |= remove_xps_queue(dev_maps, tci, index);
2477                 for (i = num_tc - tc, tci++; --i; tci++)
2478                         active |= remove_xps_queue(dev_maps, tci, index);
2479         }
2480
2481         /* free map if not active */
2482         if (!active)
2483                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2484
2485 out_no_maps:
2486         mutex_unlock(&xps_map_mutex);
2487
2488         return 0;
2489 error:
2490         /* remove any maps that we added */
2491         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2492              j < nr_ids;) {
2493                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2494                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2495                         map = dev_maps ?
2496                               xmap_dereference(dev_maps->attr_map[tci]) :
2497                               NULL;
2498                         if (new_map && new_map != map)
2499                                 kfree(new_map);
2500                 }
2501         }
2502
2503         mutex_unlock(&xps_map_mutex);
2504
2505         kfree(new_dev_maps);
2506         return -ENOMEM;
2507 }
2508 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2509
2510 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2511                         u16 index)
2512 {
2513         int ret;
2514
2515         cpus_read_lock();
2516         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2517         cpus_read_unlock();
2518
2519         return ret;
2520 }
2521 EXPORT_SYMBOL(netif_set_xps_queue);
2522
2523 #endif
2524 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2525 {
2526         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2527
2528         /* Unbind any subordinate channels */
2529         while (txq-- != &dev->_tx[0]) {
2530                 if (txq->sb_dev)
2531                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2532         }
2533 }
2534
2535 void netdev_reset_tc(struct net_device *dev)
2536 {
2537 #ifdef CONFIG_XPS
2538         netif_reset_xps_queues_gt(dev, 0);
2539 #endif
2540         netdev_unbind_all_sb_channels(dev);
2541
2542         /* Reset TC configuration of device */
2543         dev->num_tc = 0;
2544         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2545         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2546 }
2547 EXPORT_SYMBOL(netdev_reset_tc);
2548
2549 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2550 {
2551         if (tc >= dev->num_tc)
2552                 return -EINVAL;
2553
2554 #ifdef CONFIG_XPS
2555         netif_reset_xps_queues(dev, offset, count);
2556 #endif
2557         dev->tc_to_txq[tc].count = count;
2558         dev->tc_to_txq[tc].offset = offset;
2559         return 0;
2560 }
2561 EXPORT_SYMBOL(netdev_set_tc_queue);
2562
2563 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2564 {
2565         if (num_tc > TC_MAX_QUEUE)
2566                 return -EINVAL;
2567
2568 #ifdef CONFIG_XPS
2569         netif_reset_xps_queues_gt(dev, 0);
2570 #endif
2571         netdev_unbind_all_sb_channels(dev);
2572
2573         dev->num_tc = num_tc;
2574         return 0;
2575 }
2576 EXPORT_SYMBOL(netdev_set_num_tc);
2577
2578 void netdev_unbind_sb_channel(struct net_device *dev,
2579                               struct net_device *sb_dev)
2580 {
2581         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2582
2583 #ifdef CONFIG_XPS
2584         netif_reset_xps_queues_gt(sb_dev, 0);
2585 #endif
2586         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2587         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2588
2589         while (txq-- != &dev->_tx[0]) {
2590                 if (txq->sb_dev == sb_dev)
2591                         txq->sb_dev = NULL;
2592         }
2593 }
2594 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2595
2596 int netdev_bind_sb_channel_queue(struct net_device *dev,
2597                                  struct net_device *sb_dev,
2598                                  u8 tc, u16 count, u16 offset)
2599 {
2600         /* Make certain the sb_dev and dev are already configured */
2601         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2602                 return -EINVAL;
2603
2604         /* We cannot hand out queues we don't have */
2605         if ((offset + count) > dev->real_num_tx_queues)
2606                 return -EINVAL;
2607
2608         /* Record the mapping */
2609         sb_dev->tc_to_txq[tc].count = count;
2610         sb_dev->tc_to_txq[tc].offset = offset;
2611
2612         /* Provide a way for Tx queue to find the tc_to_txq map or
2613          * XPS map for itself.
2614          */
2615         while (count--)
2616                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2617
2618         return 0;
2619 }
2620 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2621
2622 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2623 {
2624         /* Do not use a multiqueue device to represent a subordinate channel */
2625         if (netif_is_multiqueue(dev))
2626                 return -ENODEV;
2627
2628         /* We allow channels 1 - 32767 to be used for subordinate channels.
2629          * Channel 0 is meant to be "native" mode and used only to represent
2630          * the main root device. We allow writing 0 to reset the device back
2631          * to normal mode after being used as a subordinate channel.
2632          */
2633         if (channel > S16_MAX)
2634                 return -EINVAL;
2635
2636         dev->num_tc = -channel;
2637
2638         return 0;
2639 }
2640 EXPORT_SYMBOL(netdev_set_sb_channel);
2641
2642 /*
2643  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2644  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2645  */
2646 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2647 {
2648         bool disabling;
2649         int rc;
2650
2651         disabling = txq < dev->real_num_tx_queues;
2652
2653         if (txq < 1 || txq > dev->num_tx_queues)
2654                 return -EINVAL;
2655
2656         if (dev->reg_state == NETREG_REGISTERED ||
2657             dev->reg_state == NETREG_UNREGISTERING) {
2658                 ASSERT_RTNL();
2659
2660                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2661                                                   txq);
2662                 if (rc)
2663                         return rc;
2664
2665                 if (dev->num_tc)
2666                         netif_setup_tc(dev, txq);
2667
2668                 dev->real_num_tx_queues = txq;
2669
2670                 if (disabling) {
2671                         synchronize_net();
2672                         qdisc_reset_all_tx_gt(dev, txq);
2673 #ifdef CONFIG_XPS
2674                         netif_reset_xps_queues_gt(dev, txq);
2675 #endif
2676                 }
2677         } else {
2678                 dev->real_num_tx_queues = txq;
2679         }
2680
2681         return 0;
2682 }
2683 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2684
2685 #ifdef CONFIG_SYSFS
2686 /**
2687  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2688  *      @dev: Network device
2689  *      @rxq: Actual number of RX queues
2690  *
2691  *      This must be called either with the rtnl_lock held or before
2692  *      registration of the net device.  Returns 0 on success, or a
2693  *      negative error code.  If called before registration, it always
2694  *      succeeds.
2695  */
2696 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2697 {
2698         int rc;
2699
2700         if (rxq < 1 || rxq > dev->num_rx_queues)
2701                 return -EINVAL;
2702
2703         if (dev->reg_state == NETREG_REGISTERED) {
2704                 ASSERT_RTNL();
2705
2706                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2707                                                   rxq);
2708                 if (rc)
2709                         return rc;
2710         }
2711
2712         dev->real_num_rx_queues = rxq;
2713         return 0;
2714 }
2715 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2716 #endif
2717
2718 /**
2719  * netif_get_num_default_rss_queues - default number of RSS queues
2720  *
2721  * This routine should set an upper limit on the number of RSS queues
2722  * used by default by multiqueue devices.
2723  */
2724 int netif_get_num_default_rss_queues(void)
2725 {
2726         return is_kdump_kernel() ?
2727                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2728 }
2729 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2730
2731 static void __netif_reschedule(struct Qdisc *q)
2732 {
2733         struct softnet_data *sd;
2734         unsigned long flags;
2735
2736         local_irq_save(flags);
2737         sd = this_cpu_ptr(&softnet_data);
2738         q->next_sched = NULL;
2739         *sd->output_queue_tailp = q;
2740         sd->output_queue_tailp = &q->next_sched;
2741         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2742         local_irq_restore(flags);
2743 }
2744
2745 void __netif_schedule(struct Qdisc *q)
2746 {
2747         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2748                 __netif_reschedule(q);
2749 }
2750 EXPORT_SYMBOL(__netif_schedule);
2751
2752 struct dev_kfree_skb_cb {
2753         enum skb_free_reason reason;
2754 };
2755
2756 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2757 {
2758         return (struct dev_kfree_skb_cb *)skb->cb;
2759 }
2760
2761 void netif_schedule_queue(struct netdev_queue *txq)
2762 {
2763         rcu_read_lock();
2764         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2765                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2766
2767                 __netif_schedule(q);
2768         }
2769         rcu_read_unlock();
2770 }
2771 EXPORT_SYMBOL(netif_schedule_queue);
2772
2773 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2774 {
2775         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2776                 struct Qdisc *q;
2777
2778                 rcu_read_lock();
2779                 q = rcu_dereference(dev_queue->qdisc);
2780                 __netif_schedule(q);
2781                 rcu_read_unlock();
2782         }
2783 }
2784 EXPORT_SYMBOL(netif_tx_wake_queue);
2785
2786 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2787 {
2788         unsigned long flags;
2789
2790         if (unlikely(!skb))
2791                 return;
2792
2793         if (likely(refcount_read(&skb->users) == 1)) {
2794                 smp_rmb();
2795                 refcount_set(&skb->users, 0);
2796         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2797                 return;
2798         }
2799         get_kfree_skb_cb(skb)->reason = reason;
2800         local_irq_save(flags);
2801         skb->next = __this_cpu_read(softnet_data.completion_queue);
2802         __this_cpu_write(softnet_data.completion_queue, skb);
2803         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2804         local_irq_restore(flags);
2805 }
2806 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2807
2808 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2809 {
2810         if (in_irq() || irqs_disabled())
2811                 __dev_kfree_skb_irq(skb, reason);
2812         else
2813                 dev_kfree_skb(skb);
2814 }
2815 EXPORT_SYMBOL(__dev_kfree_skb_any);
2816
2817
2818 /**
2819  * netif_device_detach - mark device as removed
2820  * @dev: network device
2821  *
2822  * Mark device as removed from system and therefore no longer available.
2823  */
2824 void netif_device_detach(struct net_device *dev)
2825 {
2826         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2827             netif_running(dev)) {
2828                 netif_tx_stop_all_queues(dev);
2829         }
2830 }
2831 EXPORT_SYMBOL(netif_device_detach);
2832
2833 /**
2834  * netif_device_attach - mark device as attached
2835  * @dev: network device
2836  *
2837  * Mark device as attached from system and restart if needed.
2838  */
2839 void netif_device_attach(struct net_device *dev)
2840 {
2841         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2842             netif_running(dev)) {
2843                 netif_tx_wake_all_queues(dev);
2844                 __netdev_watchdog_up(dev);
2845         }
2846 }
2847 EXPORT_SYMBOL(netif_device_attach);
2848
2849 /*
2850  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2851  * to be used as a distribution range.
2852  */
2853 static u16 skb_tx_hash(const struct net_device *dev,
2854                        const struct net_device *sb_dev,
2855                        struct sk_buff *skb)
2856 {
2857         u32 hash;
2858         u16 qoffset = 0;
2859         u16 qcount = dev->real_num_tx_queues;
2860
2861         if (dev->num_tc) {
2862                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2863
2864                 qoffset = sb_dev->tc_to_txq[tc].offset;
2865                 qcount = sb_dev->tc_to_txq[tc].count;
2866         }
2867
2868         if (skb_rx_queue_recorded(skb)) {
2869                 hash = skb_get_rx_queue(skb);
2870                 while (unlikely(hash >= qcount))
2871                         hash -= qcount;
2872                 return hash + qoffset;
2873         }
2874
2875         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2876 }
2877
2878 static void skb_warn_bad_offload(const struct sk_buff *skb)
2879 {
2880         static const netdev_features_t null_features;
2881         struct net_device *dev = skb->dev;
2882         const char *name = "";
2883
2884         if (!net_ratelimit())
2885                 return;
2886
2887         if (dev) {
2888                 if (dev->dev.parent)
2889                         name = dev_driver_string(dev->dev.parent);
2890                 else
2891                         name = netdev_name(dev);
2892         }
2893         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2894              "gso_type=%d ip_summed=%d\n",
2895              name, dev ? &dev->features : &null_features,
2896              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2897              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2898              skb_shinfo(skb)->gso_type, skb->ip_summed);
2899 }
2900
2901 /*
2902  * Invalidate hardware checksum when packet is to be mangled, and
2903  * complete checksum manually on outgoing path.
2904  */
2905 int skb_checksum_help(struct sk_buff *skb)
2906 {
2907         __wsum csum;
2908         int ret = 0, offset;
2909
2910         if (skb->ip_summed == CHECKSUM_COMPLETE)
2911                 goto out_set_summed;
2912
2913         if (unlikely(skb_shinfo(skb)->gso_size)) {
2914                 skb_warn_bad_offload(skb);
2915                 return -EINVAL;
2916         }
2917
2918         /* Before computing a checksum, we should make sure no frag could
2919          * be modified by an external entity : checksum could be wrong.
2920          */
2921         if (skb_has_shared_frag(skb)) {
2922                 ret = __skb_linearize(skb);
2923                 if (ret)
2924                         goto out;
2925         }
2926
2927         offset = skb_checksum_start_offset(skb);
2928         BUG_ON(offset >= skb_headlen(skb));
2929         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2930
2931         offset += skb->csum_offset;
2932         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2933
2934         if (skb_cloned(skb) &&
2935             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2936                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2937                 if (ret)
2938                         goto out;
2939         }
2940
2941         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2942 out_set_summed:
2943         skb->ip_summed = CHECKSUM_NONE;
2944 out:
2945         return ret;
2946 }
2947 EXPORT_SYMBOL(skb_checksum_help);
2948
2949 int skb_crc32c_csum_help(struct sk_buff *skb)
2950 {
2951         __le32 crc32c_csum;
2952         int ret = 0, offset, start;
2953
2954         if (skb->ip_summed != CHECKSUM_PARTIAL)
2955                 goto out;
2956
2957         if (unlikely(skb_is_gso(skb)))
2958                 goto out;
2959
2960         /* Before computing a checksum, we should make sure no frag could
2961          * be modified by an external entity : checksum could be wrong.
2962          */
2963         if (unlikely(skb_has_shared_frag(skb))) {
2964                 ret = __skb_linearize(skb);
2965                 if (ret)
2966                         goto out;
2967         }
2968         start = skb_checksum_start_offset(skb);
2969         offset = start + offsetof(struct sctphdr, checksum);
2970         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2971                 ret = -EINVAL;
2972                 goto out;
2973         }
2974         if (skb_cloned(skb) &&
2975             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2976                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2977                 if (ret)
2978                         goto out;
2979         }
2980         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2981                                                   skb->len - start, ~(__u32)0,
2982                                                   crc32c_csum_stub));
2983         *(__le32 *)(skb->data + offset) = crc32c_csum;
2984         skb->ip_summed = CHECKSUM_NONE;
2985         skb->csum_not_inet = 0;
2986 out:
2987         return ret;
2988 }
2989
2990 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2991 {
2992         __be16 type = skb->protocol;
2993
2994         /* Tunnel gso handlers can set protocol to ethernet. */
2995         if (type == htons(ETH_P_TEB)) {
2996                 struct ethhdr *eth;
2997
2998                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2999                         return 0;
3000
3001                 eth = (struct ethhdr *)skb->data;
3002                 type = eth->h_proto;
3003         }
3004
3005         return __vlan_get_protocol(skb, type, depth);
3006 }
3007
3008 /**
3009  *      skb_mac_gso_segment - mac layer segmentation handler.
3010  *      @skb: buffer to segment
3011  *      @features: features for the output path (see dev->features)
3012  */
3013 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3014                                     netdev_features_t features)
3015 {
3016         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3017         struct packet_offload *ptype;
3018         int vlan_depth = skb->mac_len;
3019         __be16 type = skb_network_protocol(skb, &vlan_depth);
3020
3021         if (unlikely(!type))
3022                 return ERR_PTR(-EINVAL);
3023
3024         __skb_pull(skb, vlan_depth);
3025
3026         rcu_read_lock();
3027         list_for_each_entry_rcu(ptype, &offload_base, list) {
3028                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3029                         segs = ptype->callbacks.gso_segment(skb, features);
3030                         break;
3031                 }
3032         }
3033         rcu_read_unlock();
3034
3035         __skb_push(skb, skb->data - skb_mac_header(skb));
3036
3037         return segs;
3038 }
3039 EXPORT_SYMBOL(skb_mac_gso_segment);
3040
3041
3042 /* openvswitch calls this on rx path, so we need a different check.
3043  */
3044 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3045 {
3046         if (tx_path)
3047                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3048                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3049
3050         return skb->ip_summed == CHECKSUM_NONE;
3051 }
3052
3053 /**
3054  *      __skb_gso_segment - Perform segmentation on skb.
3055  *      @skb: buffer to segment
3056  *      @features: features for the output path (see dev->features)
3057  *      @tx_path: whether it is called in TX path
3058  *
3059  *      This function segments the given skb and returns a list of segments.
3060  *
3061  *      It may return NULL if the skb requires no segmentation.  This is
3062  *      only possible when GSO is used for verifying header integrity.
3063  *
3064  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3065  */
3066 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3067                                   netdev_features_t features, bool tx_path)
3068 {
3069         struct sk_buff *segs;
3070
3071         if (unlikely(skb_needs_check(skb, tx_path))) {
3072                 int err;
3073
3074                 /* We're going to init ->check field in TCP or UDP header */
3075                 err = skb_cow_head(skb, 0);
3076                 if (err < 0)
3077                         return ERR_PTR(err);
3078         }
3079
3080         /* Only report GSO partial support if it will enable us to
3081          * support segmentation on this frame without needing additional
3082          * work.
3083          */
3084         if (features & NETIF_F_GSO_PARTIAL) {
3085                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3086                 struct net_device *dev = skb->dev;
3087
3088                 partial_features |= dev->features & dev->gso_partial_features;
3089                 if (!skb_gso_ok(skb, features | partial_features))
3090                         features &= ~NETIF_F_GSO_PARTIAL;
3091         }
3092
3093         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3094                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3095
3096         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3097         SKB_GSO_CB(skb)->encap_level = 0;
3098
3099         skb_reset_mac_header(skb);
3100         skb_reset_mac_len(skb);
3101
3102         segs = skb_mac_gso_segment(skb, features);
3103
3104         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3105                 skb_warn_bad_offload(skb);
3106
3107         return segs;
3108 }
3109 EXPORT_SYMBOL(__skb_gso_segment);
3110
3111 /* Take action when hardware reception checksum errors are detected. */
3112 #ifdef CONFIG_BUG
3113 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3114 {
3115         if (net_ratelimit()) {
3116                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3117                 if (dev)
3118                         pr_err("dev features: %pNF\n", &dev->features);
3119                 pr_err("skb len=%u data_len=%u pkt_type=%u gso_size=%u gso_type=%u nr_frags=%u ip_summed=%u csum=%x csum_complete_sw=%d csum_valid=%d csum_level=%u\n",
3120                        skb->len, skb->data_len, skb->pkt_type,
3121                        skb_shinfo(skb)->gso_size, skb_shinfo(skb)->gso_type,
3122                        skb_shinfo(skb)->nr_frags, skb->ip_summed, skb->csum,
3123                        skb->csum_complete_sw, skb->csum_valid, skb->csum_level);
3124                 dump_stack();
3125         }
3126 }
3127 EXPORT_SYMBOL(netdev_rx_csum_fault);
3128 #endif
3129
3130 /* XXX: check that highmem exists at all on the given machine. */
3131 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3132 {
3133 #ifdef CONFIG_HIGHMEM
3134         int i;
3135
3136         if (!(dev->features & NETIF_F_HIGHDMA)) {
3137                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3138                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3139
3140                         if (PageHighMem(skb_frag_page(frag)))
3141                                 return 1;
3142                 }
3143         }
3144 #endif
3145         return 0;
3146 }
3147
3148 /* If MPLS offload request, verify we are testing hardware MPLS features
3149  * instead of standard features for the netdev.
3150  */
3151 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3152 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3153                                            netdev_features_t features,
3154                                            __be16 type)
3155 {
3156         if (eth_p_mpls(type))
3157                 features &= skb->dev->mpls_features;
3158
3159         return features;
3160 }
3161 #else
3162 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3163                                            netdev_features_t features,
3164                                            __be16 type)
3165 {
3166         return features;
3167 }
3168 #endif
3169
3170 static netdev_features_t harmonize_features(struct sk_buff *skb,
3171         netdev_features_t features)
3172 {
3173         int tmp;
3174         __be16 type;
3175
3176         type = skb_network_protocol(skb, &tmp);
3177         features = net_mpls_features(skb, features, type);
3178
3179         if (skb->ip_summed != CHECKSUM_NONE &&
3180             !can_checksum_protocol(features, type)) {
3181                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3182         }
3183         if (illegal_highdma(skb->dev, skb))
3184                 features &= ~NETIF_F_SG;
3185
3186         return features;
3187 }
3188
3189 netdev_features_t passthru_features_check(struct sk_buff *skb,
3190                                           struct net_device *dev,
3191                                           netdev_features_t features)
3192 {
3193         return features;
3194 }
3195 EXPORT_SYMBOL(passthru_features_check);
3196
3197 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3198                                              struct net_device *dev,
3199                                              netdev_features_t features)
3200 {
3201         return vlan_features_check(skb, features);
3202 }
3203
3204 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3205                                             struct net_device *dev,
3206                                             netdev_features_t features)
3207 {
3208         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3209
3210         if (gso_segs > dev->gso_max_segs)
3211                 return features & ~NETIF_F_GSO_MASK;
3212
3213         /* Support for GSO partial features requires software
3214          * intervention before we can actually process the packets
3215          * so we need to strip support for any partial features now
3216          * and we can pull them back in after we have partially
3217          * segmented the frame.
3218          */
3219         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3220                 features &= ~dev->gso_partial_features;
3221
3222         /* Make sure to clear the IPv4 ID mangling feature if the
3223          * IPv4 header has the potential to be fragmented.
3224          */
3225         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3226                 struct iphdr *iph = skb->encapsulation ?
3227                                     inner_ip_hdr(skb) : ip_hdr(skb);
3228
3229                 if (!(iph->frag_off & htons(IP_DF)))
3230                         features &= ~NETIF_F_TSO_MANGLEID;
3231         }
3232
3233         return features;
3234 }
3235
3236 netdev_features_t netif_skb_features(struct sk_buff *skb)
3237 {
3238         struct net_device *dev = skb->dev;
3239         netdev_features_t features = dev->features;
3240
3241         if (skb_is_gso(skb))
3242                 features = gso_features_check(skb, dev, features);
3243
3244         /* If encapsulation offload request, verify we are testing
3245          * hardware encapsulation features instead of standard
3246          * features for the netdev
3247          */
3248         if (skb->encapsulation)
3249                 features &= dev->hw_enc_features;
3250
3251         if (skb_vlan_tagged(skb))
3252                 features = netdev_intersect_features(features,
3253                                                      dev->vlan_features |
3254                                                      NETIF_F_HW_VLAN_CTAG_TX |
3255                                                      NETIF_F_HW_VLAN_STAG_TX);
3256
3257         if (dev->netdev_ops->ndo_features_check)
3258                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3259                                                                 features);
3260         else
3261                 features &= dflt_features_check(skb, dev, features);
3262
3263         return harmonize_features(skb, features);
3264 }
3265 EXPORT_SYMBOL(netif_skb_features);
3266
3267 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3268                     struct netdev_queue *txq, bool more)
3269 {
3270         unsigned int len;
3271         int rc;
3272
3273         if (dev_nit_active(dev))
3274                 dev_queue_xmit_nit(skb, dev);
3275
3276         len = skb->len;
3277         trace_net_dev_start_xmit(skb, dev);
3278         rc = netdev_start_xmit(skb, dev, txq, more);
3279         trace_net_dev_xmit(skb, rc, dev, len);
3280
3281         return rc;
3282 }
3283
3284 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3285                                     struct netdev_queue *txq, int *ret)
3286 {
3287         struct sk_buff *skb = first;
3288         int rc = NETDEV_TX_OK;
3289
3290         while (skb) {
3291                 struct sk_buff *next = skb->next;
3292
3293                 skb_mark_not_on_list(skb);
3294                 rc = xmit_one(skb, dev, txq, next != NULL);
3295                 if (unlikely(!dev_xmit_complete(rc))) {
3296                         skb->next = next;
3297                         goto out;
3298                 }
3299
3300                 skb = next;
3301                 if (netif_tx_queue_stopped(txq) && skb) {
3302                         rc = NETDEV_TX_BUSY;
3303                         break;
3304                 }
3305         }
3306
3307 out:
3308         *ret = rc;
3309         return skb;
3310 }
3311
3312 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3313                                           netdev_features_t features)
3314 {
3315         if (skb_vlan_tag_present(skb) &&
3316             !vlan_hw_offload_capable(features, skb->vlan_proto))
3317                 skb = __vlan_hwaccel_push_inside(skb);
3318         return skb;
3319 }
3320
3321 int skb_csum_hwoffload_help(struct sk_buff *skb,
3322                             const netdev_features_t features)
3323 {
3324         if (unlikely(skb->csum_not_inet))
3325                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3326                         skb_crc32c_csum_help(skb);
3327
3328         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3329 }
3330 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3331
3332 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3333 {
3334         netdev_features_t features;
3335
3336         features = netif_skb_features(skb);
3337         skb = validate_xmit_vlan(skb, features);
3338         if (unlikely(!skb))
3339                 goto out_null;
3340
3341         skb = sk_validate_xmit_skb(skb, dev);
3342         if (unlikely(!skb))
3343                 goto out_null;
3344
3345         if (netif_needs_gso(skb, features)) {
3346                 struct sk_buff *segs;
3347
3348                 segs = skb_gso_segment(skb, features);
3349                 if (IS_ERR(segs)) {
3350                         goto out_kfree_skb;
3351                 } else if (segs) {
3352                         consume_skb(skb);
3353                         skb = segs;
3354                 }
3355         } else {
3356                 if (skb_needs_linearize(skb, features) &&
3357                     __skb_linearize(skb))
3358                         goto out_kfree_skb;
3359
3360                 /* If packet is not checksummed and device does not
3361                  * support checksumming for this protocol, complete
3362                  * checksumming here.
3363                  */
3364                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3365                         if (skb->encapsulation)
3366                                 skb_set_inner_transport_header(skb,
3367                                                                skb_checksum_start_offset(skb));
3368                         else
3369                                 skb_set_transport_header(skb,
3370                                                          skb_checksum_start_offset(skb));
3371                         if (skb_csum_hwoffload_help(skb, features))
3372                                 goto out_kfree_skb;
3373                 }
3374         }
3375
3376         skb = validate_xmit_xfrm(skb, features, again);
3377
3378         return skb;
3379
3380 out_kfree_skb:
3381         kfree_skb(skb);
3382 out_null:
3383         atomic_long_inc(&dev->tx_dropped);
3384         return NULL;
3385 }
3386
3387 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3388 {
3389         struct sk_buff *next, *head = NULL, *tail;
3390
3391         for (; skb != NULL; skb = next) {
3392                 next = skb->next;
3393                 skb_mark_not_on_list(skb);
3394
3395                 /* in case skb wont be segmented, point to itself */
3396                 skb->prev = skb;
3397
3398                 skb = validate_xmit_skb(skb, dev, again);
3399                 if (!skb)
3400                         continue;
3401
3402                 if (!head)
3403                         head = skb;
3404                 else
3405                         tail->next = skb;
3406                 /* If skb was segmented, skb->prev points to
3407                  * the last segment. If not, it still contains skb.
