libceph: rename "page_shift" variable to something sensible
[platform/kernel/linux-rpi.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22
23 /*
24  * Ceph uses the messenger to exchange ceph_msg messages with other
25  * hosts in the system.  The messenger provides ordered and reliable
26  * delivery.  We tolerate TCP disconnects by reconnecting (with
27  * exponential backoff) in the case of a fault (disconnection, bad
28  * crc, protocol error).  Acks allow sent messages to be discarded by
29  * the sender.
30  */
31
32 /* static tag bytes (protocol control messages) */
33 static char tag_msg = CEPH_MSGR_TAG_MSG;
34 static char tag_ack = CEPH_MSGR_TAG_ACK;
35 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
36
37 #ifdef CONFIG_LOCKDEP
38 static struct lock_class_key socket_class;
39 #endif
40
41 /*
42  * When skipping (ignoring) a block of input we read it into a "skip
43  * buffer," which is this many bytes in size.
44  */
45 #define SKIP_BUF_SIZE   1024
46
47 static void queue_con(struct ceph_connection *con);
48 static void con_work(struct work_struct *);
49 static void ceph_fault(struct ceph_connection *con);
50
51 /*
52  * Nicely render a sockaddr as a string.  An array of formatted
53  * strings is used, to approximate reentrancy.
54  */
55 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
56 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
57 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
58 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
59
60 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
61 static atomic_t addr_str_seq = ATOMIC_INIT(0);
62
63 static struct page *zero_page;          /* used in certain error cases */
64
65 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
66 {
67         int i;
68         char *s;
69         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
70         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
71
72         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
73         s = addr_str[i];
74
75         switch (ss->ss_family) {
76         case AF_INET:
77                 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
78                          ntohs(in4->sin_port));
79                 break;
80
81         case AF_INET6:
82                 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
83                          ntohs(in6->sin6_port));
84                 break;
85
86         default:
87                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
88                          ss->ss_family);
89         }
90
91         return s;
92 }
93 EXPORT_SYMBOL(ceph_pr_addr);
94
95 static void encode_my_addr(struct ceph_messenger *msgr)
96 {
97         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
98         ceph_encode_addr(&msgr->my_enc_addr);
99 }
100
101 /*
102  * work queue for all reading and writing to/from the socket.
103  */
104 static struct workqueue_struct *ceph_msgr_wq;
105
106 void _ceph_msgr_exit(void)
107 {
108         if (ceph_msgr_wq) {
109                 destroy_workqueue(ceph_msgr_wq);
110                 ceph_msgr_wq = NULL;
111         }
112
113         BUG_ON(zero_page == NULL);
114         kunmap(zero_page);
115         page_cache_release(zero_page);
116         zero_page = NULL;
117 }
118
119 int ceph_msgr_init(void)
120 {
121         BUG_ON(zero_page != NULL);
122         zero_page = ZERO_PAGE(0);
123         page_cache_get(zero_page);
124
125         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
126         if (ceph_msgr_wq)
127                 return 0;
128
129         pr_err("msgr_init failed to create workqueue\n");
130         _ceph_msgr_exit();
131
132         return -ENOMEM;
133 }
134 EXPORT_SYMBOL(ceph_msgr_init);
135
136 void ceph_msgr_exit(void)
137 {
138         BUG_ON(ceph_msgr_wq == NULL);
139
140         _ceph_msgr_exit();
141 }
142 EXPORT_SYMBOL(ceph_msgr_exit);
143
144 void ceph_msgr_flush(void)
145 {
146         flush_workqueue(ceph_msgr_wq);
147 }
148 EXPORT_SYMBOL(ceph_msgr_flush);
149
150
151 /*
152  * socket callback functions
153  */
154
155 /* data available on socket, or listen socket received a connect */
156 static void ceph_data_ready(struct sock *sk, int count_unused)
157 {
158         struct ceph_connection *con = sk->sk_user_data;
159
160         if (sk->sk_state != TCP_CLOSE_WAIT) {
161                 dout("ceph_data_ready on %p state = %lu, queueing work\n",
162                      con, con->state);
163                 queue_con(con);
164         }
165 }
166
167 /* socket has buffer space for writing */
168 static void ceph_write_space(struct sock *sk)
169 {
170         struct ceph_connection *con = sk->sk_user_data;
171
172         /* only queue to workqueue if there is data we want to write,
173          * and there is sufficient space in the socket buffer to accept
174          * more data.  clear SOCK_NOSPACE so that ceph_write_space()
175          * doesn't get called again until try_write() fills the socket
176          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
177          * and net/core/stream.c:sk_stream_write_space().
