libceph: use "do" in CRC-related Boolean variables
[platform/kernel/linux-rpi.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22
23 /*
24  * Ceph uses the messenger to exchange ceph_msg messages with other
25  * hosts in the system.  The messenger provides ordered and reliable
26  * delivery.  We tolerate TCP disconnects by reconnecting (with
27  * exponential backoff) in the case of a fault (disconnection, bad
28  * crc, protocol error).  Acks allow sent messages to be discarded by
29  * the sender.
30  */
31
32 /* static tag bytes (protocol control messages) */
33 static char tag_msg = CEPH_MSGR_TAG_MSG;
34 static char tag_ack = CEPH_MSGR_TAG_ACK;
35 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
36
37 #ifdef CONFIG_LOCKDEP
38 static struct lock_class_key socket_class;
39 #endif
40
41
42 static void queue_con(struct ceph_connection *con);
43 static void con_work(struct work_struct *);
44 static void ceph_fault(struct ceph_connection *con);
45
46 /*
47  * Nicely render a sockaddr as a string.  An array of formatted
48  * strings is used, to approximate reentrancy.
49  */
50 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
51 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
52 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
53 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
54
55 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
56 static atomic_t addr_str_seq = ATOMIC_INIT(0);
57
58 static struct page *zero_page;          /* used in certain error cases */
59 static void *zero_page_address;         /* kernel virtual addr of zero_page */
60
61 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
62 {
63         int i;
64         char *s;
65         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
66         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
67
68         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
69         s = addr_str[i];
70
71         switch (ss->ss_family) {
72         case AF_INET:
73                 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
74                          ntohs(in4->sin_port));
75                 break;
76
77         case AF_INET6:
78                 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
79                          ntohs(in6->sin6_port));
80                 break;
81
82         default:
83                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
84                          ss->ss_family);
85         }
86
87         return s;
88 }
89 EXPORT_SYMBOL(ceph_pr_addr);
90
91 static void encode_my_addr(struct ceph_messenger *msgr)
92 {
93         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
94         ceph_encode_addr(&msgr->my_enc_addr);
95 }
96
97 /*
98  * work queue for all reading and writing to/from the socket.
99  */
100 static struct workqueue_struct *ceph_msgr_wq;
101
102 void _ceph_msgr_exit(void)
103 {
104         if (ceph_msgr_wq) {
105                 destroy_workqueue(ceph_msgr_wq);
106                 ceph_msgr_wq = NULL;
107         }
108
109         BUG_ON(zero_page_address == NULL);
110         zero_page_address = NULL;
111
112         BUG_ON(zero_page == NULL);
113         kunmap(zero_page);
114         page_cache_release(zero_page);
115         zero_page = NULL;
116 }
117
118 int ceph_msgr_init(void)
119 {
120         BUG_ON(zero_page != NULL);
121         zero_page = ZERO_PAGE(0);
122         page_cache_get(zero_page);
123
124         BUG_ON(zero_page_address != NULL);
125         zero_page_address = kmap(zero_page);
126
127         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
128         if (ceph_msgr_wq)
129                 return 0;
130
131         pr_err("msgr_init failed to create workqueue\n");
132         _ceph_msgr_exit();
133
134         return -ENOMEM;
135 }
136 EXPORT_SYMBOL(ceph_msgr_init);
137
138 void ceph_msgr_exit(void)
139 {
140         BUG_ON(ceph_msgr_wq == NULL);
141
142         _ceph_msgr_exit();
143 }
144 EXPORT_SYMBOL(ceph_msgr_exit);
145
146 void ceph_msgr_flush(void)
147 {
148         flush_workqueue(ceph_msgr_wq);
149 }
150 EXPORT_SYMBOL(ceph_msgr_flush);
151
152
153 /*
154  * socket callback functions
155  */
156
157 /* data available on socket, or listen socket received a connect */
158 static void ceph_data_ready(struct sock *sk, int count_unused)
159 {
160         struct ceph_connection *con = sk->sk_user_data;
161
162         if (sk->sk_state != TCP_CLOSE_WAIT) {
163                 dout("ceph_data_ready on %p state = %lu, queueing work\n",
164                      con, con->state);
165                 queue_con(con);
166         }
167 }
168
169 /* socket has buffer space for writing */
170 static void ceph_write_space(struct sock *sk)
171 {
172         struct ceph_connection *con = sk->sk_user_data;
173
174         /* only queue to workqueue if there is data we want to write,
175          * and there is sufficient space in the socket buffer to accept
176          * more data.  clear SOCK_NOSPACE so that ceph_write_space()
177          * doesn't get called again until try_write() fills the socket
178          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
179          * and net/core/stream.c:sk_stream_write_space().
180          */
181         if (test_bit(WRITE_PENDING, &con->state)) {
182                 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
183                         dout("ceph_write_space %p queueing write work\n", con);
184                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
185                         queue_con(con);
186                 }
187         } else {
188                 dout("ceph_write_space %p nothing to write\n", con);
189         }
190 }
191
192 /* socket's state has changed */
193 static void ceph_state_change(struct sock *sk)
194 {
195         struct ceph_connection *con = sk->sk_user_data;
196
197         dout("ceph_state_change %p state = %lu sk_state = %u\n",
198              con, con->state, sk->sk_state);
199
200         if (test_bit(CLOSED, &con->state))
201                 return;
202
203         switch (sk->sk_state) {
204         case TCP_CLOSE:
205                 dout("ceph_state_change TCP_CLOSE\n");
206         case TCP_CLOSE_WAIT:
207                 dout("ceph_state_change TCP_CLOSE_WAIT\n");
208                 if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
209                         if (test_bit(CONNECTING, &con->state))
210                                 con->error_msg = "connection failed";
211                         else
212                                 con->error_msg = "socket closed";
213                         queue_con(con);
214                 }
215                 break;
216         case TCP_ESTABLISHED:
217                 dout("ceph_state_change TCP_ESTABLISHED\n");
218                 queue_con(con);
219                 break;
220         default:        /* Everything else is uninteresting */
221                 break;
222         }
223 }
224
225 /*
226  * set up socket callbacks
227  */
228 static void set_sock_callbacks(struct socket *sock,
229                                struct ceph_connection *con)
230 {
231         struct sock *sk = sock->sk;
232         sk->sk_user_data = con;
233         sk->sk_data_ready = ceph_data_ready;
234         sk->sk_write_space = ceph_write_space;
235         sk->sk_state_change = ceph_state_change;
236 }
237
238
239 /*
240  * socket helpers
241  */
242
243 /*
244  * initiate connection to a remote socket.
245  */
246 static int ceph_tcp_connect(struct ceph_connection *con)
247 {
248         struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
249         struct socket *sock;
250         int ret;
251
252         BUG_ON(con->sock);
253         ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
254                                IPPROTO_TCP, &sock);
255         if (ret)
256                 return ret;
257         sock->sk->sk_allocation = GFP_NOFS;
258
259 #ifdef CONFIG_LOCKDEP
260         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
261 #endif
262
263         set_sock_callbacks(sock, con);
264
265         dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
266
267         ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
268                                  O_NONBLOCK);
269         if (ret == -EINPROGRESS) {
270                 dout("connect %s EINPROGRESS sk_state = %u\n",
271                      ceph_pr_addr(&con->peer_addr.in_addr),
272                      sock->sk->sk_state);
273         } else if (ret < 0) {
274                 pr_err("connect %s error %d\n",
275                        ceph_pr_addr(&con->peer_addr.in_addr), ret);
276                 sock_release(sock);
277                 con->error_msg = "connect error";
278
279                 return ret;
280         }
281         con->sock = sock;
282
283         return 0;
284 }
285
286 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
287 {
288         struct kvec iov = {buf, len};
289         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
290         int r;
291
292         r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
293         if (r == -EAGAIN)
294                 r = 0;
295         return r;
296 }
297
298 /*
299  * write something.  @more is true if caller will be sending more data
300  * shortly.
301  */
302 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
303                      size_t kvlen, size_t len, int more)
304 {
305         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
306         int r;
307
308         if (more)
309                 msg.msg_flags |= MSG_MORE;
310         else
311                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
312
313         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
314         if (r == -EAGAIN)
315                 r = 0;
316         return r;
317 }
318
319
320 /*
321  * Shutdown/close the socket for the given connection.
322  */
323 static int con_close_socket(struct ceph_connection *con)
324 {
325         int rc;
326
327         dout("con_close_socket on %p sock %p\n", con, con->sock);
328         if (!con->sock)
329                 return 0;
330         set_bit(SOCK_CLOSED, &con->state);
331         rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
332         sock_release(con->sock);
333         con->sock = NULL;
334         clear_bit(SOCK_CLOSED, &con->state);
335         return rc;
336 }
337
338 /*
339  * Reset a connection.  Discard all incoming and outgoing messages
340  * and clear *_seq state.
341  */
342 static void ceph_msg_remove(struct ceph_msg *msg)
343 {
344         list_del_init(&msg->list_head);
345         ceph_msg_put(msg);
346 }
347 static void ceph_msg_remove_list(struct list_head *head)
348 {
349         while (!list_empty(head)) {
350                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
351                                                         list_head);
352                 ceph_msg_remove(msg);
353         }
354 }
355
356 static void reset_connection(struct ceph_connection *con)
357 {
358         /* reset connection, out_queue, msg_ and connect_seq */
359         /* discard existing out_queue and msg_seq */
360         ceph_msg_remove_list(&con->out_queue);
361         ceph_msg_remove_list(&con->out_sent);
362
363         if (con->in_msg) {
364                 ceph_msg_put(con->in_msg);
365                 con->in_msg = NULL;
366         }
367
368         con->connect_seq = 0;
369         con->out_seq = 0;
370         if (con->out_msg) {
371                 ceph_msg_put(con->out_msg);
372                 con->out_msg = NULL;
373         }
374         con->in_seq = 0;
375         con->in_seq_acked = 0;
376 }
377
378 /*
379  * mark a peer down.  drop any open connections.