3408                  */
3409                 tail = skb->prev;
3410         }
3411         return head;
3412 }
3413 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3414
3415 static void qdisc_pkt_len_init(struct sk_buff *skb)
3416 {
3417         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3418
3419         qdisc_skb_cb(skb)->pkt_len = skb->len;
3420
3421         /* To get more precise estimation of bytes sent on wire,
3422          * we add to pkt_len the headers size of all segments
3423          */
3424         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3425                 unsigned int hdr_len;
3426                 u16 gso_segs = shinfo->gso_segs;
3427
3428                 /* mac layer + network layer */
3429                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3430
3431                 /* + transport layer */
3432                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3433                         const struct tcphdr *th;
3434                         struct tcphdr _tcphdr;
3435
3436                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3437                                                 sizeof(_tcphdr), &_tcphdr);
3438                         if (likely(th))
3439                                 hdr_len += __tcp_hdrlen(th);
3440                 } else {
3441                         struct udphdr _udphdr;
3442
3443                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3444                                                sizeof(_udphdr), &_udphdr))
3445                                 hdr_len += sizeof(struct udphdr);
3446                 }
3447
3448                 if (shinfo->gso_type & SKB_GSO_DODGY)
3449                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3450                                                 shinfo->gso_size);
3451
3452                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3453         }
3454 }
3455
3456 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3457                                  struct net_device *dev,
3458                                  struct netdev_queue *txq)
3459 {
3460         spinlock_t *root_lock = qdisc_lock(q);
3461         struct sk_buff *to_free = NULL;
3462         bool contended;
3463         int rc;
3464
3465         qdisc_calculate_pkt_len(skb, q);
3466
3467         if (q->flags & TCQ_F_NOLOCK) {
3468                 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3469                         __qdisc_drop(skb, &to_free);
3470                         rc = NET_XMIT_DROP;
3471                 } else {
3472                         rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3473                         qdisc_run(q);
3474                 }
3475
3476                 if (unlikely(to_free))
3477                         kfree_skb_list(to_free);
3478                 return rc;
3479         }
3480
3481         /*
3482          * Heuristic to force contended enqueues to serialize on a
3483          * separate lock before trying to get qdisc main lock.
3484          * This permits qdisc->running owner to get the lock more
3485          * often and dequeue packets faster.
3486          */
3487         contended = qdisc_is_running(q);
3488         if (unlikely(contended))
3489                 spin_lock(&q->busylock);
3490
3491         spin_lock(root_lock);
3492         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3493                 __qdisc_drop(skb, &to_free);
3494                 rc = NET_XMIT_DROP;
3495         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3496                    qdisc_run_begin(q)) {
3497                 /*
3498                  * This is a work-conserving queue; there are no old skbs
3499                  * waiting to be sent out; and the qdisc is not running -
3500                  * xmit the skb directly.
3501                  */
3502
3503                 qdisc_bstats_update(q, skb);
3504
3505                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3506                         if (unlikely(contended)) {
3507                                 spin_unlock(&q->busylock);
3508                                 contended = false;
3509                         }
3510                         __qdisc_run(q);
3511                 }
3512
3513                 qdisc_run_end(q);
3514                 rc = NET_XMIT_SUCCESS;
3515         } else {
3516                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3517                 if (qdisc_run_begin(q)) {
3518                         if (unlikely(contended)) {
3519                                 spin_unlock(&q->busylock);
3520                                 contended = false;
3521                         }
3522                         __qdisc_run(q);
3523                         qdisc_run_end(q);
3524                 }
3525         }
3526         spin_unlock(root_lock);
3527         if (unlikely(to_free))
3528                 kfree_skb_list(to_free);
3529         if (unlikely(contended))
3530                 spin_unlock(&q->busylock);
3531         return rc;
3532 }
3533
3534 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3535 static void skb_update_prio(struct sk_buff *skb)
3536 {
3537         const struct netprio_map *map;
3538         const struct sock *sk;
3539         unsigned int prioidx;
3540
3541         if (skb->priority)
3542                 return;
3543         map = rcu_dereference_bh(skb->dev->priomap);
3544         if (!map)
3545                 return;
3546         sk = skb_to_full_sk(skb);
3547         if (!sk)
3548                 return;
3549
3550         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3551
3552         if (prioidx < map->priomap_len)
3553                 skb->priority = map->priomap[prioidx];
3554 }
3555 #else
3556 #define skb_update_prio(skb)
3557 #endif
3558
3559 DEFINE_PER_CPU(int, xmit_recursion);
3560 EXPORT_SYMBOL(xmit_recursion);
3561
3562 /**
3563  *      dev_loopback_xmit - loop back @skb
3564  *      @net: network namespace this loopback is happening in
3565  *      @sk:  sk needed to be a netfilter okfn
3566  *      @skb: buffer to transmit
3567  */
3568 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3569 {
3570         skb_reset_mac_header(skb);
3571         __skb_pull(skb, skb_network_offset(skb));
3572         skb->pkt_type = PACKET_LOOPBACK;
3573         skb->ip_summed = CHECKSUM_UNNECESSARY;
3574         WARN_ON(!skb_dst(skb));
3575         skb_dst_force(skb);
3576         netif_rx_ni(skb);
3577         return 0;
3578 }
3579 EXPORT_SYMBOL(dev_loopback_xmit);
3580
3581 #ifdef CONFIG_NET_EGRESS
3582 static struct sk_buff *
3583 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3584 {
3585         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3586         struct tcf_result cl_res;
3587
3588         if (!miniq)
3589                 return skb;
3590
3591         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3592         mini_qdisc_bstats_cpu_update(miniq, skb);
3593
3594         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3595         case TC_ACT_OK:
3596         case TC_ACT_RECLASSIFY:
3597                 skb->tc_index = TC_H_MIN(cl_res.classid);
3598                 break;
3599         case TC_ACT_SHOT:
3600                 mini_qdisc_qstats_cpu_drop(miniq);
3601                 *ret = NET_XMIT_DROP;
3602                 kfree_skb(skb);
3603                 return NULL;
3604         case TC_ACT_STOLEN:
3605         case TC_ACT_QUEUED:
3606         case TC_ACT_TRAP:
3607                 *ret = NET_XMIT_SUCCESS;
3608                 consume_skb(skb);
3609                 return NULL;
3610         case TC_ACT_REDIRECT:
3611                 /* No need to push/pop skb's mac_header here on egress! */
3612                 skb_do_redirect(skb);
3613                 *ret = NET_XMIT_SUCCESS;
3614                 return NULL;
3615         default:
3616                 break;
3617         }
3618
3619         return skb;
3620 }
3621 #endif /* CONFIG_NET_EGRESS */
3622
3623 #ifdef CONFIG_XPS
3624 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3625                                struct xps_dev_maps *dev_maps, unsigned int tci)
3626 {
3627         struct xps_map *map;
3628         int queue_index = -1;
3629
3630         if (dev->num_tc) {
3631                 tci *= dev->num_tc;
3632                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3633         }
3634
3635         map = rcu_dereference(dev_maps->attr_map[tci]);
3636         if (map) {
3637                 if (map->len == 1)
3638                         queue_index = map->queues[0];
3639                 else
3640                         queue_index = map->queues[reciprocal_scale(
3641                                                 skb_get_hash(skb), map->len)];
3642                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3643                         queue_index = -1;
3644         }
3645         return queue_index;
3646 }
3647 #endif
3648
3649 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3650                          struct sk_buff *skb)
3651 {
3652 #ifdef CONFIG_XPS
3653         struct xps_dev_maps *dev_maps;
3654         struct sock *sk = skb->sk;
3655         int queue_index = -1;
3656
3657         if (!static_key_false(&xps_needed))
3658                 return -1;
3659
3660         rcu_read_lock();
3661         if (!static_key_false(&xps_rxqs_needed))
3662                 goto get_cpus_map;
3663
3664         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3665         if (dev_maps) {
3666                 int tci = sk_rx_queue_get(sk);
3667
3668                 if (tci >= 0 && tci < dev->num_rx_queues)
3669                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3670                                                           tci);
3671         }
3672
3673 get_cpus_map:
3674         if (queue_index < 0) {
3675                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3676                 if (dev_maps) {
3677                         unsigned int tci = skb->sender_cpu - 1;
3678
3679                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3680                                                           tci);
3681                 }
3682         }
3683         rcu_read_unlock();
3684
3685         return queue_index;
3686 #else
3687         return -1;
3688 #endif
3689 }
3690
3691 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3692                      struct net_device *sb_dev,
3693                      select_queue_fallback_t fallback)
3694 {
3695         return 0;
3696 }
3697 EXPORT_SYMBOL(dev_pick_tx_zero);
3698
3699 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3700                        struct net_device *sb_dev,
3701                        select_queue_fallback_t fallback)
3702 {
3703         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3704 }
3705 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3706
3707 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3708                      struct net_device *sb_dev)
3709 {
3710         struct sock *sk = skb->sk;
3711         int queue_index = sk_tx_queue_get(sk);
3712
3713         sb_dev = sb_dev ? : dev;
3714
3715         if (queue_index < 0 || skb->ooo_okay ||
3716             queue_index >= dev->real_num_tx_queues) {
3717                 int new_index = get_xps_queue(dev, sb_dev, skb);
3718
3719                 if (new_index < 0)
3720                         new_index = skb_tx_hash(dev, sb_dev, skb);
3721
3722                 if (queue_index != new_index && sk &&
3723                     sk_fullsock(sk) &&
3724                     rcu_access_pointer(sk->sk_dst_cache))
3725                         sk_tx_queue_set(sk, new_index);
3726
3727                 queue_index = new_index;
3728         }
3729
3730         return queue_index;
3731 }
3732 EXPORT_SYMBOL(netdev_pick_tx);
3733
3734 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3735                                          struct sk_buff *skb,
3736                                          struct net_device *sb_dev)
3737 {
3738         int queue_index = 0;
3739
3740 #ifdef CONFIG_XPS
3741         u32 sender_cpu = skb->sender_cpu - 1;
3742
3743         if (sender_cpu >= (u32)NR_CPUS)
3744                 skb->sender_cpu = raw_smp_processor_id() + 1;
3745 #endif
3746
3747         if (dev->real_num_tx_queues != 1) {
3748                 const struct net_device_ops *ops = dev->netdev_ops;
3749
3750                 if (ops->ndo_select_queue)
3751                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
3752                                                             netdev_pick_tx);
3753                 else
3754                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
3755
3756                 queue_index = netdev_cap_txqueue(dev, queue_index);
3757         }
3758
3759         skb_set_queue_mapping(skb, queue_index);
3760         return netdev_get_tx_queue(dev, queue_index);
3761 }
3762
3763 /**
3764  *      __dev_queue_xmit - transmit a buffer
3765  *      @skb: buffer to transmit
3766  *      @sb_dev: suboordinate device used for L2 forwarding offload
3767  *
3768  *      Queue a buffer for transmission to a network device. The caller must
3769  *      have set the device and priority and built the buffer before calling
3770  *      this function. The function can be called from an interrupt.
3771  *
3772  *      A negative errno code is returned on a failure. A success does not
3773  *      guarantee the frame will be transmitted as it may be dropped due
3774  *      to congestion or traffic shaping.
3775  *
3776  * -----------------------------------------------------------------------------------
3777  *      I notice this method can also return errors from the queue disciplines,
3778  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3779  *      be positive.
3780  *
3781  *      Regardless of the return value, the skb is consumed, so it is currently
3782  *      difficult to retry a send to this method.  (You can bump the ref count
3783  *      before sending to hold a reference for retry if you are careful.)
3784  *
3785  *      When calling this method, interrupts MUST be enabled.  This is because
3786  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3787  *          --BLG
3788  */
3789 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3790 {
3791         struct net_device *dev = skb->dev;
3792         struct netdev_queue *txq;
3793         struct Qdisc *q;
3794         int rc = -ENOMEM;
3795         bool again = false;
3796
3797         skb_reset_mac_header(skb);
3798
3799         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3800                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3801
3802         /* Disable soft irqs for various locks below. Also
3803          * stops preemption for RCU.
3804          */
3805         rcu_read_lock_bh();
3806
3807         skb_update_prio(skb);
3808
3809         qdisc_pkt_len_init(skb);
3810 #ifdef CONFIG_NET_CLS_ACT
3811         skb->tc_at_ingress = 0;
3812 # ifdef CONFIG_NET_EGRESS
3813         if (static_branch_unlikely(&egress_needed_key)) {
3814                 skb = sch_handle_egress(skb, &rc, dev);
3815                 if (!skb)
3816                         goto out;
3817         }
3818 # endif
3819 #endif
3820         /* If device/qdisc don't need skb->dst, release it right now while
3821          * its hot in this cpu cache.
3822          */
3823         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3824                 skb_dst_drop(skb);
3825         else
3826                 skb_dst_force(skb);
3827
3828         txq = netdev_core_pick_tx(dev, skb, sb_dev);
3829         q = rcu_dereference_bh(txq->qdisc);
3830
3831         trace_net_dev_queue(skb);
3832         if (q->enqueue) {
3833                 rc = __dev_xmit_skb(skb, q, dev, txq);
3834                 goto out;
3835         }
3836
3837         /* The device has no queue. Common case for software devices:
3838          * loopback, all the sorts of tunnels...
3839
3840          * Really, it is unlikely that netif_tx_lock protection is necessary
3841          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3842          * counters.)
3843          * However, it is possible, that they rely on protection
3844          * made by us here.
3845
3846          * Check this and shot the lock. It is not prone from deadlocks.
3847          *Either shot noqueue qdisc, it is even simpler 8)
3848          */
3849         if (dev->flags & IFF_UP) {
3850                 int cpu = smp_processor_id(); /* ok because BHs are off */
3851
3852                 if (txq->xmit_lock_owner != cpu) {
3853                         if (unlikely(__this_cpu_read(xmit_recursion) >
3854                                      XMIT_RECURSION_LIMIT))
3855                                 goto recursion_alert;
3856
3857                         skb = validate_xmit_skb(skb, dev, &again);
3858                         if (!skb)
3859                                 goto out;
3860
3861                         HARD_TX_LOCK(dev, txq, cpu);
3862
3863                         if (!netif_xmit_stopped(txq)) {
3864                                 __this_cpu_inc(xmit_recursion);
3865                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3866                                 __this_cpu_dec(xmit_recursion);
3867                                 if (dev_xmit_complete(rc)) {
3868                                         HARD_TX_UNLOCK(dev, txq);
3869                                         goto out;
3870                                 }
3871                         }
3872                         HARD_TX_UNLOCK(dev, txq);
3873                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3874                                              dev->name);
3875                 } else {
3876                         /* Recursion is detected! It is possible,
3877                          * unfortunately
3878                          */
3879 recursion_alert:
3880                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3881                                              dev->name);
3882                 }
3883         }
3884
3885         rc = -ENETDOWN;
3886         rcu_read_unlock_bh();
3887
3888         atomic_long_inc(&dev->tx_dropped);
3889         kfree_skb_list(skb);
3890         return rc;
3891 out:
3892         rcu_read_unlock_bh();
3893         return rc;
3894 }
3895
3896 int dev_queue_xmit(struct sk_buff *skb)
3897 {
3898         return __dev_queue_xmit(skb, NULL);
3899 }
3900 EXPORT_SYMBOL(dev_queue_xmit);
3901
3902 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3903 {
3904         return __dev_queue_xmit(skb, sb_dev);
3905 }
3906 EXPORT_SYMBOL(dev_queue_xmit_accel);
3907
3908 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3909 {
3910         struct net_device *dev = skb->dev;
3911         struct sk_buff *orig_skb = skb;
3912         struct netdev_queue *txq;
3913         int ret = NETDEV_TX_BUSY;
3914         bool again = false;
3915
3916         if (unlikely(!netif_running(dev) ||
3917                      !netif_carrier_ok(dev)))
3918                 goto drop;
3919
3920         skb = validate_xmit_skb_list(skb, dev, &again);
3921         if (skb != orig_skb)
3922                 goto drop;
3923
3924         skb_set_queue_mapping(skb, queue_id);
3925         txq = skb_get_tx_queue(dev, skb);
3926
3927         local_bh_disable();
3928
3929         HARD_TX_LOCK(dev, txq, smp_processor_id());
3930         if (!netif_xmit_frozen_or_drv_stopped(txq))
3931                 ret = netdev_start_xmit(skb, dev, txq, false);
3932         HARD_TX_UNLOCK(dev, txq);
3933
3934         local_bh_enable();
3935
3936         if (!dev_xmit_complete(ret))
3937                 kfree_skb(skb);
3938
3939         return ret;
3940 drop:
3941         atomic_long_inc(&dev->tx_dropped);
3942         kfree_skb_list(skb);
3943         return NET_XMIT_DROP;
3944 }
3945 EXPORT_SYMBOL(dev_direct_xmit);
3946
3947 /*************************************************************************
3948  *                      Receiver routines
3949  *************************************************************************/
3950
3951 int netdev_max_backlog __read_mostly = 1000;
3952 EXPORT_SYMBOL(netdev_max_backlog);
3953
3954 int netdev_tstamp_prequeue __read_mostly = 1;
3955 int netdev_budget __read_mostly = 300;
3956 unsigned int __read_mostly netdev_budget_usecs = 2000;
3957 int weight_p __read_mostly = 64;           /* old backlog weight */
3958 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3959 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3960 int dev_rx_weight __read_mostly = 64;
3961 int dev_tx_weight __read_mostly = 64;
3962
3963 /* Called with irq disabled */
3964 static inline void ____napi_schedule(struct softnet_data *sd,
3965                                      struct napi_struct *napi)
3966 {
3967         list_add_tail(&napi->poll_list, &sd->poll_list);
3968         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3969 }
3970
3971 #ifdef CONFIG_RPS
3972
3973 /* One global table that all flow-based protocols share. */
3974 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3975 EXPORT_SYMBOL(rps_sock_flow_table);
3976 u32 rps_cpu_mask __read_mostly;
3977 EXPORT_SYMBOL(rps_cpu_mask);
3978
3979 struct static_key rps_needed __read_mostly;
3980 EXPORT_SYMBOL(rps_needed);
3981 struct static_key rfs_needed __read_mostly;
3982 EXPORT_SYMBOL(rfs_needed);
3983
3984 static struct rps_dev_flow *
3985 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3986             struct rps_dev_flow *rflow, u16 next_cpu)
3987 {
3988         if (next_cpu < nr_cpu_ids) {
3989 #ifdef CONFIG_RFS_ACCEL
3990                 struct netdev_rx_queue *rxqueue;
3991                 struct rps_dev_flow_table *flow_table;
3992                 struct rps_dev_flow *old_rflow;
3993                 u32 flow_id;
3994                 u16 rxq_index;
3995                 int rc;
3996
3997                 /* Should we steer this flow to a different hardware queue? */
3998                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3999                     !(dev->features & NETIF_F_NTUPLE))
4000                         goto out;
4001                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4002                 if (rxq_index == skb_get_rx_queue(skb))
4003                         goto out;
4004
4005                 rxqueue = dev->_rx + rxq_index;
4006                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4007                 if (!flow_table)
4008                         goto out;
4009                 flow_id = skb_get_hash(skb) & flow_table->mask;
4010                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4011                                                         rxq_index, flow_id);
4012                 if (rc < 0)
4013                         goto out;
4014                 old_rflow = rflow;
4015                 rflow = &flow_table->flows[flow_id];
4016                 rflow->filter = rc;
4017                 if (old_rflow->filter == rflow->filter)
4018                         old_rflow->filter = RPS_NO_FILTER;
4019         out:
4020 #endif
4021                 rflow->last_qtail =
4022                         per_cpu(softnet_data, next_cpu).input_queue_head;
4023         }
4024
4025         rflow->cpu = next_cpu;
4026         return rflow;
4027 }
4028
4029 /*
4030  * get_rps_cpu is called from netif_receive_skb and returns the target
4031  * CPU from the RPS map of the receiving queue for a given skb.
4032  * rcu_read_lock must be held on entry.
4033  */
4034 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4035                        struct rps_dev_flow **rflowp)
4036 {
4037         const struct rps_sock_flow_table *sock_flow_table;
4038         struct netdev_rx_queue *rxqueue = dev->_rx;
4039         struct rps_dev_flow_table *flow_table;
4040         struct rps_map *map;
4041         int cpu = -1;
4042         u32 tcpu;
4043         u32 hash;
4044
4045         if (skb_rx_queue_recorded(skb)) {
4046                 u16 index = skb_get_rx_queue(skb);
4047
4048                 if (unlikely(index >= dev->real_num_rx_queues)) {
4049                         WARN_ONCE(dev->real_num_rx_queues > 1,
4050                                   "%s received packet on queue %u, but number "
4051                                   "of RX queues is %u\n",
4052                                   dev->name, index, dev->real_num_rx_queues);
4053                         goto done;
4054                 }
4055                 rxqueue += index;
4056         }
4057
4058         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4059
4060         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4061         map = rcu_dereference(rxqueue->rps_map);
4062         if (!flow_table && !map)
4063                 goto done;
4064
4065         skb_reset_network_header(skb);
4066         hash = skb_get_hash(skb);
4067         if (!hash)
4068                 goto done;
4069
4070         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4071         if (flow_table && sock_flow_table) {
4072                 struct rps_dev_flow *rflow;
4073                 u32 next_cpu;
4074                 u32 ident;
4075
4076                 /* First check into global flow table if there is a match */
4077                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4078                 if ((ident ^ hash) & ~rps_cpu_mask)
4079                         goto try_rps;
4080
4081                 next_cpu = ident & rps_cpu_mask;
4082
4083                 /* OK, now we know there is a match,
4084                  * we can look at the local (per receive queue) flow table
4085                  */
4086                 rflow = &flow_table->flows[hash & flow_table->mask];
4087                 tcpu = rflow->cpu;
4088
4089                 /*
4090                  * If the desired CPU (where last recvmsg was done) is
4091                  * different from current CPU (one in the rx-queue flow
4092                  * table entry), switch if one of the following holds:
4093                  *   - Current CPU is unset (>= nr_cpu_ids).
4094                  *   - Current CPU is offline.
4095                  *   - The current CPU's queue tail has advanced beyond the
4096                  *     last packet that was enqueued using this table entry.
4097                  *     This guarantees that all previous packets for the flow
4098                  *     have been dequeued, thus preserving in order delivery.
4099                  */
4100                 if (unlikely(tcpu != next_cpu) &&
4101                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4102                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4103                       rflow->last_qtail)) >= 0)) {
4104                         tcpu = next_cpu;
4105                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4106                 }
4107
4108                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4109                         *rflowp = rflow;
4110                         cpu = tcpu;
4111                         goto done;
4112                 }
4113         }
4114
4115 try_rps:
4116
4117         if (map) {
4118                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4119                 if (cpu_online(tcpu)) {
4120                         cpu = tcpu;
4121                         goto done;
4122                 }
4123         }
4124
4125 done:
4126         return cpu;
4127 }
4128
4129 #ifdef CONFIG_RFS_ACCEL
4130
4131 /**
4132  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4133  * @dev: Device on which the filter was set
4134  * @rxq_index: RX queue index
4135  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4136  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4137  *
4138  * Drivers that implement ndo_rx_flow_steer() should periodically call
4139  * this function for each installed filter and remove the filters for
4140  * which it returns %true.
4141  */
4142 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4143                          u32 flow_id, u16 filter_id)
4144 {
4145         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4146         struct rps_dev_flow_table *flow_table;
4147         struct rps_dev_flow *rflow;
4148         bool expire = true;
4149         unsigned int cpu;
4150
4151         rcu_read_lock();
4152         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4153         if (flow_table && flow_id <= flow_table->mask) {
4154                 rflow = &flow_table->flows[flow_id];
4155                 cpu = READ_ONCE(rflow->cpu);
4156                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4157                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4158                            rflow->last_qtail) <
4159                      (int)(10 * flow_table->mask)))
4160                         expire = false;
4161         }
4162         rcu_read_unlock();
4163         return expire;
4164 }
4165 EXPORT_SYMBOL(rps_may_expire_flow);
4166
4167 #endif /* CONFIG_RFS_ACCEL */
4168
4169 /* Called from hardirq (IPI) context */
4170 static void rps_trigger_softirq(void *data)
4171 {
4172         struct softnet_data *sd = data;
4173
4174         ____napi_schedule(sd, &sd->backlog);
4175         sd->received_rps++;
4176 }
4177
4178 #endif /* CONFIG_RPS */
4179
4180 /*
4181  * Check if this softnet_data structure is another cpu one
4182  * If yes, queue it to our IPI list and return 1
4183  * If no, return 0
4184  */
4185 static int rps_ipi_queued(struct softnet_data *sd)
4186 {
4187 #ifdef CONFIG_RPS
4188         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4189
4190         if (sd != mysd) {
4191                 sd->rps_ipi_next = mysd->rps_ipi_list;
4192                 mysd->rps_ipi_list = sd;
4193
4194                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4195                 return 1;
4196         }
4197 #endif /* CONFIG_RPS */
4198         return 0;
4199 }
4200
4201 #ifdef CONFIG_NET_FLOW_LIMIT
4202 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4203 #endif
4204
4205 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4206 {
4207 #ifdef CONFIG_NET_FLOW_LIMIT
4208         struct sd_flow_limit *fl;
4209         struct softnet_data *sd;
4210         unsigned int old_flow, new_flow;
4211
4212         if (qlen < (netdev_max_backlog >> 1))
4213                 return false;
4214
4215         sd = this_cpu_ptr(&softnet_data);
4216
4217         rcu_read_lock();
4218         fl = rcu_dereference(sd->flow_limit);
4219         if (fl) {
4220                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4221                 old_flow = fl->history[fl->history_head];
4222                 fl->history[fl->history_head] = new_flow;
4223
4224                 fl->history_head++;
4225                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4226
4227                 if (likely(fl->buckets[old_flow]))
4228                         fl->buckets[old_flow]--;
4229
4230                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4231                         fl->count++;
4232                         rcu_read_unlock();
4233                         return true;
4234                 }
4235         }
4236         rcu_read_unlock();
4237 #endif
4238         return false;
4239 }
4240
4241 /*
4242  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4243  * queue (may be a remote CPU queue).
4244  */
4245 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4246                               unsigned int *qtail)
4247 {
4248         struct softnet_data *sd;
4249         unsigned long flags;
4250         unsigned int qlen;
4251
4252         sd = &per_cpu(softnet_data, cpu);
4253
4254         local_irq_save(flags);
4255
4256         rps_lock(sd);
4257         if (!netif_running(skb->dev))
4258                 goto drop;
4259         qlen = skb_queue_len(&sd->input_pkt_queue);
4260         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4261                 if (qlen) {
4262 enqueue:
4263                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4264                         input_queue_tail_incr_save(sd, qtail);
4265                         rps_unlock(sd);
4266                         local_irq_restore(flags);
4267                         return NET_RX_SUCCESS;
4268                 }
4269
4270                 /* Schedule NAPI for backlog device
4271                  * We can use non atomic operation since we own the queue lock
4272                  */
4273                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4274                         if (!rps_ipi_queued(sd))
4275                                 ____napi_schedule(sd, &sd->backlog);
4276                 }
4277                 goto enqueue;
4278         }
4279
4280 drop:
4281         sd->dropped++;
4282         rps_unlock(sd);
4283
4284         local_irq_restore(flags);
4285
4286         atomic_long_inc(&skb->dev->rx_dropped);
4287         kfree_skb(skb);
4288         return NET_RX_DROP;
4289 }
4290
4291 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4292 {
4293         struct net_device *dev = skb->dev;
4294         struct netdev_rx_queue *rxqueue;
4295
4296         rxqueue = dev->_rx;
4297
4298         if (skb_rx_queue_recorded(skb)) {
4299                 u16 index = skb_get_rx_queue(skb);
4300
4301                 if (unlikely(index >= dev->real_num_rx_queues)) {
4302                         WARN_ONCE(dev->real_num_rx_queues > 1,
4303                                   "%s received packet on queue %u, but number "
4304                                   "of RX queues is %u\n",
4305                                   dev->name, index, dev->real_num_rx_queues);
4306
4307                         return rxqueue; /* Return first rxqueue */
4308                 }
4309                 rxqueue += index;
4310         }
4311         return rxqueue;
4312 }
4313
4314 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4315                                      struct xdp_buff *xdp,
4316                                      struct bpf_prog *xdp_prog)
4317 {
4318         struct netdev_rx_queue *rxqueue;
4319         void *orig_data, *orig_data_end;
4320         u32 metalen, act = XDP_DROP;
4321         __be16 orig_eth_type;
4322         struct ethhdr *eth;
4323         bool orig_bcast;
4324         int hlen, off;
4325         u32 mac_len;
4326
4327         /* Reinjected packets coming from act_mirred or similar should
4328          * not get XDP generic processing.