178          */
179         if (test_bit(WRITE_PENDING, &con->state)) {
180                 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
181                         dout("ceph_write_space %p queueing write work\n", con);
182                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
183                         queue_con(con);
184                 }
185         } else {
186                 dout("ceph_write_space %p nothing to write\n", con);
187         }
188 }
189
190 /* socket's state has changed */
191 static void ceph_state_change(struct sock *sk)
192 {
193         struct ceph_connection *con = sk->sk_user_data;
194
195         dout("ceph_state_change %p state = %lu sk_state = %u\n",
196              con, con->state, sk->sk_state);
197
198         if (test_bit(CLOSED, &con->state))
199                 return;
200
201         switch (sk->sk_state) {
202         case TCP_CLOSE:
203                 dout("ceph_state_change TCP_CLOSE\n");
204         case TCP_CLOSE_WAIT:
205                 dout("ceph_state_change TCP_CLOSE_WAIT\n");
206                 if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
207                         if (test_bit(CONNECTING, &con->state))
208                                 con->error_msg = "connection failed";
209                         else
210                                 con->error_msg = "socket closed";
211                         queue_con(con);
212                 }
213                 break;
214         case TCP_ESTABLISHED:
215                 dout("ceph_state_change TCP_ESTABLISHED\n");
216                 queue_con(con);
217                 break;
218         default:        /* Everything else is uninteresting */
219                 break;
220         }
221 }
222
223 /*
224  * set up socket callbacks
225  */
226 static void set_sock_callbacks(struct socket *sock,
227                                struct ceph_connection *con)
228 {
229         struct sock *sk = sock->sk;
230         sk->sk_user_data = con;
231         sk->sk_data_ready = ceph_data_ready;
232         sk->sk_write_space = ceph_write_space;
233         sk->sk_state_change = ceph_state_change;
234 }
235
236
237 /*
238  * socket helpers
239  */
240
241 /*
242  * initiate connection to a remote socket.
243  */
244 static int ceph_tcp_connect(struct ceph_connection *con)
245 {
246         struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
247         struct socket *sock;
248         int ret;
249
250         BUG_ON(con->sock);
251         ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
252                                IPPROTO_TCP, &sock);
253         if (ret)
254                 return ret;
255         sock->sk->sk_allocation = GFP_NOFS;
256
257 #ifdef CONFIG_LOCKDEP
258         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
259 #endif
260
261         set_sock_callbacks(sock, con);
262
263         dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
264
265         ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
266                                  O_NONBLOCK);
267         if (ret == -EINPROGRESS) {
268                 dout("connect %s EINPROGRESS sk_state = %u\n",
269                      ceph_pr_addr(&con->peer_addr.in_addr),
270                      sock->sk->sk_state);
271         } else if (ret < 0) {
272                 pr_err("connect %s error %d\n",
273                        ceph_pr_addr(&con->peer_addr.in_addr), ret);
274                 sock_release(sock);
275                 con->error_msg = "connect error";
276
277                 return ret;
278         }
279         con->sock = sock;
280
281         return 0;
282 }
283
284 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
285 {
286         struct kvec iov = {buf, len};
287         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
288         int r;
289
290         r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
291         if (r == -EAGAIN)
292                 r = 0;
293         return r;
294 }
295
296 /*
297  * write something.  @more is true if caller will be sending more data
298  * shortly.
299  */
300 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
301                      size_t kvlen, size_t len, int more)
302 {
303         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
304         int r;
305
306         if (more)
307                 msg.msg_flags |= MSG_MORE;
308         else
309                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
310
311         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
312         if (r == -EAGAIN)
313                 r = 0;
314         return r;
315 }
316
317 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
318                      int offset, size_t size, int more)
319 {
320         int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
321         int ret;
322
323         ret = kernel_sendpage(sock, page, offset, size, flags);
324         if (ret == -EAGAIN)
325                 ret = 0;
326
327         return ret;
328 }
329
330
331 /*
332  * Shutdown/close the socket for the given connection.
333  */
334 static int con_close_socket(struct ceph_connection *con)
335 {
336         int rc;
337
338         dout("con_close_socket on %p sock %p\n", con, con->sock);
339         if (!con->sock)
340                 return 0;
341         set_bit(SOCK_CLOSED, &con->state);
342         rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
343         sock_release(con->sock);
344         con->sock = NULL;
345         clear_bit(SOCK_CLOSED, &con->state);
346         return rc;
347 }
348
349 /*
350  * Reset a connection.  Discard all incoming and outgoing messages
351  * and clear *_seq state.
