1 // SPDX-License-Identifier: GPL-2.0
3 #include <linux/ceph/ceph_debug.h>
5 #include <linux/module.h>
6 #include <linux/slab.h>
8 #include <linux/ceph/libceph.h>
9 #include <linux/ceph/osdmap.h>
10 #include <linux/ceph/decode.h>
11 #include <linux/crush/hash.h>
12 #include <linux/crush/mapper.h>
15 void osdmap_info(const struct ceph_osdmap *map, const char *fmt, ...)
24 printk(KERN_INFO "%s (%pU e%u): %pV", KBUILD_MODNAME, &map->fsid,
30 char *ceph_osdmap_state_str(char *str, int len, u32 state)
35 if ((state & CEPH_OSD_EXISTS) && (state & CEPH_OSD_UP))
36 snprintf(str, len, "exists, up");
37 else if (state & CEPH_OSD_EXISTS)
38 snprintf(str, len, "exists");
39 else if (state & CEPH_OSD_UP)
40 snprintf(str, len, "up");
42 snprintf(str, len, "doesn't exist");
49 static int calc_bits_of(unsigned int t)
60 * the foo_mask is the smallest value 2^n-1 that is >= foo.
62 static void calc_pg_masks(struct ceph_pg_pool_info *pi)
64 pi->pg_num_mask = (1 << calc_bits_of(pi->pg_num-1)) - 1;
65 pi->pgp_num_mask = (1 << calc_bits_of(pi->pgp_num-1)) - 1;
71 static int crush_decode_uniform_bucket(void **p, void *end,
72 struct crush_bucket_uniform *b)
74 dout("crush_decode_uniform_bucket %p to %p\n", *p, end);
75 ceph_decode_need(p, end, (1+b->h.size) * sizeof(u32), bad);
76 b->item_weight = ceph_decode_32(p);
82 static int crush_decode_list_bucket(void **p, void *end,
83 struct crush_bucket_list *b)
86 dout("crush_decode_list_bucket %p to %p\n", *p, end);
87 b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
88 if (b->item_weights == NULL)
90 b->sum_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
91 if (b->sum_weights == NULL)
93 ceph_decode_need(p, end, 2 * b->h.size * sizeof(u32), bad);
94 for (j = 0; j < b->h.size; j++) {
95 b->item_weights[j] = ceph_decode_32(p);
96 b->sum_weights[j] = ceph_decode_32(p);
103 static int crush_decode_tree_bucket(void **p, void *end,
104 struct crush_bucket_tree *b)
107 dout("crush_decode_tree_bucket %p to %p\n", *p, end);
108 ceph_decode_8_safe(p, end, b->num_nodes, bad);
109 b->node_weights = kcalloc(b->num_nodes, sizeof(u32), GFP_NOFS);
110 if (b->node_weights == NULL)
112 ceph_decode_need(p, end, b->num_nodes * sizeof(u32), bad);
113 for (j = 0; j < b->num_nodes; j++)
114 b->node_weights[j] = ceph_decode_32(p);
120 static int crush_decode_straw_bucket(void **p, void *end,
121 struct crush_bucket_straw *b)
124 dout("crush_decode_straw_bucket %p to %p\n", *p, end);
125 b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
126 if (b->item_weights == NULL)
128 b->straws = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
129 if (b->straws == NULL)
131 ceph_decode_need(p, end, 2 * b->h.size * sizeof(u32), bad);
132 for (j = 0; j < b->h.size; j++) {
133 b->item_weights[j] = ceph_decode_32(p);
134 b->straws[j] = ceph_decode_32(p);
141 static int crush_decode_straw2_bucket(void **p, void *end,
142 struct crush_bucket_straw2 *b)
145 dout("crush_decode_straw2_bucket %p to %p\n", *p, end);
146 b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
147 if (b->item_weights == NULL)
149 ceph_decode_need(p, end, b->h.size * sizeof(u32), bad);
150 for (j = 0; j < b->h.size; j++)
151 b->item_weights[j] = ceph_decode_32(p);
157 struct crush_name_node {
158 struct rb_node cn_node;
163 static struct crush_name_node *alloc_crush_name(size_t name_len)
165 struct crush_name_node *cn;
167 cn = kmalloc(sizeof(*cn) + name_len + 1, GFP_NOIO);
171 RB_CLEAR_NODE(&cn->cn_node);
175 static void free_crush_name(struct crush_name_node *cn)
177 WARN_ON(!RB_EMPTY_NODE(&cn->cn_node));
182 DEFINE_RB_FUNCS(crush_name, struct crush_name_node, cn_id, cn_node)
184 static int decode_crush_names(void **p, void *end, struct rb_root *root)
188 ceph_decode_32_safe(p, end, n, e_inval);
190 struct crush_name_node *cn;
194 ceph_decode_32_safe(p, end, id, e_inval);
195 ceph_decode_32_safe(p, end, name_len, e_inval);
196 ceph_decode_need(p, end, name_len, e_inval);
198 cn = alloc_crush_name(name_len);
203 memcpy(cn->cn_name, *p, name_len);
204 cn->cn_name[name_len] = '\0';
207 if (!__insert_crush_name(root, cn)) {
219 void clear_crush_names(struct rb_root *root)
221 while (!RB_EMPTY_ROOT(root)) {
222 struct crush_name_node *cn =
223 rb_entry(rb_first(root), struct crush_name_node, cn_node);
225 erase_crush_name(root, cn);
230 static struct crush_choose_arg_map *alloc_choose_arg_map(void)
232 struct crush_choose_arg_map *arg_map;
234 arg_map = kzalloc(sizeof(*arg_map), GFP_NOIO);
238 RB_CLEAR_NODE(&arg_map->node);
242 static void free_choose_arg_map(struct crush_choose_arg_map *arg_map)
247 WARN_ON(!RB_EMPTY_NODE(&arg_map->node));
249 for (i = 0; i < arg_map->size; i++) {
250 struct crush_choose_arg *arg = &arg_map->args[i];
252 for (j = 0; j < arg->weight_set_size; j++)
253 kfree(arg->weight_set[j].weights);
254 kfree(arg->weight_set);
257 kfree(arg_map->args);
262 DEFINE_RB_FUNCS(choose_arg_map, struct crush_choose_arg_map, choose_args_index,
265 void clear_choose_args(struct crush_map *c)
267 while (!RB_EMPTY_ROOT(&c->choose_args)) {
268 struct crush_choose_arg_map *arg_map =
269 rb_entry(rb_first(&c->choose_args),
270 struct crush_choose_arg_map, node);
272 erase_choose_arg_map(&c->choose_args, arg_map);
273 free_choose_arg_map(arg_map);
277 static u32 *decode_array_32_alloc(void **p, void *end, u32 *plen)
283 ceph_decode_32_safe(p, end, len, e_inval);
287 a = kmalloc_array(len, sizeof(u32), GFP_NOIO);
293 ceph_decode_need(p, end, len * sizeof(u32), e_inval);
294 for (i = 0; i < len; i++)
295 a[i] = ceph_decode_32(p);
309 * Assumes @arg is zero-initialized.
311 static int decode_choose_arg(void **p, void *end, struct crush_choose_arg *arg)
315 ceph_decode_32_safe(p, end, arg->weight_set_size, e_inval);
316 if (arg->weight_set_size) {
319 arg->weight_set = kmalloc_array(arg->weight_set_size,
320 sizeof(*arg->weight_set),
322 if (!arg->weight_set)
325 for (i = 0; i < arg->weight_set_size; i++) {
326 struct crush_weight_set *w = &arg->weight_set[i];
328 w->weights = decode_array_32_alloc(p, end, &w->size);
329 if (IS_ERR(w->weights)) {
330 ret = PTR_ERR(w->weights);
337 arg->ids = decode_array_32_alloc(p, end, &arg->ids_size);
338 if (IS_ERR(arg->ids)) {
339 ret = PTR_ERR(arg->ids);
350 static int decode_choose_args(void **p, void *end, struct crush_map *c)
352 struct crush_choose_arg_map *arg_map = NULL;
353 u32 num_choose_arg_maps, num_buckets;
356 ceph_decode_32_safe(p, end, num_choose_arg_maps, e_inval);
357 while (num_choose_arg_maps--) {
358 arg_map = alloc_choose_arg_map();
364 ceph_decode_64_safe(p, end, arg_map->choose_args_index,
366 arg_map->size = c->max_buckets;
367 arg_map->args = kcalloc(arg_map->size, sizeof(*arg_map->args),
369 if (!arg_map->args) {
374 ceph_decode_32_safe(p, end, num_buckets, e_inval);
375 while (num_buckets--) {
376 struct crush_choose_arg *arg;
379 ceph_decode_32_safe(p, end, bucket_index, e_inval);
380 if (bucket_index >= arg_map->size)
383 arg = &arg_map->args[bucket_index];
384 ret = decode_choose_arg(p, end, arg);
389 arg->ids_size != c->buckets[bucket_index]->size)
393 insert_choose_arg_map(&c->choose_args, arg_map);
401 free_choose_arg_map(arg_map);
405 static void crush_finalize(struct crush_map *c)
409 /* Space for the array of pointers to per-bucket workspace */
410 c->working_size = sizeof(struct crush_work) +
411 c->max_buckets * sizeof(struct crush_work_bucket *);
413 for (b = 0; b < c->max_buckets; b++) {
417 switch (c->buckets[b]->alg) {
420 * The base case, permutation variables and
421 * the pointer to the permutation array.