380  */
381 void ceph_con_close(struct ceph_connection *con)
382 {
383         dout("con_close %p peer %s\n", con,
384              ceph_pr_addr(&con->peer_addr.in_addr));
385         set_bit(CLOSED, &con->state);  /* in case there's queued work */
386         clear_bit(STANDBY, &con->state);  /* avoid connect_seq bump */
387         clear_bit(LOSSYTX, &con->state);  /* so we retry next connect */
388         clear_bit(KEEPALIVE_PENDING, &con->state);
389         clear_bit(WRITE_PENDING, &con->state);
390         mutex_lock(&con->mutex);
391         reset_connection(con);
392         con->peer_global_seq = 0;
393         cancel_delayed_work(&con->work);
394         mutex_unlock(&con->mutex);
395         queue_con(con);
396 }
397 EXPORT_SYMBOL(ceph_con_close);
398
399 /*
400  * Reopen a closed connection, with a new peer address.
401  */
402 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
403 {
404         dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
405         set_bit(OPENING, &con->state);
406         clear_bit(CLOSED, &con->state);
407         memcpy(&con->peer_addr, addr, sizeof(*addr));
408         con->delay = 0;      /* reset backoff memory */
409         queue_con(con);
410 }
411 EXPORT_SYMBOL(ceph_con_open);
412
413 /*
414  * return true if this connection ever successfully opened
415  */
416 bool ceph_con_opened(struct ceph_connection *con)
417 {
418         return con->connect_seq > 0;
419 }
420
421 /*
422  * generic get/put
423  */
424 struct ceph_connection *ceph_con_get(struct ceph_connection *con)
425 {
426         int nref = __atomic_add_unless(&con->nref, 1, 0);
427
428         dout("con_get %p nref = %d -> %d\n", con, nref, nref + 1);
429
430         return nref ? con : NULL;
431 }
432
433 void ceph_con_put(struct ceph_connection *con)
434 {
435         int nref = atomic_dec_return(&con->nref);
436
437         BUG_ON(nref < 0);
438         if (nref == 0) {
439                 BUG_ON(con->sock);
440                 kfree(con);
441         }
442         dout("con_put %p nref = %d -> %d\n", con, nref + 1, nref);
443 }
444
445 /*
446  * initialize a new connection.
447  */
448 void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
449 {
450         dout("con_init %p\n", con);
451         memset(con, 0, sizeof(*con));
452         atomic_set(&con->nref, 1);
453         con->msgr = msgr;
454         mutex_init(&con->mutex);
455         INIT_LIST_HEAD(&con->out_queue);
456         INIT_LIST_HEAD(&con->out_sent);
457         INIT_DELAYED_WORK(&con->work, con_work);
458 }
459 EXPORT_SYMBOL(ceph_con_init);
460
461
462 /*
463  * We maintain a global counter to order connection attempts.  Get
464  * a unique seq greater than @gt.
465  */
466 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
467 {
468         u32 ret;
469
470         spin_lock(&msgr->global_seq_lock);
471         if (msgr->global_seq < gt)
472                 msgr->global_seq = gt;
473         ret = ++msgr->global_seq;
474         spin_unlock(&msgr->global_seq_lock);
475         return ret;
476 }
477
478 static void ceph_con_out_kvec_reset(struct ceph_connection *con)
479 {
480         con->out_kvec_left = 0;
481         con->out_kvec_bytes = 0;
482         con->out_kvec_cur = &con->out_kvec[0];
483 }
484
485 static void ceph_con_out_kvec_add(struct ceph_connection *con,
486                                 size_t size, void *data)
487 {
488         int index;
489
490         index = con->out_kvec_left;
491         BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
492
493         con->out_kvec[index].iov_len = size;
494         con->out_kvec[index].iov_base = data;
495         con->out_kvec_left++;
496         con->out_kvec_bytes += size;
497 }
498
499 /*
500  * Prepare footer for currently outgoing message, and finish things
501  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
502  */
503 static void prepare_write_message_footer(struct ceph_connection *con)
504 {
505         struct ceph_msg *m = con->out_msg;
506         int v = con->out_kvec_left;
507
508         dout("prepare_write_message_footer %p\n", con);
509         con->out_kvec_is_msg = true;
510         con->out_kvec[v].iov_base = &m->footer;
511         con->out_kvec[v].iov_len = sizeof(m->footer);
512         con->out_kvec_bytes += sizeof(m->footer);
513         con->out_kvec_left++;
514         con->out_more = m->more_to_follow;
515         con->out_msg_done = true;
516 }
517
518 /*
519  * Prepare headers for the next outgoing message.
520  */
521 static void prepare_write_message(struct ceph_connection *con)
522 {
523         struct ceph_msg *m;
524
525         ceph_con_out_kvec_reset(con);
526         con->out_kvec_is_msg = true;
527         con->out_msg_done = false;
528
529         /* Sneak an ack in there first?  If we can get it into the same
530          * TCP packet that's a good thing. */
531         if (con->in_seq > con->in_seq_acked) {
532                 con->in_seq_acked = con->in_seq;
533                 ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
534                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
535                 ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
536                         &con->out_temp_ack);
537         }
538
539         m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
540         con->out_msg = m;
541
542         /* put message on sent list */
543         ceph_msg_get(m);
544         list_move_tail(&m->list_head, &con->out_sent);
545
546         /*
547          * only assign outgoing seq # if we haven't sent this message
548          * yet.  if it is requeued, resend with it's original seq.
549          */
550         if (m->needs_out_seq) {
551                 m->hdr.seq = cpu_to_le64(++con->out_seq);
552                 m->needs_out_seq = false;
553         }
554
555         dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
556              m, con->out_seq, le16_to_cpu(m->hdr.type),
557              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
558              le32_to_cpu(m->hdr.data_len),
559              m->nr_pages);
560         BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
561
562         /* tag + hdr + front + middle */
563         ceph_con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
564         ceph_con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
565         ceph_con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
566
567         if (m->middle)
568                 ceph_con_out_kvec_add(con, m->middle->vec.iov_len,
569                         m->middle->vec.iov_base);
570
571         /* fill in crc (except data pages), footer */
572         con->out_msg->hdr.crc =
573                 cpu_to_le32(crc32c(0, &m->hdr,
574                                       sizeof(m->hdr) - sizeof(m->hdr.crc)));
575         con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
576         con->out_msg->footer.front_crc =
577                 cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
578         if (m->middle)
579                 con->out_msg->footer.middle_crc =
580                         cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
581                                            m->middle->vec.iov_len));
582         else
583                 con->out_msg->footer.middle_crc = 0;
584         con->out_msg->footer.data_crc = 0;
585         dout("prepare_write_message front_crc %u data_crc %u\n",
586              le32_to_cpu(con->out_msg->footer.front_crc),
587              le32_to_cpu(con->out_msg->footer.middle_crc));
588
589         /* is there a data payload? */
590         if (le32_to_cpu(m->hdr.data_len) > 0) {
591                 /* initialize page iterator */
592                 con->out_msg_pos.page = 0;
593                 if (m->pages)
594                         con->out_msg_pos.page_pos = m->page_alignment;
595                 else
596                         con->out_msg_pos.page_pos = 0;
597                 con->out_msg_pos.data_pos = 0;
598                 con->out_msg_pos.did_page_crc = false;
599                 con->out_more = 1;  /* data + footer will follow */
600         } else {
601                 /* no, queue up footer too and be done */
602                 prepare_write_message_footer(con);
603         }
604
605         set_bit(WRITE_PENDING, &con->state);
606 }
607
608 /*
609  * Prepare an ack.
610  */
611 static void prepare_write_ack(struct ceph_connection *con)
612 {
613         dout("prepare_write_ack %p %llu -> %llu\n", con,
614              con->in_seq_acked, con->in_seq);
615         con->in_seq_acked = con->in_seq;
616
617         ceph_con_out_kvec_reset(con);
618
619         ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
620
621         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
622         ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
623                                 &con->out_temp_ack);
624
625         con->out_more = 1;  /* more will follow.. eventually.. */
626         set_bit(WRITE_PENDING, &con->state);
627 }
628
629 /*
630  * Prepare to write keepalive byte.
631  */
632 static void prepare_write_keepalive(struct ceph_connection *con)
633 {
634         dout("prepare_write_keepalive %p\n", con);
635         ceph_con_out_kvec_reset(con);
636         ceph_con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
637         set_bit(WRITE_PENDING, &con->state);
638 }
639
640 /*
641  * Connection negotiation.
642  */
643
644 static int prepare_connect_authorizer(struct ceph_connection *con)
645 {
646         void *auth_buf;
647         int auth_len = 0;
648         int auth_protocol = 0;
649
650         mutex_unlock(&con->mutex);
651         if (con->ops->get_authorizer)
652                 con->ops->get_authorizer(con, &auth_buf, &auth_len,
653                                          &auth_protocol, &con->auth_reply_buf,
654                                          &con->auth_reply_buf_len,
655                                          con->auth_retry);
656         mutex_lock(&con->mutex);
657
658         if (test_bit(CLOSED, &con->state) ||
659             test_bit(OPENING, &con->state))
660                 return -EAGAIN;
661
662         con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
663         con->out_connect.authorizer_len = cpu_to_le32(auth_len);
664
665         if (auth_len)
666                 ceph_con_out_kvec_add(con, auth_len, auth_buf);
667
668         return 0;
669 }
670
671 /*
672  * We connected to a peer and are saying hello.