4329          */
4330         if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4331                 return XDP_PASS;
4332
4333         /* XDP packets must be linear and must have sufficient headroom
4334          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4335          * native XDP provides, thus we need to do it here as well.
4336          */
4337         if (skb_is_nonlinear(skb) ||
4338             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4339                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4340                 int troom = skb->tail + skb->data_len - skb->end;
4341
4342                 /* In case we have to go down the path and also linearize,
4343                  * then lets do the pskb_expand_head() work just once here.
4344                  */
4345                 if (pskb_expand_head(skb,
4346                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4347                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4348                         goto do_drop;
4349                 if (skb_linearize(skb))
4350                         goto do_drop;
4351         }
4352
4353         /* The XDP program wants to see the packet starting at the MAC
4354          * header.
4355          */
4356         mac_len = skb->data - skb_mac_header(skb);
4357         hlen = skb_headlen(skb) + mac_len;
4358         xdp->data = skb->data - mac_len;
4359         xdp->data_meta = xdp->data;
4360         xdp->data_end = xdp->data + hlen;
4361         xdp->data_hard_start = skb->data - skb_headroom(skb);
4362         orig_data_end = xdp->data_end;
4363         orig_data = xdp->data;
4364         eth = (struct ethhdr *)xdp->data;
4365         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4366         orig_eth_type = eth->h_proto;
4367
4368         rxqueue = netif_get_rxqueue(skb);
4369         xdp->rxq = &rxqueue->xdp_rxq;
4370
4371         act = bpf_prog_run_xdp(xdp_prog, xdp);
4372
4373         off = xdp->data - orig_data;
4374         if (off > 0)
4375                 __skb_pull(skb, off);
4376         else if (off < 0)
4377                 __skb_push(skb, -off);
4378         skb->mac_header += off;
4379
4380         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4381          * pckt.
4382          */
4383         off = orig_data_end - xdp->data_end;
4384         if (off != 0) {
4385                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4386                 skb->len -= off;
4387
4388         }
4389
4390         /* check if XDP changed eth hdr such SKB needs update */
4391         eth = (struct ethhdr *)xdp->data;
4392         if ((orig_eth_type != eth->h_proto) ||
4393             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4394                 __skb_push(skb, ETH_HLEN);
4395                 skb->protocol = eth_type_trans(skb, skb->dev);
4396         }
4397
4398         switch (act) {
4399         case XDP_REDIRECT:
4400         case XDP_TX:
4401                 __skb_push(skb, mac_len);
4402                 break;
4403         case XDP_PASS:
4404                 metalen = xdp->data - xdp->data_meta;
4405                 if (metalen)
4406                         skb_metadata_set(skb, metalen);
4407                 break;
4408         default:
4409                 bpf_warn_invalid_xdp_action(act);
4410                 /* fall through */
4411         case XDP_ABORTED:
4412                 trace_xdp_exception(skb->dev, xdp_prog, act);
4413                 /* fall through */
4414         case XDP_DROP:
4415         do_drop:
4416                 kfree_skb(skb);
4417                 break;
4418         }
4419
4420         return act;
4421 }
4422
4423 /* When doing generic XDP we have to bypass the qdisc layer and the
4424  * network taps in order to match in-driver-XDP behavior.
4425  */
4426 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4427 {
4428         struct net_device *dev = skb->dev;
4429         struct netdev_queue *txq;
4430         bool free_skb = true;
4431         int cpu, rc;
4432
4433         txq = netdev_core_pick_tx(dev, skb, NULL);
4434         cpu = smp_processor_id();
4435         HARD_TX_LOCK(dev, txq, cpu);
4436         if (!netif_xmit_stopped(txq)) {
4437                 rc = netdev_start_xmit(skb, dev, txq, 0);
4438                 if (dev_xmit_complete(rc))
4439                         free_skb = false;
4440         }
4441         HARD_TX_UNLOCK(dev, txq);
4442         if (free_skb) {
4443                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4444                 kfree_skb(skb);
4445         }
4446 }
4447 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4448
4449 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4450
4451 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4452 {
4453         if (xdp_prog) {
4454                 struct xdp_buff xdp;
4455                 u32 act;
4456                 int err;
4457
4458                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4459                 if (act != XDP_PASS) {
4460                         switch (act) {
4461                         case XDP_REDIRECT:
4462                                 err = xdp_do_generic_redirect(skb->dev, skb,
4463                                                               &xdp, xdp_prog);
4464                                 if (err)
4465                                         goto out_redir;
4466                                 break;
4467                         case XDP_TX:
4468                                 generic_xdp_tx(skb, xdp_prog);
4469                                 break;
4470                         }
4471                         return XDP_DROP;
4472                 }
4473         }
4474         return XDP_PASS;
4475 out_redir:
4476         kfree_skb(skb);
4477         return XDP_DROP;
4478 }
4479 EXPORT_SYMBOL_GPL(do_xdp_generic);
4480
4481 static int netif_rx_internal(struct sk_buff *skb)
4482 {
4483         int ret;
4484
4485         net_timestamp_check(netdev_tstamp_prequeue, skb);
4486
4487         trace_netif_rx(skb);
4488
4489         if (static_branch_unlikely(&generic_xdp_needed_key)) {
4490                 int ret;
4491
4492                 preempt_disable();
4493                 rcu_read_lock();
4494                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4495                 rcu_read_unlock();
4496                 preempt_enable();
4497
4498                 /* Consider XDP consuming the packet a success from
4499                  * the netdev point of view we do not want to count
4500                  * this as an error.
4501                  */
4502                 if (ret != XDP_PASS)
4503                         return NET_RX_SUCCESS;
4504         }
4505
4506 #ifdef CONFIG_RPS
4507         if (static_key_false(&rps_needed)) {
4508                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4509                 int cpu;
4510
4511                 preempt_disable();
4512                 rcu_read_lock();
4513
4514                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4515                 if (cpu < 0)
4516                         cpu = smp_processor_id();
4517
4518                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4519
4520                 rcu_read_unlock();
4521                 preempt_enable();
4522         } else
4523 #endif
4524         {
4525                 unsigned int qtail;
4526
4527                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4528                 put_cpu();
4529         }
4530         return ret;
4531 }
4532
4533 /**
4534  *      netif_rx        -       post buffer to the network code
4535  *      @skb: buffer to post
4536  *
4537  *      This function receives a packet from a device driver and queues it for
4538  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4539  *      may be dropped during processing for congestion control or by the
4540  *      protocol layers.
4541  *
4542  *      return values:
4543  *      NET_RX_SUCCESS  (no congestion)
4544  *      NET_RX_DROP     (packet was dropped)
4545  *
4546  */
4547
4548 int netif_rx(struct sk_buff *skb)
4549 {
4550         int ret;
4551
4552         trace_netif_rx_entry(skb);
4553
4554         ret = netif_rx_internal(skb);
4555         trace_netif_rx_exit(ret);
4556
4557         return ret;
4558 }
4559 EXPORT_SYMBOL(netif_rx);
4560
4561 int netif_rx_ni(struct sk_buff *skb)
4562 {
4563         int err;
4564
4565         trace_netif_rx_ni_entry(skb);
4566
4567         preempt_disable();
4568         err = netif_rx_internal(skb);
4569         if (local_softirq_pending())
4570                 do_softirq();
4571         preempt_enable();
4572         trace_netif_rx_ni_exit(err);
4573
4574         return err;
4575 }
4576 EXPORT_SYMBOL(netif_rx_ni);
4577
4578 static __latent_entropy void net_tx_action(struct softirq_action *h)
4579 {
4580         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4581
4582         if (sd->completion_queue) {
4583                 struct sk_buff *clist;
4584
4585                 local_irq_disable();
4586                 clist = sd->completion_queue;
4587                 sd->completion_queue = NULL;
4588                 local_irq_enable();
4589
4590                 while (clist) {
4591                         struct sk_buff *skb = clist;
4592
4593                         clist = clist->next;
4594
4595                         WARN_ON(refcount_read(&skb->users));
4596                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4597                                 trace_consume_skb(skb);
4598                         else
4599                                 trace_kfree_skb(skb, net_tx_action);
4600
4601                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4602                                 __kfree_skb(skb);
4603                         else
4604                                 __kfree_skb_defer(skb);
4605                 }
4606
4607                 __kfree_skb_flush();
4608         }
4609
4610         if (sd->output_queue) {
4611                 struct Qdisc *head;
4612
4613                 local_irq_disable();
4614                 head = sd->output_queue;
4615                 sd->output_queue = NULL;
4616                 sd->output_queue_tailp = &sd->output_queue;
4617                 local_irq_enable();
4618
4619                 while (head) {
4620                         struct Qdisc *q = head;
4621                         spinlock_t *root_lock = NULL;
4622
4623                         head = head->next_sched;
4624
4625                         if (!(q->flags & TCQ_F_NOLOCK)) {
4626                                 root_lock = qdisc_lock(q);
4627                                 spin_lock(root_lock);
4628                         }
4629                         /* We need to make sure head->next_sched is read
4630                          * before clearing __QDISC_STATE_SCHED
4631                          */
4632                         smp_mb__before_atomic();
4633                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4634                         qdisc_run(q);
4635                         if (root_lock)
4636                                 spin_unlock(root_lock);
4637                 }
4638         }
4639
4640         xfrm_dev_backlog(sd);
4641 }
4642
4643 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4644 /* This hook is defined here for ATM LANE */
4645 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4646                              unsigned char *addr) __read_mostly;
4647 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4648 #endif
4649
4650 static inline struct sk_buff *
4651 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4652                    struct net_device *orig_dev)
4653 {
4654 #ifdef CONFIG_NET_CLS_ACT
4655         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4656         struct tcf_result cl_res;
4657
4658         /* If there's at least one ingress present somewhere (so
4659          * we get here via enabled static key), remaining devices
4660          * that are not configured with an ingress qdisc will bail
4661          * out here.
4662          */
4663         if (!miniq)
4664                 return skb;
4665
4666         if (*pt_prev) {
4667                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4668                 *pt_prev = NULL;
4669         }
4670
4671         qdisc_skb_cb(skb)->pkt_len = skb->len;
4672         skb->tc_at_ingress = 1;
4673         mini_qdisc_bstats_cpu_update(miniq, skb);
4674
4675         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4676         case TC_ACT_OK:
4677         case TC_ACT_RECLASSIFY:
4678                 skb->tc_index = TC_H_MIN(cl_res.classid);
4679                 break;
4680         case TC_ACT_SHOT:
4681                 mini_qdisc_qstats_cpu_drop(miniq);
4682                 kfree_skb(skb);
4683                 return NULL;
4684         case TC_ACT_STOLEN:
4685         case TC_ACT_QUEUED:
4686         case TC_ACT_TRAP:
4687                 consume_skb(skb);
4688                 return NULL;
4689         case TC_ACT_REDIRECT:
4690                 /* skb_mac_header check was done by cls/act_bpf, so
4691                  * we can safely push the L2 header back before
4692                  * redirecting to another netdev
4693                  */
4694                 __skb_push(skb, skb->mac_len);
4695                 skb_do_redirect(skb);
4696                 return NULL;
4697         case TC_ACT_REINSERT:
4698                 /* this does not scrub the packet, and updates stats on error */
4699                 skb_tc_reinsert(skb, &cl_res);
4700                 return NULL;
4701         default:
4702                 break;
4703         }
4704 #endif /* CONFIG_NET_CLS_ACT */
4705         return skb;
4706 }
4707
4708 /**
4709  *      netdev_is_rx_handler_busy - check if receive handler is registered
4710  *      @dev: device to check
4711  *
4712  *      Check if a receive handler is already registered for a given device.
4713  *      Return true if there one.
4714  *
4715  *      The caller must hold the rtnl_mutex.
4716  */
4717 bool netdev_is_rx_handler_busy(struct net_device *dev)
4718 {
4719         ASSERT_RTNL();
4720         return dev && rtnl_dereference(dev->rx_handler);
4721 }
4722 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4723
4724 /**
4725  *      netdev_rx_handler_register - register receive handler
4726  *      @dev: device to register a handler for
4727  *      @rx_handler: receive handler to register
4728  *      @rx_handler_data: data pointer that is used by rx handler
4729  *
4730  *      Register a receive handler for a device. This handler will then be
4731  *      called from __netif_receive_skb. A negative errno code is returned
4732  *      on a failure.
4733  *
4734  *      The caller must hold the rtnl_mutex.
4735  *
4736  *      For a general description of rx_handler, see enum rx_handler_result.
4737  */
4738 int netdev_rx_handler_register(struct net_device *dev,
4739                                rx_handler_func_t *rx_handler,
4740                                void *rx_handler_data)
4741 {
4742         if (netdev_is_rx_handler_busy(dev))
4743                 return -EBUSY;
4744
4745         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4746                 return -EINVAL;
4747
4748         /* Note: rx_handler_data must be set before rx_handler */
4749         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4750         rcu_assign_pointer(dev->rx_handler, rx_handler);
4751
4752         return 0;
4753 }
4754 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4755
4756 /**
4757  *      netdev_rx_handler_unregister - unregister receive handler
4758  *      @dev: device to unregister a handler from
4759  *
4760  *      Unregister a receive handler from a device.
4761  *
4762  *      The caller must hold the rtnl_mutex.
4763  */
4764 void netdev_rx_handler_unregister(struct net_device *dev)
4765 {
4766
4767         ASSERT_RTNL();
4768         RCU_INIT_POINTER(dev->rx_handler, NULL);
4769         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4770          * section has a guarantee to see a non NULL rx_handler_data
4771          * as well.
4772          */
4773         synchronize_net();
4774         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4775 }
4776 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4777
4778 /*
4779  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4780  * the special handling of PFMEMALLOC skbs.
4781  */
4782 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4783 {
4784         switch (skb->protocol) {
4785         case htons(ETH_P_ARP):
4786         case htons(ETH_P_IP):
4787         case htons(ETH_P_IPV6):
4788         case htons(ETH_P_8021Q):
4789         case htons(ETH_P_8021AD):
4790                 return true;
4791         default:
4792                 return false;
4793         }
4794 }
4795
4796 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4797                              int *ret, struct net_device *orig_dev)
4798 {
4799 #ifdef CONFIG_NETFILTER_INGRESS
4800         if (nf_hook_ingress_active(skb)) {
4801                 int ingress_retval;
4802
4803                 if (*pt_prev) {
4804                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4805                         *pt_prev = NULL;
4806                 }
4807
4808                 rcu_read_lock();
4809                 ingress_retval = nf_hook_ingress(skb);
4810                 rcu_read_unlock();
4811                 return ingress_retval;
4812         }
4813 #endif /* CONFIG_NETFILTER_INGRESS */
4814         return 0;
4815 }
4816
4817 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4818                                     struct packet_type **ppt_prev)
4819 {
4820         struct packet_type *ptype, *pt_prev;
4821         rx_handler_func_t *rx_handler;
4822         struct net_device *orig_dev;
4823         bool deliver_exact = false;
4824         int ret = NET_RX_DROP;
4825         __be16 type;
4826
4827         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4828
4829         trace_netif_receive_skb(skb);
4830
4831         orig_dev = skb->dev;
4832
4833         skb_reset_network_header(skb);
4834         if (!skb_transport_header_was_set(skb))
4835                 skb_reset_transport_header(skb);
4836         skb_reset_mac_len(skb);
4837
4838         pt_prev = NULL;
4839
4840 another_round:
4841         skb->skb_iif = skb->dev->ifindex;
4842
4843         __this_cpu_inc(softnet_data.processed);
4844
4845         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4846             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4847                 skb = skb_vlan_untag(skb);
4848                 if (unlikely(!skb))
4849                         goto out;
4850         }
4851
4852         if (skb_skip_tc_classify(skb))
4853                 goto skip_classify;
4854
4855         if (pfmemalloc)
4856                 goto skip_taps;
4857
4858         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4859                 if (pt_prev)
4860                         ret = deliver_skb(skb, pt_prev, orig_dev);
4861                 pt_prev = ptype;
4862         }
4863
4864         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4865                 if (pt_prev)
4866                         ret = deliver_skb(skb, pt_prev, orig_dev);
4867                 pt_prev = ptype;
4868         }
4869
4870 skip_taps:
4871 #ifdef CONFIG_NET_INGRESS
4872         if (static_branch_unlikely(&ingress_needed_key)) {
4873                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4874                 if (!skb)
4875                         goto out;
4876
4877                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4878                         goto out;
4879         }
4880 #endif
4881         skb_reset_tc(skb);
4882 skip_classify:
4883         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4884                 goto drop;
4885
4886         if (skb_vlan_tag_present(skb)) {
4887                 if (pt_prev) {
4888                         ret = deliver_skb(skb, pt_prev, orig_dev);
4889                         pt_prev = NULL;
4890                 }
4891                 if (vlan_do_receive(&skb))
4892                         goto another_round;
4893                 else if (unlikely(!skb))
4894                         goto out;
4895         }
4896
4897         rx_handler = rcu_dereference(skb->dev->rx_handler);
4898         if (rx_handler) {
4899                 if (pt_prev) {
4900                         ret = deliver_skb(skb, pt_prev, orig_dev);
4901                         pt_prev = NULL;
4902                 }
4903                 switch (rx_handler(&skb)) {
4904                 case RX_HANDLER_CONSUMED:
4905                         ret = NET_RX_SUCCESS;
4906                         goto out;
4907                 case RX_HANDLER_ANOTHER:
4908                         goto another_round;
4909                 case RX_HANDLER_EXACT:
4910                         deliver_exact = true;
4911                 case RX_HANDLER_PASS:
4912                         break;
4913                 default:
4914                         BUG();
4915                 }
4916         }
4917
4918         if (unlikely(skb_vlan_tag_present(skb))) {
4919                 if (skb_vlan_tag_get_id(skb))
4920                         skb->pkt_type = PACKET_OTHERHOST;
4921                 /* Note: we might in the future use prio bits
4922                  * and set skb->priority like in vlan_do_receive()
4923                  * For the time being, just ignore Priority Code Point
4924                  */
4925                 __vlan_hwaccel_clear_tag(skb);
4926         }
4927
4928         type = skb->protocol;
4929
4930         /* deliver only exact match when indicated */
4931         if (likely(!deliver_exact)) {
4932                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4933                                        &ptype_base[ntohs(type) &
4934                                                    PTYPE_HASH_MASK]);
4935         }
4936
4937         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4938                                &orig_dev->ptype_specific);
4939
4940         if (unlikely(skb->dev != orig_dev)) {
4941                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4942                                        &skb->dev->ptype_specific);
4943         }
4944
4945         if (pt_prev) {
4946                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4947                         goto drop;
4948                 *ppt_prev = pt_prev;
4949         } else {
4950 drop:
4951                 if (!deliver_exact)
4952                         atomic_long_inc(&skb->dev->rx_dropped);
4953                 else
4954                         atomic_long_inc(&skb->dev->rx_nohandler);
4955                 kfree_skb(skb);
4956                 /* Jamal, now you will not able to escape explaining
4957                  * me how you were going to use this. :-)
4958                  */
4959                 ret = NET_RX_DROP;
4960         }
4961
4962 out:
4963         return ret;
4964 }
4965
4966 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4967 {
4968         struct net_device *orig_dev = skb->dev;
4969         struct packet_type *pt_prev = NULL;
4970         int ret;
4971
4972         ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4973         if (pt_prev)
4974                 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4975         return ret;
4976 }
4977
4978 /**
4979  *      netif_receive_skb_core - special purpose version of netif_receive_skb
4980  *      @skb: buffer to process
4981  *
4982  *      More direct receive version of netif_receive_skb().  It should
4983  *      only be used by callers that have a need to skip RPS and Generic XDP.
4984  *      Caller must also take care of handling if (page_is_)pfmemalloc.
4985  *
4986  *      This function may only be called from softirq context and interrupts
4987  *      should be enabled.
4988  *
4989  *      Return values (usually ignored):
4990  *      NET_RX_SUCCESS: no congestion
4991  *      NET_RX_DROP: packet was dropped
4992  */
4993 int netif_receive_skb_core(struct sk_buff *skb)
4994 {
4995         int ret;
4996
4997         rcu_read_lock();
4998         ret = __netif_receive_skb_one_core(skb, false);
4999         rcu_read_unlock();
5000
5001         return ret;
5002 }
5003 EXPORT_SYMBOL(netif_receive_skb_core);
5004
5005 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5006                                                   struct packet_type *pt_prev,
5007                                                   struct net_device *orig_dev)
5008 {
5009         struct sk_buff *skb, *next;
5010
5011         if (!pt_prev)
5012                 return;
5013         if (list_empty(head))
5014                 return;
5015         if (pt_prev->list_func != NULL)
5016                 pt_prev->list_func(head, pt_prev, orig_dev);
5017         else
5018                 list_for_each_entry_safe(skb, next, head, list)
5019                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5020 }
5021
5022 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5023 {
5024         /* Fast-path assumptions:
5025          * - There is no RX handler.
5026          * - Only one packet_type matches.
5027          * If either of these fails, we will end up doing some per-packet
5028          * processing in-line, then handling the 'last ptype' for the whole
5029          * sublist.  This can't cause out-of-order delivery to any single ptype,
5030          * because the 'last ptype' must be constant across the sublist, and all
5031          * other ptypes are handled per-packet.
5032          */
5033         /* Current (common) ptype of sublist */
5034         struct packet_type *pt_curr = NULL;
5035         /* Current (common) orig_dev of sublist */
5036         struct net_device *od_curr = NULL;
5037         struct list_head sublist;
5038         struct sk_buff *skb, *next;
5039
5040         INIT_LIST_HEAD(&sublist);
5041         list_for_each_entry_safe(skb, next, head, list) {
5042                 struct net_device *orig_dev = skb->dev;
5043                 struct packet_type *pt_prev = NULL;
5044
5045                 skb_list_del_init(skb);
5046                 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5047                 if (!pt_prev)
5048                         continue;
5049                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5050                         /* dispatch old sublist */
5051                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5052                         /* start new sublist */
5053                         INIT_LIST_HEAD(&sublist);
5054                         pt_curr = pt_prev;
5055                         od_curr = orig_dev;
5056                 }
5057                 list_add_tail(&skb->list, &sublist);
5058         }
5059
5060         /* dispatch final sublist */
5061         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5062 }
5063
5064 static int __netif_receive_skb(struct sk_buff *skb)
5065 {
5066         int ret;
5067
5068         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5069                 unsigned int noreclaim_flag;
5070
5071                 /*
5072                  * PFMEMALLOC skbs are special, they should
5073                  * - be delivered to SOCK_MEMALLOC sockets only
5074                  * - stay away from userspace
5075                  * - have bounded memory usage
5076                  *
5077                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5078                  * context down to all allocation sites.
5079                  */
5080                 noreclaim_flag = memalloc_noreclaim_save();
5081                 ret = __netif_receive_skb_one_core(skb, true);
5082                 memalloc_noreclaim_restore(noreclaim_flag);
5083         } else
5084                 ret = __netif_receive_skb_one_core(skb, false);
5085
5086         return ret;
5087 }
5088
5089 static void __netif_receive_skb_list(struct list_head *head)
5090 {
5091         unsigned long noreclaim_flag = 0;
5092         struct sk_buff *skb, *next;
5093         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5094
5095         list_for_each_entry_safe(skb, next, head, list) {
5096                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5097                         struct list_head sublist;
5098
5099                         /* Handle the previous sublist */
5100                         list_cut_before(&sublist, head, &skb->list);
5101                         if (!list_empty(&sublist))
5102                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5103                         pfmemalloc = !pfmemalloc;
5104                         /* See comments in __netif_receive_skb */
5105                         if (pfmemalloc)
5106                                 noreclaim_flag = memalloc_noreclaim_save();
5107                         else
5108                                 memalloc_noreclaim_restore(noreclaim_flag);
5109                 }
5110         }
5111         /* Handle the remaining sublist */
5112         if (!list_empty(head))
5113                 __netif_receive_skb_list_core(head, pfmemalloc);
5114         /* Restore pflags */
5115         if (pfmemalloc)
5116                 memalloc_noreclaim_restore(noreclaim_flag);
5117 }
5118
5119 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5120 {
5121         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5122         struct bpf_prog *new = xdp->prog;
5123         int ret = 0;
5124
5125         switch (xdp->command) {
5126         case XDP_SETUP_PROG:
5127                 rcu_assign_pointer(dev->xdp_prog, new);
5128                 if (old)
5129                         bpf_prog_put(old);
5130
5131                 if (old && !new) {
5132                         static_branch_dec(&generic_xdp_needed_key);
5133                 } else if (new && !old) {
5134                         static_branch_inc(&generic_xdp_needed_key);
5135                         dev_disable_lro(dev);
5136                         dev_disable_gro_hw(dev);
5137                 }
5138                 break;
5139
5140         case XDP_QUERY_PROG:
5141                 xdp->prog_id = old ? old->aux->id : 0;
5142                 break;
5143
5144         default:
5145                 ret = -EINVAL;
5146                 break;
5147         }
5148
5149         return ret;
5150 }
5151
5152 static int netif_receive_skb_internal(struct sk_buff *skb)
5153 {
5154         int ret;
5155
5156         net_timestamp_check(netdev_tstamp_prequeue, skb);
5157
5158         if (skb_defer_rx_timestamp(skb))
5159                 return NET_RX_SUCCESS;
5160
5161         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5162                 int ret;
5163
5164                 preempt_disable();
5165                 rcu_read_lock();
5166                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5167                 rcu_read_unlock();
5168                 preempt_enable();
5169
5170                 if (ret != XDP_PASS)
5171                         return NET_RX_DROP;
5172         }
5173
5174         rcu_read_lock();
5175 #ifdef CONFIG_RPS
5176         if (static_key_false(&rps_needed)) {
5177                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5178                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5179
5180                 if (cpu >= 0) {
5181                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5182                         rcu_read_unlock();
5183                         return ret;
5184                 }
5185         }
5186 #endif
5187         ret = __netif_receive_skb(skb);
5188         rcu_read_unlock();
5189         return ret;
5190 }
5191
5192 static void netif_receive_skb_list_internal(struct list_head *head)
5193 {
5194         struct bpf_prog *xdp_prog = NULL;
5195         struct sk_buff *skb, *next;
5196         struct list_head sublist;
5197
5198         INIT_LIST_HEAD(&sublist);
5199         list_for_each_entry_safe(skb, next, head, list) {
5200                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5201                 skb_list_del_init(skb);
5202                 if (!skb_defer_rx_timestamp(skb))
5203                         list_add_tail(&skb->list, &sublist);
5204         }
5205         list_splice_init(&sublist, head);
5206
5207         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5208                 preempt_disable();
5209                 rcu_read_lock();
5210                 list_for_each_entry_safe(skb, next, head, list) {
5211                         xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5212                         skb_list_del_init(skb);
5213                         if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5214                                 list_add_tail(&skb->list, &sublist);
5215                 }
5216                 rcu_read_unlock();
5217                 preempt_enable();
5218                 /* Put passed packets back on main list */
5219                 list_splice_init(&sublist, head);
5220         }
5221
5222         rcu_read_lock();
5223 #ifdef CONFIG_RPS
5224         if (static_key_false(&rps_needed)) {
5225                 list_for_each_entry_safe(skb, next, head, list) {
5226                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5227                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5228
5229                         if (cpu >= 0) {
5230                                 /* Will be handled, remove from list */
5231                                 skb_list_del_init(skb);
5232                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5233                         }
5234                 }
5235         }
5236 #endif
5237         __netif_receive_skb_list(head);
5238         rcu_read_unlock();
5239 }
5240
5241 /**
5242  *      netif_receive_skb - process receive buffer from network
5243  *      @skb: buffer to process
5244  *
5245  *      netif_receive_skb() is the main receive data processing function.