352  */
353 static void ceph_msg_remove(struct ceph_msg *msg)
354 {
355         list_del_init(&msg->list_head);
356         ceph_msg_put(msg);
357 }
358 static void ceph_msg_remove_list(struct list_head *head)
359 {
360         while (!list_empty(head)) {
361                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
362                                                         list_head);
363                 ceph_msg_remove(msg);
364         }
365 }
366
367 static void reset_connection(struct ceph_connection *con)
368 {
369         /* reset connection, out_queue, msg_ and connect_seq */
370         /* discard existing out_queue and msg_seq */
371         ceph_msg_remove_list(&con->out_queue);
372         ceph_msg_remove_list(&con->out_sent);
373
374         if (con->in_msg) {
375                 ceph_msg_put(con->in_msg);
376                 con->in_msg = NULL;
377         }
378
379         con->connect_seq = 0;
380         con->out_seq = 0;
381         if (con->out_msg) {
382                 ceph_msg_put(con->out_msg);
383                 con->out_msg = NULL;
384         }
385         con->in_seq = 0;
386         con->in_seq_acked = 0;
387 }
388
389 /*
390  * mark a peer down.  drop any open connections.
391  */
392 void ceph_con_close(struct ceph_connection *con)
393 {
394         dout("con_close %p peer %s\n", con,
395              ceph_pr_addr(&con->peer_addr.in_addr));
396         set_bit(CLOSED, &con->state);  /* in case there's queued work */
397         clear_bit(STANDBY, &con->state);  /* avoid connect_seq bump */
398         clear_bit(LOSSYTX, &con->state);  /* so we retry next connect */
399         clear_bit(KEEPALIVE_PENDING, &con->state);
400         clear_bit(WRITE_PENDING, &con->state);
401         mutex_lock(&con->mutex);
402         reset_connection(con);
403         con->peer_global_seq = 0;
404         cancel_delayed_work(&con->work);
405         mutex_unlock(&con->mutex);
406         queue_con(con);
407 }
408 EXPORT_SYMBOL(ceph_con_close);
409
410 /*
411  * Reopen a closed connection, with a new peer address.
412  */
413 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
414 {
415         dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
416         set_bit(OPENING, &con->state);
417         clear_bit(CLOSED, &con->state);
418         memcpy(&con->peer_addr, addr, sizeof(*addr));
419         con->delay = 0;      /* reset backoff memory */
420         queue_con(con);
421 }
422 EXPORT_SYMBOL(ceph_con_open);
423
424 /*
425  * return true if this connection ever successfully opened
426  */
427 bool ceph_con_opened(struct ceph_connection *con)
428 {
429         return con->connect_seq > 0;
430 }
431
432 /*
433  * generic get/put
434  */
435 struct ceph_connection *ceph_con_get(struct ceph_connection *con)
436 {
437         int nref = __atomic_add_unless(&con->nref, 1, 0);
438
439         dout("con_get %p nref = %d -> %d\n", con, nref, nref + 1);
440
441         return nref ? con : NULL;
442 }
443
444 void ceph_con_put(struct ceph_connection *con)
445 {
446         int nref = atomic_dec_return(&con->nref);
447
448         BUG_ON(nref < 0);
449         if (nref == 0) {
450                 BUG_ON(con->sock);
451                 kfree(con);
452         }
453         dout("con_put %p nref = %d -> %d\n", con, nref + 1, nref);
454 }
455
456 /*
457  * initialize a new connection.
458  */
459 void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
460 {
461         dout("con_init %p\n", con);
462         memset(con, 0, sizeof(*con));
463         atomic_set(&con->nref, 1);
464         con->msgr = msgr;
465         mutex_init(&con->mutex);
466         INIT_LIST_HEAD(&con->out_queue);
467         INIT_LIST_HEAD(&con->out_sent);
468         INIT_DELAYED_WORK(&con->work, con_work);
469 }
470 EXPORT_SYMBOL(ceph_con_init);
471
472
473 /*
474  * We maintain a global counter to order connection attempts.  Get
475  * a unique seq greater than @gt.