673  */
674 static void prepare_write_banner(struct ceph_messenger *msgr,
675                                  struct ceph_connection *con)
676 {
677         ceph_con_out_kvec_reset(con);
678         ceph_con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
679         ceph_con_out_kvec_add(con, sizeof (msgr->my_enc_addr),
680                                         &msgr->my_enc_addr);
681
682         con->out_more = 0;
683         set_bit(WRITE_PENDING, &con->state);
684 }
685
686 static int prepare_write_connect(struct ceph_messenger *msgr,
687                                  struct ceph_connection *con,
688                                  int include_banner)
689 {
690         unsigned global_seq = get_global_seq(con->msgr, 0);
691         int proto;
692
693         switch (con->peer_name.type) {
694         case CEPH_ENTITY_TYPE_MON:
695                 proto = CEPH_MONC_PROTOCOL;
696                 break;
697         case CEPH_ENTITY_TYPE_OSD:
698                 proto = CEPH_OSDC_PROTOCOL;
699                 break;
700         case CEPH_ENTITY_TYPE_MDS:
701                 proto = CEPH_MDSC_PROTOCOL;
702                 break;
703         default:
704                 BUG();
705         }
706
707         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
708              con->connect_seq, global_seq, proto);
709
710         con->out_connect.features = cpu_to_le64(msgr->supported_features);
711         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
712         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
713         con->out_connect.global_seq = cpu_to_le32(global_seq);
714         con->out_connect.protocol_version = cpu_to_le32(proto);
715         con->out_connect.flags = 0;
716
717         if (include_banner)
718                 prepare_write_banner(msgr, con);
719         else
720                 ceph_con_out_kvec_reset(con);
721         ceph_con_out_kvec_add(con, sizeof (con->out_connect), &con->out_connect);
722
723         con->out_more = 0;
724         set_bit(WRITE_PENDING, &con->state);
725
726         return prepare_connect_authorizer(con);
727 }
728
729 /*
730  * write as much of pending kvecs to the socket as we can.
731  *  1 -> done
732  *  0 -> socket full, but more to do
733  * <0 -> error
734  */
735 static int write_partial_kvec(struct ceph_connection *con)
736 {
737         int ret;
738
739         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
740         while (con->out_kvec_bytes > 0) {
741                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
742                                        con->out_kvec_left, con->out_kvec_bytes,
743                                        con->out_more);
744                 if (ret <= 0)
745                         goto out;
746                 con->out_kvec_bytes -= ret;
747                 if (con->out_kvec_bytes == 0)
748                         break;            /* done */
749                 while (ret > 0) {
750                         if (ret >= con->out_kvec_cur->iov_len) {
751                                 ret -= con->out_kvec_cur->iov_len;
752                                 con->out_kvec_cur++;
753                                 con->out_kvec_left--;
754                         } else {
755                                 con->out_kvec_cur->iov_len -= ret;
756                                 con->out_kvec_cur->iov_base += ret;
757                                 ret = 0;
758                                 break;
759                         }
760                 }
761         }
762         con->out_kvec_left = 0;
763         con->out_kvec_is_msg = false;
764         ret = 1;
765 out:
766         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
767              con->out_kvec_bytes, con->out_kvec_left, ret);
768         return ret;  /* done! */
769 }
770
771 #ifdef CONFIG_BLOCK
772 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
773 {
774         if (!bio) {
775                 *iter = NULL;
776                 *seg = 0;
777                 return;
778         }
779         *iter = bio;
780         *seg = bio->bi_idx;
781 }
782
783 static void iter_bio_next(struct bio **bio_iter, int *seg)
784 {
785         if (*bio_iter == NULL)
786                 return;
787
788         BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
789
790         (*seg)++;
791         if (*seg == (*bio_iter)->bi_vcnt)
792                 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
793 }
794 #endif
795
796 /*
797  * Write as much message data payload as we can.  If we finish, queue
798  * up the footer.
799  *  1 -> done, footer is now queued in out_kvec[].
800  *  0 -> socket full, but more to do
801  * <0 -> error
802  */
803 static int write_partial_msg_pages(struct ceph_connection *con)
804 {
805         struct ceph_msg *msg = con->out_msg;
806         unsigned data_len = le32_to_cpu(msg->hdr.data_len);
807         size_t len;
808         bool do_crc = con->msgr->nocrc;
809         int ret;
810         int total_max_write;
811         int in_trail = 0;
812         size_t trail_len = (msg->trail ? msg->trail->length : 0);
813
814         dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
815              con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
816              con->out_msg_pos.page_pos);
817
818 #ifdef CONFIG_BLOCK
819         if (msg->bio && !msg->bio_iter)
820                 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
821 #endif
822
823         while (data_len > con->out_msg_pos.data_pos) {
824                 struct page *page = NULL;
825                 void *kaddr = NULL;
826                 int max_write = PAGE_SIZE;
827                 int page_shift = 0;
828
829                 total_max_write = data_len - trail_len -
830                         con->out_msg_pos.data_pos;
831
832                 /*
833                  * if we are calculating the data crc (the default), we need
834                  * to map the page.  if our pages[] has been revoked, use the
835                  * zero page.
836                  */
837
838                 /* have we reached the trail part of the data? */
839                 if (con->out_msg_pos.data_pos >= data_len - trail_len) {
840                         in_trail = 1;
841
842                         total_max_write = data_len - con->out_msg_pos.data_pos;
843
844                         page = list_first_entry(&msg->trail->head,
845                                                 struct page, lru);
846                         if (do_crc)
847                                 kaddr = kmap(page);
848                         max_write = PAGE_SIZE;
849                 } else if (msg->pages) {
850                         page = msg->pages[con->out_msg_pos.page];
851                         if (do_crc)
852                                 kaddr = kmap(page);
853                 } else if (msg->pagelist) {
854                         page = list_first_entry(&msg->pagelist->head,
855                                                 struct page, lru);
856                         if (do_crc)
857                                 kaddr = kmap(page);
858 #ifdef CONFIG_BLOCK
859                 } else if (msg->bio) {
860                         struct bio_vec *bv;
861
862                         bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
863                         page = bv->bv_page;
864                         page_shift = bv->bv_offset;
865                         if (do_crc)
866                                 kaddr = kmap(page) + page_shift;
867                         max_write = bv->bv_len;
868 #endif
869                 } else {
870                         page = zero_page;
871                         if (do_crc)
872                                 kaddr = zero_page_address;
873                 }
874                 len = min_t(int, max_write - con->out_msg_pos.page_pos,
875                             total_max_write);
876
877                 if (do_crc && !con->out_msg_pos.did_page_crc) {
878                         void *base = kaddr + con->out_msg_pos.page_pos;
879                         u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
880
881                         BUG_ON(kaddr == NULL);
882                         con->out_msg->footer.data_crc =
883                                 cpu_to_le32(crc32c(tmpcrc, base, len));
884                         con->out_msg_pos.did_page_crc = true;
885                 }
886                 ret = kernel_sendpage(con->sock, page,
887                                       con->out_msg_pos.page_pos + page_shift,
888                                       len,
889                                       MSG_DONTWAIT | MSG_NOSIGNAL |
890                                       MSG_MORE);
891
892                 if (do_crc &&
893                     (msg->pages || msg->pagelist || msg->bio || in_trail))
894                         kunmap(page);
895
896                 if (ret == -EAGAIN)
897                         ret = 0;
898                 if (ret <= 0)
899                         goto out;
900
901                 con->out_msg_pos.data_pos += ret;
902                 con->out_msg_pos.page_pos += ret;
903                 if (ret == len) {
904                         con->out_msg_pos.page_pos = 0;
905                         con->out_msg_pos.page++;
906                         con->out_msg_pos.did_page_crc = false;
907                         if (in_trail)
908                                 list_move_tail(&page->lru,
909                                                &msg->trail->head);
910                         else if (msg->pagelist)
911                                 list_move_tail(&page->lru,
912                                                &msg->pagelist->head);
913 #ifdef CONFIG_BLOCK
914                         else if (msg->bio)
915                                 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
916 #endif
917                 }
918         }
919
920         dout("write_partial_msg_pages %p msg %p done\n", con, msg);
921
922         /* prepare and queue up footer, too */
923         if (!do_crc)
924                 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
925         ceph_con_out_kvec_reset(con);
926         prepare_write_message_footer(con);
927         ret = 1;
928 out:
929         return ret;
930 }
931
932 /*
933  * write some zeros
934  */
935 static int write_partial_skip(struct ceph_connection *con)
936 {
937         int ret;
938
939         while (con->out_skip > 0) {
940                 struct kvec iov = {
941                         .iov_base = zero_page_address,
942                         .iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
943                 };
944
945                 ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
946                 if (ret <= 0)
947                         goto out;
948                 con->out_skip -= ret;
949         }
950         ret = 1;
951 out:
952         return ret;
953 }
954
955 /*
956  * Prepare to read connection handshake, or an ack.
957  */
958 static void prepare_read_banner(struct ceph_connection *con)
959 {
960         dout("prepare_read_banner %p\n", con);
961         con->in_base_pos = 0;
962 }
963
964 static void prepare_read_connect(struct ceph_connection *con)
965 {
966         dout("prepare_read_connect %p\n", con);
967         con->in_base_pos = 0;
968 }
969
970 static void prepare_read_ack(struct ceph_connection *con)
971 {
972         dout("prepare_read_ack %p\n", con);
973         con->in_base_pos = 0;
974 }
975
976 static void prepare_read_tag(struct ceph_connection *con)
977 {
978         dout("prepare_read_tag %p\n", con);
979         con->in_base_pos = 0;
980         con->in_tag = CEPH_MSGR_TAG_READY;
981 }
982
983 /*
984  * Prepare to read a message.
985  */
986 static int prepare_read_message(struct ceph_connection *con)
987 {
988         dout("prepare_read_message %p\n", con);
989         BUG_ON(con->in_msg != NULL);
990         con->in_base_pos = 0;
991         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
992         return 0;
993 }
994
995
996 static int read_partial(struct ceph_connection *con,
997                         int *to, int size, void *object)
998 {
999         *to += size;
1000         while (con->in_base_pos < *to) {
1001                 int left = *to - con->in_base_pos;
1002                 int have = size - left;
1003                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1004                 if (ret <= 0)
1005                         return ret;
1006                 con->in_base_pos += ret;
1007         }
1008         return 1;
1009 }
1010
1011
1012 /*
1013  * Read all or part of the connect-side handshake on a new connection
1014  */
1015 static int read_partial_banner(struct ceph_connection *con)
1016 {
1017         int ret, to = 0;
1018
1019         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1020
1021         /* peer's banner */
1022         ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
1023         if (ret <= 0)
1024                 goto out;
1025         ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
1026                            &con->actual_peer_addr);
1027         if (ret <= 0)
1028                 goto out;
1029         ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
1030                            &con->peer_addr_for_me);
1031         if (ret <= 0)
1032                 goto out;
1033 out:
1034         return ret;
1035 }
1036
1037 static int read_partial_connect(struct ceph_connection *con)
1038 {
1039         int ret, to = 0;
1040
1041         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1042
1043         ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
1044         if (ret <= 0)
1045                 goto out;
1046         ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
1047                            con->auth_reply_buf);
1048         if (ret <= 0)
1049                 goto out;
1050
1051         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1052              con, (int)con->in_reply.tag,
1053              le32_to_cpu(con->in_reply.connect_seq),
1054              le32_to_cpu(con->in_reply.global_seq));
1055 out:
1056         return ret;
1057
1058 }
1059
1060 /*
1061  * Verify the hello banner looks okay.