5246  *      It always succeeds. The buffer may be dropped during processing
5247  *      for congestion control or by the protocol layers.
5248  *
5249  *      This function may only be called from softirq context and interrupts
5250  *      should be enabled.
5251  *
5252  *      Return values (usually ignored):
5253  *      NET_RX_SUCCESS: no congestion
5254  *      NET_RX_DROP: packet was dropped
5255  */
5256 int netif_receive_skb(struct sk_buff *skb)
5257 {
5258         int ret;
5259
5260         trace_netif_receive_skb_entry(skb);
5261
5262         ret = netif_receive_skb_internal(skb);
5263         trace_netif_receive_skb_exit(ret);
5264
5265         return ret;
5266 }
5267 EXPORT_SYMBOL(netif_receive_skb);
5268
5269 /**
5270  *      netif_receive_skb_list - process many receive buffers from network
5271  *      @head: list of skbs to process.
5272  *
5273  *      Since return value of netif_receive_skb() is normally ignored, and
5274  *      wouldn't be meaningful for a list, this function returns void.
5275  *
5276  *      This function may only be called from softirq context and interrupts
5277  *      should be enabled.
5278  */
5279 void netif_receive_skb_list(struct list_head *head)
5280 {
5281         struct sk_buff *skb;
5282
5283         if (list_empty(head))
5284                 return;
5285         if (trace_netif_receive_skb_list_entry_enabled()) {
5286                 list_for_each_entry(skb, head, list)
5287                         trace_netif_receive_skb_list_entry(skb);
5288         }
5289         netif_receive_skb_list_internal(head);
5290         trace_netif_receive_skb_list_exit(0);
5291 }
5292 EXPORT_SYMBOL(netif_receive_skb_list);
5293
5294 DEFINE_PER_CPU(struct work_struct, flush_works);
5295
5296 /* Network device is going away, flush any packets still pending */
5297 static void flush_backlog(struct work_struct *work)
5298 {
5299         struct sk_buff *skb, *tmp;
5300         struct softnet_data *sd;
5301
5302         local_bh_disable();
5303         sd = this_cpu_ptr(&softnet_data);
5304
5305         local_irq_disable();
5306         rps_lock(sd);
5307         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5308                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5309                         __skb_unlink(skb, &sd->input_pkt_queue);
5310                         kfree_skb(skb);
5311                         input_queue_head_incr(sd);
5312                 }
5313         }
5314         rps_unlock(sd);
5315         local_irq_enable();
5316
5317         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5318                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5319                         __skb_unlink(skb, &sd->process_queue);
5320                         kfree_skb(skb);
5321                         input_queue_head_incr(sd);
5322                 }
5323         }
5324         local_bh_enable();
5325 }
5326
5327 static void flush_all_backlogs(void)
5328 {
5329         unsigned int cpu;
5330
5331         get_online_cpus();
5332
5333         for_each_online_cpu(cpu)
5334                 queue_work_on(cpu, system_highpri_wq,
5335                               per_cpu_ptr(&flush_works, cpu));
5336
5337         for_each_online_cpu(cpu)
5338                 flush_work(per_cpu_ptr(&flush_works, cpu));
5339
5340         put_online_cpus();
5341 }
5342
5343 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5344 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5345 static int napi_gro_complete(struct sk_buff *skb)
5346 {
5347         struct packet_offload *ptype;
5348         __be16 type = skb->protocol;
5349         struct list_head *head = &offload_base;
5350         int err = -ENOENT;
5351
5352         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5353
5354         if (NAPI_GRO_CB(skb)->count == 1) {
5355                 skb_shinfo(skb)->gso_size = 0;
5356                 goto out;
5357         }
5358
5359         rcu_read_lock();
5360         list_for_each_entry_rcu(ptype, head, list) {
5361                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5362                         continue;
5363
5364                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5365                                          ipv6_gro_complete, inet_gro_complete,
5366                                          skb, 0);
5367                 break;
5368         }
5369         rcu_read_unlock();
5370
5371         if (err) {
5372                 WARN_ON(&ptype->list == head);
5373                 kfree_skb(skb);
5374                 return NET_RX_SUCCESS;
5375         }
5376
5377 out:
5378         return netif_receive_skb_internal(skb);
5379 }
5380
5381 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5382                                    bool flush_old)
5383 {
5384         struct list_head *head = &napi->gro_hash[index].list;
5385         struct sk_buff *skb, *p;
5386
5387         list_for_each_entry_safe_reverse(skb, p, head, list) {
5388                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5389                         return;
5390                 skb_list_del_init(skb);
5391                 napi_gro_complete(skb);
5392                 napi->gro_hash[index].count--;
5393         }
5394
5395         if (!napi->gro_hash[index].count)
5396                 __clear_bit(index, &napi->gro_bitmask);
5397 }
5398
5399 /* napi->gro_hash[].list contains packets ordered by age.
5400  * youngest packets at the head of it.
5401  * Complete skbs in reverse order to reduce latencies.
5402  */
5403 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5404 {
5405         unsigned long bitmask = napi->gro_bitmask;
5406         unsigned int i, base = ~0U;
5407
5408         while ((i = ffs(bitmask)) != 0) {
5409                 bitmask >>= i;
5410                 base += i;
5411                 __napi_gro_flush_chain(napi, base, flush_old);
5412         }
5413 }
5414 EXPORT_SYMBOL(napi_gro_flush);
5415
5416 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5417                                           struct sk_buff *skb)
5418 {
5419         unsigned int maclen = skb->dev->hard_header_len;
5420         u32 hash = skb_get_hash_raw(skb);
5421         struct list_head *head;
5422         struct sk_buff *p;
5423
5424         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5425         list_for_each_entry(p, head, list) {
5426                 unsigned long diffs;
5427
5428                 NAPI_GRO_CB(p)->flush = 0;
5429
5430                 if (hash != skb_get_hash_raw(p)) {
5431                         NAPI_GRO_CB(p)->same_flow = 0;
5432                         continue;
5433                 }
5434
5435                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5436                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5437                 if (skb_vlan_tag_present(p))
5438                         diffs |= p->vlan_tci ^ skb->vlan_tci;
5439                 diffs |= skb_metadata_dst_cmp(p, skb);
5440                 diffs |= skb_metadata_differs(p, skb);
5441                 if (maclen == ETH_HLEN)
5442                         diffs |= compare_ether_header(skb_mac_header(p),
5443                                                       skb_mac_header(skb));
5444                 else if (!diffs)
5445                         diffs = memcmp(skb_mac_header(p),
5446                                        skb_mac_header(skb),
5447                                        maclen);
5448                 NAPI_GRO_CB(p)->same_flow = !diffs;
5449         }
5450
5451         return head;
5452 }
5453
5454 static void skb_gro_reset_offset(struct sk_buff *skb)
5455 {
5456         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5457         const skb_frag_t *frag0 = &pinfo->frags[0];
5458
5459         NAPI_GRO_CB(skb)->data_offset = 0;
5460         NAPI_GRO_CB(skb)->frag0 = NULL;
5461         NAPI_GRO_CB(skb)->frag0_len = 0;
5462
5463         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5464             pinfo->nr_frags &&
5465             !PageHighMem(skb_frag_page(frag0))) {
5466                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5467                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5468                                                     skb_frag_size(frag0),
5469                                                     skb->end - skb->tail);
5470         }
5471 }
5472
5473 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5474 {
5475         struct skb_shared_info *pinfo = skb_shinfo(skb);
5476
5477         BUG_ON(skb->end - skb->tail < grow);
5478
5479         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5480
5481         skb->data_len -= grow;
5482         skb->tail += grow;
5483
5484         pinfo->frags[0].page_offset += grow;
5485         skb_frag_size_sub(&pinfo->frags[0], grow);
5486
5487         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5488                 skb_frag_unref(skb, 0);
5489                 memmove(pinfo->frags, pinfo->frags + 1,
5490                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5491         }
5492 }
5493
5494 static void gro_flush_oldest(struct list_head *head)
5495 {
5496         struct sk_buff *oldest;
5497
5498         oldest = list_last_entry(head, struct sk_buff, list);
5499
5500         /* We are called with head length >= MAX_GRO_SKBS, so this is
5501          * impossible.
5502          */
5503         if (WARN_ON_ONCE(!oldest))
5504                 return;
5505
5506         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5507          * SKB to the chain.
5508          */
5509         skb_list_del_init(oldest);
5510         napi_gro_complete(oldest);
5511 }
5512
5513 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5514                                                            struct sk_buff *));
5515 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5516                                                            struct sk_buff *));
5517 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5518 {
5519         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5520         struct list_head *head = &offload_base;
5521         struct packet_offload *ptype;
5522         __be16 type = skb->protocol;
5523         struct list_head *gro_head;
5524         struct sk_buff *pp = NULL;
5525         enum gro_result ret;
5526         int same_flow;
5527         int grow;
5528
5529         if (netif_elide_gro(skb->dev))
5530                 goto normal;
5531
5532         gro_head = gro_list_prepare(napi, skb);
5533
5534         rcu_read_lock();
5535         list_for_each_entry_rcu(ptype, head, list) {
5536                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5537                         continue;
5538
5539                 skb_set_network_header(skb, skb_gro_offset(skb));
5540                 skb_reset_mac_len(skb);
5541                 NAPI_GRO_CB(skb)->same_flow = 0;
5542                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5543                 NAPI_GRO_CB(skb)->free = 0;
5544                 NAPI_GRO_CB(skb)->encap_mark = 0;
5545                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5546                 NAPI_GRO_CB(skb)->is_fou = 0;
5547                 NAPI_GRO_CB(skb)->is_atomic = 1;
5548                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5549
5550                 /* Setup for GRO checksum validation */
5551                 switch (skb->ip_summed) {
5552                 case CHECKSUM_COMPLETE:
5553                         NAPI_GRO_CB(skb)->csum = skb->csum;
5554                         NAPI_GRO_CB(skb)->csum_valid = 1;
5555                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5556                         break;
5557                 case CHECKSUM_UNNECESSARY:
5558                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5559                         NAPI_GRO_CB(skb)->csum_valid = 0;
5560                         break;
5561                 default:
5562                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5563                         NAPI_GRO_CB(skb)->csum_valid = 0;
5564                 }
5565
5566                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5567                                         ipv6_gro_receive, inet_gro_receive,
5568                                         gro_head, skb);
5569                 break;
5570         }
5571         rcu_read_unlock();
5572
5573         if (&ptype->list == head)
5574                 goto normal;
5575
5576         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5577                 ret = GRO_CONSUMED;
5578                 goto ok;
5579         }
5580
5581         same_flow = NAPI_GRO_CB(skb)->same_flow;
5582         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5583
5584         if (pp) {
5585                 skb_list_del_init(pp);
5586                 napi_gro_complete(pp);
5587                 napi->gro_hash[hash].count--;
5588         }
5589
5590         if (same_flow)
5591                 goto ok;
5592
5593         if (NAPI_GRO_CB(skb)->flush)
5594                 goto normal;
5595
5596         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5597                 gro_flush_oldest(gro_head);
5598         } else {
5599                 napi->gro_hash[hash].count++;
5600         }
5601         NAPI_GRO_CB(skb)->count = 1;
5602         NAPI_GRO_CB(skb)->age = jiffies;
5603         NAPI_GRO_CB(skb)->last = skb;
5604         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5605         list_add(&skb->list, gro_head);
5606         ret = GRO_HELD;
5607
5608 pull:
5609         grow = skb_gro_offset(skb) - skb_headlen(skb);
5610         if (grow > 0)
5611                 gro_pull_from_frag0(skb, grow);
5612 ok:
5613         if (napi->gro_hash[hash].count) {
5614                 if (!test_bit(hash, &napi->gro_bitmask))
5615                         __set_bit(hash, &napi->gro_bitmask);
5616         } else if (test_bit(hash, &napi->gro_bitmask)) {
5617                 __clear_bit(hash, &napi->gro_bitmask);
5618         }
5619
5620         return ret;
5621
5622 normal:
5623         ret = GRO_NORMAL;
5624         goto pull;
5625 }
5626
5627 struct packet_offload *gro_find_receive_by_type(__be16 type)
5628 {
5629         struct list_head *offload_head = &offload_base;
5630         struct packet_offload *ptype;
5631
5632         list_for_each_entry_rcu(ptype, offload_head, list) {
5633                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5634                         continue;
5635                 return ptype;
5636         }
5637         return NULL;
5638 }
5639 EXPORT_SYMBOL(gro_find_receive_by_type);
5640
5641 struct packet_offload *gro_find_complete_by_type(__be16 type)
5642 {
5643         struct list_head *offload_head = &offload_base;
5644         struct packet_offload *ptype;
5645
5646         list_for_each_entry_rcu(ptype, offload_head, list) {
5647                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5648                         continue;
5649                 return ptype;
5650         }
5651         return NULL;
5652 }
5653 EXPORT_SYMBOL(gro_find_complete_by_type);
5654
5655 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5656 {
5657         skb_dst_drop(skb);
5658         secpath_reset(skb);
5659         kmem_cache_free(skbuff_head_cache, skb);
5660 }
5661
5662 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5663 {
5664         switch (ret) {
5665         case GRO_NORMAL:
5666                 if (netif_receive_skb_internal(skb))
5667                         ret = GRO_DROP;
5668                 break;
5669
5670         case GRO_DROP:
5671                 kfree_skb(skb);
5672                 break;
5673
5674         case GRO_MERGED_FREE:
5675                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5676                         napi_skb_free_stolen_head(skb);
5677                 else
5678                         __kfree_skb(skb);
5679                 break;
5680
5681         case GRO_HELD:
5682         case GRO_MERGED:
5683         case GRO_CONSUMED:
5684                 break;
5685         }
5686
5687         return ret;
5688 }
5689
5690 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5691 {
5692         gro_result_t ret;
5693
5694         skb_mark_napi_id(skb, napi);
5695         trace_napi_gro_receive_entry(skb);
5696
5697         skb_gro_reset_offset(skb);
5698
5699         ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5700         trace_napi_gro_receive_exit(ret);
5701
5702         return ret;
5703 }
5704 EXPORT_SYMBOL(napi_gro_receive);
5705
5706 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5707 {
5708         if (unlikely(skb->pfmemalloc)) {
5709                 consume_skb(skb);
5710                 return;
5711         }
5712         __skb_pull(skb, skb_headlen(skb));
5713         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5714         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5715         __vlan_hwaccel_clear_tag(skb);
5716         skb->dev = napi->dev;
5717         skb->skb_iif = 0;
5718
5719         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5720         skb->pkt_type = PACKET_HOST;
5721
5722         skb->encapsulation = 0;
5723         skb_shinfo(skb)->gso_type = 0;
5724         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5725         secpath_reset(skb);
5726
5727         napi->skb = skb;
5728 }
5729
5730 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5731 {
5732         struct sk_buff *skb = napi->skb;
5733
5734         if (!skb) {
5735                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5736                 if (skb) {
5737                         napi->skb = skb;
5738                         skb_mark_napi_id(skb, napi);
5739                 }
5740         }
5741         return skb;
5742 }
5743 EXPORT_SYMBOL(napi_get_frags);
5744
5745 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5746                                       struct sk_buff *skb,
5747                                       gro_result_t ret)
5748 {
5749         switch (ret) {
5750         case GRO_NORMAL:
5751         case GRO_HELD:
5752                 __skb_push(skb, ETH_HLEN);
5753                 skb->protocol = eth_type_trans(skb, skb->dev);
5754                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5755                         ret = GRO_DROP;
5756                 break;
5757
5758         case GRO_DROP:
5759                 napi_reuse_skb(napi, skb);
5760                 break;
5761
5762         case GRO_MERGED_FREE:
5763                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5764                         napi_skb_free_stolen_head(skb);
5765                 else
5766                         napi_reuse_skb(napi, skb);
5767                 break;
5768
5769         case GRO_MERGED:
5770         case GRO_CONSUMED:
5771                 break;
5772         }
5773
5774         return ret;
5775 }
5776
5777 /* Upper GRO stack assumes network header starts at gro_offset=0
5778  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5779  * We copy ethernet header into skb->data to have a common layout.
5780  */
5781 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5782 {
5783         struct sk_buff *skb = napi->skb;
5784         const struct ethhdr *eth;
5785         unsigned int hlen = sizeof(*eth);
5786
5787         napi->skb = NULL;
5788
5789         skb_reset_mac_header(skb);
5790         skb_gro_reset_offset(skb);
5791
5792         eth = skb_gro_header_fast(skb, 0);
5793         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5794                 eth = skb_gro_header_slow(skb, hlen, 0);
5795                 if (unlikely(!eth)) {
5796                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5797                                              __func__, napi->dev->name);
5798                         napi_reuse_skb(napi, skb);
5799                         return NULL;
5800                 }
5801         } else {
5802                 gro_pull_from_frag0(skb, hlen);
5803                 NAPI_GRO_CB(skb)->frag0 += hlen;
5804                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5805         }
5806         __skb_pull(skb, hlen);
5807
5808         /*
5809          * This works because the only protocols we care about don't require
5810          * special handling.
5811          * We'll fix it up properly in napi_frags_finish()
5812          */
5813         skb->protocol = eth->h_proto;
5814
5815         return skb;
5816 }
5817
5818 gro_result_t napi_gro_frags(struct napi_struct *napi)
5819 {
5820         gro_result_t ret;
5821         struct sk_buff *skb = napi_frags_skb(napi);
5822
5823         if (!skb)
5824                 return GRO_DROP;
5825
5826         trace_napi_gro_frags_entry(skb);
5827
5828         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5829         trace_napi_gro_frags_exit(ret);
5830
5831         return ret;
5832 }
5833 EXPORT_SYMBOL(napi_gro_frags);
5834
5835 /* Compute the checksum from gro_offset and return the folded value
5836  * after adding in any pseudo checksum.
5837  */
5838 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5839 {
5840         __wsum wsum;
5841         __sum16 sum;
5842
5843         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5844
5845         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5846         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5847         /* See comments in __skb_checksum_complete(). */
5848         if (likely(!sum)) {
5849                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5850                     !skb->csum_complete_sw)
5851                         netdev_rx_csum_fault(skb->dev, skb);
5852         }
5853
5854         NAPI_GRO_CB(skb)->csum = wsum;
5855         NAPI_GRO_CB(skb)->csum_valid = 1;
5856
5857         return sum;
5858 }
5859 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5860
5861 static void net_rps_send_ipi(struct softnet_data *remsd)
5862 {
5863 #ifdef CONFIG_RPS
5864         while (remsd) {
5865                 struct softnet_data *next = remsd->rps_ipi_next;
5866
5867                 if (cpu_online(remsd->cpu))
5868                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5869                 remsd = next;
5870         }
5871 #endif
5872 }
5873
5874 /*
5875  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5876  * Note: called with local irq disabled, but exits with local irq enabled.
5877  */
5878 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5879 {
5880 #ifdef CONFIG_RPS
5881         struct softnet_data *remsd = sd->rps_ipi_list;
5882
5883         if (remsd) {
5884                 sd->rps_ipi_list = NULL;
5885
5886                 local_irq_enable();
5887
5888                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5889                 net_rps_send_ipi(remsd);
5890         } else
5891 #endif
5892                 local_irq_enable();
5893 }
5894
5895 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5896 {
5897 #ifdef CONFIG_RPS
5898         return sd->rps_ipi_list != NULL;
5899 #else
5900         return false;
5901 #endif
5902 }
5903
5904 static int process_backlog(struct napi_struct *napi, int quota)
5905 {
5906         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5907         bool again = true;
5908         int work = 0;
5909
5910         /* Check if we have pending ipi, its better to send them now,
5911          * not waiting net_rx_action() end.
5912          */
5913         if (sd_has_rps_ipi_waiting(sd)) {
5914                 local_irq_disable();
5915                 net_rps_action_and_irq_enable(sd);
5916         }
5917
5918         napi->weight = dev_rx_weight;
5919         while (again) {
5920                 struct sk_buff *skb;
5921
5922                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5923                         rcu_read_lock();
5924                         __netif_receive_skb(skb);
5925                         rcu_read_unlock();
5926                         input_queue_head_incr(sd);
5927                         if (++work >= quota)
5928                                 return work;
5929
5930                 }
5931
5932                 local_irq_disable();
5933                 rps_lock(sd);
5934                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5935                         /*
5936                          * Inline a custom version of __napi_complete().
5937                          * only current cpu owns and manipulates this napi,
5938                          * and NAPI_STATE_SCHED is the only possible flag set
5939                          * on backlog.
5940                          * We can use a plain write instead of clear_bit(),
5941                          * and we dont need an smp_mb() memory barrier.
5942                          */
5943                         napi->state = 0;
5944                         again = false;
5945                 } else {
5946                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5947                                                    &sd->process_queue);
5948                 }
5949                 rps_unlock(sd);
5950                 local_irq_enable();
5951         }
5952
5953         return work;
5954 }
5955
5956 /**
5957  * __napi_schedule - schedule for receive
5958  * @n: entry to schedule
5959  *
5960  * The entry's receive function will be scheduled to run.
5961  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5962  */
5963 void __napi_schedule(struct napi_struct *n)
5964 {
5965         unsigned long flags;
5966
5967         local_irq_save(flags);
5968         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5969         local_irq_restore(flags);
5970 }
5971 EXPORT_SYMBOL(__napi_schedule);
5972
5973 /**
5974  *      napi_schedule_prep - check if napi can be scheduled
5975  *      @n: napi context
5976  *
5977  * Test if NAPI routine is already running, and if not mark
5978  * it as running.  This is used as a condition variable
5979  * insure only one NAPI poll instance runs.  We also make
5980  * sure there is no pending NAPI disable.
5981  */
5982 bool napi_schedule_prep(struct napi_struct *n)
5983 {
5984         unsigned long val, new;
5985
5986         do {
5987                 val = READ_ONCE(n->state);
5988                 if (unlikely(val & NAPIF_STATE_DISABLE))
5989                         return false;
5990                 new = val | NAPIF_STATE_SCHED;
5991
5992                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5993                  * This was suggested by Alexander Duyck, as compiler
5994                  * emits better code than :
5995                  * if (val & NAPIF_STATE_SCHED)
5996                  *     new |= NAPIF_STATE_MISSED;
5997                  */
5998                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5999                                                    NAPIF_STATE_MISSED;
6000         } while (cmpxchg(&n->state, val, new) != val);
6001
6002         return !(val & NAPIF_STATE_SCHED);
6003 }
6004 EXPORT_SYMBOL(napi_schedule_prep);
6005
6006 /**
6007  * __napi_schedule_irqoff - schedule for receive
6008  * @n: entry to schedule
6009  *
6010  * Variant of __napi_schedule() assuming hard irqs are masked
6011  */
6012 void __napi_schedule_irqoff(struct napi_struct *n)
6013 {
6014         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6015 }
6016 EXPORT_SYMBOL(__napi_schedule_irqoff);
6017
6018 bool napi_complete_done(struct napi_struct *n, int work_done)
6019 {
6020         unsigned long flags, val, new;
6021
6022         /*
6023          * 1) Don't let napi dequeue from the cpu poll list
6024          *    just in case its running on a different cpu.
6025          * 2) If we are busy polling, do nothing here, we have
6026          *    the guarantee we will be called later.
6027          */
6028         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6029                                  NAPIF_STATE_IN_BUSY_POLL)))
6030                 return false;
6031
6032         if (n->gro_bitmask) {
6033                 unsigned long timeout = 0;
6034
6035                 if (work_done)
6036                         timeout = n->dev->gro_flush_timeout;
6037
6038                 /* When the NAPI instance uses a timeout and keeps postponing
6039                  * it, we need to bound somehow the time packets are kept in
6040                  * the GRO layer
6041                  */
6042                 napi_gro_flush(n, !!timeout);
6043                 if (timeout)
6044                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
6045                                       HRTIMER_MODE_REL_PINNED);
6046         }
6047         if (unlikely(!list_empty(&n->poll_list))) {
6048                 /* If n->poll_list is not empty, we need to mask irqs */
6049                 local_irq_save(flags);
6050                 list_del_init(&n->poll_list);
6051                 local_irq_restore(flags);
6052         }
6053
6054         do {
6055                 val = READ_ONCE(n->state);
6056
6057                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6058
6059                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6060
6061                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6062                  * because we will call napi->poll() one more time.
6063                  * This C code was suggested by Alexander Duyck to help gcc.
6064                  */
6065                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6066                                                     NAPIF_STATE_SCHED;
6067         } while (cmpxchg(&n->state, val, new) != val);
6068
6069         if (unlikely(val & NAPIF_STATE_MISSED)) {
6070                 __napi_schedule(n);
6071                 return false;
6072         }
6073
6074         return true;
6075 }
6076 EXPORT_SYMBOL(napi_complete_done);
6077
6078 /* must be called under rcu_read_lock(), as we dont take a reference */
6079 static struct napi_struct *napi_by_id(unsigned int napi_id)
6080 {
6081         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6082         struct napi_struct *napi;
6083
6084         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6085                 if (napi->napi_id == napi_id)
6086                         return napi;
6087
6088         return NULL;
6089 }
6090
6091 #if defined(CONFIG_NET_RX_BUSY_POLL)
6092
6093 #define BUSY_POLL_BUDGET 8
6094
6095 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6096 {
6097         int rc;
6098
6099         /* Busy polling means there is a high chance device driver hard irq
6100          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6101          * set in napi_schedule_prep().
6102          * Since we are about to call napi->poll() once more, we can safely
6103          * clear NAPI_STATE_MISSED.
6104          *
6105          * Note: x86 could use a single "lock and ..." instruction
6106          * to perform these two clear_bit()
6107          */
6108         clear_bit(NAPI_STATE_MISSED, &napi->state);
6109         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6110
6111         local_bh_disable();
6112
6113         /* All we really want here is to re-enable device interrupts.
6114          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6115          */
6116         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6117         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6118         netpoll_poll_unlock(have_poll_lock);
6119         if (rc == BUSY_POLL_BUDGET)
6120                 __napi_schedule(napi);
6121         local_bh_enable();
6122 }
6123
6124 void napi_busy_loop(unsigned int napi_id,
6125                     bool (*loop_end)(void *, unsigned long),
6126                     void *loop_end_arg)
6127 {
6128         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6129         int (*napi_poll)(struct napi_struct *napi, int budget);
6130         void *have_poll_lock = NULL;
6131         struct napi_struct *napi;
6132
6133 restart:
6134         napi_poll = NULL;
6135
6136         rcu_read_lock();
6137
6138         napi = napi_by_id(napi_id);
6139         if (!napi)
6140                 goto out;
6141
6142         preempt_disable();
6143         for (;;) {
6144                 int work = 0;
6145
6146                 local_bh_disable();
6147                 if (!napi_poll) {
6148                         unsigned long val = READ_ONCE(napi->state);
6149
6150                         /* If multiple threads are competing for this napi,
6151                          * we avoid dirtying napi->state as much as we can.