423 c->working_size += sizeof(struct crush_work_bucket);
426 /* Every bucket has a permutation array. */
427 c->working_size += c->buckets[b]->size * sizeof(__u32);
431 static struct crush_map *crush_decode(void *pbyval, void *end)
437 void *start = pbyval;
440 dout("crush_decode %p to %p len %d\n", *p, end, (int)(end - *p));
442 c = kzalloc(sizeof(*c), GFP_NOFS);
444 return ERR_PTR(-ENOMEM);
446 c->type_names = RB_ROOT;
448 c->choose_args = RB_ROOT;
450 /* set tunables to default values */
451 c->choose_local_tries = 2;
452 c->choose_local_fallback_tries = 5;
453 c->choose_total_tries = 19;
454 c->chooseleaf_descend_once = 0;
456 ceph_decode_need(p, end, 4*sizeof(u32), bad);
457 magic = ceph_decode_32(p);
458 if (magic != CRUSH_MAGIC) {
459 pr_err("crush_decode magic %x != current %x\n",
460 (unsigned int)magic, (unsigned int)CRUSH_MAGIC);
463 c->max_buckets = ceph_decode_32(p);
464 c->max_rules = ceph_decode_32(p);
465 c->max_devices = ceph_decode_32(p);
467 c->buckets = kcalloc(c->max_buckets, sizeof(*c->buckets), GFP_NOFS);
468 if (c->buckets == NULL)
470 c->rules = kcalloc(c->max_rules, sizeof(*c->rules), GFP_NOFS);
471 if (c->rules == NULL)
475 for (i = 0; i < c->max_buckets; i++) {
478 struct crush_bucket *b;
480 ceph_decode_32_safe(p, end, alg, bad);
482 c->buckets[i] = NULL;
485 dout("crush_decode bucket %d off %x %p to %p\n",
486 i, (int)(*p-start), *p, end);
489 case CRUSH_BUCKET_UNIFORM:
490 size = sizeof(struct crush_bucket_uniform);
492 case CRUSH_BUCKET_LIST:
493 size = sizeof(struct crush_bucket_list);
495 case CRUSH_BUCKET_TREE:
496 size = sizeof(struct crush_bucket_tree);
498 case CRUSH_BUCKET_STRAW:
499 size = sizeof(struct crush_bucket_straw);
501 case CRUSH_BUCKET_STRAW2:
502 size = sizeof(struct crush_bucket_straw2);
508 b = c->buckets[i] = kzalloc(size, GFP_NOFS);
512 ceph_decode_need(p, end, 4*sizeof(u32), bad);
513 b->id = ceph_decode_32(p);
514 b->type = ceph_decode_16(p);
515 b->alg = ceph_decode_8(p);
516 b->hash = ceph_decode_8(p);
517 b->weight = ceph_decode_32(p);
518 b->size = ceph_decode_32(p);
520 dout("crush_decode bucket size %d off %x %p to %p\n",
521 b->size, (int)(*p-start), *p, end);
523 b->items = kcalloc(b->size, sizeof(__s32), GFP_NOFS);
524 if (b->items == NULL)
527 ceph_decode_need(p, end, b->size*sizeof(u32), bad);
528 for (j = 0; j < b->size; j++)
529 b->items[j] = ceph_decode_32(p);
532 case CRUSH_BUCKET_UNIFORM:
533 err = crush_decode_uniform_bucket(p, end,
534 (struct crush_bucket_uniform *)b);
538 case CRUSH_BUCKET_LIST:
539 err = crush_decode_list_bucket(p, end,
540 (struct crush_bucket_list *)b);
544 case CRUSH_BUCKET_TREE:
545 err = crush_decode_tree_bucket(p, end,
546 (struct crush_bucket_tree *)b);
550 case CRUSH_BUCKET_STRAW:
551 err = crush_decode_straw_bucket(p, end,
552 (struct crush_bucket_straw *)b);
556 case CRUSH_BUCKET_STRAW2:
557 err = crush_decode_straw2_bucket(p, end,
558 (struct crush_bucket_straw2 *)b);
566 dout("rule vec is %p\n", c->rules);
567 for (i = 0; i < c->max_rules; i++) {
569 struct crush_rule *r;
571 ceph_decode_32_safe(p, end, yes, bad);
573 dout("crush_decode NO rule %d off %x %p to %p\n",
574 i, (int)(*p-start), *p, end);
579 dout("crush_decode rule %d off %x %p to %p\n",
580 i, (int)(*p-start), *p, end);
583 ceph_decode_32_safe(p, end, yes, bad);
584 #if BITS_PER_LONG == 32
585 if (yes > (ULONG_MAX - sizeof(*r))
586 / sizeof(struct crush_rule_step))
589 r = kmalloc(struct_size(r, steps, yes), GFP_NOFS);
592 dout(" rule %d is at %p\n", i, r);
595 ceph_decode_copy_safe(p, end, &r->mask, 4, bad); /* 4 u8's */
596 ceph_decode_need(p, end, r->len*3*sizeof(u32), bad);
597 for (j = 0; j < r->len; j++) {
598 r->steps[j].op = ceph_decode_32(p);
599 r->steps[j].arg1 = ceph_decode_32(p);
600 r->steps[j].arg2 = ceph_decode_32(p);
604 err = decode_crush_names(p, end, &c->type_names);
608 err = decode_crush_names(p, end, &c->names);
612 ceph_decode_skip_map(p, end, 32, string, bad); /* rule_name_map */
615 ceph_decode_need(p, end, 3*sizeof(u32), done);
616 c->choose_local_tries = ceph_decode_32(p);
617 c->choose_local_fallback_tries = ceph_decode_32(p);
618 c->choose_total_tries = ceph_decode_32(p);
619 dout("crush decode tunable choose_local_tries = %d\n",
620 c->choose_local_tries);
621 dout("crush decode tunable choose_local_fallback_tries = %d\n",
622 c->choose_local_fallback_tries);
623 dout("crush decode tunable choose_total_tries = %d\n",
624 c->choose_total_tries);
626 ceph_decode_need(p, end, sizeof(u32), done);
627 c->chooseleaf_descend_once = ceph_decode_32(p);
628 dout("crush decode tunable chooseleaf_descend_once = %d\n",
629 c->chooseleaf_descend_once);
631 ceph_decode_need(p, end, sizeof(u8), done);
632 c->chooseleaf_vary_r = ceph_decode_8(p);
633 dout("crush decode tunable chooseleaf_vary_r = %d\n",
634 c->chooseleaf_vary_r);
636 /* skip straw_calc_version, allowed_bucket_algs */
637 ceph_decode_need(p, end, sizeof(u8) + sizeof(u32), done);
638 *p += sizeof(u8) + sizeof(u32);
640 ceph_decode_need(p, end, sizeof(u8), done);
641 c->chooseleaf_stable = ceph_decode_8(p);
642 dout("crush decode tunable chooseleaf_stable = %d\n",
643 c->chooseleaf_stable);
647 ceph_decode_skip_map(p, end, 32, 32, bad);
649 ceph_decode_skip_map(p, end, 32, string, bad);
651 ceph_decode_skip_map_of_map(p, end, 32, 32, 32, bad);
655 err = decode_choose_args(p, end, c);
662 dout("crush_decode success\n");
668 dout("crush_decode fail %d\n", err);
677 int ceph_pg_compare(const struct ceph_pg *lhs, const struct ceph_pg *rhs)
679 if (lhs->pool < rhs->pool)
681 if (lhs->pool > rhs->pool)
683 if (lhs->seed < rhs->seed)
685 if (lhs->seed > rhs->seed)
691 int ceph_spg_compare(const struct ceph_spg *lhs, const struct ceph_spg *rhs)
695 ret = ceph_pg_compare(&lhs->pgid, &rhs->pgid);
699 if (lhs->shard < rhs->shard)
701 if (lhs->shard > rhs->shard)
707 static struct ceph_pg_mapping *alloc_pg_mapping(size_t payload_len)
709 struct ceph_pg_mapping *pg;
711 pg = kmalloc(sizeof(*pg) + payload_len, GFP_NOIO);
715 RB_CLEAR_NODE(&pg->node);
719 static void free_pg_mapping(struct ceph_pg_mapping *pg)
721 WARN_ON(!RB_EMPTY_NODE(&pg->node));
727 * rbtree of pg_mapping for handling pg_temp (explicit mapping of pgid
728 * to a set of osds) and primary_temp (explicit primary setting)
730 DEFINE_RB_FUNCS2(pg_mapping, struct ceph_pg_mapping, pgid, ceph_pg_compare,
731 RB_BYPTR, const struct ceph_pg *, node)
734 * rbtree of pg pool info
736 DEFINE_RB_FUNCS(pg_pool, struct ceph_pg_pool_info, id, node)
738 struct ceph_pg_pool_info *ceph_pg_pool_by_id(struct ceph_osdmap *map, u64 id)
740 return lookup_pg_pool(&map->pg_pools, id);
743 const char *ceph_pg_pool_name_by_id(struct ceph_osdmap *map, u64 id)
745 struct ceph_pg_pool_info *pi;
747 if (id == CEPH_NOPOOL)
750 if (WARN_ON_ONCE(id > (u64) INT_MAX))
753 pi = lookup_pg_pool(&map->pg_pools, id);
754 return pi ? pi->name : NULL;
756 EXPORT_SYMBOL(ceph_pg_pool_name_by_id);
758 int ceph_pg_poolid_by_name(struct ceph_osdmap *map, const char *name)
762 for (rbp = rb_first(&map->pg_pools); rbp; rbp = rb_next(rbp)) {
763 struct ceph_pg_pool_info *pi =
764 rb_entry(rbp, struct ceph_pg_pool_info, node);
765 if (pi->name && strcmp(pi->name, name) == 0)
770 EXPORT_SYMBOL(ceph_pg_poolid_by_name);
772 u64 ceph_pg_pool_flags(struct ceph_osdmap *map, u64 id)
774 struct ceph_pg_pool_info *pi;
776 pi = lookup_pg_pool(&map->pg_pools, id);
777 return pi ? pi->flags : 0;
779 EXPORT_SYMBOL(ceph_pg_pool_flags);
781 static void __remove_pg_pool(struct rb_root *root, struct ceph_pg_pool_info *pi)
783 erase_pg_pool(root, pi);
788 static int decode_pool(void **p, void *end, struct ceph_pg_pool_info *pi)
794 ceph_decode_need(p, end, 2 + 4, bad);
795 ev = ceph_decode_8(p); /* encoding version */
796 cv = ceph_decode_8(p); /* compat version */
798 pr_warn("got v %d < 5 cv %d of ceph_pg_pool\n", ev, cv);