1062  */
1063 static int verify_hello(struct ceph_connection *con)
1064 {
1065         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1066                 pr_err("connect to %s got bad banner\n",
1067                        ceph_pr_addr(&con->peer_addr.in_addr));
1068                 con->error_msg = "protocol error, bad banner";
1069                 return -1;
1070         }
1071         return 0;
1072 }
1073
1074 static bool addr_is_blank(struct sockaddr_storage *ss)
1075 {
1076         switch (ss->ss_family) {
1077         case AF_INET:
1078                 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1079         case AF_INET6:
1080                 return
1081                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1082                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1083                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1084                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1085         }
1086         return false;
1087 }
1088
1089 static int addr_port(struct sockaddr_storage *ss)
1090 {
1091         switch (ss->ss_family) {
1092         case AF_INET:
1093                 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1094         case AF_INET6:
1095                 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1096         }
1097         return 0;
1098 }
1099
1100 static void addr_set_port(struct sockaddr_storage *ss, int p)
1101 {
1102         switch (ss->ss_family) {
1103         case AF_INET:
1104                 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1105                 break;
1106         case AF_INET6:
1107                 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1108                 break;
1109         }
1110 }
1111
1112 /*
1113  * Unlike other *_pton function semantics, zero indicates success.
1114  */
1115 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1116                 char delim, const char **ipend)
1117 {
1118         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1119         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1120
1121         memset(ss, 0, sizeof(*ss));
1122
1123         if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1124                 ss->ss_family = AF_INET;
1125                 return 0;
1126         }
1127
1128         if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1129                 ss->ss_family = AF_INET6;
1130                 return 0;
1131         }
1132
1133         return -EINVAL;
1134 }
1135
1136 /*
1137  * Extract hostname string and resolve using kernel DNS facility.
1138  */
1139 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1140 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1141                 struct sockaddr_storage *ss, char delim, const char **ipend)
1142 {
1143         const char *end, *delim_p;
1144         char *colon_p, *ip_addr = NULL;
1145         int ip_len, ret;
1146
1147         /*
1148          * The end of the hostname occurs immediately preceding the delimiter or
1149          * the port marker (':') where the delimiter takes precedence.
1150          */
1151         delim_p = memchr(name, delim, namelen);
1152         colon_p = memchr(name, ':', namelen);
1153
1154         if (delim_p && colon_p)
1155                 end = delim_p < colon_p ? delim_p : colon_p;
1156         else if (!delim_p && colon_p)
1157                 end = colon_p;
1158         else {
1159                 end = delim_p;
1160                 if (!end) /* case: hostname:/ */
1161                         end = name + namelen;
1162         }
1163
1164         if (end <= name)
1165                 return -EINVAL;
1166
1167         /* do dns_resolve upcall */
1168         ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1169         if (ip_len > 0)
1170                 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1171         else
1172                 ret = -ESRCH;
1173
1174         kfree(ip_addr);
1175
1176         *ipend = end;
1177
1178         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1179                         ret, ret ? "failed" : ceph_pr_addr(ss));
1180
1181         return ret;
1182 }
1183 #else
1184 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1185                 struct sockaddr_storage *ss, char delim, const char **ipend)
1186 {
1187         return -EINVAL;
1188 }
1189 #endif
1190
1191 /*
1192  * Parse a server name (IP or hostname). If a valid IP address is not found
1193  * then try to extract a hostname to resolve using userspace DNS upcall.
1194  */
1195 static int ceph_parse_server_name(const char *name, size_t namelen,
1196                         struct sockaddr_storage *ss, char delim, const char **ipend)
1197 {
1198         int ret;
1199
1200         ret = ceph_pton(name, namelen, ss, delim, ipend);
1201         if (ret)
1202                 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1203
1204         return ret;
1205 }
1206
1207 /*
1208  * Parse an ip[:port] list into an addr array.  Use the default
1209  * monitor port if a port isn't specified.
1210  */
1211 int ceph_parse_ips(const char *c, const char *end,
1212                    struct ceph_entity_addr *addr,
1213                    int max_count, int *count)
1214 {
1215         int i, ret = -EINVAL;
1216         const char *p = c;
1217
1218         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1219         for (i = 0; i < max_count; i++) {
1220                 const char *ipend;
1221                 struct sockaddr_storage *ss = &addr[i].in_addr;
1222                 int port;
1223                 char delim = ',';
1224
1225                 if (*p == '[') {
1226                         delim = ']';
1227                         p++;
1228                 }
1229
1230                 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1231                 if (ret)
1232                         goto bad;
1233                 ret = -EINVAL;
1234
1235                 p = ipend;
1236
1237                 if (delim == ']') {
1238                         if (*p != ']') {
1239                                 dout("missing matching ']'\n");
1240                                 goto bad;
1241                         }
1242                         p++;
1243                 }
1244
1245                 /* port? */
1246                 if (p < end && *p == ':') {
1247                         port = 0;
1248                         p++;
1249                         while (p < end && *p >= '0' && *p <= '9') {
1250                                 port = (port * 10) + (*p - '0');
1251                                 p++;
1252                         }
1253                         if (port > 65535 || port == 0)
1254                                 goto bad;
1255                 } else {
1256                         port = CEPH_MON_PORT;
1257                 }
1258
1259                 addr_set_port(ss, port);
1260
1261                 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1262
1263                 if (p == end)
1264                         break;
1265                 if (*p != ',')
1266                         goto bad;
1267                 p++;
1268         }
1269
1270         if (p != end)
1271                 goto bad;
1272
1273         if (count)
1274                 *count = i + 1;
1275         return 0;
1276
1277 bad:
1278         pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1279         return ret;
1280 }
1281 EXPORT_SYMBOL(ceph_parse_ips);
1282
1283 static int process_banner(struct ceph_connection *con)
1284 {
1285         dout("process_banner on %p\n", con);
1286
1287         if (verify_hello(con) < 0)
1288                 return -1;
1289
1290         ceph_decode_addr(&con->actual_peer_addr);
1291         ceph_decode_addr(&con->peer_addr_for_me);
1292
1293         /*
1294          * Make sure the other end is who we wanted.  note that the other
1295          * end may not yet know their ip address, so if it's 0.0.0.0, give
1296          * them the benefit of the doubt.
1297          */
1298         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1299                    sizeof(con->peer_addr)) != 0 &&
1300             !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1301               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1302                 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1303                            ceph_pr_addr(&con->peer_addr.in_addr),
1304                            (int)le32_to_cpu(con->peer_addr.nonce),
1305                            ceph_pr_addr(&con->actual_peer_addr.in_addr),
1306                            (int)le32_to_cpu(con->actual_peer_addr.nonce));
1307                 con->error_msg = "wrong peer at address";
1308                 return -1;
1309         }
1310
1311         /*
1312          * did we learn our address?
1313          */
1314         if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1315                 int port = addr_port(&con->msgr->inst.addr.in_addr);
1316
1317                 memcpy(&con->msgr->inst.addr.in_addr,
1318                        &con->peer_addr_for_me.in_addr,
1319                        sizeof(con->peer_addr_for_me.in_addr));
1320                 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1321                 encode_my_addr(con->msgr);
1322                 dout("process_banner learned my addr is %s\n",
1323                      ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1324         }
1325
1326         set_bit(NEGOTIATING, &con->state);
1327         prepare_read_connect(con);
1328         return 0;
1329 }
1330
1331 static void fail_protocol(struct ceph_connection *con)
1332 {
1333         reset_connection(con);
1334         set_bit(CLOSED, &con->state);  /* in case there's queued work */
1335
1336         mutex_unlock(&con->mutex);
1337         if (con->ops->bad_proto)
1338                 con->ops->bad_proto(con);
1339         mutex_lock(&con->mutex);
1340 }
1341
1342 static int process_connect(struct ceph_connection *con)
1343 {
1344         u64 sup_feat = con->msgr->supported_features;
1345         u64 req_feat = con->msgr->required_features;
1346         u64 server_feat = le64_to_cpu(con->in_reply.features);
1347         int ret;
1348
1349         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1350
1351         switch (con->in_reply.tag) {
1352         case CEPH_MSGR_TAG_FEATURES:
1353                 pr_err("%s%lld %s feature set mismatch,"
1354                        " my %llx < server's %llx, missing %llx\n",
1355                        ENTITY_NAME(con->peer_name),
1356                        ceph_pr_addr(&con->peer_addr.in_addr),
1357                        sup_feat, server_feat, server_feat & ~sup_feat);
1358                 con->error_msg = "missing required protocol features";
1359                 fail_protocol(con);
1360                 return -1;
1361
1362         case CEPH_MSGR_TAG_BADPROTOVER:
1363                 pr_err("%s%lld %s protocol version mismatch,"
1364                        " my %d != server's %d\n",
1365                        ENTITY_NAME(con->peer_name),
1366                        ceph_pr_addr(&con->peer_addr.in_addr),
1367                        le32_to_cpu(con->out_connect.protocol_version),
1368                        le32_to_cpu(con->in_reply.protocol_version));
1369                 con->error_msg = "protocol version mismatch";
1370                 fail_protocol(con);
1371                 return -1;
1372
1373         case CEPH_MSGR_TAG_BADAUTHORIZER:
1374                 con->auth_retry++;
1375                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1376                      con->auth_retry);
1377                 if (con->auth_retry == 2) {
1378                         con->error_msg = "connect authorization failure";
1379                         return -1;
1380                 }
1381                 con->auth_retry = 1;
1382                 ret = prepare_write_connect(con->msgr, con, 0);
1383                 if (ret < 0)
1384                         return ret;
1385                 prepare_read_connect(con);
1386                 break;
1387
1388         case CEPH_MSGR_TAG_RESETSESSION:
1389                 /*
1390                  * If we connected with a large connect_seq but the peer
1391                  * has no record of a session with us (no connection, or
1392                  * connect_seq == 0), they will send RESETSESION to indicate
1393                  * that they must have reset their session, and may have
1394                  * dropped messages.