6152                          */
6153                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6154                                    NAPIF_STATE_IN_BUSY_POLL))
6155                                 goto count;
6156                         if (cmpxchg(&napi->state, val,
6157                                     val | NAPIF_STATE_IN_BUSY_POLL |
6158                                           NAPIF_STATE_SCHED) != val)
6159                                 goto count;
6160                         have_poll_lock = netpoll_poll_lock(napi);
6161                         napi_poll = napi->poll;
6162                 }
6163                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6164                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6165 count:
6166                 if (work > 0)
6167                         __NET_ADD_STATS(dev_net(napi->dev),
6168                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6169                 local_bh_enable();
6170
6171                 if (!loop_end || loop_end(loop_end_arg, start_time))
6172                         break;
6173
6174                 if (unlikely(need_resched())) {
6175                         if (napi_poll)
6176                                 busy_poll_stop(napi, have_poll_lock);
6177                         preempt_enable();
6178                         rcu_read_unlock();
6179                         cond_resched();
6180                         if (loop_end(loop_end_arg, start_time))
6181                                 return;
6182                         goto restart;
6183                 }
6184                 cpu_relax();
6185         }
6186         if (napi_poll)
6187                 busy_poll_stop(napi, have_poll_lock);
6188         preempt_enable();
6189 out:
6190         rcu_read_unlock();
6191 }
6192 EXPORT_SYMBOL(napi_busy_loop);
6193
6194 #endif /* CONFIG_NET_RX_BUSY_POLL */
6195
6196 static void napi_hash_add(struct napi_struct *napi)
6197 {
6198         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6199             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6200                 return;
6201
6202         spin_lock(&napi_hash_lock);
6203
6204         /* 0..NR_CPUS range is reserved for sender_cpu use */
6205         do {
6206                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6207                         napi_gen_id = MIN_NAPI_ID;
6208         } while (napi_by_id(napi_gen_id));
6209         napi->napi_id = napi_gen_id;
6210
6211         hlist_add_head_rcu(&napi->napi_hash_node,
6212                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6213
6214         spin_unlock(&napi_hash_lock);
6215 }
6216
6217 /* Warning : caller is responsible to make sure rcu grace period
6218  * is respected before freeing memory containing @napi
6219  */
6220 bool napi_hash_del(struct napi_struct *napi)
6221 {
6222         bool rcu_sync_needed = false;
6223
6224         spin_lock(&napi_hash_lock);
6225
6226         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6227                 rcu_sync_needed = true;
6228                 hlist_del_rcu(&napi->napi_hash_node);
6229         }
6230         spin_unlock(&napi_hash_lock);
6231         return rcu_sync_needed;
6232 }
6233 EXPORT_SYMBOL_GPL(napi_hash_del);
6234
6235 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6236 {
6237         struct napi_struct *napi;
6238
6239         napi = container_of(timer, struct napi_struct, timer);
6240
6241         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6242          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6243          */
6244         if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6245             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6246                 __napi_schedule_irqoff(napi);
6247
6248         return HRTIMER_NORESTART;
6249 }
6250
6251 static void init_gro_hash(struct napi_struct *napi)
6252 {
6253         int i;
6254
6255         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6256                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6257                 napi->gro_hash[i].count = 0;
6258         }
6259         napi->gro_bitmask = 0;
6260 }
6261
6262 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6263                     int (*poll)(struct napi_struct *, int), int weight)
6264 {
6265         INIT_LIST_HEAD(&napi->poll_list);
6266         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6267         napi->timer.function = napi_watchdog;
6268         init_gro_hash(napi);
6269         napi->skb = NULL;
6270         napi->poll = poll;
6271         if (weight > NAPI_POLL_WEIGHT)
6272                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6273                                 weight);
6274         napi->weight = weight;
6275         list_add(&napi->dev_list, &dev->napi_list);
6276         napi->dev = dev;
6277 #ifdef CONFIG_NETPOLL
6278         napi->poll_owner = -1;
6279 #endif
6280         set_bit(NAPI_STATE_SCHED, &napi->state);
6281         napi_hash_add(napi);
6282 }
6283 EXPORT_SYMBOL(netif_napi_add);
6284
6285 void napi_disable(struct napi_struct *n)
6286 {
6287         might_sleep();
6288         set_bit(NAPI_STATE_DISABLE, &n->state);
6289
6290         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6291                 msleep(1);
6292         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6293                 msleep(1);
6294
6295         hrtimer_cancel(&n->timer);
6296
6297         clear_bit(NAPI_STATE_DISABLE, &n->state);
6298 }
6299 EXPORT_SYMBOL(napi_disable);
6300
6301 static void flush_gro_hash(struct napi_struct *napi)
6302 {
6303         int i;
6304
6305         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6306                 struct sk_buff *skb, *n;
6307
6308                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6309                         kfree_skb(skb);
6310                 napi->gro_hash[i].count = 0;
6311         }
6312 }
6313
6314 /* Must be called in process context */
6315 void netif_napi_del(struct napi_struct *napi)
6316 {
6317         might_sleep();
6318         if (napi_hash_del(napi))
6319                 synchronize_net();
6320         list_del_init(&napi->dev_list);
6321         napi_free_frags(napi);
6322
6323         flush_gro_hash(napi);
6324         napi->gro_bitmask = 0;
6325 }
6326 EXPORT_SYMBOL(netif_napi_del);
6327
6328 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6329 {
6330         void *have;
6331         int work, weight;
6332
6333         list_del_init(&n->poll_list);
6334
6335         have = netpoll_poll_lock(n);
6336
6337         weight = n->weight;
6338
6339         /* This NAPI_STATE_SCHED test is for avoiding a race
6340          * with netpoll's poll_napi().  Only the entity which
6341          * obtains the lock and sees NAPI_STATE_SCHED set will
6342          * actually make the ->poll() call.  Therefore we avoid
6343          * accidentally calling ->poll() when NAPI is not scheduled.
6344          */
6345         work = 0;
6346         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6347                 work = n->poll(n, weight);
6348                 trace_napi_poll(n, work, weight);
6349         }
6350
6351         WARN_ON_ONCE(work > weight);
6352
6353         if (likely(work < weight))
6354                 goto out_unlock;
6355
6356         /* Drivers must not modify the NAPI state if they
6357          * consume the entire weight.  In such cases this code
6358          * still "owns" the NAPI instance and therefore can
6359          * move the instance around on the list at-will.
6360          */
6361         if (unlikely(napi_disable_pending(n))) {
6362                 napi_complete(n);
6363                 goto out_unlock;
6364         }
6365
6366         if (n->gro_bitmask) {
6367                 /* flush too old packets
6368                  * If HZ < 1000, flush all packets.
6369                  */
6370                 napi_gro_flush(n, HZ >= 1000);
6371         }
6372
6373         /* Some drivers may have called napi_schedule
6374          * prior to exhausting their budget.
6375          */
6376         if (unlikely(!list_empty(&n->poll_list))) {
6377                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6378                              n->dev ? n->dev->name : "backlog");
6379                 goto out_unlock;
6380         }
6381
6382         list_add_tail(&n->poll_list, repoll);
6383
6384 out_unlock:
6385         netpoll_poll_unlock(have);
6386
6387         return work;
6388 }
6389
6390 static __latent_entropy void net_rx_action(struct softirq_action *h)
6391 {
6392         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6393         unsigned long time_limit = jiffies +
6394                 usecs_to_jiffies(netdev_budget_usecs);
6395         int budget = netdev_budget;
6396         LIST_HEAD(list);
6397         LIST_HEAD(repoll);
6398
6399         local_irq_disable();
6400         list_splice_init(&sd->poll_list, &list);
6401         local_irq_enable();
6402
6403         for (;;) {
6404                 struct napi_struct *n;
6405
6406                 if (list_empty(&list)) {
6407                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6408                                 goto out;
6409                         break;
6410                 }
6411
6412                 n = list_first_entry(&list, struct napi_struct, poll_list);
6413                 budget -= napi_poll(n, &repoll);
6414
6415                 /* If softirq window is exhausted then punt.
6416                  * Allow this to run for 2 jiffies since which will allow
6417                  * an average latency of 1.5/HZ.
6418                  */
6419                 if (unlikely(budget <= 0 ||
6420                              time_after_eq(jiffies, time_limit))) {
6421                         sd->time_squeeze++;
6422                         break;
6423                 }
6424         }
6425
6426         local_irq_disable();
6427
6428         list_splice_tail_init(&sd->poll_list, &list);
6429         list_splice_tail(&repoll, &list);
6430         list_splice(&list, &sd->poll_list);
6431         if (!list_empty(&sd->poll_list))
6432                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6433
6434         net_rps_action_and_irq_enable(sd);
6435 out:
6436         __kfree_skb_flush();
6437 }
6438
6439 struct netdev_adjacent {
6440         struct net_device *dev;
6441
6442         /* upper master flag, there can only be one master device per list */
6443         bool master;
6444
6445         /* counter for the number of times this device was added to us */
6446         u16 ref_nr;
6447
6448         /* private field for the users */
6449         void *private;
6450
6451         struct list_head list;
6452         struct rcu_head rcu;
6453 };
6454
6455 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6456                                                  struct list_head *adj_list)
6457 {
6458         struct netdev_adjacent *adj;
6459
6460         list_for_each_entry(adj, adj_list, list) {
6461                 if (adj->dev == adj_dev)
6462                         return adj;
6463         }
6464         return NULL;
6465 }
6466
6467 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6468 {
6469         struct net_device *dev = data;
6470
6471         return upper_dev == dev;
6472 }
6473
6474 /**
6475  * netdev_has_upper_dev - Check if device is linked to an upper device
6476  * @dev: device
6477  * @upper_dev: upper device to check
6478  *
6479  * Find out if a device is linked to specified upper device and return true
6480  * in case it is. Note that this checks only immediate upper device,
6481  * not through a complete stack of devices. The caller must hold the RTNL lock.
6482  */
6483 bool netdev_has_upper_dev(struct net_device *dev,
6484                           struct net_device *upper_dev)
6485 {
6486         ASSERT_RTNL();
6487
6488         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6489                                              upper_dev);
6490 }
6491 EXPORT_SYMBOL(netdev_has_upper_dev);
6492
6493 /**
6494  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6495  * @dev: device
6496  * @upper_dev: upper device to check
6497  *
6498  * Find out if a device is linked to specified upper device and return true
6499  * in case it is. Note that this checks the entire upper device chain.
6500  * The caller must hold rcu lock.
6501  */
6502
6503 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6504                                   struct net_device *upper_dev)
6505 {
6506         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6507                                                upper_dev);
6508 }
6509 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6510
6511 /**
6512  * netdev_has_any_upper_dev - Check if device is linked to some device
6513  * @dev: device
6514  *
6515  * Find out if a device is linked to an upper device and return true in case
6516  * it is. The caller must hold the RTNL lock.
6517  */
6518 bool netdev_has_any_upper_dev(struct net_device *dev)
6519 {
6520         ASSERT_RTNL();
6521
6522         return !list_empty(&dev->adj_list.upper);
6523 }
6524 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6525
6526 /**
6527  * netdev_master_upper_dev_get - Get master upper device
6528  * @dev: device
6529  *
6530  * Find a master upper device and return pointer to it or NULL in case
6531  * it's not there. The caller must hold the RTNL lock.
6532  */
6533 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6534 {
6535         struct netdev_adjacent *upper;
6536
6537         ASSERT_RTNL();
6538
6539         if (list_empty(&dev->adj_list.upper))
6540                 return NULL;
6541
6542         upper = list_first_entry(&dev->adj_list.upper,
6543                                  struct netdev_adjacent, list);
6544         if (likely(upper->master))
6545                 return upper->dev;
6546         return NULL;
6547 }
6548 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6549
6550 /**
6551  * netdev_has_any_lower_dev - Check if device is linked to some device
6552  * @dev: device
6553  *
6554  * Find out if a device is linked to a lower device and return true in case
6555  * it is. The caller must hold the RTNL lock.
6556  */
6557 static bool netdev_has_any_lower_dev(struct net_device *dev)
6558 {
6559         ASSERT_RTNL();
6560
6561         return !list_empty(&dev->adj_list.lower);
6562 }
6563
6564 void *netdev_adjacent_get_private(struct list_head *adj_list)
6565 {
6566         struct netdev_adjacent *adj;
6567
6568         adj = list_entry(adj_list, struct netdev_adjacent, list);
6569
6570         return adj->private;
6571 }
6572 EXPORT_SYMBOL(netdev_adjacent_get_private);
6573
6574 /**
6575  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6576  * @dev: device
6577  * @iter: list_head ** of the current position
6578  *
6579  * Gets the next device from the dev's upper list, starting from iter
6580  * position. The caller must hold RCU read lock.
6581  */
6582 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6583                                                  struct list_head **iter)
6584 {
6585         struct netdev_adjacent *upper;
6586
6587         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6588
6589         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6590
6591         if (&upper->list == &dev->adj_list.upper)
6592                 return NULL;
6593
6594         *iter = &upper->list;
6595
6596         return upper->dev;
6597 }
6598 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6599
6600 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6601                                                     struct list_head **iter)
6602 {
6603         struct netdev_adjacent *upper;
6604
6605         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6606
6607         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6608
6609         if (&upper->list == &dev->adj_list.upper)
6610                 return NULL;
6611
6612         *iter = &upper->list;
6613
6614         return upper->dev;
6615 }
6616
6617 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6618                                   int (*fn)(struct net_device *dev,
6619                                             void *data),
6620                                   void *data)
6621 {
6622         struct net_device *udev;
6623         struct list_head *iter;
6624         int ret;
6625
6626         for (iter = &dev->adj_list.upper,
6627              udev = netdev_next_upper_dev_rcu(dev, &iter);
6628              udev;
6629              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6630                 /* first is the upper device itself */
6631                 ret = fn(udev, data);
6632                 if (ret)
6633                         return ret;
6634
6635                 /* then look at all of its upper devices */
6636                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6637                 if (ret)
6638                         return ret;
6639         }
6640
6641         return 0;
6642 }
6643 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6644
6645 /**
6646  * netdev_lower_get_next_private - Get the next ->private from the
6647  *                                 lower neighbour list
6648  * @dev: device
6649  * @iter: list_head ** of the current position
6650  *
6651  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6652  * list, starting from iter position. The caller must hold either hold the
6653  * RTNL lock or its own locking that guarantees that the neighbour lower
6654  * list will remain unchanged.
6655  */
6656 void *netdev_lower_get_next_private(struct net_device *dev,
6657                                     struct list_head **iter)
6658 {
6659         struct netdev_adjacent *lower;
6660
6661         lower = list_entry(*iter, struct netdev_adjacent, list);
6662
6663         if (&lower->list == &dev->adj_list.lower)
6664                 return NULL;
6665
6666         *iter = lower->list.next;
6667
6668         return lower->private;
6669 }
6670 EXPORT_SYMBOL(netdev_lower_get_next_private);
6671
6672 /**
6673  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6674  *                                     lower neighbour list, RCU
6675  *                                     variant
6676  * @dev: device
6677  * @iter: list_head ** of the current position
6678  *
6679  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6680  * list, starting from iter position. The caller must hold RCU read lock.
6681  */
6682 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6683                                         struct list_head **iter)
6684 {
6685         struct netdev_adjacent *lower;
6686
6687         WARN_ON_ONCE(!rcu_read_lock_held());
6688
6689         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6690
6691         if (&lower->list == &dev->adj_list.lower)
6692                 return NULL;
6693
6694         *iter = &lower->list;
6695
6696         return lower->private;
6697 }
6698 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6699
6700 /**
6701  * netdev_lower_get_next - Get the next device from the lower neighbour
6702  *                         list
6703  * @dev: device
6704  * @iter: list_head ** of the current position
6705  *
6706  * Gets the next netdev_adjacent from the dev's lower neighbour
6707  * list, starting from iter position. The caller must hold RTNL lock or
6708  * its own locking that guarantees that the neighbour lower
6709  * list will remain unchanged.
6710  */
6711 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6712 {
6713         struct netdev_adjacent *lower;
6714
6715         lower = list_entry(*iter, struct netdev_adjacent, list);
6716
6717         if (&lower->list == &dev->adj_list.lower)
6718                 return NULL;
6719
6720         *iter = lower->list.next;
6721
6722         return lower->dev;
6723 }
6724 EXPORT_SYMBOL(netdev_lower_get_next);
6725
6726 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6727                                                 struct list_head **iter)
6728 {
6729         struct netdev_adjacent *lower;
6730
6731         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6732
6733         if (&lower->list == &dev->adj_list.lower)
6734                 return NULL;
6735
6736         *iter = &lower->list;
6737
6738         return lower->dev;
6739 }
6740
6741 int netdev_walk_all_lower_dev(struct net_device *dev,
6742                               int (*fn)(struct net_device *dev,
6743                                         void *data),
6744                               void *data)
6745 {
6746         struct net_device *ldev;
6747         struct list_head *iter;
6748         int ret;
6749
6750         for (iter = &dev->adj_list.lower,
6751              ldev = netdev_next_lower_dev(dev, &iter);
6752              ldev;
6753              ldev = netdev_next_lower_dev(dev, &iter)) {
6754                 /* first is the lower device itself */
6755                 ret = fn(ldev, data);
6756                 if (ret)
6757                         return ret;
6758
6759                 /* then look at all of its lower devices */
6760                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6761                 if (ret)
6762                         return ret;
6763         }
6764
6765         return 0;
6766 }
6767 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6768
6769 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6770                                                     struct list_head **iter)
6771 {
6772         struct netdev_adjacent *lower;
6773
6774         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6775         if (&lower->list == &dev->adj_list.lower)
6776                 return NULL;
6777
6778         *iter = &lower->list;
6779
6780         return lower->dev;
6781 }
6782
6783 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6784                                   int (*fn)(struct net_device *dev,
6785                                             void *data),
6786                                   void *data)
6787 {
6788         struct net_device *ldev;
6789         struct list_head *iter;
6790         int ret;
6791
6792         for (iter = &dev->adj_list.lower,
6793              ldev = netdev_next_lower_dev_rcu(dev, &iter);
6794              ldev;
6795              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6796                 /* first is the lower device itself */
6797                 ret = fn(ldev, data);
6798                 if (ret)
6799                         return ret;
6800
6801                 /* then look at all of its lower devices */
6802                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6803                 if (ret)
6804                         return ret;
6805         }
6806
6807         return 0;
6808 }
6809 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6810
6811 /**
6812  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6813  *                                     lower neighbour list, RCU
6814  *                                     variant
6815  * @dev: device
6816  *
6817  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6818  * list. The caller must hold RCU read lock.
6819  */
6820 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6821 {
6822         struct netdev_adjacent *lower;
6823
6824         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6825                         struct netdev_adjacent, list);
6826         if (lower)
6827                 return lower->private;
6828         return NULL;
6829 }
6830 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6831
6832 /**
6833  * netdev_master_upper_dev_get_rcu - Get master upper device
6834  * @dev: device
6835  *
6836  * Find a master upper device and return pointer to it or NULL in case
6837  * it's not there. The caller must hold the RCU read lock.
6838  */
6839 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6840 {
6841         struct netdev_adjacent *upper;
6842
6843         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6844                                        struct netdev_adjacent, list);
6845         if (upper && likely(upper->master))
6846                 return upper->dev;
6847         return NULL;
6848 }
6849 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6850
6851 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6852                               struct net_device *adj_dev,
6853                               struct list_head *dev_list)
6854 {
6855         char linkname[IFNAMSIZ+7];
6856
6857         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6858                 "upper_%s" : "lower_%s", adj_dev->name);
6859         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6860                                  linkname);
6861 }
6862 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6863                                char *name,
6864                                struct list_head *dev_list)
6865 {
6866         char linkname[IFNAMSIZ+7];
6867
6868         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6869                 "upper_%s" : "lower_%s", name);
6870         sysfs_remove_link(&(dev->dev.kobj), linkname);
6871 }
6872
6873 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6874                                                  struct net_device *adj_dev,
6875                                                  struct list_head *dev_list)
6876 {
6877         return (dev_list == &dev->adj_list.upper ||
6878                 dev_list == &dev->adj_list.lower) &&
6879                 net_eq(dev_net(dev), dev_net(adj_dev));
6880 }
6881
6882 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6883                                         struct net_device *adj_dev,
6884                                         struct list_head *dev_list,
6885                                         void *private, bool master)
6886 {
6887         struct netdev_adjacent *adj;
6888         int ret;
6889
6890         adj = __netdev_find_adj(adj_dev, dev_list);
6891
6892         if (adj) {
6893                 adj->ref_nr += 1;
6894                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6895                          dev->name, adj_dev->name, adj->ref_nr);
6896
6897                 return 0;
6898         }
6899
6900         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6901         if (!adj)
6902                 return -ENOMEM;
6903
6904         adj->dev = adj_dev;
6905         adj->master = master;
6906         adj->ref_nr = 1;
6907         adj->private = private;
6908         dev_hold(adj_dev);
6909
6910         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6911                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6912
6913         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6914                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6915                 if (ret)
6916                         goto free_adj;
6917         }
6918
6919         /* Ensure that master link is always the first item in list. */
6920         if (master) {
6921                 ret = sysfs_create_link(&(dev->dev.kobj),
6922                                         &(adj_dev->dev.kobj), "master");
6923                 if (ret)
6924                         goto remove_symlinks;
6925
6926                 list_add_rcu(&adj->list, dev_list);
6927         } else {
6928                 list_add_tail_rcu(&adj->list, dev_list);
6929         }
6930
6931         return 0;
6932
6933 remove_symlinks:
6934         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6935                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6936 free_adj:
6937         kfree(adj);
6938         dev_put(adj_dev);
6939
6940         return ret;
6941 }
6942
6943 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6944                                          struct net_device *adj_dev,
6945                                          u16 ref_nr,
6946                                          struct list_head *dev_list)
6947 {
6948         struct netdev_adjacent *adj;
6949
6950         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6951                  dev->name, adj_dev->name, ref_nr);
6952
6953         adj = __netdev_find_adj(adj_dev, dev_list);
6954
6955         if (!adj) {
6956                 pr_err("Adjacency does not exist for device %s from %s\n",
6957                        dev->name, adj_dev->name);
6958                 WARN_ON(1);
6959                 return;
6960         }
6961
6962         if (adj->ref_nr > ref_nr) {
6963                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6964                          dev->name, adj_dev->name, ref_nr,
6965                          adj->ref_nr - ref_nr);
6966                 adj->ref_nr -= ref_nr;
6967                 return;
6968         }
6969
6970         if (adj->master)
6971                 sysfs_remove_link(&(dev->dev.kobj), "master");
6972
6973         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6974                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6975
6976         list_del_rcu(&adj->list);
6977         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6978                  adj_dev->name, dev->name, adj_dev->name);
6979         dev_put(adj_dev);
6980         kfree_rcu(adj, rcu);
6981 }
6982
6983 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6984                                             struct net_device *upper_dev,
6985                                             struct list_head *up_list,
6986                                             struct list_head *down_list,
6987                                             void *private, bool master)
6988 {
6989         int ret;
6990
6991         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6992                                            private, master);
6993         if (ret)
6994                 return ret;
6995
6996         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6997                                            private, false);
6998         if (ret) {
6999                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7000                 return ret;
7001         }
7002
7003         return 0;
7004 }
7005
7006 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7007                                                struct net_device *upper_dev,
7008                                                u16 ref_nr,
7009                                                struct list_head *up_list,
7010                                                struct list_head *down_list)
7011 {
7012         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7013         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7014 }
7015
7016 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7017                                                 struct net_device *upper_dev,
7018                                                 void *private, bool master)
7019 {
7020         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7021                                                 &dev->adj_list.upper,
7022                                                 &upper_dev->adj_list.lower,
7023                                                 private, master);
7024 }
7025
7026 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7027                                                    struct net_device *upper_dev)
7028 {
7029         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7030                                            &dev->adj_list.upper,
7031                                            &upper_dev->adj_list.lower);
7032 }
7033
7034 static int __netdev_upper_dev_link(struct net_device *dev,
7035                                    struct net_device *upper_dev, bool master,
7036                                    void *upper_priv, void *upper_info,
7037                                    struct netlink_ext_ack *extack)
7038 {
7039         struct netdev_notifier_changeupper_info changeupper_info = {
7040                 .info = {
7041                         .dev = dev,
7042                         .extack = extack,
7043                 },
7044                 .upper_dev = upper_dev,
7045                 .master = master,
7046                 .linking = true,
7047                 .upper_info = upper_info,
7048         };
7049         struct net_device *master_dev;
7050         int ret = 0;
7051
7052         ASSERT_RTNL();
7053
7054         if (dev == upper_dev)
7055                 return -EBUSY;
7056
7057         /* To prevent loops, check if dev is not upper device to upper_dev. */
7058         if (netdev_has_upper_dev(upper_dev, dev))
7059                 return -EBUSY;
7060
7061         if (!master) {
7062                 if (netdev_has_upper_dev(dev, upper_dev))
7063                         return -EEXIST;
7064         } else {
7065                 master_dev = netdev_master_upper_dev_get(dev);
7066                 if (master_dev)
7067                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7068         }
7069
7070         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7071                                             &changeupper_info.info);
7072         ret = notifier_to_errno(ret);
7073         if (ret)
7074                 return ret;
7075
7076         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7077                                                    master);
7078         if (ret)
7079                 return ret;
7080
7081         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7082                                             &changeupper_info.info);
7083         ret = notifier_to_errno(ret);
7084         if (ret)
7085                 goto rollback;
7086
7087         return 0;
7088
7089 rollback:
7090         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7091
7092         return ret;
7093 }
7094
7095 /**
7096  * netdev_upper_dev_link - Add a link to the upper device
7097  * @dev: device
7098  * @upper_dev: new upper device
7099  * @extack: netlink extended ack
7100  *
7101  * Adds a link to device which is upper to this one. The caller must hold
7102  * the RTNL lock. On a failure a negative errno code is returned.
7103  * On success the reference counts are adjusted and the function
7104  * returns zero.
7105  */
7106 int netdev_upper_dev_link(struct net_device *dev,
7107                           struct net_device *upper_dev,
7108                           struct netlink_ext_ack *extack)
7109 {
7110         return __netdev_upper_dev_link(dev, upper_dev, false,
7111                                        NULL, NULL, extack);
7112 }
7113 EXPORT_SYMBOL(netdev_upper_dev_link);
7114
7115 /**
7116  * netdev_master_upper_dev_link - Add a master link to the upper device
7117  * @dev: device
7118  * @upper_dev: new upper device
7119  * @upper_priv: upper device private
7120  * @upper_info: upper info to be passed down via notifier
7121  * @extack: netlink extended ack
7122  *
7123  * Adds a link to device which is upper to this one. In this case, only
7124  * one master upper device can be linked, although other non-master devices
7125  * might be linked as well. The caller must hold the RTNL lock.
7126  * On a failure a negative errno code is returned. On success the reference
7127  * counts are adjusted and the function returns zero.
7128  */
7129 int netdev_master_upper_dev_link(struct net_device *dev,
7130                                  struct net_device *upper_dev,
7131                                  void *upper_priv, void *upper_info,
7132                                  struct netlink_ext_ack *extack)
7133 {
7134         return __netdev_upper_dev_link(dev, upper_dev, true,
7135                                        upper_priv, upper_info, extack);
7136 }
7137 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7138
7139 /**
7140  * netdev_upper_dev_unlink - Removes a link to upper device
7141  * @dev: device
7142  * @upper_dev: new upper device
7143  *
7144  * Removes a link to device which is upper to this one. The caller must hold
7145  * the RTNL lock.
7146  */
7147 void netdev_upper_dev_unlink(struct net_device *dev,
7148                              struct net_device *upper_dev)
7149 {
7150         struct netdev_notifier_changeupper_info changeupper_info = {
7151                 .info = {
7152                         .dev = dev,
7153                 },
7154                 .upper_dev = upper_dev,
7155                 .linking = false,
7156         };
7157
7158         ASSERT_RTNL();
7159
7160         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7161
7162         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7163                                       &changeupper_info.info);
7164
7165         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7166
7167         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7168                                       &changeupper_info.info);
7169 }
7170 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7171
7172 /**
7173  * netdev_bonding_info_change - Dispatch event about slave change
7174  * @dev: device
7175  * @bonding_info: info to dispatch
7176  *
7177  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7178  * The caller must hold the RTNL lock.