802 pr_warn("got v %d cv %d > 9 of ceph_pg_pool\n", ev, cv);
805 len = ceph_decode_32(p);
806 ceph_decode_need(p, end, len, bad);
809 pi->type = ceph_decode_8(p);
810 pi->size = ceph_decode_8(p);
811 pi->crush_ruleset = ceph_decode_8(p);
812 pi->object_hash = ceph_decode_8(p);
814 pi->pg_num = ceph_decode_32(p);
815 pi->pgp_num = ceph_decode_32(p);
817 *p += 4 + 4; /* skip lpg* */
818 *p += 4; /* skip last_change */
819 *p += 8 + 4; /* skip snap_seq, snap_epoch */
822 num = ceph_decode_32(p);
824 *p += 8; /* snapid key */
825 *p += 1 + 1; /* versions */
826 len = ceph_decode_32(p);
830 /* skip removed_snaps */
831 num = ceph_decode_32(p);
834 *p += 8; /* skip auid */
835 pi->flags = ceph_decode_64(p);
836 *p += 4; /* skip crash_replay_interval */
839 pi->min_size = ceph_decode_8(p);
841 pi->min_size = pi->size - pi->size / 2;
844 *p += 8 + 8; /* skip quota_max_* */
848 num = ceph_decode_32(p);
851 *p += 8; /* skip tier_of */
852 *p += 1; /* skip cache_mode */
854 pi->read_tier = ceph_decode_64(p);
855 pi->write_tier = ceph_decode_64(p);
862 /* skip properties */
863 num = ceph_decode_32(p);
865 len = ceph_decode_32(p);
867 len = ceph_decode_32(p);
873 /* skip hit_set_params */
874 *p += 1 + 1; /* versions */
875 len = ceph_decode_32(p);
878 *p += 4; /* skip hit_set_period */
879 *p += 4; /* skip hit_set_count */
883 *p += 4; /* skip stripe_width */
886 *p += 8; /* skip target_max_bytes */
887 *p += 8; /* skip target_max_objects */
888 *p += 4; /* skip cache_target_dirty_ratio_micro */
889 *p += 4; /* skip cache_target_full_ratio_micro */
890 *p += 4; /* skip cache_min_flush_age */
891 *p += 4; /* skip cache_min_evict_age */
895 /* skip erasure_code_profile */
896 len = ceph_decode_32(p);
901 * last_force_op_resend_preluminous, will be overridden if the
902 * map was encoded with RESEND_ON_SPLIT
905 pi->last_force_request_resend = ceph_decode_32(p);
907 pi->last_force_request_resend = 0;
910 *p += 4; /* skip min_read_recency_for_promote */
913 *p += 8; /* skip expected_num_objects */
916 *p += 4; /* skip cache_target_dirty_high_ratio_micro */
919 *p += 4; /* skip min_write_recency_for_promote */
922 *p += 1; /* skip use_gmt_hitset */
925 *p += 1; /* skip fast_read */
928 *p += 4; /* skip hit_set_grade_decay_rate */
929 *p += 4; /* skip hit_set_search_last_n */
934 *p += 1 + 1; /* versions */
935 len = ceph_decode_32(p);
940 pi->last_force_request_resend = ceph_decode_32(p);
942 /* ignore the rest */
952 static int decode_pool_names(void **p, void *end, struct ceph_osdmap *map)
954 struct ceph_pg_pool_info *pi;
958 ceph_decode_32_safe(p, end, num, bad);
959 dout(" %d pool names\n", num);
961 ceph_decode_64_safe(p, end, pool, bad);
962 ceph_decode_32_safe(p, end, len, bad);
963 dout(" pool %llu len %d\n", pool, len);
964 ceph_decode_need(p, end, len, bad);
965 pi = lookup_pg_pool(&map->pg_pools, pool);
967 char *name = kstrndup(*p, len, GFP_NOFS);
973 dout(" name is %s\n", pi->name);
986 * workspace_manager framework borrowed from fs/btrfs/compression.c.
987 * Two simplifications: there is only one type of workspace and there
988 * is always at least one workspace.
990 static struct crush_work *alloc_workspace(const struct crush_map *c)
992 struct crush_work *work;
995 WARN_ON(!c->working_size);
996 work_size = crush_work_size(c, CEPH_PG_MAX_SIZE);
997 dout("%s work_size %zu bytes\n", __func__, work_size);
999 work = kvmalloc(work_size, GFP_NOIO);
1003 INIT_LIST_HEAD(&work->item);
1004 crush_init_workspace(c, work);
1008 static void free_workspace(struct crush_work *work)
1010 WARN_ON(!list_empty(&work->item));
1014 static void init_workspace_manager(struct workspace_manager *wsm)
1016 INIT_LIST_HEAD(&wsm->idle_ws);
1017 spin_lock_init(&wsm->ws_lock);
1018 atomic_set(&wsm->total_ws, 0);
1020 init_waitqueue_head(&wsm->ws_wait);
1023 static void add_initial_workspace(struct workspace_manager *wsm,
1024 struct crush_work *work)
1026 WARN_ON(!list_empty(&wsm->idle_ws));
1028 list_add(&work->item, &wsm->idle_ws);
1029 atomic_set(&wsm->total_ws, 1);
1033 static void cleanup_workspace_manager(struct workspace_manager *wsm)
1035 struct crush_work *work;
1037 while (!list_empty(&wsm->idle_ws)) {
1038 work = list_first_entry(&wsm->idle_ws, struct crush_work,
1040 list_del_init(&work->item);
1041 free_workspace(work);
1043 atomic_set(&wsm->total_ws, 0);
1048 * Finds an available workspace or allocates a new one. If it's not
1049 * possible to allocate a new one, waits until there is one.
1051 static struct crush_work *get_workspace(struct workspace_manager *wsm,
1052 const struct crush_map *c)
1054 struct crush_work *work;
1055 int cpus = num_online_cpus();
1058 spin_lock(&wsm->ws_lock);
1059 if (!list_empty(&wsm->idle_ws)) {
1060 work = list_first_entry(&wsm->idle_ws, struct crush_work,
1062 list_del_init(&work->item);
1064 spin_unlock(&wsm->ws_lock);
1068 if (atomic_read(&wsm->total_ws) > cpus) {
1071 spin_unlock(&wsm->ws_lock);
1072 prepare_to_wait(&wsm->ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1073 if (atomic_read(&wsm->total_ws) > cpus && !wsm->free_ws)
1075 finish_wait(&wsm->ws_wait, &wait);
1078 atomic_inc(&wsm->total_ws);
1079 spin_unlock(&wsm->ws_lock);
1081 work = alloc_workspace(c);
1083 atomic_dec(&wsm->total_ws);
1084 wake_up(&wsm->ws_wait);
1087 * Do not return the error but go back to waiting. We
1088 * have the initial workspace and the CRUSH computation
1089 * time is bounded so we will get it eventually.
1091 WARN_ON(atomic_read(&wsm->total_ws) < 1);
1098 * Puts a workspace back on the list or frees it if we have enough
1099 * idle ones sitting around.
1101 static void put_workspace(struct workspace_manager *wsm,
1102 struct crush_work *work)
1104 spin_lock(&wsm->ws_lock);
1105 if (wsm->free_ws <= num_online_cpus()) {
1106 list_add(&work->item, &wsm->idle_ws);
1108 spin_unlock(&wsm->ws_lock);
1111 spin_unlock(&wsm->ws_lock);
1113 free_workspace(work);
1114 atomic_dec(&wsm->total_ws);
1116 if (wq_has_sleeper(&wsm->ws_wait))
1117 wake_up(&wsm->ws_wait);
1123 struct ceph_osdmap *ceph_osdmap_alloc(void)
1125 struct ceph_osdmap *map;
1127 map = kzalloc(sizeof(*map), GFP_NOIO);
1131 map->pg_pools = RB_ROOT;
1133 map->pg_temp = RB_ROOT;
1134 map->primary_temp = RB_ROOT;
1135 map->pg_upmap = RB_ROOT;
1136 map->pg_upmap_items = RB_ROOT;
1138 init_workspace_manager(&map->crush_wsm);
1143 void ceph_osdmap_destroy(struct ceph_osdmap *map)
1145 dout("osdmap_destroy %p\n", map);
1148 crush_destroy(map->crush);
1149 cleanup_workspace_manager(&map->crush_wsm);
1151 while (!RB_EMPTY_ROOT(&map->pg_temp)) {
1152 struct ceph_pg_mapping *pg =
1153 rb_entry(rb_first(&map->pg_temp),
1154 struct ceph_pg_mapping, node);
1155 erase_pg_mapping(&map->pg_temp, pg);
1156 free_pg_mapping(pg);
1158 while (!RB_EMPTY_ROOT(&map->primary_temp)) {
1159 struct ceph_pg_mapping *pg =
1160 rb_entry(rb_first(&map->primary_temp),
1161 struct ceph_pg_mapping, node);
1162 erase_pg_mapping(&map->primary_temp, pg);
1163 free_pg_mapping(pg);
1165 while (!RB_EMPTY_ROOT(&map->pg_upmap)) {
1166 struct ceph_pg_mapping *pg =
1167 rb_entry(rb_first(&map->pg_upmap),
1168 struct ceph_pg_mapping, node);
1169 rb_erase(&pg->node, &map->pg_upmap);
1172 while (!RB_EMPTY_ROOT(&map->pg_upmap_items)) {
1173 struct ceph_pg_mapping *pg =
1174 rb_entry(rb_first(&map->pg_upmap_items),
1175 struct ceph_pg_mapping, node);
1176 rb_erase(&pg->node, &map->pg_upmap_items);
1179 while (!RB_EMPTY_ROOT(&map->pg_pools)) {
1180 struct ceph_pg_pool_info *pi =
1181 rb_entry(rb_first(&map->pg_pools),
1182 struct ceph_pg_pool_info, node);
1183 __remove_pg_pool(&map->pg_pools, pi);
1185 kvfree(map->osd_state);
1186 kvfree(map->osd_weight);
1187 kvfree(map->osd_addr);
1188 kvfree(map->osd_primary_affinity);
1193 * Adjust max_osd value, (re)allocate arrays.
1195 * The new elements are properly initialized.