1395                  */
1396                 dout("process_connect got RESET peer seq %u\n",
1397                      le32_to_cpu(con->in_connect.connect_seq));
1398                 pr_err("%s%lld %s connection reset\n",
1399                        ENTITY_NAME(con->peer_name),
1400                        ceph_pr_addr(&con->peer_addr.in_addr));
1401                 reset_connection(con);
1402                 prepare_write_connect(con->msgr, con, 0);
1403                 prepare_read_connect(con);
1404
1405                 /* Tell ceph about it. */
1406                 mutex_unlock(&con->mutex);
1407                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1408                 if (con->ops->peer_reset)
1409                         con->ops->peer_reset(con);
1410                 mutex_lock(&con->mutex);
1411                 if (test_bit(CLOSED, &con->state) ||
1412                     test_bit(OPENING, &con->state))
1413                         return -EAGAIN;
1414                 break;
1415
1416         case CEPH_MSGR_TAG_RETRY_SESSION:
1417                 /*
1418                  * If we sent a smaller connect_seq than the peer has, try
1419                  * again with a larger value.
1420                  */
1421                 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1422                      le32_to_cpu(con->out_connect.connect_seq),
1423                      le32_to_cpu(con->in_connect.connect_seq));
1424                 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1425                 prepare_write_connect(con->msgr, con, 0);
1426                 prepare_read_connect(con);
1427                 break;
1428
1429         case CEPH_MSGR_TAG_RETRY_GLOBAL:
1430                 /*
1431                  * If we sent a smaller global_seq than the peer has, try
1432                  * again with a larger value.
1433                  */
1434                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1435                      con->peer_global_seq,
1436                      le32_to_cpu(con->in_connect.global_seq));
1437                 get_global_seq(con->msgr,
1438                                le32_to_cpu(con->in_connect.global_seq));
1439                 prepare_write_connect(con->msgr, con, 0);
1440                 prepare_read_connect(con);
1441                 break;
1442
1443         case CEPH_MSGR_TAG_READY:
1444                 if (req_feat & ~server_feat) {
1445                         pr_err("%s%lld %s protocol feature mismatch,"
1446                                " my required %llx > server's %llx, need %llx\n",
1447                                ENTITY_NAME(con->peer_name),
1448                                ceph_pr_addr(&con->peer_addr.in_addr),
1449                                req_feat, server_feat, req_feat & ~server_feat);
1450                         con->error_msg = "missing required protocol features";
1451                         fail_protocol(con);
1452                         return -1;
1453                 }
1454                 clear_bit(CONNECTING, &con->state);
1455                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1456                 con->connect_seq++;
1457                 con->peer_features = server_feat;
1458                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1459                      con->peer_global_seq,
1460                      le32_to_cpu(con->in_reply.connect_seq),
1461                      con->connect_seq);
1462                 WARN_ON(con->connect_seq !=
1463                         le32_to_cpu(con->in_reply.connect_seq));
1464
1465                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1466                         set_bit(LOSSYTX, &con->state);
1467
1468                 prepare_read_tag(con);
1469                 break;
1470
1471         case CEPH_MSGR_TAG_WAIT:
1472                 /*
1473                  * If there is a connection race (we are opening
1474                  * connections to each other), one of us may just have
1475                  * to WAIT.  This shouldn't happen if we are the
1476                  * client.
1477                  */
1478                 pr_err("process_connect got WAIT as client\n");
1479                 con->error_msg = "protocol error, got WAIT as client";
1480                 return -1;
1481
1482         default:
1483                 pr_err("connect protocol error, will retry\n");
1484                 con->error_msg = "protocol error, garbage tag during connect";
1485                 return -1;
1486         }
1487         return 0;
1488 }
1489
1490
1491 /*
1492  * read (part of) an ack
1493  */
1494 static int read_partial_ack(struct ceph_connection *con)
1495 {
1496         int to = 0;
1497
1498         return read_partial(con, &to, sizeof(con->in_temp_ack),
1499                             &con->in_temp_ack);
1500 }
1501
1502
1503 /*
1504  * We can finally discard anything that's been acked.
1505  */
1506 static void process_ack(struct ceph_connection *con)
1507 {
1508         struct ceph_msg *m;
1509         u64 ack = le64_to_cpu(con->in_temp_ack);
1510         u64 seq;
1511
1512         while (!list_empty(&con->out_sent)) {
1513                 m = list_first_entry(&con->out_sent, struct ceph_msg,
1514                                      list_head);
1515                 seq = le64_to_cpu(m->hdr.seq);
1516                 if (seq > ack)
1517                         break;
1518                 dout("got ack for seq %llu type %d at %p\n", seq,
1519                      le16_to_cpu(m->hdr.type), m);
1520                 m->ack_stamp = jiffies;
1521                 ceph_msg_remove(m);
1522         }
1523         prepare_read_tag(con);
1524 }
1525
1526
1527
1528
1529 static int read_partial_message_section(struct ceph_connection *con,
1530                                         struct kvec *section,
1531                                         unsigned int sec_len, u32 *crc)
1532 {
1533         int ret, left;
1534
1535         BUG_ON(!section);
1536
1537         while (section->iov_len < sec_len) {
1538                 BUG_ON(section->iov_base == NULL);
1539                 left = sec_len - section->iov_len;
1540                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1541                                        section->iov_len, left);
1542                 if (ret <= 0)
1543                         return ret;
1544                 section->iov_len += ret;
1545                 if (section->iov_len == sec_len)
1546                         *crc = crc32c(0, section->iov_base,
1547                                       section->iov_len);
1548         }
1549
1550         return 1;
1551 }
1552
1553 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1554                                 struct ceph_msg_header *hdr,
1555                                 int *skip);
1556
1557
1558 static int read_partial_message_pages(struct ceph_connection *con,
1559                                       struct page **pages,
1560                                       unsigned data_len, bool do_datacrc)
1561 {
1562         void *p;
1563         int ret;
1564         int left;
1565
1566         left = min((int)(data_len - con->in_msg_pos.data_pos),
1567                    (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1568         /* (page) data */
1569         BUG_ON(pages == NULL);
1570         p = kmap(pages[con->in_msg_pos.page]);
1571         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1572                                left);
1573         if (ret > 0 && do_datacrc)
1574                 con->in_data_crc =
1575                         crc32c(con->in_data_crc,
1576                                   p + con->in_msg_pos.page_pos, ret);
1577         kunmap(pages[con->in_msg_pos.page]);
1578         if (ret <= 0)
1579                 return ret;
1580         con->in_msg_pos.data_pos += ret;
1581         con->in_msg_pos.page_pos += ret;
1582         if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1583                 con->in_msg_pos.page_pos = 0;
1584                 con->in_msg_pos.page++;
1585         }
1586
1587         return ret;
1588 }
1589
1590 #ifdef CONFIG_BLOCK
1591 static int read_partial_message_bio(struct ceph_connection *con,
1592                                     struct bio **bio_iter, int *bio_seg,
1593                                     unsigned data_len, bool do_datacrc)
1594 {
1595         struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1596         void *p;
1597         int ret, left;
1598
1599         if (IS_ERR(bv))
1600                 return PTR_ERR(bv);
1601
1602         left = min((int)(data_len - con->in_msg_pos.data_pos),
1603                    (int)(bv->bv_len - con->in_msg_pos.page_pos));
1604
1605         p = kmap(bv->bv_page) + bv->bv_offset;
1606
1607         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1608                                left);
1609         if (ret > 0 && do_datacrc)
1610                 con->in_data_crc =
1611                         crc32c(con->in_data_crc,
1612                                   p + con->in_msg_pos.page_pos, ret);
1613         kunmap(bv->bv_page);
1614         if (ret <= 0)
1615                 return ret;
1616         con->in_msg_pos.data_pos += ret;
1617         con->in_msg_pos.page_pos += ret;
1618         if (con->in_msg_pos.page_pos == bv->bv_len) {
1619                 con->in_msg_pos.page_pos = 0;
1620                 iter_bio_next(bio_iter, bio_seg);
1621         }
1622
1623         return ret;
1624 }
1625 #endif
1626
1627 /*
1628  * read (part of) a message.