7179  */
7180 void netdev_bonding_info_change(struct net_device *dev,
7181                                 struct netdev_bonding_info *bonding_info)
7182 {
7183         struct netdev_notifier_bonding_info info = {
7184                 .info.dev = dev,
7185         };
7186
7187         memcpy(&info.bonding_info, bonding_info,
7188                sizeof(struct netdev_bonding_info));
7189         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7190                                       &info.info);
7191 }
7192 EXPORT_SYMBOL(netdev_bonding_info_change);
7193
7194 static void netdev_adjacent_add_links(struct net_device *dev)
7195 {
7196         struct netdev_adjacent *iter;
7197
7198         struct net *net = dev_net(dev);
7199
7200         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7201                 if (!net_eq(net, dev_net(iter->dev)))
7202                         continue;
7203                 netdev_adjacent_sysfs_add(iter->dev, dev,
7204                                           &iter->dev->adj_list.lower);
7205                 netdev_adjacent_sysfs_add(dev, iter->dev,
7206                                           &dev->adj_list.upper);
7207         }
7208
7209         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7210                 if (!net_eq(net, dev_net(iter->dev)))
7211                         continue;
7212                 netdev_adjacent_sysfs_add(iter->dev, dev,
7213                                           &iter->dev->adj_list.upper);
7214                 netdev_adjacent_sysfs_add(dev, iter->dev,
7215                                           &dev->adj_list.lower);
7216         }
7217 }
7218
7219 static void netdev_adjacent_del_links(struct net_device *dev)
7220 {
7221         struct netdev_adjacent *iter;
7222
7223         struct net *net = dev_net(dev);
7224
7225         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7226                 if (!net_eq(net, dev_net(iter->dev)))
7227                         continue;
7228                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7229                                           &iter->dev->adj_list.lower);
7230                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7231                                           &dev->adj_list.upper);
7232         }
7233
7234         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7235                 if (!net_eq(net, dev_net(iter->dev)))
7236                         continue;
7237                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7238                                           &iter->dev->adj_list.upper);
7239                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7240                                           &dev->adj_list.lower);
7241         }
7242 }
7243
7244 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7245 {
7246         struct netdev_adjacent *iter;
7247
7248         struct net *net = dev_net(dev);
7249
7250         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7251                 if (!net_eq(net, dev_net(iter->dev)))
7252                         continue;
7253                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7254                                           &iter->dev->adj_list.lower);
7255                 netdev_adjacent_sysfs_add(iter->dev, dev,
7256                                           &iter->dev->adj_list.lower);
7257         }
7258
7259         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7260                 if (!net_eq(net, dev_net(iter->dev)))
7261                         continue;
7262                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7263                                           &iter->dev->adj_list.upper);
7264                 netdev_adjacent_sysfs_add(iter->dev, dev,
7265                                           &iter->dev->adj_list.upper);
7266         }
7267 }
7268
7269 void *netdev_lower_dev_get_private(struct net_device *dev,
7270                                    struct net_device *lower_dev)
7271 {
7272         struct netdev_adjacent *lower;
7273
7274         if (!lower_dev)
7275                 return NULL;
7276         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7277         if (!lower)
7278                 return NULL;
7279
7280         return lower->private;
7281 }
7282 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7283
7284
7285 int dev_get_nest_level(struct net_device *dev)
7286 {
7287         struct net_device *lower = NULL;
7288         struct list_head *iter;
7289         int max_nest = -1;
7290         int nest;
7291
7292         ASSERT_RTNL();
7293
7294         netdev_for_each_lower_dev(dev, lower, iter) {
7295                 nest = dev_get_nest_level(lower);
7296                 if (max_nest < nest)
7297                         max_nest = nest;
7298         }
7299
7300         return max_nest + 1;
7301 }
7302 EXPORT_SYMBOL(dev_get_nest_level);
7303
7304 /**
7305  * netdev_lower_change - Dispatch event about lower device state change
7306  * @lower_dev: device
7307  * @lower_state_info: state to dispatch
7308  *
7309  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7310  * The caller must hold the RTNL lock.
7311  */
7312 void netdev_lower_state_changed(struct net_device *lower_dev,
7313                                 void *lower_state_info)
7314 {
7315         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7316                 .info.dev = lower_dev,
7317         };
7318
7319         ASSERT_RTNL();
7320         changelowerstate_info.lower_state_info = lower_state_info;
7321         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7322                                       &changelowerstate_info.info);
7323 }
7324 EXPORT_SYMBOL(netdev_lower_state_changed);
7325
7326 static void dev_change_rx_flags(struct net_device *dev, int flags)
7327 {
7328         const struct net_device_ops *ops = dev->netdev_ops;
7329
7330         if (ops->ndo_change_rx_flags)
7331                 ops->ndo_change_rx_flags(dev, flags);
7332 }
7333
7334 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7335 {
7336         unsigned int old_flags = dev->flags;
7337         kuid_t uid;
7338         kgid_t gid;
7339
7340         ASSERT_RTNL();
7341
7342         dev->flags |= IFF_PROMISC;
7343         dev->promiscuity += inc;
7344         if (dev->promiscuity == 0) {
7345                 /*
7346                  * Avoid overflow.
7347                  * If inc causes overflow, untouch promisc and return error.
7348                  */
7349                 if (inc < 0)
7350                         dev->flags &= ~IFF_PROMISC;
7351                 else {
7352                         dev->promiscuity -= inc;
7353                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7354                                 dev->name);
7355                         return -EOVERFLOW;
7356                 }
7357         }
7358         if (dev->flags != old_flags) {
7359                 pr_info("device %s %s promiscuous mode\n",
7360                         dev->name,
7361                         dev->flags & IFF_PROMISC ? "entered" : "left");
7362                 if (audit_enabled) {
7363                         current_uid_gid(&uid, &gid);
7364                         audit_log(audit_context(), GFP_ATOMIC,
7365                                   AUDIT_ANOM_PROMISCUOUS,
7366                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7367                                   dev->name, (dev->flags & IFF_PROMISC),
7368                                   (old_flags & IFF_PROMISC),
7369                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7370                                   from_kuid(&init_user_ns, uid),
7371                                   from_kgid(&init_user_ns, gid),
7372                                   audit_get_sessionid(current));
7373                 }
7374
7375                 dev_change_rx_flags(dev, IFF_PROMISC);
7376         }
7377         if (notify)
7378                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7379         return 0;
7380 }
7381
7382 /**
7383  *      dev_set_promiscuity     - update promiscuity count on a device
7384  *      @dev: device
7385  *      @inc: modifier
7386  *
7387  *      Add or remove promiscuity from a device. While the count in the device
7388  *      remains above zero the interface remains promiscuous. Once it hits zero
7389  *      the device reverts back to normal filtering operation. A negative inc
7390  *      value is used to drop promiscuity on the device.
7391  *      Return 0 if successful or a negative errno code on error.
7392  */
7393 int dev_set_promiscuity(struct net_device *dev, int inc)
7394 {
7395         unsigned int old_flags = dev->flags;
7396         int err;
7397
7398         err = __dev_set_promiscuity(dev, inc, true);
7399         if (err < 0)
7400                 return err;
7401         if (dev->flags != old_flags)
7402                 dev_set_rx_mode(dev);
7403         return err;
7404 }
7405 EXPORT_SYMBOL(dev_set_promiscuity);
7406
7407 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7408 {
7409         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7410
7411         ASSERT_RTNL();
7412
7413         dev->flags |= IFF_ALLMULTI;
7414         dev->allmulti += inc;
7415         if (dev->allmulti == 0) {
7416                 /*
7417                  * Avoid overflow.
7418                  * If inc causes overflow, untouch allmulti and return error.
7419                  */
7420                 if (inc < 0)
7421                         dev->flags &= ~IFF_ALLMULTI;
7422                 else {
7423                         dev->allmulti -= inc;
7424                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7425                                 dev->name);
7426                         return -EOVERFLOW;
7427                 }
7428         }
7429         if (dev->flags ^ old_flags) {
7430                 dev_change_rx_flags(dev, IFF_ALLMULTI);
7431                 dev_set_rx_mode(dev);
7432                 if (notify)
7433                         __dev_notify_flags(dev, old_flags,
7434                                            dev->gflags ^ old_gflags);
7435         }
7436         return 0;
7437 }
7438
7439 /**
7440  *      dev_set_allmulti        - update allmulti count on a device
7441  *      @dev: device
7442  *      @inc: modifier
7443  *
7444  *      Add or remove reception of all multicast frames to a device. While the
7445  *      count in the device remains above zero the interface remains listening
7446  *      to all interfaces. Once it hits zero the device reverts back to normal
7447  *      filtering operation. A negative @inc value is used to drop the counter
7448  *      when releasing a resource needing all multicasts.
7449  *      Return 0 if successful or a negative errno code on error.
7450  */
7451
7452 int dev_set_allmulti(struct net_device *dev, int inc)
7453 {
7454         return __dev_set_allmulti(dev, inc, true);
7455 }
7456 EXPORT_SYMBOL(dev_set_allmulti);
7457
7458 /*
7459  *      Upload unicast and multicast address lists to device and
7460  *      configure RX filtering. When the device doesn't support unicast
7461  *      filtering it is put in promiscuous mode while unicast addresses
7462  *      are present.
7463  */
7464 void __dev_set_rx_mode(struct net_device *dev)
7465 {
7466         const struct net_device_ops *ops = dev->netdev_ops;
7467
7468         /* dev_open will call this function so the list will stay sane. */
7469         if (!(dev->flags&IFF_UP))
7470                 return;
7471
7472         if (!netif_device_present(dev))
7473                 return;
7474
7475         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7476                 /* Unicast addresses changes may only happen under the rtnl,
7477                  * therefore calling __dev_set_promiscuity here is safe.
7478                  */
7479                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7480                         __dev_set_promiscuity(dev, 1, false);
7481                         dev->uc_promisc = true;
7482                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7483                         __dev_set_promiscuity(dev, -1, false);
7484                         dev->uc_promisc = false;
7485                 }
7486         }
7487
7488         if (ops->ndo_set_rx_mode)
7489                 ops->ndo_set_rx_mode(dev);
7490 }
7491
7492 void dev_set_rx_mode(struct net_device *dev)
7493 {
7494         netif_addr_lock_bh(dev);
7495         __dev_set_rx_mode(dev);
7496         netif_addr_unlock_bh(dev);
7497 }
7498
7499 /**
7500  *      dev_get_flags - get flags reported to userspace
7501  *      @dev: device
7502  *
7503  *      Get the combination of flag bits exported through APIs to userspace.
7504  */
7505 unsigned int dev_get_flags(const struct net_device *dev)
7506 {
7507         unsigned int flags;
7508
7509         flags = (dev->flags & ~(IFF_PROMISC |
7510                                 IFF_ALLMULTI |
7511                                 IFF_RUNNING |
7512                                 IFF_LOWER_UP |
7513                                 IFF_DORMANT)) |
7514                 (dev->gflags & (IFF_PROMISC |
7515                                 IFF_ALLMULTI));
7516
7517         if (netif_running(dev)) {
7518                 if (netif_oper_up(dev))
7519                         flags |= IFF_RUNNING;
7520                 if (netif_carrier_ok(dev))
7521                         flags |= IFF_LOWER_UP;
7522                 if (netif_dormant(dev))
7523                         flags |= IFF_DORMANT;
7524         }
7525
7526         return flags;
7527 }
7528 EXPORT_SYMBOL(dev_get_flags);
7529
7530 int __dev_change_flags(struct net_device *dev, unsigned int flags,
7531                        struct netlink_ext_ack *extack)
7532 {
7533         unsigned int old_flags = dev->flags;
7534         int ret;
7535
7536         ASSERT_RTNL();
7537
7538         /*
7539          *      Set the flags on our device.
7540          */
7541
7542         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7543                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7544                                IFF_AUTOMEDIA)) |
7545                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7546                                     IFF_ALLMULTI));
7547
7548         /*
7549          *      Load in the correct multicast list now the flags have changed.
7550          */
7551
7552         if ((old_flags ^ flags) & IFF_MULTICAST)
7553                 dev_change_rx_flags(dev, IFF_MULTICAST);
7554
7555         dev_set_rx_mode(dev);
7556
7557         /*
7558          *      Have we downed the interface. We handle IFF_UP ourselves
7559          *      according to user attempts to set it, rather than blindly
7560          *      setting it.
7561          */
7562
7563         ret = 0;
7564         if ((old_flags ^ flags) & IFF_UP) {
7565                 if (old_flags & IFF_UP)
7566                         __dev_close(dev);
7567                 else
7568                         ret = __dev_open(dev, extack);
7569         }
7570
7571         if ((flags ^ dev->gflags) & IFF_PROMISC) {
7572                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7573                 unsigned int old_flags = dev->flags;
7574
7575                 dev->gflags ^= IFF_PROMISC;
7576
7577                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7578                         if (dev->flags != old_flags)
7579                                 dev_set_rx_mode(dev);
7580         }
7581
7582         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7583          * is important. Some (broken) drivers set IFF_PROMISC, when
7584          * IFF_ALLMULTI is requested not asking us and not reporting.
7585          */
7586         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7587                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7588
7589                 dev->gflags ^= IFF_ALLMULTI;
7590                 __dev_set_allmulti(dev, inc, false);
7591         }
7592
7593         return ret;
7594 }
7595
7596 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7597                         unsigned int gchanges)
7598 {
7599         unsigned int changes = dev->flags ^ old_flags;
7600
7601         if (gchanges)
7602                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7603
7604         if (changes & IFF_UP) {
7605                 if (dev->flags & IFF_UP)
7606                         call_netdevice_notifiers(NETDEV_UP, dev);
7607                 else
7608                         call_netdevice_notifiers(NETDEV_DOWN, dev);
7609         }
7610
7611         if (dev->flags & IFF_UP &&
7612             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7613                 struct netdev_notifier_change_info change_info = {
7614                         .info = {
7615                                 .dev = dev,
7616                         },
7617                         .flags_changed = changes,
7618                 };
7619
7620                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7621         }
7622 }
7623
7624 /**
7625  *      dev_change_flags - change device settings
7626  *      @dev: device
7627  *      @flags: device state flags
7628  *      @extack: netlink extended ack
7629  *
7630  *      Change settings on device based state flags. The flags are
7631  *      in the userspace exported format.
7632  */
7633 int dev_change_flags(struct net_device *dev, unsigned int flags,
7634                      struct netlink_ext_ack *extack)
7635 {
7636         int ret;
7637         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7638
7639         ret = __dev_change_flags(dev, flags, extack);
7640         if (ret < 0)
7641                 return ret;
7642
7643         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7644         __dev_notify_flags(dev, old_flags, changes);
7645         return ret;
7646 }
7647 EXPORT_SYMBOL(dev_change_flags);
7648
7649 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7650 {
7651         const struct net_device_ops *ops = dev->netdev_ops;
7652
7653         if (ops->ndo_change_mtu)
7654                 return ops->ndo_change_mtu(dev, new_mtu);
7655
7656         dev->mtu = new_mtu;
7657         return 0;
7658 }
7659 EXPORT_SYMBOL(__dev_set_mtu);
7660
7661 /**
7662  *      dev_set_mtu_ext - Change maximum transfer unit
7663  *      @dev: device
7664  *      @new_mtu: new transfer unit
7665  *      @extack: netlink extended ack
7666  *
7667  *      Change the maximum transfer size of the network device.
7668  */
7669 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7670                     struct netlink_ext_ack *extack)
7671 {
7672         int err, orig_mtu;
7673
7674         if (new_mtu == dev->mtu)
7675                 return 0;
7676
7677         /* MTU must be positive, and in range */
7678         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7679                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7680                 return -EINVAL;
7681         }
7682
7683         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7684                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7685                 return -EINVAL;
7686         }
7687
7688         if (!netif_device_present(dev))
7689                 return -ENODEV;
7690
7691         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7692         err = notifier_to_errno(err);
7693         if (err)
7694                 return err;
7695
7696         orig_mtu = dev->mtu;
7697         err = __dev_set_mtu(dev, new_mtu);
7698
7699         if (!err) {
7700                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7701                                                    orig_mtu);
7702                 err = notifier_to_errno(err);
7703                 if (err) {
7704                         /* setting mtu back and notifying everyone again,
7705                          * so that they have a chance to revert changes.
7706                          */
7707                         __dev_set_mtu(dev, orig_mtu);
7708                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7709                                                      new_mtu);
7710                 }
7711         }
7712         return err;
7713 }
7714
7715 int dev_set_mtu(struct net_device *dev, int new_mtu)
7716 {
7717         struct netlink_ext_ack extack;
7718         int err;
7719
7720         memset(&extack, 0, sizeof(extack));
7721         err = dev_set_mtu_ext(dev, new_mtu, &extack);
7722         if (err && extack._msg)
7723                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7724         return err;
7725 }
7726 EXPORT_SYMBOL(dev_set_mtu);
7727
7728 /**
7729  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
7730  *      @dev: device
7731  *      @new_len: new tx queue length
7732  */
7733 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7734 {
7735         unsigned int orig_len = dev->tx_queue_len;
7736         int res;
7737
7738         if (new_len != (unsigned int)new_len)
7739                 return -ERANGE;
7740
7741         if (new_len != orig_len) {
7742                 dev->tx_queue_len = new_len;
7743                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7744                 res = notifier_to_errno(res);
7745                 if (res)
7746                         goto err_rollback;
7747                 res = dev_qdisc_change_tx_queue_len(dev);
7748                 if (res)
7749                         goto err_rollback;
7750         }
7751
7752         return 0;
7753
7754 err_rollback:
7755         netdev_err(dev, "refused to change device tx_queue_len\n");
7756         dev->tx_queue_len = orig_len;
7757         return res;
7758 }
7759
7760 /**
7761  *      dev_set_group - Change group this device belongs to
7762  *      @dev: device
7763  *      @new_group: group this device should belong to
7764  */
7765 void dev_set_group(struct net_device *dev, int new_group)
7766 {
7767         dev->group = new_group;
7768 }
7769 EXPORT_SYMBOL(dev_set_group);
7770
7771 /**
7772  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
7773  *      @dev: device
7774  *      @addr: new address
7775  *      @extack: netlink extended ack
7776  */
7777 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
7778                               struct netlink_ext_ack *extack)
7779 {
7780         struct netdev_notifier_pre_changeaddr_info info = {
7781                 .info.dev = dev,
7782                 .info.extack = extack,
7783                 .dev_addr = addr,
7784         };
7785         int rc;
7786
7787         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
7788         return notifier_to_errno(rc);
7789 }
7790 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
7791
7792 /**
7793  *      dev_set_mac_address - Change Media Access Control Address
7794  *      @dev: device
7795  *      @sa: new address
7796  *      @extack: netlink extended ack
7797  *
7798  *      Change the hardware (MAC) address of the device
7799  */
7800 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
7801                         struct netlink_ext_ack *extack)
7802 {
7803         const struct net_device_ops *ops = dev->netdev_ops;
7804         int err;
7805
7806         if (!ops->ndo_set_mac_address)
7807                 return -EOPNOTSUPP;
7808         if (sa->sa_family != dev->type)
7809                 return -EINVAL;
7810         if (!netif_device_present(dev))
7811                 return -ENODEV;
7812         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
7813         if (err)
7814                 return err;
7815         err = ops->ndo_set_mac_address(dev, sa);
7816         if (err)
7817                 return err;
7818         dev->addr_assign_type = NET_ADDR_SET;
7819         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7820         add_device_randomness(dev->dev_addr, dev->addr_len);
7821         return 0;
7822 }
7823 EXPORT_SYMBOL(dev_set_mac_address);
7824
7825 /**
7826  *      dev_change_carrier - Change device carrier
7827  *      @dev: device
7828  *      @new_carrier: new value
7829  *
7830  *      Change device carrier
7831  */
7832 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7833 {
7834         const struct net_device_ops *ops = dev->netdev_ops;
7835
7836         if (!ops->ndo_change_carrier)
7837                 return -EOPNOTSUPP;
7838         if (!netif_device_present(dev))
7839                 return -ENODEV;
7840         return ops->ndo_change_carrier(dev, new_carrier);
7841 }
7842 EXPORT_SYMBOL(dev_change_carrier);
7843
7844 /**
7845  *      dev_get_phys_port_id - Get device physical port ID
7846  *      @dev: device
7847  *      @ppid: port ID
7848  *
7849  *      Get device physical port ID
7850  */
7851 int dev_get_phys_port_id(struct net_device *dev,
7852                          struct netdev_phys_item_id *ppid)
7853 {
7854         const struct net_device_ops *ops = dev->netdev_ops;
7855
7856         if (!ops->ndo_get_phys_port_id)
7857                 return -EOPNOTSUPP;
7858         return ops->ndo_get_phys_port_id(dev, ppid);
7859 }
7860 EXPORT_SYMBOL(dev_get_phys_port_id);
7861
7862 /**
7863  *      dev_get_phys_port_name - Get device physical port name
7864  *      @dev: device
7865  *      @name: port name
7866  *      @len: limit of bytes to copy to name
7867  *
7868  *      Get device physical port name
7869  */
7870 int dev_get_phys_port_name(struct net_device *dev,
7871                            char *name, size_t len)
7872 {
7873         const struct net_device_ops *ops = dev->netdev_ops;
7874
7875         if (!ops->ndo_get_phys_port_name)
7876                 return -EOPNOTSUPP;
7877         return ops->ndo_get_phys_port_name(dev, name, len);
7878 }
7879 EXPORT_SYMBOL(dev_get_phys_port_name);
7880
7881 /**
7882  *      dev_get_port_parent_id - Get the device's port parent identifier
7883  *      @dev: network device
7884  *      @ppid: pointer to a storage for the port's parent identifier
7885  *      @recurse: allow/disallow recursion to lower devices
7886  *
7887  *      Get the devices's port parent identifier
7888  */
7889 int dev_get_port_parent_id(struct net_device *dev,
7890                            struct netdev_phys_item_id *ppid,
7891                            bool recurse)
7892 {
7893         const struct net_device_ops *ops = dev->netdev_ops;
7894         struct netdev_phys_item_id first = { };
7895         struct net_device *lower_dev;
7896         struct list_head *iter;
7897         int err = -EOPNOTSUPP;
7898
7899         if (ops->ndo_get_port_parent_id)
7900                 return ops->ndo_get_port_parent_id(dev, ppid);
7901
7902         if (!recurse)
7903                 return err;
7904
7905         netdev_for_each_lower_dev(dev, lower_dev, iter) {
7906                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
7907                 if (err)
7908                         break;
7909                 if (!first.id_len)
7910                         first = *ppid;
7911                 else if (memcmp(&first, ppid, sizeof(*ppid)))
7912                         return -ENODATA;
7913         }
7914
7915         return err;
7916 }
7917 EXPORT_SYMBOL(dev_get_port_parent_id);
7918
7919 /**
7920  *      netdev_port_same_parent_id - Indicate if two network devices have
7921  *      the same port parent identifier
7922  *      @a: first network device
7923  *      @b: second network device
7924  */
7925 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
7926 {
7927         struct netdev_phys_item_id a_id = { };
7928         struct netdev_phys_item_id b_id = { };
7929
7930         if (dev_get_port_parent_id(a, &a_id, true) ||
7931             dev_get_port_parent_id(b, &b_id, true))
7932                 return false;
7933
7934         return netdev_phys_item_id_same(&a_id, &b_id);
7935 }
7936 EXPORT_SYMBOL(netdev_port_same_parent_id);
7937
7938 /**
7939  *      dev_change_proto_down - update protocol port state information
7940  *      @dev: device
7941  *      @proto_down: new value
7942  *
7943  *      This info can be used by switch drivers to set the phys state of the
7944  *      port.
7945  */
7946 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7947 {
7948         const struct net_device_ops *ops = dev->netdev_ops;
7949
7950         if (!ops->ndo_change_proto_down)
7951                 return -EOPNOTSUPP;
7952         if (!netif_device_present(dev))
7953                 return -ENODEV;
7954         return ops->ndo_change_proto_down(dev, proto_down);
7955 }
7956 EXPORT_SYMBOL(dev_change_proto_down);
7957
7958 /**
7959  *      dev_change_proto_down_generic - generic implementation for
7960  *      ndo_change_proto_down that sets carrier according to
7961  *      proto_down.
7962  *
7963  *      @dev: device
7964  *      @proto_down: new value
7965  */
7966 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
7967 {
7968         if (proto_down)
7969                 netif_carrier_off(dev);
7970         else
7971                 netif_carrier_on(dev);
7972         dev->proto_down = proto_down;
7973         return 0;
7974 }
7975 EXPORT_SYMBOL(dev_change_proto_down_generic);
7976
7977 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7978                     enum bpf_netdev_command cmd)
7979 {
7980         struct netdev_bpf xdp;
7981
7982         if (!bpf_op)
7983                 return 0;
7984
7985         memset(&xdp, 0, sizeof(xdp));
7986         xdp.command = cmd;
7987
7988         /* Query must always succeed. */
7989         WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7990
7991         return xdp.prog_id;
7992 }
7993
7994 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7995                            struct netlink_ext_ack *extack, u32 flags,
7996                            struct bpf_prog *prog)
7997 {
7998         struct netdev_bpf xdp;
7999
8000         memset(&xdp, 0, sizeof(xdp));
8001         if (flags & XDP_FLAGS_HW_MODE)
8002                 xdp.command = XDP_SETUP_PROG_HW;
8003         else
8004                 xdp.command = XDP_SETUP_PROG;
8005         xdp.extack = extack;
8006         xdp.flags = flags;
8007         xdp.prog = prog;
8008
8009         return bpf_op(dev, &xdp);
8010 }
8011
8012 static void dev_xdp_uninstall(struct net_device *dev)
8013 {
8014         struct netdev_bpf xdp;
8015         bpf_op_t ndo_bpf;
8016
8017         /* Remove generic XDP */
8018         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8019
8020         /* Remove from the driver */
8021         ndo_bpf = dev->netdev_ops->ndo_bpf;
8022         if (!ndo_bpf)
8023                 return;
8024
8025         memset(&xdp, 0, sizeof(xdp));
8026         xdp.command = XDP_QUERY_PROG;
8027         WARN_ON(ndo_bpf(dev, &xdp));
8028         if (xdp.prog_id)
8029                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8030                                         NULL));
8031
8032         /* Remove HW offload */
8033         memset(&xdp, 0, sizeof(xdp));
8034         xdp.command = XDP_QUERY_PROG_HW;
8035         if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8036                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8037                                         NULL));
8038 }
8039
8040 /**
8041  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
8042  *      @dev: device
8043  *      @extack: netlink extended ack
8044  *      @fd: new program fd or negative value to clear
8045  *      @flags: xdp-related flags
8046  *
8047  *      Set or clear a bpf program for a device
8048  */
8049 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8050                       int fd, u32 flags)
8051 {
8052         const struct net_device_ops *ops = dev->netdev_ops;
8053         enum bpf_netdev_command query;
8054         struct bpf_prog *prog = NULL;
8055         bpf_op_t bpf_op, bpf_chk;
8056         bool offload;
8057         int err;
8058
8059         ASSERT_RTNL();
8060
8061         offload = flags & XDP_FLAGS_HW_MODE;
8062         query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8063
8064         bpf_op = bpf_chk = ops->ndo_bpf;
8065         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8066                 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8067                 return -EOPNOTSUPP;
8068         }
8069         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8070                 bpf_op = generic_xdp_install;
8071         if (bpf_op == bpf_chk)
8072                 bpf_chk = generic_xdp_install;
8073
8074         if (fd >= 0) {
8075                 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8076                         NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8077                         return -EEXIST;
8078                 }
8079                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
8080                     __dev_xdp_query(dev, bpf_op, query)) {
8081                         NL_SET_ERR_MSG(extack, "XDP program already attached");
8082                         return -EBUSY;
8083                 }
8084
8085                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8086                                              bpf_op == ops->ndo_bpf);
8087                 if (IS_ERR(prog))
8088                         return PTR_ERR(prog);
8089
8090                 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8091                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8092                         bpf_prog_put(prog);
8093                         return -EINVAL;
8094                 }
8095         }
8096
8097         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8098         if (err < 0 && prog)
8099                 bpf_prog_put(prog);
8100
8101         return err;
8102 }
8103
8104 /**
8105  *      dev_new_index   -       allocate an ifindex
8106  *      @net: the applicable net namespace
8107  *
8108  *      Returns a suitable unique value for a new device interface
8109  *      number.  The caller must hold the rtnl semaphore or the
8110  *      dev_base_lock to be sure it remains unique.