1197 static int osdmap_set_max_osd(struct ceph_osdmap *map, u32 max)
1201 struct ceph_entity_addr *addr;
1205 dout("%s old %u new %u\n", __func__, map->max_osd, max);
1206 if (max == map->max_osd)
1209 state = kvmalloc(array_size(max, sizeof(*state)), GFP_NOFS);
1210 weight = kvmalloc(array_size(max, sizeof(*weight)), GFP_NOFS);
1211 addr = kvmalloc(array_size(max, sizeof(*addr)), GFP_NOFS);
1212 if (!state || !weight || !addr) {
1219 to_copy = min(map->max_osd, max);
1220 if (map->osd_state) {
1221 memcpy(state, map->osd_state, to_copy * sizeof(*state));
1222 memcpy(weight, map->osd_weight, to_copy * sizeof(*weight));
1223 memcpy(addr, map->osd_addr, to_copy * sizeof(*addr));
1224 kvfree(map->osd_state);
1225 kvfree(map->osd_weight);
1226 kvfree(map->osd_addr);
1229 map->osd_state = state;
1230 map->osd_weight = weight;
1231 map->osd_addr = addr;
1232 for (i = map->max_osd; i < max; i++) {
1233 map->osd_state[i] = 0;
1234 map->osd_weight[i] = CEPH_OSD_OUT;
1235 memset(map->osd_addr + i, 0, sizeof(*map->osd_addr));
1238 if (map->osd_primary_affinity) {
1241 affinity = kvmalloc(array_size(max, sizeof(*affinity)),
1246 memcpy(affinity, map->osd_primary_affinity,
1247 to_copy * sizeof(*affinity));
1248 kvfree(map->osd_primary_affinity);
1250 map->osd_primary_affinity = affinity;
1251 for (i = map->max_osd; i < max; i++)
1252 map->osd_primary_affinity[i] =
1253 CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1261 static int osdmap_set_crush(struct ceph_osdmap *map, struct crush_map *crush)
1263 struct crush_work *work;
1266 return PTR_ERR(crush);
1268 work = alloc_workspace(crush);
1270 crush_destroy(crush);
1275 crush_destroy(map->crush);
1276 cleanup_workspace_manager(&map->crush_wsm);
1278 add_initial_workspace(&map->crush_wsm, work);
1282 #define OSDMAP_WRAPPER_COMPAT_VER 7
1283 #define OSDMAP_CLIENT_DATA_COMPAT_VER 1
1286 * Return 0 or error. On success, *v is set to 0 for old (v6) osdmaps,
1287 * to struct_v of the client_data section for new (v7 and above)
1290 static int get_osdmap_client_data_v(void **p, void *end,
1291 const char *prefix, u8 *v)
1295 ceph_decode_8_safe(p, end, struct_v, e_inval);
1296 if (struct_v >= 7) {
1299 ceph_decode_8_safe(p, end, struct_compat, e_inval);
1300 if (struct_compat > OSDMAP_WRAPPER_COMPAT_VER) {
1301 pr_warn("got v %d cv %d > %d of %s ceph_osdmap\n",
1302 struct_v, struct_compat,
1303 OSDMAP_WRAPPER_COMPAT_VER, prefix);
1306 *p += 4; /* ignore wrapper struct_len */
1308 ceph_decode_8_safe(p, end, struct_v, e_inval);
1309 ceph_decode_8_safe(p, end, struct_compat, e_inval);
1310 if (struct_compat > OSDMAP_CLIENT_DATA_COMPAT_VER) {
1311 pr_warn("got v %d cv %d > %d of %s ceph_osdmap client data\n",
1312 struct_v, struct_compat,
1313 OSDMAP_CLIENT_DATA_COMPAT_VER, prefix);
1316 *p += 4; /* ignore client data struct_len */
1321 ceph_decode_16_safe(p, end, version, e_inval);
1323 pr_warn("got v %d < 6 of %s ceph_osdmap\n",
1328 /* old osdmap encoding */
1339 static int __decode_pools(void **p, void *end, struct ceph_osdmap *map,
1344 ceph_decode_32_safe(p, end, n, e_inval);
1346 struct ceph_pg_pool_info *pi;
1350 ceph_decode_64_safe(p, end, pool, e_inval);
1352 pi = lookup_pg_pool(&map->pg_pools, pool);
1353 if (!incremental || !pi) {
1354 pi = kzalloc(sizeof(*pi), GFP_NOFS);
1358 RB_CLEAR_NODE(&pi->node);
1361 if (!__insert_pg_pool(&map->pg_pools, pi)) {
1367 ret = decode_pool(p, end, pi);
1378 static int decode_pools(void **p, void *end, struct ceph_osdmap *map)
1380 return __decode_pools(p, end, map, false);
1383 static int decode_new_pools(void **p, void *end, struct ceph_osdmap *map)
1385 return __decode_pools(p, end, map, true);
1388 typedef struct ceph_pg_mapping *(*decode_mapping_fn_t)(void **, void *, bool);
1390 static int decode_pg_mapping(void **p, void *end, struct rb_root *mapping_root,
1391 decode_mapping_fn_t fn, bool incremental)
1395 WARN_ON(!incremental && !fn);
1397 ceph_decode_32_safe(p, end, n, e_inval);
1399 struct ceph_pg_mapping *pg;
1400 struct ceph_pg pgid;
1403 ret = ceph_decode_pgid(p, end, &pgid);
1407 pg = lookup_pg_mapping(mapping_root, &pgid);
1409 WARN_ON(!incremental);
1410 erase_pg_mapping(mapping_root, pg);
1411 free_pg_mapping(pg);
1415 pg = fn(p, end, incremental);
1420 pg->pgid = pgid; /* struct */
1421 insert_pg_mapping(mapping_root, pg);
1432 static struct ceph_pg_mapping *__decode_pg_temp(void **p, void *end,
1435 struct ceph_pg_mapping *pg;
1438 ceph_decode_32_safe(p, end, len, e_inval);
1439 if (len == 0 && incremental)
1440 return NULL; /* new_pg_temp: [] to remove */
1441 if (len > (SIZE_MAX - sizeof(*pg)) / sizeof(u32))
1442 return ERR_PTR(-EINVAL);
1444 ceph_decode_need(p, end, len * sizeof(u32), e_inval);
1445 pg = alloc_pg_mapping(len * sizeof(u32));
1447 return ERR_PTR(-ENOMEM);
1449 pg->pg_temp.len = len;
1450 for (i = 0; i < len; i++)
1451 pg->pg_temp.osds[i] = ceph_decode_32(p);
1456 return ERR_PTR(-EINVAL);
1459 static int decode_pg_temp(void **p, void *end, struct ceph_osdmap *map)
1461 return decode_pg_mapping(p, end, &map->pg_temp, __decode_pg_temp,
1465 static int decode_new_pg_temp(void **p, void *end, struct ceph_osdmap *map)
1467 return decode_pg_mapping(p, end, &map->pg_temp, __decode_pg_temp,
1471 static struct ceph_pg_mapping *__decode_primary_temp(void **p, void *end,
1474 struct ceph_pg_mapping *pg;
1477 ceph_decode_32_safe(p, end, osd, e_inval);
1478 if (osd == (u32)-1 && incremental)
1479 return NULL; /* new_primary_temp: -1 to remove */
1481 pg = alloc_pg_mapping(0);
1483 return ERR_PTR(-ENOMEM);
1485 pg->primary_temp.osd = osd;
1489 return ERR_PTR(-EINVAL);
1492 static int decode_primary_temp(void **p, void *end, struct ceph_osdmap *map)
1494 return decode_pg_mapping(p, end, &map->primary_temp,
1495 __decode_primary_temp, false);
1498 static int decode_new_primary_temp(void **p, void *end,
1499 struct ceph_osdmap *map)
1501 return decode_pg_mapping(p, end, &map->primary_temp,
1502 __decode_primary_temp, true);
1505 u32 ceph_get_primary_affinity(struct ceph_osdmap *map, int osd)
1507 BUG_ON(osd >= map->max_osd);
1509 if (!map->osd_primary_affinity)
1510 return CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1512 return map->osd_primary_affinity[osd];
1515 static int set_primary_affinity(struct ceph_osdmap *map, int osd, u32 aff)
1517 BUG_ON(osd >= map->max_osd);
1519 if (!map->osd_primary_affinity) {
1522 map->osd_primary_affinity = kvmalloc(
1523 array_size(map->max_osd, sizeof(*map->osd_primary_affinity)),
1525 if (!map->osd_primary_affinity)
1528 for (i = 0; i < map->max_osd; i++)
1529 map->osd_primary_affinity[i] =
1530 CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1533 map->osd_primary_affinity[osd] = aff;
1538 static int decode_primary_affinity(void **p, void *end,
1539 struct ceph_osdmap *map)
1543 ceph_decode_32_safe(p, end, len, e_inval);
1545 kvfree(map->osd_primary_affinity);
1546 map->osd_primary_affinity = NULL;
1549 if (len != map->max_osd)
1552 ceph_decode_need(p, end, map->max_osd*sizeof(u32), e_inval);
1554 for (i = 0; i < map->max_osd; i++) {
1557 ret = set_primary_affinity(map, i, ceph_decode_32(p));
1568 static int decode_new_primary_affinity(void **p, void *end,
1569 struct ceph_osdmap *map)
1573 ceph_decode_32_safe(p, end, n, e_inval);
1578 ceph_decode_32_safe(p, end, osd, e_inval);
1579 ceph_decode_32_safe(p, end, aff, e_inval);
1581 ret = set_primary_affinity(map, osd, aff);
1585 osdmap_info(map, "osd%d primary-affinity 0x%x\n", osd, aff);
1594 static struct ceph_pg_mapping *__decode_pg_upmap(void **p, void *end,
1597 return __decode_pg_temp(p, end, false);
1600 static int decode_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1602 return decode_pg_mapping(p, end, &map->pg_upmap, __decode_pg_upmap,
1606 static int decode_new_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1608 return decode_pg_mapping(p, end, &map->pg_upmap, __decode_pg_upmap,
1612 static int decode_old_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1614 return decode_pg_mapping(p, end, &map->pg_upmap, NULL, true);
1617 static struct ceph_pg_mapping *__decode_pg_upmap_items(void **p, void *end,
1620 struct ceph_pg_mapping *pg;
1623 ceph_decode_32_safe(p, end, len, e_inval);
1624 if (len > (SIZE_MAX - sizeof(*pg)) / (2 * sizeof(u32)))
1625 return ERR_PTR(-EINVAL);
1627 ceph_decode_need(p, end, 2 * len * sizeof(u32), e_inval);
1628 pg = alloc_pg_mapping(2 * len * sizeof(u32));
1630 return ERR_PTR(-ENOMEM);
1632 pg->pg_upmap_items.len = len;
1633 for (i = 0; i < len; i++) {
1634 pg->pg_upmap_items.from_to[i][0] = ceph_decode_32(p);
1635 pg->pg_upmap_items.from_to[i][1] = ceph_decode_32(p);
1641 return ERR_PTR(-EINVAL);
1644 static int decode_pg_upmap_items(void **p, void *end, struct ceph_osdmap *map)
1646 return decode_pg_mapping(p, end, &map->pg_upmap_items,
1647 __decode_pg_upmap_items, false);
1650 static int decode_new_pg_upmap_items(void **p, void *end,
1651 struct ceph_osdmap *map)
1653 return decode_pg_mapping(p, end, &map->pg_upmap_items,
1654 __decode_pg_upmap_items, true);
1657 static int decode_old_pg_upmap_items(void **p, void *end,
1658 struct ceph_osdmap *map)
1660 return decode_pg_mapping(p, end, &map->pg_upmap_items, NULL, true);
1664 * decode a full map.