1629  */
1630 static int read_partial_message(struct ceph_connection *con)
1631 {
1632         struct ceph_msg *m = con->in_msg;
1633         int ret;
1634         int to, left;
1635         unsigned front_len, middle_len, data_len;
1636         bool do_datacrc = con->msgr->nocrc;
1637         int skip;
1638         u64 seq;
1639
1640         dout("read_partial_message con %p msg %p\n", con, m);
1641
1642         /* header */
1643         while (con->in_base_pos < sizeof(con->in_hdr)) {
1644                 left = sizeof(con->in_hdr) - con->in_base_pos;
1645                 ret = ceph_tcp_recvmsg(con->sock,
1646                                        (char *)&con->in_hdr + con->in_base_pos,
1647                                        left);
1648                 if (ret <= 0)
1649                         return ret;
1650                 con->in_base_pos += ret;
1651                 if (con->in_base_pos == sizeof(con->in_hdr)) {
1652                         u32 crc = crc32c(0, &con->in_hdr,
1653                                  sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
1654                         if (crc != le32_to_cpu(con->in_hdr.crc)) {
1655                                 pr_err("read_partial_message bad hdr "
1656                                        " crc %u != expected %u\n",
1657                                        crc, con->in_hdr.crc);
1658                                 return -EBADMSG;
1659                         }
1660                 }
1661         }
1662         front_len = le32_to_cpu(con->in_hdr.front_len);
1663         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1664                 return -EIO;
1665         middle_len = le32_to_cpu(con->in_hdr.middle_len);
1666         if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1667                 return -EIO;
1668         data_len = le32_to_cpu(con->in_hdr.data_len);
1669         if (data_len > CEPH_MSG_MAX_DATA_LEN)
1670                 return -EIO;
1671
1672         /* verify seq# */
1673         seq = le64_to_cpu(con->in_hdr.seq);
1674         if ((s64)seq - (s64)con->in_seq < 1) {
1675                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1676                         ENTITY_NAME(con->peer_name),
1677                         ceph_pr_addr(&con->peer_addr.in_addr),
1678                         seq, con->in_seq + 1);
1679                 con->in_base_pos = -front_len - middle_len - data_len -
1680                         sizeof(m->footer);
1681                 con->in_tag = CEPH_MSGR_TAG_READY;
1682                 return 0;
1683         } else if ((s64)seq - (s64)con->in_seq > 1) {
1684                 pr_err("read_partial_message bad seq %lld expected %lld\n",
1685                        seq, con->in_seq + 1);
1686                 con->error_msg = "bad message sequence # for incoming message";
1687                 return -EBADMSG;
1688         }
1689
1690         /* allocate message? */
1691         if (!con->in_msg) {
1692                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1693                      con->in_hdr.front_len, con->in_hdr.data_len);
1694                 skip = 0;
1695                 con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1696                 if (skip) {
1697                         /* skip this message */
1698                         dout("alloc_msg said skip message\n");
1699                         BUG_ON(con->in_msg);
1700                         con->in_base_pos = -front_len - middle_len - data_len -
1701                                 sizeof(m->footer);
1702                         con->in_tag = CEPH_MSGR_TAG_READY;
1703                         con->in_seq++;
1704                         return 0;
1705                 }
1706                 if (!con->in_msg) {
1707                         con->error_msg =
1708                                 "error allocating memory for incoming message";
1709                         return -ENOMEM;
1710                 }
1711                 m = con->in_msg;
1712                 m->front.iov_len = 0;    /* haven't read it yet */
1713                 if (m->middle)
1714                         m->middle->vec.iov_len = 0;
1715
1716                 con->in_msg_pos.page = 0;
1717                 if (m->pages)
1718                         con->in_msg_pos.page_pos = m->page_alignment;
1719                 else
1720                         con->in_msg_pos.page_pos = 0;
1721                 con->in_msg_pos.data_pos = 0;
1722         }
1723
1724         /* front */
1725         ret = read_partial_message_section(con, &m->front, front_len,
1726                                            &con->in_front_crc);
1727         if (ret <= 0)
1728                 return ret;
1729
1730         /* middle */
1731         if (m->middle) {
1732                 ret = read_partial_message_section(con, &m->middle->vec,
1733                                                    middle_len,
1734                                                    &con->in_middle_crc);
1735                 if (ret <= 0)
1736                         return ret;
1737         }
1738 #ifdef CONFIG_BLOCK
1739         if (m->bio && !m->bio_iter)
1740                 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1741 #endif
1742
1743         /* (page) data */
1744         while (con->in_msg_pos.data_pos < data_len) {
1745                 if (m->pages) {
1746                         ret = read_partial_message_pages(con, m->pages,
1747                                                  data_len, do_datacrc);
1748                         if (ret <= 0)
1749                                 return ret;
1750 #ifdef CONFIG_BLOCK
1751                 } else if (m->bio) {
1752
1753                         ret = read_partial_message_bio(con,
1754                                                  &m->bio_iter, &m->bio_seg,
1755                                                  data_len, do_datacrc);
1756                         if (ret <= 0)
1757                                 return ret;
1758 #endif
1759                 } else {
1760                         BUG_ON(1);
1761                 }
1762         }
1763
1764         /* footer */
1765         to = sizeof(m->hdr) + sizeof(m->footer);
1766         while (con->in_base_pos < to) {
1767                 left = to - con->in_base_pos;
1768                 ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
1769                                        (con->in_base_pos - sizeof(m->hdr)),
1770                                        left);
1771                 if (ret <= 0)
1772                         return ret;
1773                 con->in_base_pos += ret;
1774         }
1775         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1776              m, front_len, m->footer.front_crc, middle_len,
1777              m->footer.middle_crc, data_len, m->footer.data_crc);
1778
1779         /* crc ok? */
1780         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1781                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1782                        m, con->in_front_crc, m->footer.front_crc);
1783                 return -EBADMSG;
1784         }
1785         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1786                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1787                        m, con->in_middle_crc, m->footer.middle_crc);
1788                 return -EBADMSG;
1789         }
1790         if (do_datacrc &&
1791             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1792             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1793                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1794                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1795                 return -EBADMSG;
1796         }
1797
1798         return 1; /* done! */
1799 }
1800
1801 /*
1802  * Process message.  This happens in the worker thread.  The callback should
1803  * be careful not to do anything that waits on other incoming messages or it
1804  * may deadlock.
1805  */
1806 static void process_message(struct ceph_connection *con)
1807 {
1808         struct ceph_msg *msg;
1809
1810         msg = con->in_msg;
1811         con->in_msg = NULL;
1812
1813         /* if first message, set peer_name */
1814         if (con->peer_name.type == 0)
1815                 con->peer_name = msg->hdr.src;
1816
1817         con->in_seq++;
1818         mutex_unlock(&con->mutex);
1819
1820         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1821              msg, le64_to_cpu(msg->hdr.seq),
1822              ENTITY_NAME(msg->hdr.src),
1823              le16_to_cpu(msg->hdr.type),
1824              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1825              le32_to_cpu(msg->hdr.front_len),
1826              le32_to_cpu(msg->hdr.data_len),
1827              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1828         con->ops->dispatch(con, msg);
1829
1830         mutex_lock(&con->mutex);
1831         prepare_read_tag(con);
1832 }
1833
1834
1835 /*
1836  * Write something to the socket.  Called in a worker thread when the
1837  * socket appears to be writeable and we have something ready to send.
1838  */
1839 static int try_write(struct ceph_connection *con)
1840 {
1841         struct ceph_messenger *msgr = con->msgr;
1842         int ret = 1;
1843
1844         dout("try_write start %p state %lu nref %d\n", con, con->state,
1845              atomic_read(&con->nref));
1846
1847 more:
1848         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1849
1850         /* open the socket first? */
1851         if (con->sock == NULL) {
1852                 prepare_write_connect(msgr, con, 1);
1853                 prepare_read_banner(con);
1854                 set_bit(CONNECTING, &con->state);
1855                 clear_bit(NEGOTIATING, &con->state);
1856
1857                 BUG_ON(con->in_msg);
1858                 con->in_tag = CEPH_MSGR_TAG_READY;
1859                 dout("try_write initiating connect on %p new state %lu\n",
1860                      con, con->state);
1861                 ret = ceph_tcp_connect(con);
1862                 if (ret < 0) {
1863                         con->error_msg = "connect error";
1864                         goto out;
1865                 }
1866         }
1867
1868 more_kvec:
1869         /* kvec data queued? */
1870         if (con->out_skip) {
1871                 ret = write_partial_skip(con);
1872                 if (ret <= 0)
1873                         goto out;
1874         }
1875         if (con->out_kvec_left) {
1876                 ret = write_partial_kvec(con);
1877                 if (ret <= 0)
1878                         goto out;
1879         }
1880
1881         /* msg pages? */
1882         if (con->out_msg) {
1883                 if (con->out_msg_done) {
1884                         ceph_msg_put(con->out_msg);
1885                         con->out_msg = NULL;   /* we're done with this one */
1886                         goto do_next;
1887                 }
1888
1889                 ret = write_partial_msg_pages(con);
1890                 if (ret == 1)
1891                         goto more_kvec;  /* we need to send the footer, too! */
1892                 if (ret == 0)
1893                         goto out;
1894                 if (ret < 0) {
1895                         dout("try_write write_partial_msg_pages err %d\n",
1896                              ret);
1897                         goto out;
1898                 }
1899         }
1900
1901 do_next:
1902         if (!test_bit(CONNECTING, &con->state)) {
1903                 /* is anything else pending? */
1904                 if (!list_empty(&con->out_queue)) {
1905                         prepare_write_message(con);
1906                         goto more;
1907                 }
1908                 if (con->in_seq > con->in_seq_acked) {
1909                         prepare_write_ack(con);
1910                         goto more;
1911                 }
1912                 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1913                         prepare_write_keepalive(con);
1914                         goto more;
1915                 }
1916         }
1917
1918         /* Nothing to do! */
1919         clear_bit(WRITE_PENDING, &con->state);
1920         dout("try_write nothing else to write.\n");
1921         ret = 0;
1922 out:
1923         dout("try_write done on %p ret %d\n", con, ret);
1924         return ret;
1925 }
1926
1927
1928
1929 /*
1930  * Read what we can from the socket.
1931  */
1932 static int try_read(struct ceph_connection *con)
1933 {
1934         int ret = -1;
1935
1936         if (!con->sock)
1937                 return 0;
1938
1939         if (test_bit(STANDBY, &con->state))
1940                 return 0;
1941
1942         dout("try_read start on %p\n", con);
1943
1944 more:
1945         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1946              con->in_base_pos);
1947
1948         /*
1949          * process_connect and process_message drop and re-take
1950          * con->mutex.  make sure we handle a racing close or reopen.
1951          */
1952         if (test_bit(CLOSED, &con->state) ||
1953             test_bit(OPENING, &con->state)) {
1954                 ret = -EAGAIN;
1955                 goto out;
1956         }
1957
1958         if (test_bit(CONNECTING, &con->state)) {
1959                 if (!test_bit(NEGOTIATING, &con->state)) {
1960                         dout("try_read connecting\n");
1961                         ret = read_partial_banner(con);
1962                         if (ret <= 0)
1963                                 goto out;
1964                         ret = process_banner(con);
1965                         if (ret < 0)
1966                                 goto out;
1967                 }
1968                 ret = read_partial_connect(con);
1969                 if (ret <= 0)
1970                         goto out;
1971                 ret = process_connect(con);
1972                 if (ret < 0)
1973                         goto out;
1974                 goto more;
1975         }
1976
1977         if (con->in_base_pos < 0) {
1978                 /*
1979                  * skipping + discarding content.