8111  */
8112 static int dev_new_index(struct net *net)
8113 {
8114         int ifindex = net->ifindex;
8115
8116         for (;;) {
8117                 if (++ifindex <= 0)
8118                         ifindex = 1;
8119                 if (!__dev_get_by_index(net, ifindex))
8120                         return net->ifindex = ifindex;
8121         }
8122 }
8123
8124 /* Delayed registration/unregisteration */
8125 static LIST_HEAD(net_todo_list);
8126 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8127
8128 static void net_set_todo(struct net_device *dev)
8129 {
8130         list_add_tail(&dev->todo_list, &net_todo_list);
8131         dev_net(dev)->dev_unreg_count++;
8132 }
8133
8134 static void rollback_registered_many(struct list_head *head)
8135 {
8136         struct net_device *dev, *tmp;
8137         LIST_HEAD(close_head);
8138
8139         BUG_ON(dev_boot_phase);
8140         ASSERT_RTNL();
8141
8142         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8143                 /* Some devices call without registering
8144                  * for initialization unwind. Remove those
8145                  * devices and proceed with the remaining.
8146                  */
8147                 if (dev->reg_state == NETREG_UNINITIALIZED) {
8148                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8149                                  dev->name, dev);
8150
8151                         WARN_ON(1);
8152                         list_del(&dev->unreg_list);
8153                         continue;
8154                 }
8155                 dev->dismantle = true;
8156                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8157         }
8158
8159         /* If device is running, close it first. */
8160         list_for_each_entry(dev, head, unreg_list)
8161                 list_add_tail(&dev->close_list, &close_head);
8162         dev_close_many(&close_head, true);
8163
8164         list_for_each_entry(dev, head, unreg_list) {
8165                 /* And unlink it from device chain. */
8166                 unlist_netdevice(dev);
8167
8168                 dev->reg_state = NETREG_UNREGISTERING;
8169         }
8170         flush_all_backlogs();
8171
8172         synchronize_net();
8173
8174         list_for_each_entry(dev, head, unreg_list) {
8175                 struct sk_buff *skb = NULL;
8176
8177                 /* Shutdown queueing discipline. */
8178                 dev_shutdown(dev);
8179
8180                 dev_xdp_uninstall(dev);
8181
8182                 /* Notify protocols, that we are about to destroy
8183                  * this device. They should clean all the things.
8184                  */
8185                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8186
8187                 if (!dev->rtnl_link_ops ||
8188                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8189                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8190                                                      GFP_KERNEL, NULL, 0);
8191
8192                 /*
8193                  *      Flush the unicast and multicast chains
8194                  */
8195                 dev_uc_flush(dev);
8196                 dev_mc_flush(dev);
8197
8198                 if (dev->netdev_ops->ndo_uninit)
8199                         dev->netdev_ops->ndo_uninit(dev);
8200
8201                 if (skb)
8202                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8203
8204                 /* Notifier chain MUST detach us all upper devices. */
8205                 WARN_ON(netdev_has_any_upper_dev(dev));
8206                 WARN_ON(netdev_has_any_lower_dev(dev));
8207
8208                 /* Remove entries from kobject tree */
8209                 netdev_unregister_kobject(dev);
8210 #ifdef CONFIG_XPS
8211                 /* Remove XPS queueing entries */
8212                 netif_reset_xps_queues_gt(dev, 0);
8213 #endif
8214         }
8215
8216         synchronize_net();
8217
8218         list_for_each_entry(dev, head, unreg_list)
8219                 dev_put(dev);
8220 }
8221
8222 static void rollback_registered(struct net_device *dev)
8223 {
8224         LIST_HEAD(single);
8225
8226         list_add(&dev->unreg_list, &single);
8227         rollback_registered_many(&single);
8228         list_del(&single);
8229 }
8230
8231 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8232         struct net_device *upper, netdev_features_t features)
8233 {
8234         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8235         netdev_features_t feature;
8236         int feature_bit;
8237
8238         for_each_netdev_feature(upper_disables, feature_bit) {
8239                 feature = __NETIF_F_BIT(feature_bit);
8240                 if (!(upper->wanted_features & feature)
8241                     && (features & feature)) {
8242                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8243                                    &feature, upper->name);
8244                         features &= ~feature;
8245                 }
8246         }
8247
8248         return features;
8249 }
8250
8251 static void netdev_sync_lower_features(struct net_device *upper,
8252         struct net_device *lower, netdev_features_t features)
8253 {
8254         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8255         netdev_features_t feature;
8256         int feature_bit;
8257
8258         for_each_netdev_feature(upper_disables, feature_bit) {
8259                 feature = __NETIF_F_BIT(feature_bit);
8260                 if (!(features & feature) && (lower->features & feature)) {
8261                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8262                                    &feature, lower->name);
8263                         lower->wanted_features &= ~feature;
8264                         netdev_update_features(lower);
8265
8266                         if (unlikely(lower->features & feature))
8267                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8268                                             &feature, lower->name);
8269                 }
8270         }
8271 }
8272
8273 static netdev_features_t netdev_fix_features(struct net_device *dev,
8274         netdev_features_t features)
8275 {
8276         /* Fix illegal checksum combinations */
8277         if ((features & NETIF_F_HW_CSUM) &&
8278             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8279                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8280                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8281         }
8282
8283         /* TSO requires that SG is present as well. */
8284         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8285                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8286                 features &= ~NETIF_F_ALL_TSO;
8287         }
8288
8289         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8290                                         !(features & NETIF_F_IP_CSUM)) {
8291                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8292                 features &= ~NETIF_F_TSO;
8293                 features &= ~NETIF_F_TSO_ECN;
8294         }
8295
8296         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8297                                          !(features & NETIF_F_IPV6_CSUM)) {
8298                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8299                 features &= ~NETIF_F_TSO6;
8300         }
8301
8302         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8303         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8304                 features &= ~NETIF_F_TSO_MANGLEID;
8305
8306         /* TSO ECN requires that TSO is present as well. */
8307         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8308                 features &= ~NETIF_F_TSO_ECN;
8309
8310         /* Software GSO depends on SG. */
8311         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8312                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8313                 features &= ~NETIF_F_GSO;
8314         }
8315
8316         /* GSO partial features require GSO partial be set */
8317         if ((features & dev->gso_partial_features) &&
8318             !(features & NETIF_F_GSO_PARTIAL)) {
8319                 netdev_dbg(dev,
8320                            "Dropping partially supported GSO features since no GSO partial.\n");
8321                 features &= ~dev->gso_partial_features;
8322         }
8323
8324         if (!(features & NETIF_F_RXCSUM)) {
8325                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8326                  * successfully merged by hardware must also have the
8327                  * checksum verified by hardware.  If the user does not
8328                  * want to enable RXCSUM, logically, we should disable GRO_HW.
8329                  */
8330                 if (features & NETIF_F_GRO_HW) {
8331                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8332                         features &= ~NETIF_F_GRO_HW;
8333                 }
8334         }
8335
8336         /* LRO/HW-GRO features cannot be combined with RX-FCS */
8337         if (features & NETIF_F_RXFCS) {
8338                 if (features & NETIF_F_LRO) {
8339                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8340                         features &= ~NETIF_F_LRO;
8341                 }
8342
8343                 if (features & NETIF_F_GRO_HW) {
8344                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8345                         features &= ~NETIF_F_GRO_HW;
8346                 }
8347         }
8348
8349         return features;
8350 }
8351
8352 int __netdev_update_features(struct net_device *dev)
8353 {
8354         struct net_device *upper, *lower;
8355         netdev_features_t features;
8356         struct list_head *iter;
8357         int err = -1;
8358
8359         ASSERT_RTNL();
8360
8361         features = netdev_get_wanted_features(dev);
8362
8363         if (dev->netdev_ops->ndo_fix_features)
8364                 features = dev->netdev_ops->ndo_fix_features(dev, features);
8365
8366         /* driver might be less strict about feature dependencies */
8367         features = netdev_fix_features(dev, features);
8368
8369         /* some features can't be enabled if they're off an an upper device */
8370         netdev_for_each_upper_dev_rcu(dev, upper, iter)
8371                 features = netdev_sync_upper_features(dev, upper, features);
8372
8373         if (dev->features == features)
8374                 goto sync_lower;
8375
8376         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8377                 &dev->features, &features);
8378
8379         if (dev->netdev_ops->ndo_set_features)
8380                 err = dev->netdev_ops->ndo_set_features(dev, features);
8381         else
8382                 err = 0;
8383
8384         if (unlikely(err < 0)) {
8385                 netdev_err(dev,
8386                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
8387                         err, &features, &dev->features);
8388                 /* return non-0 since some features might have changed and
8389                  * it's better to fire a spurious notification than miss it
8390                  */
8391                 return -1;
8392         }
8393
8394 sync_lower:
8395         /* some features must be disabled on lower devices when disabled
8396          * on an upper device (think: bonding master or bridge)
8397          */
8398         netdev_for_each_lower_dev(dev, lower, iter)
8399                 netdev_sync_lower_features(dev, lower, features);
8400
8401         if (!err) {
8402                 netdev_features_t diff = features ^ dev->features;
8403
8404                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8405                         /* udp_tunnel_{get,drop}_rx_info both need
8406                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8407                          * device, or they won't do anything.
8408                          * Thus we need to update dev->features
8409                          * *before* calling udp_tunnel_get_rx_info,
8410                          * but *after* calling udp_tunnel_drop_rx_info.
8411                          */
8412                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8413                                 dev->features = features;
8414                                 udp_tunnel_get_rx_info(dev);
8415                         } else {
8416                                 udp_tunnel_drop_rx_info(dev);
8417                         }
8418                 }
8419
8420                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8421                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8422                                 dev->features = features;
8423                                 err |= vlan_get_rx_ctag_filter_info(dev);
8424                         } else {
8425                                 vlan_drop_rx_ctag_filter_info(dev);
8426                         }
8427                 }
8428
8429                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8430                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8431                                 dev->features = features;
8432                                 err |= vlan_get_rx_stag_filter_info(dev);
8433                         } else {
8434                                 vlan_drop_rx_stag_filter_info(dev);
8435                         }
8436                 }
8437
8438                 dev->features = features;
8439         }
8440
8441         return err < 0 ? 0 : 1;
8442 }
8443
8444 /**
8445  *      netdev_update_features - recalculate device features
8446  *      @dev: the device to check
8447  *
8448  *      Recalculate dev->features set and send notifications if it
8449  *      has changed. Should be called after driver or hardware dependent
8450  *      conditions might have changed that influence the features.
8451  */
8452 void netdev_update_features(struct net_device *dev)
8453 {
8454         if (__netdev_update_features(dev))
8455                 netdev_features_change(dev);
8456 }
8457 EXPORT_SYMBOL(netdev_update_features);
8458
8459 /**
8460  *      netdev_change_features - recalculate device features
8461  *      @dev: the device to check
8462  *
8463  *      Recalculate dev->features set and send notifications even
8464  *      if they have not changed. Should be called instead of
8465  *      netdev_update_features() if also dev->vlan_features might
8466  *      have changed to allow the changes to be propagated to stacked
8467  *      VLAN devices.
8468  */
8469 void netdev_change_features(struct net_device *dev)
8470 {
8471         __netdev_update_features(dev);
8472         netdev_features_change(dev);
8473 }
8474 EXPORT_SYMBOL(netdev_change_features);
8475
8476 /**
8477  *      netif_stacked_transfer_operstate -      transfer operstate
8478  *      @rootdev: the root or lower level device to transfer state from
8479  *      @dev: the device to transfer operstate to
8480  *
8481  *      Transfer operational state from root to device. This is normally
8482  *      called when a stacking relationship exists between the root
8483  *      device and the device(a leaf device).
8484  */
8485 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8486                                         struct net_device *dev)
8487 {
8488         if (rootdev->operstate == IF_OPER_DORMANT)
8489                 netif_dormant_on(dev);
8490         else
8491                 netif_dormant_off(dev);
8492
8493         if (netif_carrier_ok(rootdev))
8494                 netif_carrier_on(dev);
8495         else
8496                 netif_carrier_off(dev);
8497 }
8498 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8499
8500 static int netif_alloc_rx_queues(struct net_device *dev)
8501 {
8502         unsigned int i, count = dev->num_rx_queues;
8503         struct netdev_rx_queue *rx;
8504         size_t sz = count * sizeof(*rx);
8505         int err = 0;
8506
8507         BUG_ON(count < 1);
8508
8509         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8510         if (!rx)
8511                 return -ENOMEM;
8512
8513         dev->_rx = rx;
8514
8515         for (i = 0; i < count; i++) {
8516                 rx[i].dev = dev;
8517
8518                 /* XDP RX-queue setup */
8519                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8520                 if (err < 0)
8521                         goto err_rxq_info;
8522         }
8523         return 0;
8524
8525 err_rxq_info:
8526         /* Rollback successful reg's and free other resources */
8527         while (i--)
8528                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8529         kvfree(dev->_rx);
8530         dev->_rx = NULL;
8531         return err;
8532 }
8533
8534 static void netif_free_rx_queues(struct net_device *dev)
8535 {
8536         unsigned int i, count = dev->num_rx_queues;
8537
8538         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8539         if (!dev->_rx)
8540                 return;
8541
8542         for (i = 0; i < count; i++)
8543                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8544
8545         kvfree(dev->_rx);
8546 }
8547
8548 static void netdev_init_one_queue(struct net_device *dev,
8549                                   struct netdev_queue *queue, void *_unused)
8550 {
8551         /* Initialize queue lock */
8552         spin_lock_init(&queue->_xmit_lock);
8553         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8554         queue->xmit_lock_owner = -1;
8555         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8556         queue->dev = dev;
8557 #ifdef CONFIG_BQL
8558         dql_init(&queue->dql, HZ);
8559 #endif
8560 }
8561
8562 static void netif_free_tx_queues(struct net_device *dev)
8563 {
8564         kvfree(dev->_tx);
8565 }
8566
8567 static int netif_alloc_netdev_queues(struct net_device *dev)
8568 {
8569         unsigned int count = dev->num_tx_queues;
8570         struct netdev_queue *tx;
8571         size_t sz = count * sizeof(*tx);
8572
8573         if (count < 1 || count > 0xffff)
8574                 return -EINVAL;
8575
8576         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8577         if (!tx)
8578                 return -ENOMEM;
8579
8580         dev->_tx = tx;
8581
8582         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8583         spin_lock_init(&dev->tx_global_lock);
8584
8585         return 0;
8586 }
8587
8588 void netif_tx_stop_all_queues(struct net_device *dev)
8589 {
8590         unsigned int i;
8591
8592         for (i = 0; i < dev->num_tx_queues; i++) {
8593                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8594
8595                 netif_tx_stop_queue(txq);
8596         }
8597 }
8598 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8599
8600 /**
8601  *      register_netdevice      - register a network device
8602  *      @dev: device to register
8603  *
8604  *      Take a completed network device structure and add it to the kernel
8605  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8606  *      chain. 0 is returned on success. A negative errno code is returned
8607  *      on a failure to set up the device, or if the name is a duplicate.
8608  *
8609  *      Callers must hold the rtnl semaphore. You may want
8610  *      register_netdev() instead of this.
8611  *
8612  *      BUGS:
8613  *      The locking appears insufficient to guarantee two parallel registers
8614  *      will not get the same name.
8615  */
8616
8617 int register_netdevice(struct net_device *dev)
8618 {
8619         int ret;
8620         struct net *net = dev_net(dev);
8621
8622         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8623                      NETDEV_FEATURE_COUNT);
8624         BUG_ON(dev_boot_phase);
8625         ASSERT_RTNL();
8626
8627         might_sleep();
8628
8629         /* When net_device's are persistent, this will be fatal. */
8630         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8631         BUG_ON(!net);
8632
8633         spin_lock_init(&dev->addr_list_lock);
8634         netdev_set_addr_lockdep_class(dev);
8635
8636         ret = dev_get_valid_name(net, dev, dev->name);
8637         if (ret < 0)
8638                 goto out;
8639
8640         /* Init, if this function is available */
8641         if (dev->netdev_ops->ndo_init) {
8642                 ret = dev->netdev_ops->ndo_init(dev);
8643                 if (ret) {
8644                         if (ret > 0)
8645                                 ret = -EIO;
8646                         goto out;
8647                 }
8648         }
8649
8650         if (((dev->hw_features | dev->features) &
8651              NETIF_F_HW_VLAN_CTAG_FILTER) &&
8652             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8653              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8654                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8655                 ret = -EINVAL;
8656                 goto err_uninit;
8657         }
8658
8659         ret = -EBUSY;
8660         if (!dev->ifindex)
8661                 dev->ifindex = dev_new_index(net);
8662         else if (__dev_get_by_index(net, dev->ifindex))
8663                 goto err_uninit;
8664
8665         /* Transfer changeable features to wanted_features and enable
8666          * software offloads (GSO and GRO).
8667          */
8668         dev->hw_features |= NETIF_F_SOFT_FEATURES;
8669         dev->features |= NETIF_F_SOFT_FEATURES;
8670
8671         if (dev->netdev_ops->ndo_udp_tunnel_add) {
8672                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8673                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8674         }
8675
8676         dev->wanted_features = dev->features & dev->hw_features;
8677
8678         if (!(dev->flags & IFF_LOOPBACK))
8679                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8680
8681         /* If IPv4 TCP segmentation offload is supported we should also
8682          * allow the device to enable segmenting the frame with the option
8683          * of ignoring a static IP ID value.  This doesn't enable the
8684          * feature itself but allows the user to enable it later.
8685          */
8686         if (dev->hw_features & NETIF_F_TSO)
8687                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8688         if (dev->vlan_features & NETIF_F_TSO)
8689                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8690         if (dev->mpls_features & NETIF_F_TSO)
8691                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8692         if (dev->hw_enc_features & NETIF_F_TSO)
8693                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8694
8695         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8696          */
8697         dev->vlan_features |= NETIF_F_HIGHDMA;
8698
8699         /* Make NETIF_F_SG inheritable to tunnel devices.
8700          */
8701         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8702
8703         /* Make NETIF_F_SG inheritable to MPLS.
8704          */
8705         dev->mpls_features |= NETIF_F_SG;
8706
8707         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8708         ret = notifier_to_errno(ret);
8709         if (ret)
8710                 goto err_uninit;
8711
8712         ret = netdev_register_kobject(dev);
8713         if (ret)
8714                 goto err_uninit;
8715         dev->reg_state = NETREG_REGISTERED;
8716
8717         __netdev_update_features(dev);
8718
8719         /*
8720          *      Default initial state at registry is that the
8721          *      device is present.
8722          */
8723
8724         set_bit(__LINK_STATE_PRESENT, &dev->state);
8725
8726         linkwatch_init_dev(dev);
8727
8728         dev_init_scheduler(dev);
8729         dev_hold(dev);
8730         list_netdevice(dev);
8731         add_device_randomness(dev->dev_addr, dev->addr_len);
8732
8733         /* If the device has permanent device address, driver should
8734          * set dev_addr and also addr_assign_type should be set to
8735          * NET_ADDR_PERM (default value).
8736          */
8737         if (dev->addr_assign_type == NET_ADDR_PERM)
8738                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8739
8740         /* Notify protocols, that a new device appeared. */
8741         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8742         ret = notifier_to_errno(ret);
8743         if (ret) {
8744                 rollback_registered(dev);
8745                 dev->reg_state = NETREG_UNREGISTERED;
8746         }
8747         /*
8748          *      Prevent userspace races by waiting until the network
8749          *      device is fully setup before sending notifications.
8750          */
8751         if (!dev->rtnl_link_ops ||
8752             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8753                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8754
8755 out:
8756         return ret;
8757
8758 err_uninit:
8759         if (dev->netdev_ops->ndo_uninit)
8760                 dev->netdev_ops->ndo_uninit(dev);
8761         if (dev->priv_destructor)
8762                 dev->priv_destructor(dev);
8763         goto out;
8764 }
8765 EXPORT_SYMBOL(register_netdevice);
8766
8767 /**
8768  *      init_dummy_netdev       - init a dummy network device for NAPI
8769  *      @dev: device to init
8770  *
8771  *      This takes a network device structure and initialize the minimum
8772  *      amount of fields so it can be used to schedule NAPI polls without
8773  *      registering a full blown interface. This is to be used by drivers
8774  *      that need to tie several hardware interfaces to a single NAPI
8775  *      poll scheduler due to HW limitations.
8776  */
8777 int init_dummy_netdev(struct net_device *dev)
8778 {
8779         /* Clear everything. Note we don't initialize spinlocks
8780          * are they aren't supposed to be taken by any of the
8781          * NAPI code and this dummy netdev is supposed to be
8782          * only ever used for NAPI polls
8783          */
8784         memset(dev, 0, sizeof(struct net_device));
8785
8786         /* make sure we BUG if trying to hit standard
8787          * register/unregister code path
8788          */
8789         dev->reg_state = NETREG_DUMMY;
8790
8791         /* NAPI wants this */
8792         INIT_LIST_HEAD(&dev->napi_list);
8793
8794         /* a dummy interface is started by default */
8795         set_bit(__LINK_STATE_PRESENT, &dev->state);
8796         set_bit(__LINK_STATE_START, &dev->state);
8797
8798         /* napi_busy_loop stats accounting wants this */
8799         dev_net_set(dev, &init_net);
8800
8801         /* Note : We dont allocate pcpu_refcnt for dummy devices,
8802          * because users of this 'device' dont need to change
8803          * its refcount.
8804          */
8805
8806         return 0;
8807 }
8808 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8809
8810
8811 /**
8812  *      register_netdev - register a network device
8813  *      @dev: device to register
8814  *
8815  *      Take a completed network device structure and add it to the kernel
8816  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8817  *      chain. 0 is returned on success. A negative errno code is returned
8818  *      on a failure to set up the device, or if the name is a duplicate.
8819  *
8820  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
8821  *      and expands the device name if you passed a format string to
8822  *      alloc_netdev.
8823  */
8824 int register_netdev(struct net_device *dev)
8825 {
8826         int err;
8827
8828         if (rtnl_lock_killable())
8829                 return -EINTR;
8830         err = register_netdevice(dev);
8831         rtnl_unlock();
8832         return err;
8833 }
8834 EXPORT_SYMBOL(register_netdev);
8835
8836 int netdev_refcnt_read(const struct net_device *dev)
8837 {
8838         int i, refcnt = 0;
8839
8840         for_each_possible_cpu(i)
8841                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8842         return refcnt;
8843 }
8844 EXPORT_SYMBOL(netdev_refcnt_read);
8845
8846 /**
8847  * netdev_wait_allrefs - wait until all references are gone.
8848  * @dev: target net_device
8849  *
8850  * This is called when unregistering network devices.
8851  *
8852  * Any protocol or device that holds a reference should register
8853  * for netdevice notification, and cleanup and put back the
8854  * reference if they receive an UNREGISTER event.
8855  * We can get stuck here if buggy protocols don't correctly
8856  * call dev_put.
8857  */
8858 static void netdev_wait_allrefs(struct net_device *dev)
8859 {
8860         unsigned long rebroadcast_time, warning_time;
8861         int refcnt;
8862
8863         linkwatch_forget_dev(dev);
8864
8865         rebroadcast_time = warning_time = jiffies;
8866         refcnt = netdev_refcnt_read(dev);
8867
8868         while (refcnt != 0) {
8869                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8870                         rtnl_lock();
8871
8872                         /* Rebroadcast unregister notification */
8873                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8874
8875                         __rtnl_unlock();
8876                         rcu_barrier();
8877                         rtnl_lock();
8878
8879                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8880                                      &dev->state)) {
8881                                 /* We must not have linkwatch events
8882                                  * pending on unregister. If this
8883                                  * happens, we simply run the queue
8884                                  * unscheduled, resulting in a noop
8885                                  * for this device.
8886                                  */
8887                                 linkwatch_run_queue();
8888                         }
8889
8890                         __rtnl_unlock();
8891
8892                         rebroadcast_time = jiffies;
8893                 }
8894
8895                 msleep(250);
8896
8897                 refcnt = netdev_refcnt_read(dev);
8898
8899                 if (time_after(jiffies, warning_time + 10 * HZ)) {
8900                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8901                                  dev->name, refcnt);
8902                         warning_time = jiffies;
8903                 }
8904         }
8905 }
8906
8907 /* The sequence is:
8908  *
8909  *      rtnl_lock();
8910  *      ...
8911  *      register_netdevice(x1);
8912  *      register_netdevice(x2);
8913  *      ...
8914  *      unregister_netdevice(y1);
8915  *      unregister_netdevice(y2);
8916  *      ...
8917  *      rtnl_unlock();
8918  *      free_netdev(y1);
8919  *      free_netdev(y2);
8920  *
8921  * We are invoked by rtnl_unlock().
8922  * This allows us to deal with problems:
8923  * 1) We can delete sysfs objects which invoke hotplug
8924  *    without deadlocking with linkwatch via keventd.
8925  * 2) Since we run with the RTNL semaphore not held, we can sleep
8926  *    safely in order to wait for the netdev refcnt to drop to zero.
8927  *
8928  * We must not return until all unregister events added during
8929  * the interval the lock was held have been completed.
8930  */
8931 void netdev_run_todo(void)
8932 {
8933         struct list_head list;
8934
8935         /* Snapshot list, allow later requests */
8936         list_replace_init(&net_todo_list, &list);
8937
8938         __rtnl_unlock();
8939
8940
8941         /* Wait for rcu callbacks to finish before next phase */
8942         if (!list_empty(&list))
8943                 rcu_barrier();
8944
8945         while (!list_empty(&list)) {
8946                 struct net_device *dev
8947                         = list_first_entry(&list, struct net_device, todo_list);
8948                 list_del(&dev->todo_list);
8949
8950                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8951                         pr_err("network todo '%s' but state %d\n",
8952                                dev->name, dev->reg_state);
8953                         dump_stack();
8954                         continue;
8955                 }
8956
8957                 dev->reg_state = NETREG_UNREGISTERED;
8958
8959                 netdev_wait_allrefs(dev);
8960
8961                 /* paranoia */
8962                 BUG_ON(netdev_refcnt_read(dev));
8963                 BUG_ON(!list_empty(&dev->ptype_all));
8964                 BUG_ON(!list_empty(&dev->ptype_specific));
8965                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8966                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8967 #if IS_ENABLED(CONFIG_DECNET)
8968                 WARN_ON(dev->dn_ptr);
8969 #endif
8970                 if (dev->priv_destructor)
8971                         dev->priv_destructor(dev);
8972                 if (dev->needs_free_netdev)
8973                         free_netdev(dev);
8974
8975                 /* Report a network device has been unregistered */
8976                 rtnl_lock();
8977                 dev_net(dev)->dev_unreg_count--;
8978                 __rtnl_unlock();
8979                 wake_up(&netdev_unregistering_wq);
8980
8981                 /* Free network device */
8982                 kobject_put(&dev->dev.kobj);
8983         }
8984 }
8985
8986 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8987  * all the same fields in the same order as net_device_stats, with only
8988  * the type differing, but rtnl_link_stats64 may have additional fields
8989  * at the end for newer counters.