1666 static int osdmap_decode(void **p, void *end, bool msgr2,
1667 struct ceph_osdmap *map)
1676 dout("%s %p to %p len %d\n", __func__, *p, end, (int)(end - *p));
1678 err = get_osdmap_client_data_v(p, end, "full", &struct_v);
1682 /* fsid, epoch, created, modified */
1683 ceph_decode_need(p, end, sizeof(map->fsid) + sizeof(u32) +
1684 sizeof(map->created) + sizeof(map->modified), e_inval);
1685 ceph_decode_copy(p, &map->fsid, sizeof(map->fsid));
1686 epoch = map->epoch = ceph_decode_32(p);
1687 ceph_decode_copy(p, &map->created, sizeof(map->created));
1688 ceph_decode_copy(p, &map->modified, sizeof(map->modified));
1691 err = decode_pools(p, end, map);
1696 err = decode_pool_names(p, end, map);
1700 ceph_decode_32_safe(p, end, map->pool_max, e_inval);
1702 ceph_decode_32_safe(p, end, map->flags, e_inval);
1705 ceph_decode_32_safe(p, end, max, e_inval);
1707 /* (re)alloc osd arrays */
1708 err = osdmap_set_max_osd(map, max);
1712 /* osd_state, osd_weight, osd_addrs->client_addr */
1713 ceph_decode_need(p, end, 3*sizeof(u32) +
1714 map->max_osd*(struct_v >= 5 ? sizeof(u32) :
1716 sizeof(*map->osd_weight), e_inval);
1717 if (ceph_decode_32(p) != map->max_osd)
1720 if (struct_v >= 5) {
1721 for (i = 0; i < map->max_osd; i++)
1722 map->osd_state[i] = ceph_decode_32(p);
1724 for (i = 0; i < map->max_osd; i++)
1725 map->osd_state[i] = ceph_decode_8(p);
1728 if (ceph_decode_32(p) != map->max_osd)
1731 for (i = 0; i < map->max_osd; i++)
1732 map->osd_weight[i] = ceph_decode_32(p);
1734 if (ceph_decode_32(p) != map->max_osd)
1737 for (i = 0; i < map->max_osd; i++) {
1738 struct ceph_entity_addr *addr = &map->osd_addr[i];
1741 err = ceph_decode_entity_addrvec(p, end, msgr2, addr);
1743 err = ceph_decode_entity_addr(p, end, addr);
1747 dout("%s osd%d addr %s\n", __func__, i, ceph_pr_addr(addr));
1751 err = decode_pg_temp(p, end, map);
1756 if (struct_v >= 1) {
1757 err = decode_primary_temp(p, end, map);
1762 /* primary_affinity */
1763 if (struct_v >= 2) {
1764 err = decode_primary_affinity(p, end, map);
1768 WARN_ON(map->osd_primary_affinity);
1772 ceph_decode_32_safe(p, end, len, e_inval);
1773 err = osdmap_set_crush(map, crush_decode(*p, min(*p + len, end)));
1778 if (struct_v >= 3) {
1779 /* erasure_code_profiles */
1780 ceph_decode_skip_map_of_map(p, end, string, string, string,
1784 if (struct_v >= 4) {
1785 err = decode_pg_upmap(p, end, map);
1789 err = decode_pg_upmap_items(p, end, map);
1793 WARN_ON(!RB_EMPTY_ROOT(&map->pg_upmap));
1794 WARN_ON(!RB_EMPTY_ROOT(&map->pg_upmap_items));
1797 /* ignore the rest */
1800 dout("full osdmap epoch %d max_osd %d\n", map->epoch, map->max_osd);
1806 pr_err("corrupt full osdmap (%d) epoch %d off %d (%p of %p-%p)\n",
1807 err, epoch, (int)(*p - start), *p, start, end);
1808 print_hex_dump(KERN_DEBUG, "osdmap: ",
1809 DUMP_PREFIX_OFFSET, 16, 1,
1810 start, end - start, true);
1815 * Allocate and decode a full map.
1817 struct ceph_osdmap *ceph_osdmap_decode(void **p, void *end, bool msgr2)
1819 struct ceph_osdmap *map;
1822 map = ceph_osdmap_alloc();
1824 return ERR_PTR(-ENOMEM);
1826 ret = osdmap_decode(p, end, msgr2, map);
1828 ceph_osdmap_destroy(map);
1829 return ERR_PTR(ret);
1836 * Encoding order is (new_up_client, new_state, new_weight). Need to
1837 * apply in the (new_weight, new_state, new_up_client) order, because
1838 * an incremental map may look like e.g.
1840 * new_up_client: { osd=6, addr=... } # set osd_state and addr
1841 * new_state: { osd=6, xorstate=EXISTS } # clear osd_state
1843 static int decode_new_up_state_weight(void **p, void *end, u8 struct_v,
1844 bool msgr2, struct ceph_osdmap *map)
1846 void *new_up_client;
1848 void *new_weight_end;
1854 ceph_decode_32_safe(p, end, len, e_inval);
1855 for (i = 0; i < len; ++i) {
1856 struct ceph_entity_addr addr;
1858 ceph_decode_skip_32(p, end, e_inval);
1860 ret = ceph_decode_entity_addrvec(p, end, msgr2, &addr);
1862 ret = ceph_decode_entity_addr(p, end, &addr);
1868 ceph_decode_32_safe(p, end, len, e_inval);
1869 len *= sizeof(u32) + (struct_v >= 5 ? sizeof(u32) : sizeof(u8));
1870 ceph_decode_need(p, end, len, e_inval);
1874 ceph_decode_32_safe(p, end, len, e_inval);
1879 ceph_decode_need(p, end, 2*sizeof(u32), e_inval);
1880 osd = ceph_decode_32(p);
1881 w = ceph_decode_32(p);
1882 BUG_ON(osd >= map->max_osd);
1883 osdmap_info(map, "osd%d weight 0x%x %s\n", osd, w,
1884 w == CEPH_OSD_IN ? "(in)" :
1885 (w == CEPH_OSD_OUT ? "(out)" : ""));
1886 map->osd_weight[osd] = w;
1889 * If we are marking in, set the EXISTS, and clear the
1890 * AUTOOUT and NEW bits.
1893 map->osd_state[osd] |= CEPH_OSD_EXISTS;
1894 map->osd_state[osd] &= ~(CEPH_OSD_AUTOOUT |
1898 new_weight_end = *p;
1900 /* new_state (up/down) */
1902 len = ceph_decode_32(p);
1907 osd = ceph_decode_32(p);
1909 xorstate = ceph_decode_32(p);
1911 xorstate = ceph_decode_8(p);
1913 xorstate = CEPH_OSD_UP;
1914 BUG_ON(osd >= map->max_osd);
1915 if ((map->osd_state[osd] & CEPH_OSD_UP) &&
1916 (xorstate & CEPH_OSD_UP))
1917 osdmap_info(map, "osd%d down\n", osd);
1918 if ((map->osd_state[osd] & CEPH_OSD_EXISTS) &&
1919 (xorstate & CEPH_OSD_EXISTS)) {
1920 osdmap_info(map, "osd%d does not exist\n", osd);
1921 ret = set_primary_affinity(map, osd,
1922 CEPH_OSD_DEFAULT_PRIMARY_AFFINITY);
1925 memset(map->osd_addr + osd, 0, sizeof(*map->osd_addr));
1926 map->osd_state[osd] = 0;
1928 map->osd_state[osd] ^= xorstate;
1934 len = ceph_decode_32(p);
1937 struct ceph_entity_addr addr;
1939 osd = ceph_decode_32(p);
1940 BUG_ON(osd >= map->max_osd);
1942 ret = ceph_decode_entity_addrvec(p, end, msgr2, &addr);
1944 ret = ceph_decode_entity_addr(p, end, &addr);
1948 dout("%s osd%d addr %s\n", __func__, osd, ceph_pr_addr(&addr));
1950 osdmap_info(map, "osd%d up\n", osd);
1951 map->osd_state[osd] |= CEPH_OSD_EXISTS | CEPH_OSD_UP;
1952 map->osd_addr[osd] = addr;
1955 *p = new_weight_end;
1963 * decode and apply an incremental map update.