1980                  *
1981                  * FIXME: there must be a better way to do this!
1982                  */
1983                 static char buf[1024];
1984                 int skip = min(1024, -con->in_base_pos);
1985                 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1986                 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1987                 if (ret <= 0)
1988                         goto out;
1989                 con->in_base_pos += ret;
1990                 if (con->in_base_pos)
1991                         goto more;
1992         }
1993         if (con->in_tag == CEPH_MSGR_TAG_READY) {
1994                 /*
1995                  * what's next?
1996                  */
1997                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
1998                 if (ret <= 0)
1999                         goto out;
2000                 dout("try_read got tag %d\n", (int)con->in_tag);
2001                 switch (con->in_tag) {
2002                 case CEPH_MSGR_TAG_MSG:
2003                         prepare_read_message(con);
2004                         break;
2005                 case CEPH_MSGR_TAG_ACK:
2006                         prepare_read_ack(con);
2007                         break;
2008                 case CEPH_MSGR_TAG_CLOSE:
2009                         set_bit(CLOSED, &con->state);   /* fixme */
2010                         goto out;
2011                 default:
2012                         goto bad_tag;
2013                 }
2014         }
2015         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2016                 ret = read_partial_message(con);
2017                 if (ret <= 0) {
2018                         switch (ret) {
2019                         case -EBADMSG:
2020                                 con->error_msg = "bad crc";
2021                                 ret = -EIO;
2022                                 break;
2023                         case -EIO:
2024                                 con->error_msg = "io error";
2025                                 break;
2026                         }
2027                         goto out;
2028                 }
2029                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2030                         goto more;
2031                 process_message(con);
2032                 goto more;
2033         }
2034         if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2035                 ret = read_partial_ack(con);
2036                 if (ret <= 0)
2037                         goto out;
2038                 process_ack(con);
2039                 goto more;
2040         }
2041
2042 out:
2043         dout("try_read done on %p ret %d\n", con, ret);
2044         return ret;
2045
2046 bad_tag:
2047         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2048         con->error_msg = "protocol error, garbage tag";
2049         ret = -1;
2050         goto out;
2051 }
2052
2053
2054 /*
2055  * Atomically queue work on a connection.  Bump @con reference to
2056  * avoid races with connection teardown.
2057  */
2058 static void queue_con(struct ceph_connection *con)
2059 {
2060         if (test_bit(DEAD, &con->state)) {
2061                 dout("queue_con %p ignoring: DEAD\n",
2062                      con);
2063                 return;
2064         }
2065
2066         if (!con->ops->get(con)) {
2067                 dout("queue_con %p ref count 0\n", con);
2068                 return;
2069         }
2070
2071         if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2072                 dout("queue_con %p - already queued\n", con);
2073                 con->ops->put(con);
2074         } else {
2075                 dout("queue_con %p\n", con);
2076         }
2077 }
2078
2079 /*
2080  * Do some work on a connection.  Drop a connection ref when we're done.
2081  */
2082 static void con_work(struct work_struct *work)
2083 {
2084         struct ceph_connection *con = container_of(work, struct ceph_connection,
2085                                                    work.work);
2086         int ret;
2087
2088         mutex_lock(&con->mutex);
2089 restart:
2090         if (test_and_clear_bit(BACKOFF, &con->state)) {
2091                 dout("con_work %p backing off\n", con);
2092                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2093                                        round_jiffies_relative(con->delay))) {
2094                         dout("con_work %p backoff %lu\n", con, con->delay);
2095                         mutex_unlock(&con->mutex);
2096                         return;
2097                 } else {
2098                         con->ops->put(con);
2099                         dout("con_work %p FAILED to back off %lu\n", con,
2100                              con->delay);
2101                 }
2102         }
2103
2104         if (test_bit(STANDBY, &con->state)) {
2105                 dout("con_work %p STANDBY\n", con);
2106                 goto done;
2107         }
2108         if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
2109                 dout("con_work CLOSED\n");
2110                 con_close_socket(con);
2111                 goto done;
2112         }
2113         if (test_and_clear_bit(OPENING, &con->state)) {
2114                 /* reopen w/ new peer */
2115                 dout("con_work OPENING\n");
2116                 con_close_socket(con);
2117         }
2118
2119         if (test_and_clear_bit(SOCK_CLOSED, &con->state))
2120                 goto fault;
2121
2122         ret = try_read(con);
2123         if (ret == -EAGAIN)
2124                 goto restart;
2125         if (ret < 0)
2126                 goto fault;
2127
2128         ret = try_write(con);
2129         if (ret == -EAGAIN)
2130                 goto restart;
2131         if (ret < 0)
2132                 goto fault;
2133
2134 done:
2135         mutex_unlock(&con->mutex);
2136 done_unlocked:
2137         con->ops->put(con);
2138         return;
2139
2140 fault:
2141         mutex_unlock(&con->mutex);
2142         ceph_fault(con);     /* error/fault path */
2143         goto done_unlocked;
2144 }
2145
2146
2147 /*
2148  * Generic error/fault handler.  A retry mechanism is used with
2149  * exponential backoff
2150  */
2151 static void ceph_fault(struct ceph_connection *con)
2152 {
2153         pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2154                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2155         dout("fault %p state %lu to peer %s\n",
2156              con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2157
2158         if (test_bit(LOSSYTX, &con->state)) {
2159                 dout("fault on LOSSYTX channel\n");
2160                 goto out;
2161         }
2162
2163         mutex_lock(&con->mutex);
2164         if (test_bit(CLOSED, &con->state))
2165                 goto out_unlock;
2166
2167         con_close_socket(con);
2168
2169         if (con->in_msg) {
2170                 ceph_msg_put(con->in_msg);
2171                 con->in_msg = NULL;
2172         }
2173
2174         /* Requeue anything that hasn't been acked */
2175         list_splice_init(&con->out_sent, &con->out_queue);
2176
2177         /* If there are no messages queued or keepalive pending, place
2178          * the connection in a STANDBY state */
2179         if (list_empty(&con->out_queue) &&
2180             !test_bit(KEEPALIVE_PENDING, &con->state)) {
2181                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2182                 clear_bit(WRITE_PENDING, &con->state);
2183                 set_bit(STANDBY, &con->state);
2184         } else {
2185                 /* retry after a delay. */
2186                 if (con->delay == 0)
2187                         con->delay = BASE_DELAY_INTERVAL;
2188                 else if (con->delay < MAX_DELAY_INTERVAL)
2189                         con->delay *= 2;
2190                 con->ops->get(con);
2191                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2192                                        round_jiffies_relative(con->delay))) {
2193                         dout("fault queued %p delay %lu\n", con, con->delay);
2194                 } else {
2195                         con->ops->put(con);
2196                         dout("fault failed to queue %p delay %lu, backoff\n",
2197                              con, con->delay);
2198                         /*
2199                          * In many cases we see a socket state change
2200                          * while con_work is running and end up
2201                          * queuing (non-delayed) work, such that we
2202                          * can't backoff with a delay.  Set a flag so
2203                          * that when con_work restarts we schedule the
2204                          * delay then.
2205                          */
2206                         set_bit(BACKOFF, &con->state);
2207                 }
2208         }
2209
2210 out_unlock:
2211         mutex_unlock(&con->mutex);
2212 out:
2213         /*
2214          * in case we faulted due to authentication, invalidate our
2215          * current tickets so that we can get new ones.
2216          */
2217         if (con->auth_retry && con->ops->invalidate_authorizer) {
2218                 dout("calling invalidate_authorizer()\n");
2219                 con->ops->invalidate_authorizer(con);
2220         }
2221
2222         if (con->ops->fault)
2223                 con->ops->fault(con);
2224 }
2225
2226
2227
2228 /*
2229  * create a new messenger instance
2230  */
2231 struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
2232                                              u32 supported_features,
2233                                              u32 required_features)
2234 {
2235         struct ceph_messenger *msgr;
2236
2237         msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
2238         if (msgr == NULL)
2239                 return ERR_PTR(-ENOMEM);
2240
2241         msgr->supported_features = supported_features;
2242         msgr->required_features = required_features;
2243
2244         spin_lock_init(&msgr->global_seq_lock);
2245
2246         if (myaddr)
2247                 msgr->inst.addr = *myaddr;
2248
2249         /* select a random nonce */
2250         msgr->inst.addr.type = 0;
2251         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2252         encode_my_addr(msgr);
2253
2254         dout("messenger_create %p\n", msgr);
2255         return msgr;
2256 }
2257 EXPORT_SYMBOL(ceph_messenger_create);
2258
2259 void ceph_messenger_destroy(struct ceph_messenger *msgr)
2260 {
2261         dout("destroy %p\n", msgr);
2262         kfree(msgr);
2263         dout("destroyed messenger %p\n", msgr);
2264 }
2265 EXPORT_SYMBOL(ceph_messenger_destroy);
2266
2267 static void clear_standby(struct ceph_connection *con)
2268 {
2269         /* come back from STANDBY? */
2270         if (test_and_clear_bit(STANDBY, &con->state)) {
2271                 mutex_lock(&con->mutex);
2272                 dout("clear_standby %p and ++connect_seq\n", con);
2273                 con->connect_seq++;
2274                 WARN_ON(test_bit(WRITE_PENDING, &con->state));
2275                 WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
2276                 mutex_unlock(&con->mutex);
2277         }
2278 }
2279
2280 /*
2281  * Queue up an outgoing message on the given connection.