8990  */
8991 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8992                              const struct net_device_stats *netdev_stats)
8993 {
8994 #if BITS_PER_LONG == 64
8995         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8996         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8997         /* zero out counters that only exist in rtnl_link_stats64 */
8998         memset((char *)stats64 + sizeof(*netdev_stats), 0,
8999                sizeof(*stats64) - sizeof(*netdev_stats));
9000 #else
9001         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9002         const unsigned long *src = (const unsigned long *)netdev_stats;
9003         u64 *dst = (u64 *)stats64;
9004
9005         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9006         for (i = 0; i < n; i++)
9007                 dst[i] = src[i];
9008         /* zero out counters that only exist in rtnl_link_stats64 */
9009         memset((char *)stats64 + n * sizeof(u64), 0,
9010                sizeof(*stats64) - n * sizeof(u64));
9011 #endif
9012 }
9013 EXPORT_SYMBOL(netdev_stats_to_stats64);
9014
9015 /**
9016  *      dev_get_stats   - get network device statistics
9017  *      @dev: device to get statistics from
9018  *      @storage: place to store stats
9019  *
9020  *      Get network statistics from device. Return @storage.
9021  *      The device driver may provide its own method by setting
9022  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9023  *      otherwise the internal statistics structure is used.
9024  */
9025 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9026                                         struct rtnl_link_stats64 *storage)
9027 {
9028         const struct net_device_ops *ops = dev->netdev_ops;
9029
9030         if (ops->ndo_get_stats64) {
9031                 memset(storage, 0, sizeof(*storage));
9032                 ops->ndo_get_stats64(dev, storage);
9033         } else if (ops->ndo_get_stats) {
9034                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9035         } else {
9036                 netdev_stats_to_stats64(storage, &dev->stats);
9037         }
9038         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9039         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9040         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9041         return storage;
9042 }
9043 EXPORT_SYMBOL(dev_get_stats);
9044
9045 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9046 {
9047         struct netdev_queue *queue = dev_ingress_queue(dev);
9048
9049 #ifdef CONFIG_NET_CLS_ACT
9050         if (queue)
9051                 return queue;
9052         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9053         if (!queue)
9054                 return NULL;
9055         netdev_init_one_queue(dev, queue, NULL);
9056         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9057         queue->qdisc_sleeping = &noop_qdisc;
9058         rcu_assign_pointer(dev->ingress_queue, queue);
9059 #endif
9060         return queue;
9061 }
9062
9063 static const struct ethtool_ops default_ethtool_ops;
9064
9065 void netdev_set_default_ethtool_ops(struct net_device *dev,
9066                                     const struct ethtool_ops *ops)
9067 {
9068         if (dev->ethtool_ops == &default_ethtool_ops)
9069                 dev->ethtool_ops = ops;
9070 }
9071 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9072
9073 void netdev_freemem(struct net_device *dev)
9074 {
9075         char *addr = (char *)dev - dev->padded;
9076
9077         kvfree(addr);
9078 }
9079
9080 /**
9081  * alloc_netdev_mqs - allocate network device
9082  * @sizeof_priv: size of private data to allocate space for
9083  * @name: device name format string
9084  * @name_assign_type: origin of device name
9085  * @setup: callback to initialize device
9086  * @txqs: the number of TX subqueues to allocate
9087  * @rxqs: the number of RX subqueues to allocate
9088  *
9089  * Allocates a struct net_device with private data area for driver use
9090  * and performs basic initialization.  Also allocates subqueue structs
9091  * for each queue on the device.
9092  */
9093 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9094                 unsigned char name_assign_type,
9095                 void (*setup)(struct net_device *),
9096                 unsigned int txqs, unsigned int rxqs)
9097 {
9098         struct net_device *dev;
9099         unsigned int alloc_size;
9100         struct net_device *p;
9101
9102         BUG_ON(strlen(name) >= sizeof(dev->name));
9103
9104         if (txqs < 1) {
9105                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9106                 return NULL;
9107         }
9108
9109         if (rxqs < 1) {
9110                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9111                 return NULL;
9112         }
9113
9114         alloc_size = sizeof(struct net_device);
9115         if (sizeof_priv) {
9116                 /* ensure 32-byte alignment of private area */
9117                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9118                 alloc_size += sizeof_priv;
9119         }
9120         /* ensure 32-byte alignment of whole construct */
9121         alloc_size += NETDEV_ALIGN - 1;
9122
9123         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9124         if (!p)
9125                 return NULL;
9126
9127         dev = PTR_ALIGN(p, NETDEV_ALIGN);
9128         dev->padded = (char *)dev - (char *)p;
9129
9130         dev->pcpu_refcnt = alloc_percpu(int);
9131         if (!dev->pcpu_refcnt)
9132                 goto free_dev;
9133
9134         if (dev_addr_init(dev))
9135                 goto free_pcpu;
9136
9137         dev_mc_init(dev);
9138         dev_uc_init(dev);
9139
9140         dev_net_set(dev, &init_net);
9141
9142         dev->gso_max_size = GSO_MAX_SIZE;
9143         dev->gso_max_segs = GSO_MAX_SEGS;
9144
9145         INIT_LIST_HEAD(&dev->napi_list);
9146         INIT_LIST_HEAD(&dev->unreg_list);
9147         INIT_LIST_HEAD(&dev->close_list);
9148         INIT_LIST_HEAD(&dev->link_watch_list);
9149         INIT_LIST_HEAD(&dev->adj_list.upper);
9150         INIT_LIST_HEAD(&dev->adj_list.lower);
9151         INIT_LIST_HEAD(&dev->ptype_all);
9152         INIT_LIST_HEAD(&dev->ptype_specific);
9153 #ifdef CONFIG_NET_SCHED
9154         hash_init(dev->qdisc_hash);
9155 #endif
9156         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9157         setup(dev);
9158
9159         if (!dev->tx_queue_len) {
9160                 dev->priv_flags |= IFF_NO_QUEUE;
9161                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9162         }
9163
9164         dev->num_tx_queues = txqs;
9165         dev->real_num_tx_queues = txqs;
9166         if (netif_alloc_netdev_queues(dev))
9167                 goto free_all;
9168
9169         dev->num_rx_queues = rxqs;
9170         dev->real_num_rx_queues = rxqs;
9171         if (netif_alloc_rx_queues(dev))
9172                 goto free_all;
9173
9174         strcpy(dev->name, name);
9175         dev->name_assign_type = name_assign_type;
9176         dev->group = INIT_NETDEV_GROUP;
9177         if (!dev->ethtool_ops)
9178                 dev->ethtool_ops = &default_ethtool_ops;
9179
9180         nf_hook_ingress_init(dev);
9181
9182         return dev;
9183
9184 free_all:
9185         free_netdev(dev);
9186         return NULL;
9187
9188 free_pcpu:
9189         free_percpu(dev->pcpu_refcnt);
9190 free_dev:
9191         netdev_freemem(dev);
9192         return NULL;
9193 }
9194 EXPORT_SYMBOL(alloc_netdev_mqs);
9195
9196 /**
9197  * free_netdev - free network device
9198  * @dev: device
9199  *
9200  * This function does the last stage of destroying an allocated device
9201  * interface. The reference to the device object is released. If this
9202  * is the last reference then it will be freed.Must be called in process
9203  * context.
9204  */
9205 void free_netdev(struct net_device *dev)
9206 {
9207         struct napi_struct *p, *n;
9208
9209         might_sleep();
9210         netif_free_tx_queues(dev);
9211         netif_free_rx_queues(dev);
9212
9213         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9214
9215         /* Flush device addresses */
9216         dev_addr_flush(dev);
9217
9218         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9219                 netif_napi_del(p);
9220
9221         free_percpu(dev->pcpu_refcnt);
9222         dev->pcpu_refcnt = NULL;
9223
9224         /*  Compatibility with error handling in drivers */
9225         if (dev->reg_state == NETREG_UNINITIALIZED) {
9226                 netdev_freemem(dev);
9227                 return;
9228         }
9229
9230         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9231         dev->reg_state = NETREG_RELEASED;
9232
9233         /* will free via device release */
9234         put_device(&dev->dev);
9235 }
9236 EXPORT_SYMBOL(free_netdev);
9237
9238 /**
9239  *      synchronize_net -  Synchronize with packet receive processing
9240  *
9241  *      Wait for packets currently being received to be done.
9242  *      Does not block later packets from starting.
9243  */
9244 void synchronize_net(void)
9245 {
9246         might_sleep();
9247         if (rtnl_is_locked())
9248                 synchronize_rcu_expedited();
9249         else
9250                 synchronize_rcu();
9251 }
9252 EXPORT_SYMBOL(synchronize_net);
9253
9254 /**
9255  *      unregister_netdevice_queue - remove device from the kernel
9256  *      @dev: device
9257  *      @head: list
9258  *
9259  *      This function shuts down a device interface and removes it
9260  *      from the kernel tables.
9261  *      If head not NULL, device is queued to be unregistered later.
9262  *
9263  *      Callers must hold the rtnl semaphore.  You may want
9264  *      unregister_netdev() instead of this.
9265  */
9266
9267 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9268 {
9269         ASSERT_RTNL();
9270
9271         if (head) {
9272                 list_move_tail(&dev->unreg_list, head);
9273         } else {
9274                 rollback_registered(dev);
9275                 /* Finish processing unregister after unlock */
9276                 net_set_todo(dev);
9277         }
9278 }
9279 EXPORT_SYMBOL(unregister_netdevice_queue);
9280
9281 /**
9282  *      unregister_netdevice_many - unregister many devices
9283  *      @head: list of devices
9284  *
9285  *  Note: As most callers use a stack allocated list_head,
9286  *  we force a list_del() to make sure stack wont be corrupted later.
9287  */
9288 void unregister_netdevice_many(struct list_head *head)
9289 {
9290         struct net_device *dev;
9291
9292         if (!list_empty(head)) {
9293                 rollback_registered_many(head);
9294                 list_for_each_entry(dev, head, unreg_list)
9295                         net_set_todo(dev);
9296                 list_del(head);
9297         }
9298 }
9299 EXPORT_SYMBOL(unregister_netdevice_many);
9300
9301 /**
9302  *      unregister_netdev - remove device from the kernel
9303  *      @dev: device
9304  *
9305  *      This function shuts down a device interface and removes it
9306  *      from the kernel tables.
9307  *
9308  *      This is just a wrapper for unregister_netdevice that takes
9309  *      the rtnl semaphore.  In general you want to use this and not
9310  *      unregister_netdevice.
9311  */
9312 void unregister_netdev(struct net_device *dev)
9313 {
9314         rtnl_lock();
9315         unregister_netdevice(dev);
9316         rtnl_unlock();
9317 }
9318 EXPORT_SYMBOL(unregister_netdev);
9319
9320 /**
9321  *      dev_change_net_namespace - move device to different nethost namespace
9322  *      @dev: device
9323  *      @net: network namespace
9324  *      @pat: If not NULL name pattern to try if the current device name
9325  *            is already taken in the destination network namespace.
9326  *
9327  *      This function shuts down a device interface and moves it
9328  *      to a new network namespace. On success 0 is returned, on
9329  *      a failure a netagive errno code is returned.
9330  *
9331  *      Callers must hold the rtnl semaphore.
9332  */
9333
9334 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9335 {
9336         int err, new_nsid, new_ifindex;
9337
9338         ASSERT_RTNL();
9339
9340         /* Don't allow namespace local devices to be moved. */
9341         err = -EINVAL;
9342         if (dev->features & NETIF_F_NETNS_LOCAL)
9343                 goto out;
9344
9345         /* Ensure the device has been registrered */
9346         if (dev->reg_state != NETREG_REGISTERED)
9347                 goto out;
9348
9349         /* Get out if there is nothing todo */
9350         err = 0;
9351         if (net_eq(dev_net(dev), net))
9352                 goto out;
9353
9354         /* Pick the destination device name, and ensure
9355          * we can use it in the destination network namespace.
9356          */
9357         err = -EEXIST;
9358         if (__dev_get_by_name(net, dev->name)) {
9359                 /* We get here if we can't use the current device name */
9360                 if (!pat)
9361                         goto out;
9362                 err = dev_get_valid_name(net, dev, pat);
9363                 if (err < 0)
9364                         goto out;
9365         }
9366
9367         /*
9368          * And now a mini version of register_netdevice unregister_netdevice.
9369          */
9370
9371         /* If device is running close it first. */
9372         dev_close(dev);
9373
9374         /* And unlink it from device chain */
9375         unlist_netdevice(dev);
9376
9377         synchronize_net();
9378
9379         /* Shutdown queueing discipline. */
9380         dev_shutdown(dev);
9381
9382         /* Notify protocols, that we are about to destroy
9383          * this device. They should clean all the things.
9384          *
9385          * Note that dev->reg_state stays at NETREG_REGISTERED.
9386          * This is wanted because this way 8021q and macvlan know
9387          * the device is just moving and can keep their slaves up.
9388          */
9389         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9390         rcu_barrier();
9391
9392         new_nsid = peernet2id_alloc(dev_net(dev), net);
9393         /* If there is an ifindex conflict assign a new one */
9394         if (__dev_get_by_index(net, dev->ifindex))
9395                 new_ifindex = dev_new_index(net);
9396         else
9397                 new_ifindex = dev->ifindex;
9398
9399         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9400                             new_ifindex);
9401
9402         /*
9403          *      Flush the unicast and multicast chains
9404          */
9405         dev_uc_flush(dev);
9406         dev_mc_flush(dev);
9407
9408         /* Send a netdev-removed uevent to the old namespace */
9409         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9410         netdev_adjacent_del_links(dev);
9411
9412         /* Actually switch the network namespace */
9413         dev_net_set(dev, net);
9414         dev->ifindex = new_ifindex;
9415
9416         /* Send a netdev-add uevent to the new namespace */
9417         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9418         netdev_adjacent_add_links(dev);
9419
9420         /* Fixup kobjects */
9421         err = device_rename(&dev->dev, dev->name);
9422         WARN_ON(err);
9423
9424         /* Add the device back in the hashes */
9425         list_netdevice(dev);
9426
9427         /* Notify protocols, that a new device appeared. */
9428         call_netdevice_notifiers(NETDEV_REGISTER, dev);
9429
9430         /*
9431          *      Prevent userspace races by waiting until the network
9432          *      device is fully setup before sending notifications.
9433          */
9434         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9435
9436         synchronize_net();
9437         err = 0;
9438 out:
9439         return err;
9440 }
9441 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9442
9443 static int dev_cpu_dead(unsigned int oldcpu)
9444 {
9445         struct sk_buff **list_skb;
9446         struct sk_buff *skb;
9447         unsigned int cpu;
9448         struct softnet_data *sd, *oldsd, *remsd = NULL;
9449
9450         local_irq_disable();
9451         cpu = smp_processor_id();
9452         sd = &per_cpu(softnet_data, cpu);
9453         oldsd = &per_cpu(softnet_data, oldcpu);
9454
9455         /* Find end of our completion_queue. */
9456         list_skb = &sd->completion_queue;
9457         while (*list_skb)
9458                 list_skb = &(*list_skb)->next;
9459         /* Append completion queue from offline CPU. */
9460         *list_skb = oldsd->completion_queue;
9461         oldsd->completion_queue = NULL;
9462
9463         /* Append output queue from offline CPU. */
9464         if (oldsd->output_queue) {
9465                 *sd->output_queue_tailp = oldsd->output_queue;
9466                 sd->output_queue_tailp = oldsd->output_queue_tailp;
9467                 oldsd->output_queue = NULL;
9468                 oldsd->output_queue_tailp = &oldsd->output_queue;
9469         }
9470         /* Append NAPI poll list from offline CPU, with one exception :
9471          * process_backlog() must be called by cpu owning percpu backlog.
9472          * We properly handle process_queue & input_pkt_queue later.
9473          */
9474         while (!list_empty(&oldsd->poll_list)) {
9475                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9476                                                             struct napi_struct,
9477                                                             poll_list);
9478
9479                 list_del_init(&napi->poll_list);
9480                 if (napi->poll == process_backlog)
9481                         napi->state = 0;
9482                 else
9483                         ____napi_schedule(sd, napi);
9484         }
9485
9486         raise_softirq_irqoff(NET_TX_SOFTIRQ);
9487         local_irq_enable();
9488
9489 #ifdef CONFIG_RPS
9490         remsd = oldsd->rps_ipi_list;
9491         oldsd->rps_ipi_list = NULL;
9492 #endif
9493         /* send out pending IPI's on offline CPU */
9494         net_rps_send_ipi(remsd);
9495
9496         /* Process offline CPU's input_pkt_queue */
9497         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9498                 netif_rx_ni(skb);
9499                 input_queue_head_incr(oldsd);
9500         }
9501         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9502                 netif_rx_ni(skb);
9503                 input_queue_head_incr(oldsd);
9504         }
9505
9506         return 0;
9507 }
9508
9509 /**
9510  *      netdev_increment_features - increment feature set by one
9511  *      @all: current feature set
9512  *      @one: new feature set
9513  *      @mask: mask feature set
9514  *
9515  *      Computes a new feature set after adding a device with feature set
9516  *      @one to the master device with current feature set @all.  Will not
9517  *      enable anything that is off in @mask. Returns the new feature set.
9518  */
9519 netdev_features_t netdev_increment_features(netdev_features_t all,
9520         netdev_features_t one, netdev_features_t mask)
9521 {
9522         if (mask & NETIF_F_HW_CSUM)
9523                 mask |= NETIF_F_CSUM_MASK;
9524         mask |= NETIF_F_VLAN_CHALLENGED;
9525
9526         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9527         all &= one | ~NETIF_F_ALL_FOR_ALL;
9528
9529         /* If one device supports hw checksumming, set for all. */
9530         if (all & NETIF_F_HW_CSUM)
9531                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9532
9533         return all;
9534 }
9535 EXPORT_SYMBOL(netdev_increment_features);
9536
9537 static struct hlist_head * __net_init netdev_create_hash(void)
9538 {
9539         int i;
9540         struct hlist_head *hash;
9541
9542         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9543         if (hash != NULL)
9544                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9545                         INIT_HLIST_HEAD(&hash[i]);
9546
9547         return hash;
9548 }
9549
9550 /* Initialize per network namespace state */
9551 static int __net_init netdev_init(struct net *net)
9552 {
9553         BUILD_BUG_ON(GRO_HASH_BUCKETS >
9554                      8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9555
9556         if (net != &init_net)
9557                 INIT_LIST_HEAD(&net->dev_base_head);
9558
9559         net->dev_name_head = netdev_create_hash();
9560         if (net->dev_name_head == NULL)
9561                 goto err_name;
9562
9563         net->dev_index_head = netdev_create_hash();
9564         if (net->dev_index_head == NULL)
9565                 goto err_idx;
9566
9567         return 0;
9568
9569 err_idx:
9570         kfree(net->dev_name_head);
9571 err_name:
9572         return -ENOMEM;
9573 }
9574
9575 /**
9576  *      netdev_drivername - network driver for the device
9577  *      @dev: network device
9578  *
9579  *      Determine network driver for device.
9580  */
9581 const char *netdev_drivername(const struct net_device *dev)
9582 {
9583         const struct device_driver *driver;
9584         const struct device *parent;
9585         const char *empty = "";
9586
9587         parent = dev->dev.parent;
9588         if (!parent)
9589                 return empty;
9590
9591         driver = parent->driver;
9592         if (driver && driver->name)
9593                 return driver->name;
9594         return empty;
9595 }
9596
9597 static void __netdev_printk(const char *level, const struct net_device *dev,
9598                             struct va_format *vaf)
9599 {
9600         if (dev && dev->dev.parent) {
9601                 dev_printk_emit(level[1] - '0',
9602                                 dev->dev.parent,
9603                                 "%s %s %s%s: %pV",
9604                                 dev_driver_string(dev->dev.parent),
9605                                 dev_name(dev->dev.parent),
9606                                 netdev_name(dev), netdev_reg_state(dev),
9607                                 vaf);
9608         } else if (dev) {
9609                 printk("%s%s%s: %pV",
9610                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
9611         } else {
9612                 printk("%s(NULL net_device): %pV", level, vaf);
9613         }
9614 }
9615
9616 void netdev_printk(const char *level, const struct net_device *dev,
9617                    const char *format, ...)
9618 {
9619         struct va_format vaf;
9620         va_list args;
9621
9622         va_start(args, format);
9623
9624         vaf.fmt = format;
9625         vaf.va = &args;
9626
9627         __netdev_printk(level, dev, &vaf);
9628
9629         va_end(args);
9630 }
9631 EXPORT_SYMBOL(netdev_printk);
9632
9633 #define define_netdev_printk_level(func, level)                 \
9634 void func(const struct net_device *dev, const char *fmt, ...)   \
9635 {                                                               \
9636         struct va_format vaf;                                   \
9637         va_list args;                                           \
9638                                                                 \
9639         va_start(args, fmt);                                    \
9640                                                                 \
9641         vaf.fmt = fmt;                                          \
9642         vaf.va = &args;                                         \
9643                                                                 \
9644         __netdev_printk(level, dev, &vaf);                      \
9645                                                                 \
9646         va_end(args);                                           \
9647 }                                                               \
9648 EXPORT_SYMBOL(func);
9649
9650 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9651 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9652 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9653 define_netdev_printk_level(netdev_err, KERN_ERR);
9654 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9655 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9656 define_netdev_printk_level(netdev_info, KERN_INFO);
9657
9658 static void __net_exit netdev_exit(struct net *net)
9659 {
9660         kfree(net->dev_name_head);
9661         kfree(net->dev_index_head);
9662         if (net != &init_net)
9663                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9664 }
9665
9666 static struct pernet_operations __net_initdata netdev_net_ops = {
9667         .init = netdev_init,
9668         .exit = netdev_exit,
9669 };
9670
9671 static void __net_exit default_device_exit(struct net *net)
9672 {
9673         struct net_device *dev, *aux;
9674         /*
9675          * Push all migratable network devices back to the
9676          * initial network namespace
9677          */
9678         rtnl_lock();
9679         for_each_netdev_safe(net, dev, aux) {
9680                 int err;
9681                 char fb_name[IFNAMSIZ];
9682
9683                 /* Ignore unmoveable devices (i.e. loopback) */
9684                 if (dev->features & NETIF_F_NETNS_LOCAL)
9685                         continue;
9686
9687                 /* Leave virtual devices for the generic cleanup */
9688                 if (dev->rtnl_link_ops)
9689                         continue;
9690
9691                 /* Push remaining network devices to init_net */
9692                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9693                 err = dev_change_net_namespace(dev, &init_net, fb_name);
9694                 if (err) {
9695                         pr_emerg("%s: failed to move %s to init_net: %d\n",
9696                                  __func__, dev->name, err);
9697                         BUG();
9698                 }
9699         }
9700         rtnl_unlock();
9701 }
9702
9703 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9704 {
9705         /* Return with the rtnl_lock held when there are no network
9706          * devices unregistering in any network namespace in net_list.
9707          */
9708         struct net *net;
9709         bool unregistering;
9710         DEFINE_WAIT_FUNC(wait, woken_wake_function);
9711
9712         add_wait_queue(&netdev_unregistering_wq, &wait);
9713         for (;;) {
9714                 unregistering = false;
9715                 rtnl_lock();
9716                 list_for_each_entry(net, net_list, exit_list) {
9717                         if (net->dev_unreg_count > 0) {
9718                                 unregistering = true;
9719                                 break;
9720                         }
9721                 }
9722                 if (!unregistering)
9723                         break;
9724                 __rtnl_unlock();
9725
9726                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9727         }
9728         remove_wait_queue(&netdev_unregistering_wq, &wait);
9729 }
9730
9731 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9732 {
9733         /* At exit all network devices most be removed from a network
9734          * namespace.  Do this in the reverse order of registration.
9735          * Do this across as many network namespaces as possible to
9736          * improve batching efficiency.
9737          */
9738         struct net_device *dev;
9739         struct net *net;
9740         LIST_HEAD(dev_kill_list);
9741
9742         /* To prevent network device cleanup code from dereferencing
9743          * loopback devices or network devices that have been freed
9744          * wait here for all pending unregistrations to complete,
9745          * before unregistring the loopback device and allowing the
9746          * network namespace be freed.
9747          *
9748          * The netdev todo list containing all network devices
9749          * unregistrations that happen in default_device_exit_batch
9750          * will run in the rtnl_unlock() at the end of
9751          * default_device_exit_batch.
9752          */
9753         rtnl_lock_unregistering(net_list);
9754         list_for_each_entry(net, net_list, exit_list) {
9755                 for_each_netdev_reverse(net, dev) {
9756                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9757                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9758                         else
9759                                 unregister_netdevice_queue(dev, &dev_kill_list);
9760                 }
9761         }
9762         unregister_netdevice_many(&dev_kill_list);
9763         rtnl_unlock();
9764 }
9765
9766 static struct pernet_operations __net_initdata default_device_ops = {
9767         .exit = default_device_exit,
9768         .exit_batch = default_device_exit_batch,
9769 };
9770
9771 /*
9772  *      Initialize the DEV module. At boot time this walks the device list and
9773  *      unhooks any devices that fail to initialise (normally hardware not
9774  *      present) and leaves us with a valid list of present and active devices.
9775  *
9776  */
9777
9778 /*
9779  *       This is called single threaded during boot, so no need
9780  *       to take the rtnl semaphore.
9781  */
9782 static int __init net_dev_init(void)
9783 {
9784         int i, rc = -ENOMEM;
9785
9786         BUG_ON(!dev_boot_phase);
9787
9788         if (dev_proc_init())
9789                 goto out;
9790
9791         if (netdev_kobject_init())
9792                 goto out;
9793
9794         INIT_LIST_HEAD(&ptype_all);
9795         for (i = 0; i < PTYPE_HASH_SIZE; i++)
9796                 INIT_LIST_HEAD(&ptype_base[i]);
9797
9798         INIT_LIST_HEAD(&offload_base);
9799
9800         if (register_pernet_subsys(&netdev_net_ops))
9801                 goto out;
9802
9803         /*
9804          *      Initialise the packet receive queues.
9805          */
9806
9807         for_each_possible_cpu(i) {
9808                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9809                 struct softnet_data *sd = &per_cpu(softnet_data, i);
9810
9811                 INIT_WORK(flush, flush_backlog);
9812
9813                 skb_queue_head_init(&sd->input_pkt_queue);
9814                 skb_queue_head_init(&sd->process_queue);
9815 #ifdef CONFIG_XFRM_OFFLOAD
9816                 skb_queue_head_init(&sd->xfrm_backlog);
9817 #endif
9818                 INIT_LIST_HEAD(&sd->poll_list);
9819                 sd->output_queue_tailp = &sd->output_queue;
9820 #ifdef CONFIG_RPS
9821                 sd->csd.func = rps_trigger_softirq;
9822                 sd->csd.info = sd;
9823                 sd->cpu = i;
9824 #endif
9825
9826                 init_gro_hash(&sd->backlog);
9827                 sd->backlog.poll = process_backlog;
9828                 sd->backlog.weight = weight_p;
9829         }
9830
9831         dev_boot_phase = 0;
9832
9833         /* The loopback device is special if any other network devices
9834          * is present in a network namespace the loopback device must
9835          * be present. Since we now dynamically allocate and free the
9836          * loopback device ensure this invariant is maintained by
9837          * keeping the loopback device as the first device on the
9838          * list of network devices.  Ensuring the loopback devices
9839          * is the first device that appears and the last network device
9840          * that disappears.
9841          */
9842         if (register_pernet_device(&loopback_net_ops))
9843                 goto out;
9844
9845         if (register_pernet_device(&default_device_ops))
9846                 goto out;
9847
9848         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9849         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9850
9851         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9852                                        NULL, dev_cpu_dead);
9853         WARN_ON(rc < 0);
9854         rc = 0;
9855 out:
9856         return rc;
9857 }
9858
9859 subsys_initcall(net_dev_init);