1965 struct ceph_osdmap *osdmap_apply_incremental(void **p, void *end, bool msgr2,
1966 struct ceph_osdmap *map)
1968 struct ceph_fsid fsid;
1970 struct ceph_timespec modified;
1974 __s32 new_flags, max;
1979 dout("%s %p to %p len %d\n", __func__, *p, end, (int)(end - *p));
1981 err = get_osdmap_client_data_v(p, end, "inc", &struct_v);
1985 /* fsid, epoch, modified, new_pool_max, new_flags */
1986 ceph_decode_need(p, end, sizeof(fsid) + sizeof(u32) + sizeof(modified) +
1987 sizeof(u64) + sizeof(u32), e_inval);
1988 ceph_decode_copy(p, &fsid, sizeof(fsid));
1989 epoch = ceph_decode_32(p);
1990 BUG_ON(epoch != map->epoch+1);
1991 ceph_decode_copy(p, &modified, sizeof(modified));
1992 new_pool_max = ceph_decode_64(p);
1993 new_flags = ceph_decode_32(p);
1996 ceph_decode_32_safe(p, end, len, e_inval);
1998 dout("apply_incremental full map len %d, %p to %p\n",
2000 return ceph_osdmap_decode(p, min(*p+len, end), msgr2);
2004 ceph_decode_32_safe(p, end, len, e_inval);
2006 err = osdmap_set_crush(map,
2007 crush_decode(*p, min(*p + len, end)));
2015 map->flags = new_flags;
2016 if (new_pool_max >= 0)
2017 map->pool_max = new_pool_max;
2020 ceph_decode_32_safe(p, end, max, e_inval);
2022 err = osdmap_set_max_osd(map, max);
2028 map->modified = modified;
2031 err = decode_new_pools(p, end, map);
2035 /* new_pool_names */
2036 err = decode_pool_names(p, end, map);
2041 ceph_decode_32_safe(p, end, len, e_inval);
2043 struct ceph_pg_pool_info *pi;
2045 ceph_decode_64_safe(p, end, pool, e_inval);
2046 pi = lookup_pg_pool(&map->pg_pools, pool);
2048 __remove_pg_pool(&map->pg_pools, pi);
2051 /* new_up_client, new_state, new_weight */
2052 err = decode_new_up_state_weight(p, end, struct_v, msgr2, map);
2057 err = decode_new_pg_temp(p, end, map);
2061 /* new_primary_temp */
2062 if (struct_v >= 1) {
2063 err = decode_new_primary_temp(p, end, map);
2068 /* new_primary_affinity */
2069 if (struct_v >= 2) {
2070 err = decode_new_primary_affinity(p, end, map);
2075 if (struct_v >= 3) {
2076 /* new_erasure_code_profiles */
2077 ceph_decode_skip_map_of_map(p, end, string, string, string,
2079 /* old_erasure_code_profiles */
2080 ceph_decode_skip_set(p, end, string, e_inval);
2083 if (struct_v >= 4) {
2084 err = decode_new_pg_upmap(p, end, map);
2088 err = decode_old_pg_upmap(p, end, map);
2092 err = decode_new_pg_upmap_items(p, end, map);
2096 err = decode_old_pg_upmap_items(p, end, map);
2101 /* ignore the rest */
2104 dout("inc osdmap epoch %d max_osd %d\n", map->epoch, map->max_osd);
2110 pr_err("corrupt inc osdmap (%d) epoch %d off %d (%p of %p-%p)\n",
2111 err, epoch, (int)(*p - start), *p, start, end);
2112 print_hex_dump(KERN_DEBUG, "osdmap: ",
2113 DUMP_PREFIX_OFFSET, 16, 1,
2114 start, end - start, true);
2115 return ERR_PTR(err);
2118 void ceph_oloc_copy(struct ceph_object_locator *dest,
2119 const struct ceph_object_locator *src)
2121 ceph_oloc_destroy(dest);
2123 dest->pool = src->pool;
2125 dest->pool_ns = ceph_get_string(src->pool_ns);
2127 dest->pool_ns = NULL;
2129 EXPORT_SYMBOL(ceph_oloc_copy);
2131 void ceph_oloc_destroy(struct ceph_object_locator *oloc)
2133 ceph_put_string(oloc->pool_ns);
2135 EXPORT_SYMBOL(ceph_oloc_destroy);
2137 void ceph_oid_copy(struct ceph_object_id *dest,
2138 const struct ceph_object_id *src)
2140 ceph_oid_destroy(dest);
2142 if (src->name != src->inline_name) {
2143 /* very rare, see ceph_object_id definition */
2144 dest->name = kmalloc(src->name_len + 1,
2145 GFP_NOIO | __GFP_NOFAIL);
2147 dest->name = dest->inline_name;
2149 memcpy(dest->name, src->name, src->name_len + 1);
2150 dest->name_len = src->name_len;
2152 EXPORT_SYMBOL(ceph_oid_copy);
2154 static __printf(2, 0)
2155 int oid_printf_vargs(struct ceph_object_id *oid, const char *fmt, va_list ap)
2159 WARN_ON(!ceph_oid_empty(oid));
2161 len = vsnprintf(oid->inline_name, sizeof(oid->inline_name), fmt, ap);
2162 if (len >= sizeof(oid->inline_name))
2165 oid->name_len = len;
2170 * If oid doesn't fit into inline buffer, BUG.
2172 void ceph_oid_printf(struct ceph_object_id *oid, const char *fmt, ...)
2177 BUG_ON(oid_printf_vargs(oid, fmt, ap));
2180 EXPORT_SYMBOL(ceph_oid_printf);
2182 static __printf(3, 0)
2183 int oid_aprintf_vargs(struct ceph_object_id *oid, gfp_t gfp,
2184 const char *fmt, va_list ap)
2190 len = oid_printf_vargs(oid, fmt, aq);
2194 char *external_name;
2196 external_name = kmalloc(len + 1, gfp);
2200 oid->name = external_name;
2201 WARN_ON(vsnprintf(oid->name, len + 1, fmt, ap) != len);
2202 oid->name_len = len;
2209 * If oid doesn't fit into inline buffer, allocate.
2211 int ceph_oid_aprintf(struct ceph_object_id *oid, gfp_t gfp,
2212 const char *fmt, ...)
2218 ret = oid_aprintf_vargs(oid, gfp, fmt, ap);
2223 EXPORT_SYMBOL(ceph_oid_aprintf);
2225 void ceph_oid_destroy(struct ceph_object_id *oid)
2227 if (oid->name != oid->inline_name)
2230 EXPORT_SYMBOL(ceph_oid_destroy);
2235 static bool __osds_equal(const struct ceph_osds *lhs,
2236 const struct ceph_osds *rhs)
2238 if (lhs->size == rhs->size &&
2239 !memcmp(lhs->osds, rhs->osds, rhs->size * sizeof(rhs->osds[0])))
2248 static bool osds_equal(const struct ceph_osds *lhs,
2249 const struct ceph_osds *rhs)
2251 if (__osds_equal(lhs, rhs) &&
2252 lhs->primary == rhs->primary)
2258 static bool osds_valid(const struct ceph_osds *set)
2261 if (set->size > 0 && set->primary >= 0)
2264 /* empty can_shift_osds set */
2265 if (!set->size && set->primary == -1)
2268 /* empty !can_shift_osds set - all NONE */
2269 if (set->size > 0 && set->primary == -1) {
2272 for (i = 0; i < set->size; i++) {
2273 if (set->osds[i] != CRUSH_ITEM_NONE)
2283 void ceph_osds_copy(struct ceph_osds *dest, const struct ceph_osds *src)
2285 memcpy(dest->osds, src->osds, src->size * sizeof(src->osds[0]));
2286 dest->size = src->size;
2287 dest->primary = src->primary;
2290 bool ceph_pg_is_split(const struct ceph_pg *pgid, u32 old_pg_num,
2293 int old_bits = calc_bits_of(old_pg_num);
2294 int old_mask = (1 << old_bits) - 1;
2297 WARN_ON(pgid->seed >= old_pg_num);
2298 if (new_pg_num <= old_pg_num)
2301 for (n = 1; ; n++) {
2302 int next_bit = n << (old_bits - 1);
2303 u32 s = next_bit | pgid->seed;
2305 if (s < old_pg_num || s == pgid->seed)
2307 if (s >= new_pg_num)
2310 s = ceph_stable_mod(s, old_pg_num, old_mask);
2311 if (s == pgid->seed)
2318 bool ceph_is_new_interval(const struct ceph_osds *old_acting,
2319 const struct ceph_osds *new_acting,
2320 const struct ceph_osds *old_up,
2321 const struct ceph_osds *new_up,
2328 bool old_sort_bitwise,
2329 bool new_sort_bitwise,
2330 bool old_recovery_deletes,
2331 bool new_recovery_deletes,
2332 const struct ceph_pg *pgid)
2334 return !osds_equal(old_acting, new_acting) ||
2335 !osds_equal(old_up, new_up) ||
2336 old_size != new_size ||
2337 old_min_size != new_min_size ||
2338 ceph_pg_is_split(pgid, old_pg_num, new_pg_num) ||
2339 old_sort_bitwise != new_sort_bitwise ||
2340 old_recovery_deletes != new_recovery_deletes;
2343 static int calc_pg_rank(int osd, const struct ceph_osds *acting)
2347 for (i = 0; i < acting->size; i++) {
2348 if (acting->osds[i] == osd)
2355 static bool primary_changed(const struct ceph_osds *old_acting,
2356 const struct ceph_osds *new_acting)
2358 if (!old_acting->size && !new_acting->size)
2359 return false; /* both still empty */
2361 if (!old_acting->size ^ !new_acting->size)
2362 return true; /* was empty, now not, or vice versa */
2364 if (old_acting->primary != new_acting->primary)
2365 return true; /* primary changed */
2367 if (calc_pg_rank(old_acting->primary, old_acting) !=
2368 calc_pg_rank(new_acting->primary, new_acting))
2371 return false; /* same primary (tho replicas may have changed) */
2374 bool ceph_osds_changed(const struct ceph_osds *old_acting,
2375 const struct ceph_osds *new_acting,
2378 if (primary_changed(old_acting, new_acting))
2381 if (any_change && !__osds_equal(old_acting, new_acting))
2388 * Map an object into a PG.
2390 * Should only be called with target_oid and target_oloc (as opposed to
2391 * base_oid and base_oloc), since tiering isn't taken into account.
2393 void __ceph_object_locator_to_pg(struct ceph_pg_pool_info *pi,
2394 const struct ceph_object_id *oid,
2395 const struct ceph_object_locator *oloc,
2396 struct ceph_pg *raw_pgid)
2398 WARN_ON(pi->id != oloc->pool);
2400 if (!oloc->pool_ns) {
2401 raw_pgid->pool = oloc->pool;
2402 raw_pgid->seed = ceph_str_hash(pi->object_hash, oid->name,
2404 dout("%s %s -> raw_pgid %llu.%x\n", __func__, oid->name,
2405 raw_pgid->pool, raw_pgid->seed);
2407 char stack_buf[256];
2408 char *buf = stack_buf;
2409 int nsl = oloc->pool_ns->len;
2410 size_t total = nsl + 1 + oid->name_len;
2412 if (total > sizeof(stack_buf))
2413 buf = kmalloc(total, GFP_NOIO | __GFP_NOFAIL);
2414 memcpy(buf, oloc->pool_ns->str, nsl);
2416 memcpy(buf + nsl + 1, oid->name, oid->name_len);
2417 raw_pgid->pool = oloc->pool;
2418 raw_pgid->seed = ceph_str_hash(pi->object_hash, buf, total);
2419 if (buf != stack_buf)
2421 dout("%s %s ns %.*s -> raw_pgid %llu.%x\n", __func__,
2422 oid->name, nsl, oloc->pool_ns->str,
2423 raw_pgid->pool, raw_pgid->seed);
2427 int ceph_object_locator_to_pg(struct ceph_osdmap *osdmap,
2428 const struct ceph_object_id *oid,
2429 const struct ceph_object_locator *oloc,
2430 struct ceph_pg *raw_pgid)
2432 struct ceph_pg_pool_info *pi;
2434 pi = ceph_pg_pool_by_id(osdmap, oloc->pool);
2438 __ceph_object_locator_to_pg(pi, oid, oloc, raw_pgid);
2441 EXPORT_SYMBOL(ceph_object_locator_to_pg);
2444 * Map a raw PG (full precision ps) into an actual PG.