2282  */
2283 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2284 {
2285         if (test_bit(CLOSED, &con->state)) {
2286                 dout("con_send %p closed, dropping %p\n", con, msg);
2287                 ceph_msg_put(msg);
2288                 return;
2289         }
2290
2291         /* set src+dst */
2292         msg->hdr.src = con->msgr->inst.name;
2293
2294         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2295
2296         msg->needs_out_seq = true;
2297
2298         /* queue */
2299         mutex_lock(&con->mutex);
2300         BUG_ON(!list_empty(&msg->list_head));
2301         list_add_tail(&msg->list_head, &con->out_queue);
2302         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2303              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2304              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2305              le32_to_cpu(msg->hdr.front_len),
2306              le32_to_cpu(msg->hdr.middle_len),
2307              le32_to_cpu(msg->hdr.data_len));
2308         mutex_unlock(&con->mutex);
2309
2310         /* if there wasn't anything waiting to send before, queue
2311          * new work */
2312         clear_standby(con);
2313         if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2314                 queue_con(con);
2315 }
2316 EXPORT_SYMBOL(ceph_con_send);
2317
2318 /*
2319  * Revoke a message that was previously queued for send
2320  */
2321 void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2322 {
2323         mutex_lock(&con->mutex);
2324         if (!list_empty(&msg->list_head)) {
2325                 dout("con_revoke %p msg %p - was on queue\n", con, msg);
2326                 list_del_init(&msg->list_head);
2327                 ceph_msg_put(msg);
2328                 msg->hdr.seq = 0;
2329         }
2330         if (con->out_msg == msg) {
2331                 dout("con_revoke %p msg %p - was sending\n", con, msg);
2332                 con->out_msg = NULL;
2333                 if (con->out_kvec_is_msg) {
2334                         con->out_skip = con->out_kvec_bytes;
2335                         con->out_kvec_is_msg = false;
2336                 }
2337                 ceph_msg_put(msg);
2338                 msg->hdr.seq = 0;
2339         }
2340         mutex_unlock(&con->mutex);
2341 }
2342
2343 /*
2344  * Revoke a message that we may be reading data into
2345  */
2346 void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2347 {
2348         mutex_lock(&con->mutex);
2349         if (con->in_msg && con->in_msg == msg) {
2350                 unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2351                 unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
2352                 unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2353
2354                 /* skip rest of message */
2355                 dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2356                         con->in_base_pos = con->in_base_pos -
2357                                 sizeof(struct ceph_msg_header) -
2358                                 front_len -
2359                                 middle_len -
2360                                 data_len -
2361                                 sizeof(struct ceph_msg_footer);
2362                 ceph_msg_put(con->in_msg);
2363                 con->in_msg = NULL;
2364                 con->in_tag = CEPH_MSGR_TAG_READY;
2365                 con->in_seq++;
2366         } else {
2367                 dout("con_revoke_pages %p msg %p pages %p no-op\n",
2368                      con, con->in_msg, msg);
2369         }
2370         mutex_unlock(&con->mutex);
2371 }
2372
2373 /*
2374  * Queue a keepalive byte to ensure the tcp connection is alive.
2375  */
2376 void ceph_con_keepalive(struct ceph_connection *con)
2377 {
2378         dout("con_keepalive %p\n", con);
2379         clear_standby(con);
2380         if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2381             test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2382                 queue_con(con);
2383 }
2384 EXPORT_SYMBOL(ceph_con_keepalive);
2385
2386
2387 /*
2388  * construct a new message with given type, size
2389  * the new msg has a ref count of 1.
2390  */
2391 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2392                               bool can_fail)
2393 {
2394         struct ceph_msg *m;
2395
2396         m = kmalloc(sizeof(*m), flags);
2397         if (m == NULL)
2398                 goto out;
2399         kref_init(&m->kref);
2400         INIT_LIST_HEAD(&m->list_head);
2401
2402         m->hdr.tid = 0;
2403         m->hdr.type = cpu_to_le16(type);
2404         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2405         m->hdr.version = 0;
2406         m->hdr.front_len = cpu_to_le32(front_len);
2407         m->hdr.middle_len = 0;
2408         m->hdr.data_len = 0;
2409         m->hdr.data_off = 0;
2410         m->hdr.reserved = 0;
2411         m->footer.front_crc = 0;
2412         m->footer.middle_crc = 0;
2413         m->footer.data_crc = 0;
2414         m->footer.flags = 0;
2415         m->front_max = front_len;
2416         m->front_is_vmalloc = false;
2417         m->more_to_follow = false;
2418         m->ack_stamp = 0;
2419         m->pool = NULL;
2420
2421         /* middle */
2422         m->middle = NULL;
2423
2424         /* data */
2425         m->nr_pages = 0;
2426         m->page_alignment = 0;
2427         m->pages = NULL;
2428         m->pagelist = NULL;
2429         m->bio = NULL;
2430         m->bio_iter = NULL;
2431         m->bio_seg = 0;
2432         m->trail = NULL;
2433
2434         /* front */
2435         if (front_len) {
2436                 if (front_len > PAGE_CACHE_SIZE) {
2437                         m->front.iov_base = __vmalloc(front_len, flags,
2438                                                       PAGE_KERNEL);
2439                         m->front_is_vmalloc = true;
2440                 } else {
2441                         m->front.iov_base = kmalloc(front_len, flags);
2442                 }
2443                 if (m->front.iov_base == NULL) {
2444                         dout("ceph_msg_new can't allocate %d bytes\n",
2445                              front_len);
2446                         goto out2;
2447                 }
2448         } else {
2449                 m->front.iov_base = NULL;
2450         }
2451         m->front.iov_len = front_len;
2452
2453         dout("ceph_msg_new %p front %d\n", m, front_len);
2454         return m;
2455
2456 out2:
2457         ceph_msg_put(m);
2458 out:
2459         if (!can_fail) {
2460                 pr_err("msg_new can't create type %d front %d\n", type,
2461                        front_len);
2462                 WARN_ON(1);
2463         } else {
2464                 dout("msg_new can't create type %d front %d\n", type,
2465                      front_len);
2466         }
2467         return NULL;
2468 }
2469 EXPORT_SYMBOL(ceph_msg_new);
2470
2471 /*
2472  * Allocate "middle" portion of a message, if it is needed and wasn't
2473  * allocated by alloc_msg.  This allows us to read a small fixed-size
2474  * per-type header in the front and then gracefully fail (i.e.,
2475  * propagate the error to the caller based on info in the front) when
2476  * the middle is too large.
2477  */
2478 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2479 {
2480         int type = le16_to_cpu(msg->hdr.type);
2481         int middle_len = le32_to_cpu(msg->hdr.middle_len);
2482
2483         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2484              ceph_msg_type_name(type), middle_len);
2485         BUG_ON(!middle_len);
2486         BUG_ON(msg->middle);
2487
2488         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2489         if (!msg->middle)
2490                 return -ENOMEM;
2491         return 0;
2492 }
2493
2494 /*
2495  * Generic message allocator, for incoming messages.
2496  */
2497 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2498                                 struct ceph_msg_header *hdr,
2499                                 int *skip)
2500 {
2501         int type = le16_to_cpu(hdr->type);
2502         int front_len = le32_to_cpu(hdr->front_len);
2503         int middle_len = le32_to_cpu(hdr->middle_len);
2504         struct ceph_msg *msg = NULL;
2505         int ret;
2506
2507         if (con->ops->alloc_msg) {
2508                 mutex_unlock(&con->mutex);
2509                 msg = con->ops->alloc_msg(con, hdr, skip);
2510                 mutex_lock(&con->mutex);
2511                 if (!msg || *skip)
2512                         return NULL;
2513         }
2514         if (!msg) {
2515                 *skip = 0;
2516                 msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2517                 if (!msg) {
2518                         pr_err("unable to allocate msg type %d len %d\n",
2519                                type, front_len);
2520                         return NULL;
2521                 }
2522                 msg->page_alignment = le16_to_cpu(hdr->data_off);
2523         }
2524         memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2525
2526         if (middle_len && !msg->middle) {
2527                 ret = ceph_alloc_middle(con, msg);
2528                 if (ret < 0) {
2529                         ceph_msg_put(msg);
2530                         return NULL;
2531                 }
2532         }
2533
2534         return msg;
2535 }
2536
2537
2538 /*
2539  * Free a generically kmalloc'd message.
2540  */
2541 void ceph_msg_kfree(struct ceph_msg *m)
2542 {
2543         dout("msg_kfree %p\n", m);
2544         if (m->front_is_vmalloc)
2545                 vfree(m->front.iov_base);
2546         else
2547                 kfree(m->front.iov_base);
2548         kfree(m);
2549 }
2550
2551 /*
2552  * Drop a msg ref.  Destroy as needed.
2553  */
2554 void ceph_msg_last_put(struct kref *kref)
2555 {
2556         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2557
2558         dout("ceph_msg_put last one on %p\n", m);
2559         WARN_ON(!list_empty(&m->list_head));
2560
2561         /* drop middle, data, if any */
2562         if (m->middle) {
2563                 ceph_buffer_put(m->middle);
2564                 m->middle = NULL;
2565         }
2566         m->nr_pages = 0;
2567         m->pages = NULL;
2568
2569         if (m->pagelist) {
2570                 ceph_pagelist_release(m->pagelist);
2571                 kfree(m->pagelist);
2572                 m->pagelist = NULL;
2573         }
2574
2575         m->trail = NULL;
2576
2577         if (m->pool)
2578                 ceph_msgpool_put(m->pool, m);
2579         else
2580                 ceph_msg_kfree(m);
2581 }
2582 EXPORT_SYMBOL(ceph_msg_last_put);
2583
2584 void ceph_msg_dump(struct ceph_msg *msg)
2585 {
2586         pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2587                  msg->front_max, msg->nr_pages);
2588         print_hex_dump(KERN_DEBUG, "header: ",
2589                        DUMP_PREFIX_OFFSET, 16, 1,
2590                        &msg->hdr, sizeof(msg->hdr), true);
2591         print_hex_dump(KERN_DEBUG, " front: ",
2592                        DUMP_PREFIX_OFFSET, 16, 1,
2593                        msg->front.iov_base, msg->front.iov_len, true);
2594         if (msg->middle)
2595                 print_hex_dump(KERN_DEBUG, "middle: ",
2596                                DUMP_PREFIX_OFFSET, 16, 1,
2597                                msg->middle->vec.iov_base,
2598                                msg->middle->vec.iov_len, true);
2599         print_hex_dump(KERN_DEBUG, "footer: ",
2600                        DUMP_PREFIX_OFFSET, 16, 1,
2601                        &msg->footer, sizeof(msg->footer), true);
2602 }
2603 EXPORT_SYMBOL(ceph_msg_dump);