2446 static void raw_pg_to_pg(struct ceph_pg_pool_info *pi,
2447 const struct ceph_pg *raw_pgid,
2448 struct ceph_pg *pgid)
2450 pgid->pool = raw_pgid->pool;
2451 pgid->seed = ceph_stable_mod(raw_pgid->seed, pi->pg_num,
2456 * Map a raw PG (full precision ps) into a placement ps (placement
2457 * seed). Include pool id in that value so that different pools don't
2458 * use the same seeds.
2460 static u32 raw_pg_to_pps(struct ceph_pg_pool_info *pi,
2461 const struct ceph_pg *raw_pgid)
2463 if (pi->flags & CEPH_POOL_FLAG_HASHPSPOOL) {
2464 /* hash pool id and seed so that pool PGs do not overlap */
2465 return crush_hash32_2(CRUSH_HASH_RJENKINS1,
2466 ceph_stable_mod(raw_pgid->seed,
2472 * legacy behavior: add ps and pool together. this is
2473 * not a great approach because the PGs from each pool
2474 * will overlap on top of each other: 0.5 == 1.4 ==
2477 return ceph_stable_mod(raw_pgid->seed, pi->pgp_num,
2479 (unsigned)raw_pgid->pool;
2484 * Magic value used for a "default" fallback choose_args, used if the
2485 * crush_choose_arg_map passed to do_crush() does not exist. If this
2486 * also doesn't exist, fall back to canonical weights.
2488 #define CEPH_DEFAULT_CHOOSE_ARGS -1
2490 static int do_crush(struct ceph_osdmap *map, int ruleno, int x,
2491 int *result, int result_max,
2492 const __u32 *weight, int weight_max,
2493 s64 choose_args_index)
2495 struct crush_choose_arg_map *arg_map;
2496 struct crush_work *work;
2499 BUG_ON(result_max > CEPH_PG_MAX_SIZE);
2501 arg_map = lookup_choose_arg_map(&map->crush->choose_args,
2504 arg_map = lookup_choose_arg_map(&map->crush->choose_args,
2505 CEPH_DEFAULT_CHOOSE_ARGS);
2507 work = get_workspace(&map->crush_wsm, map->crush);
2508 r = crush_do_rule(map->crush, ruleno, x, result, result_max,
2509 weight, weight_max, work,
2510 arg_map ? arg_map->args : NULL);
2511 put_workspace(&map->crush_wsm, work);
2515 static void remove_nonexistent_osds(struct ceph_osdmap *osdmap,
2516 struct ceph_pg_pool_info *pi,
2517 struct ceph_osds *set)
2521 if (ceph_can_shift_osds(pi)) {
2525 for (i = 0; i < set->size; i++) {
2526 if (!ceph_osd_exists(osdmap, set->osds[i])) {
2531 set->osds[i - removed] = set->osds[i];
2533 set->size -= removed;
2535 /* set dne devices to NONE */
2536 for (i = 0; i < set->size; i++) {
2537 if (!ceph_osd_exists(osdmap, set->osds[i]))
2538 set->osds[i] = CRUSH_ITEM_NONE;
2544 * Calculate raw set (CRUSH output) for given PG and filter out
2545 * nonexistent OSDs. ->primary is undefined for a raw set.
2547 * Placement seed (CRUSH input) is returned through @ppps.
2549 static void pg_to_raw_osds(struct ceph_osdmap *osdmap,
2550 struct ceph_pg_pool_info *pi,
2551 const struct ceph_pg *raw_pgid,
2552 struct ceph_osds *raw,
2555 u32 pps = raw_pg_to_pps(pi, raw_pgid);
2559 ceph_osds_init(raw);
2563 ruleno = crush_find_rule(osdmap->crush, pi->crush_ruleset, pi->type,
2566 pr_err("no crush rule: pool %lld ruleset %d type %d size %d\n",
2567 pi->id, pi->crush_ruleset, pi->type, pi->size);
2571 if (pi->size > ARRAY_SIZE(raw->osds)) {
2572 pr_err_ratelimited("pool %lld ruleset %d type %d too wide: size %d > %zu\n",
2573 pi->id, pi->crush_ruleset, pi->type, pi->size,
2574 ARRAY_SIZE(raw->osds));
2578 len = do_crush(osdmap, ruleno, pps, raw->osds, pi->size,
2579 osdmap->osd_weight, osdmap->max_osd, pi->id);
2581 pr_err("error %d from crush rule %d: pool %lld ruleset %d type %d size %d\n",
2582 len, ruleno, pi->id, pi->crush_ruleset, pi->type,
2588 remove_nonexistent_osds(osdmap, pi, raw);
2591 /* apply pg_upmap[_items] mappings */
2592 static void apply_upmap(struct ceph_osdmap *osdmap,
2593 const struct ceph_pg *pgid,
2594 struct ceph_osds *raw)
2596 struct ceph_pg_mapping *pg;
2599 pg = lookup_pg_mapping(&osdmap->pg_upmap, pgid);
2601 /* make sure targets aren't marked out */
2602 for (i = 0; i < pg->pg_upmap.len; i++) {
2603 int osd = pg->pg_upmap.osds[i];
2605 if (osd != CRUSH_ITEM_NONE &&
2606 osd < osdmap->max_osd &&
2607 osdmap->osd_weight[osd] == 0) {
2608 /* reject/ignore explicit mapping */
2612 for (i = 0; i < pg->pg_upmap.len; i++)
2613 raw->osds[i] = pg->pg_upmap.osds[i];
2614 raw->size = pg->pg_upmap.len;
2615 /* check and apply pg_upmap_items, if any */
2618 pg = lookup_pg_mapping(&osdmap->pg_upmap_items, pgid);
2621 * Note: this approach does not allow a bidirectional swap,
2622 * e.g., [[1,2],[2,1]] applied to [0,1,2] -> [0,2,1].
2624 for (i = 0; i < pg->pg_upmap_items.len; i++) {
2625 int from = pg->pg_upmap_items.from_to[i][0];
2626 int to = pg->pg_upmap_items.from_to[i][1];
2628 bool exists = false;
2630 /* make sure replacement doesn't already appear */
2631 for (j = 0; j < raw->size; j++) {
2632 int osd = raw->osds[j];
2638 /* ignore mapping if target is marked out */
2639 if (osd == from && pos < 0 &&
2640 !(to != CRUSH_ITEM_NONE &&
2641 to < osdmap->max_osd &&
2642 osdmap->osd_weight[to] == 0)) {
2646 if (!exists && pos >= 0)
2647 raw->osds[pos] = to;
2653 * Given raw set, calculate up set and up primary. By definition of an
2654 * up set, the result won't contain nonexistent or down OSDs.
2656 * This is done in-place - on return @set is the up set. If it's
2657 * empty, ->primary will remain undefined.
2659 static void raw_to_up_osds(struct ceph_osdmap *osdmap,
2660 struct ceph_pg_pool_info *pi,
2661 struct ceph_osds *set)
2665 /* ->primary is undefined for a raw set */
2666 BUG_ON(set->primary != -1);
2668 if (ceph_can_shift_osds(pi)) {
2672 for (i = 0; i < set->size; i++) {
2673 if (ceph_osd_is_down(osdmap, set->osds[i])) {
2678 set->osds[i - removed] = set->osds[i];
2680 set->size -= removed;
2682 set->primary = set->osds[0];
2684 /* set down/dne devices to NONE */
2685 for (i = set->size - 1; i >= 0; i--) {
2686 if (ceph_osd_is_down(osdmap, set->osds[i]))
2687 set->osds[i] = CRUSH_ITEM_NONE;
2689 set->primary = set->osds[i];
2694 static void apply_primary_affinity(struct ceph_osdmap *osdmap,
2695 struct ceph_pg_pool_info *pi,
2697 struct ceph_osds *up)
2703 * Do we have any non-default primary_affinity values for these
2706 if (!osdmap->osd_primary_affinity)
2709 for (i = 0; i < up->size; i++) {
2710 int osd = up->osds[i];
2712 if (osd != CRUSH_ITEM_NONE &&
2713 osdmap->osd_primary_affinity[osd] !=
2714 CEPH_OSD_DEFAULT_PRIMARY_AFFINITY) {
2722 * Pick the primary. Feed both the seed (for the pg) and the
2723 * osd into the hash/rng so that a proportional fraction of an
2724 * osd's pgs get rejected as primary.
2726 for (i = 0; i < up->size; i++) {
2727 int osd = up->osds[i];
2730 if (osd == CRUSH_ITEM_NONE)
2733 aff = osdmap->osd_primary_affinity[osd];
2734 if (aff < CEPH_OSD_MAX_PRIMARY_AFFINITY &&
2735 (crush_hash32_2(CRUSH_HASH_RJENKINS1,
2736 pps, osd) >> 16) >= aff) {
2738 * We chose not to use this primary. Note it
2739 * anyway as a fallback in case we don't pick
2740 * anyone else, but keep looking.
2752 up->primary = up->osds[pos];
2754 if (ceph_can_shift_osds(pi) && pos > 0) {
2755 /* move the new primary to the front */
2756 for (i = pos; i > 0; i--)
2757 up->osds[i] = up->osds[i - 1];
2758 up->osds[0] = up->primary;
2763 * Get pg_temp and primary_temp mappings for given PG.
2765 * Note that a PG may have none, only pg_temp, only primary_temp or
2766 * both pg_temp and primary_temp mappings. This means @temp isn't
2767 * always a valid OSD set on return: in the "only primary_temp" case,
2768 * @temp will have its ->primary >= 0 but ->size == 0.
2770 static void get_temp_osds(struct ceph_osdmap *osdmap,
2771 struct ceph_pg_pool_info *pi,
2772 const struct ceph_pg *pgid,
2773 struct ceph_osds *temp)
2775 struct ceph_pg_mapping *pg;
2778 ceph_osds_init(temp);
2781 pg = lookup_pg_mapping(&osdmap->pg_temp, pgid);
2783 for (i = 0; i < pg->pg_temp.len; i++) {
2784 if (ceph_osd_is_down(osdmap, pg->pg_temp.osds[i])) {
2785 if (ceph_can_shift_osds(pi))
2788 temp->osds[temp->size++] = CRUSH_ITEM_NONE;
2790 temp->osds[temp->size++] = pg->pg_temp.osds[i];
2794 /* apply pg_temp's primary */
2795 for (i = 0; i < temp->size; i++) {
2796 if (temp->osds[i] != CRUSH_ITEM_NONE) {
2797 temp->primary = temp->osds[i];
2804 pg = lookup_pg_mapping(&osdmap->primary_temp, pgid);
2806 temp->primary = pg->primary_temp.osd;
2810 * Map a PG to its acting set as well as its up set.
2812 * Acting set is used for data mapping purposes, while up set can be
2813 * recorded for detecting interval changes and deciding whether to
2816 void ceph_pg_to_up_acting_osds(struct ceph_osdmap *osdmap,
2817 struct ceph_pg_pool_info *pi,
2818 const struct ceph_pg *raw_pgid,
2819 struct ceph_osds *up,
2820 struct ceph_osds *acting)
2822 struct ceph_pg pgid;
2825 WARN_ON(pi->id != raw_pgid->pool);
2826 raw_pg_to_pg(pi, raw_pgid, &pgid);
2828 pg_to_raw_osds(osdmap, pi, raw_pgid, up, &pps);
2829 apply_upmap(osdmap, &pgid, up);
2830 raw_to_up_osds(osdmap, pi, up);
2831 apply_primary_affinity(osdmap, pi, pps, up);
2832 get_temp_osds(osdmap, pi, &pgid, acting);
2833 if (!acting->size) {
2834 memcpy(acting->osds, up->osds, up->size * sizeof(up->osds[0]));
2835 acting->size = up->size;
2836 if (acting->primary == -1)
2837 acting->primary = up->primary;
2839 WARN_ON(!osds_valid(up) || !osds_valid(acting));
2842 bool ceph_pg_to_primary_shard(struct ceph_osdmap *osdmap,
2843 struct ceph_pg_pool_info *pi,
2844 const struct ceph_pg *raw_pgid,
2845 struct ceph_spg *spgid)
2847 struct ceph_pg pgid;
2848 struct ceph_osds up, acting;
2851 WARN_ON(pi->id != raw_pgid->pool);
2852 raw_pg_to_pg(pi, raw_pgid, &pgid);
2854 if (ceph_can_shift_osds(pi)) {
2855 spgid->pgid = pgid; /* struct */
2856 spgid->shard = CEPH_SPG_NOSHARD;
2860 ceph_pg_to_up_acting_osds(osdmap, pi, &pgid, &up, &acting);
2861 for (i = 0; i < acting.size; i++) {
2862 if (acting.osds[i] == acting.primary) {
2863 spgid->pgid = pgid; /* struct */
2873 * Return acting primary for given PG, or -1 if none.
2875 int ceph_pg_to_acting_primary(struct ceph_osdmap *osdmap,
2876 const struct ceph_pg *raw_pgid)
2878 struct ceph_pg_pool_info *pi;
2879 struct ceph_osds up, acting;
2881 pi = ceph_pg_pool_by_id(osdmap, raw_pgid->pool);
2885 ceph_pg_to_up_acting_osds(osdmap, pi, raw_pgid, &up, &acting);
2886 return acting.primary;
2888 EXPORT_SYMBOL(ceph_pg_to_acting_primary);
2890 static struct crush_loc_node *alloc_crush_loc(size_t type_name_len,
2893 struct crush_loc_node *loc;
2895 loc = kmalloc(sizeof(*loc) + type_name_len + name_len + 2, GFP_NOIO);
2899 RB_CLEAR_NODE(&loc->cl_node);
2903 static void free_crush_loc(struct crush_loc_node *loc)
2905 WARN_ON(!RB_EMPTY_NODE(&loc->cl_node));
2910 static int crush_loc_compare(const struct crush_loc *loc1,
2911 const struct crush_loc *loc2)
2913 return strcmp(loc1->cl_type_name, loc2->cl_type_name) ?:
2914 strcmp(loc1->cl_name, loc2->cl_name);
2917 DEFINE_RB_FUNCS2(crush_loc, struct crush_loc_node, cl_loc, crush_loc_compare,
2918 RB_BYPTR, const struct crush_loc *, cl_node)
2921 * Parses a set of <bucket type name>':'<bucket name> pairs separated
2922 * by '|', e.g. "rack:foo1|rack:foo2|datacenter:bar".
2924 * Note that @crush_location is modified by strsep().
2926 int ceph_parse_crush_location(char *crush_location, struct rb_root *locs)
2928 struct crush_loc_node *loc;
2929 const char *type_name, *name, *colon;
2930 size_t type_name_len, name_len;
2932 dout("%s '%s'\n", __func__, crush_location);
2933 while ((type_name = strsep(&crush_location, "|"))) {
2934 colon = strchr(type_name, ':');
2938 type_name_len = colon - type_name;
2939 if (type_name_len == 0)
2943 name_len = strlen(name);
2947 loc = alloc_crush_loc(type_name_len, name_len);
2951 loc->cl_loc.cl_type_name = loc->cl_data;
2952 memcpy(loc->cl_loc.cl_type_name, type_name, type_name_len);
2953 loc->cl_loc.cl_type_name[type_name_len] = '\0';
2955 loc->cl_loc.cl_name = loc->cl_data + type_name_len + 1;
2956 memcpy(loc->cl_loc.cl_name, name, name_len);
2957 loc->cl_loc.cl_name[name_len] = '\0';
2959 if (!__insert_crush_loc(locs, loc)) {
2960 free_crush_loc(loc);
2964 dout("%s type_name '%s' name '%s'\n", __func__,
2965 loc->cl_loc.cl_type_name, loc->cl_loc.cl_name);
2971 int ceph_compare_crush_locs(struct rb_root *locs1, struct rb_root *locs2)
2973 struct rb_node *n1 = rb_first(locs1);
2974 struct rb_node *n2 = rb_first(locs2);
2977 for ( ; n1 && n2; n1 = rb_next(n1), n2 = rb_next(n2)) {
2978 struct crush_loc_node *loc1 =
2979 rb_entry(n1, struct crush_loc_node, cl_node);
2980 struct crush_loc_node *loc2 =
2981 rb_entry(n2, struct crush_loc_node, cl_node);
2983 ret = crush_loc_compare(&loc1->cl_loc, &loc2->cl_loc);
2995 void ceph_clear_crush_locs(struct rb_root *locs)
2997 while (!RB_EMPTY_ROOT(locs)) {
2998 struct crush_loc_node *loc =
2999 rb_entry(rb_first(locs), struct crush_loc_node, cl_node);
3001 erase_crush_loc(locs, loc);
3002 free_crush_loc(loc);
3009 static bool is_valid_crush_name(const char *name)
3012 if (!('a' <= *name && *name <= 'z') &&
3013 !('A' <= *name && *name <= 'Z') &&
3014 !('0' <= *name && *name <= '9') &&
3015 *name != '-' && *name != '_' && *name != '.')
3017 } while (*++name != '\0');
3023 * Gets the parent of an item. Returns its id (<0 because the
3024 * parent is always a bucket), type id (>0 for the same reason,
3025 * via @parent_type_id) and location (via @parent_loc). If no
3026 * parent, returns 0.
3028 * Does a linear search, as there are no parent pointers of any
3029 * kind. Note that the result is ambiguous for items that occur
3030 * multiple times in the map.
3032 static int get_immediate_parent(struct crush_map *c, int id,
3033 u16 *parent_type_id,
3034 struct crush_loc *parent_loc)
3036 struct crush_bucket *b;
3037 struct crush_name_node *type_cn, *cn;
3040 for (i = 0; i < c->max_buckets; i++) {
3045 /* ignore per-class shadow hierarchy */
3046 cn = lookup_crush_name(&c->names, b->id);
3047 if (!cn || !is_valid_crush_name(cn->cn_name))
3050 for (j = 0; j < b->size; j++) {
3051 if (b->items[j] != id)
3054 *parent_type_id = b->type;
3055 type_cn = lookup_crush_name(&c->type_names, b->type);
3056 parent_loc->cl_type_name = type_cn->cn_name;
3057 parent_loc->cl_name = cn->cn_name;
3062 return 0; /* no parent */
3066 * Calculates the locality/distance from an item to a client
3067 * location expressed in terms of CRUSH hierarchy as a set of
3068 * (bucket type name, bucket name) pairs. Specifically, looks
3069 * for the lowest-valued bucket type for which the location of
3070 * @id matches one of the locations in @locs, so for standard
3071 * bucket types (host = 1, rack = 3, datacenter = 8, zone = 9)
3072 * a matching host is closer than a matching rack and a matching
3073 * data center is closer than a matching zone.
3075 * Specifying multiple locations (a "multipath" location) such
3076 * as "rack=foo1 rack=foo2 datacenter=bar" is allowed -- @locs
3077 * is a multimap. The locality will be:
3079 * - 3 for OSDs in racks foo1 and foo2
3080 * - 8 for OSDs in data center bar
3081 * - -1 for all other OSDs
3083 * The lowest possible bucket type is 1, so the best locality
3084 * for an OSD is 1 (i.e. a matching host). Locality 0 would be
3087 int ceph_get_crush_locality(struct ceph_osdmap *osdmap, int id,
3088 struct rb_root *locs)
3090 struct crush_loc loc;
3094 * Instead of repeated get_immediate_parent() calls,
3095 * the location of @id could be obtained with a single
3096 * depth-first traversal.
3099 id = get_immediate_parent(osdmap->crush, id, &type_id, &loc);
3101 return -1; /* not local */
3103 if (lookup_crush_loc(locs, &loc))