476  */
477 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
478 {
479         u32 ret;
480
481         spin_lock(&msgr->global_seq_lock);
482         if (msgr->global_seq < gt)
483                 msgr->global_seq = gt;
484         ret = ++msgr->global_seq;
485         spin_unlock(&msgr->global_seq_lock);
486         return ret;
487 }
488
489 static void ceph_con_out_kvec_reset(struct ceph_connection *con)
490 {
491         con->out_kvec_left = 0;
492         con->out_kvec_bytes = 0;
493         con->out_kvec_cur = &con->out_kvec[0];
494 }
495
496 static void ceph_con_out_kvec_add(struct ceph_connection *con,
497                                 size_t size, void *data)
498 {
499         int index;
500
501         index = con->out_kvec_left;
502         BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
503
504         con->out_kvec[index].iov_len = size;
505         con->out_kvec[index].iov_base = data;
506         con->out_kvec_left++;
507         con->out_kvec_bytes += size;
508 }
509
510 /*
511  * Prepare footer for currently outgoing message, and finish things
512  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
513  */
514 static void prepare_write_message_footer(struct ceph_connection *con)
515 {
516         struct ceph_msg *m = con->out_msg;
517         int v = con->out_kvec_left;
518
519         dout("prepare_write_message_footer %p\n", con);
520         con->out_kvec_is_msg = true;
521         con->out_kvec[v].iov_base = &m->footer;
522         con->out_kvec[v].iov_len = sizeof(m->footer);
523         con->out_kvec_bytes += sizeof(m->footer);
524         con->out_kvec_left++;
525         con->out_more = m->more_to_follow;
526         con->out_msg_done = true;
527 }
528
529 /*
530  * Prepare headers for the next outgoing message.
531  */
532 static void prepare_write_message(struct ceph_connection *con)
533 {
534         struct ceph_msg *m;
535         u32 crc;
536
537         ceph_con_out_kvec_reset(con);
538         con->out_kvec_is_msg = true;
539         con->out_msg_done = false;
540
541         /* Sneak an ack in there first?  If we can get it into the same
542          * TCP packet that's a good thing. */
543         if (con->in_seq > con->in_seq_acked) {
544                 con->in_seq_acked = con->in_seq;
545                 ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
546                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
547                 ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
548                         &con->out_temp_ack);
549         }
550
551         m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
552         con->out_msg = m;
553
554         /* put message on sent list */
555         ceph_msg_get(m);
556         list_move_tail(&m->list_head, &con->out_sent);
557
558         /*
559          * only assign outgoing seq # if we haven't sent this message
560          * yet.  if it is requeued, resend with it's original seq.
561          */
562         if (m->needs_out_seq) {
563                 m->hdr.seq = cpu_to_le64(++con->out_seq);
564                 m->needs_out_seq = false;
565         }
566
567         dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
568              m, con->out_seq, le16_to_cpu(m->hdr.type),
569              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
570              le32_to_cpu(m->hdr.data_len),
571              m->nr_pages);
572         BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
573
574         /* tag + hdr + front + middle */
575         ceph_con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
576         ceph_con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
577         ceph_con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
578
579         if (m->middle)
580                 ceph_con_out_kvec_add(con, m->middle->vec.iov_len,
581                         m->middle->vec.iov_base);
582
583         /* fill in crc (except data pages), footer */
584         crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
585         con->out_msg->hdr.crc = cpu_to_le32(crc);
586         con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
587
588         crc = crc32c(0, m->front.iov_base, m->front.iov_len);
589         con->out_msg->footer.front_crc = cpu_to_le32(crc);
590         if (m->middle) {
591                 crc = crc32c(0, m->middle->vec.iov_base,
592                                 m->middle->vec.iov_len);
593                 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
594         } else
595                 con->out_msg->footer.middle_crc = 0;
596         con->out_msg->footer.data_crc = 0;
597         dout("prepare_write_message front_crc %u data_crc %u\n",
598              le32_to_cpu(con->out_msg->footer.front_crc),
599              le32_to_cpu(con->out_msg->footer.middle_crc));
600
601         /* is there a data payload? */
602         if (le32_to_cpu(m->hdr.data_len) > 0) {
603                 /* initialize page iterator */
604                 con->out_msg_pos.page = 0;
605                 if (m->pages)
606                         con->out_msg_pos.page_pos = m->page_alignment;
607                 else
608                         con->out_msg_pos.page_pos = 0;
609                 con->out_msg_pos.data_pos = 0;
610                 con->out_msg_pos.did_page_crc = false;
611                 con->out_more = 1;  /* data + footer will follow */
612         } else {
613                 /* no, queue up footer too and be done */
614                 prepare_write_message_footer(con);
615         }
616
617         set_bit(WRITE_PENDING, &con->state);
618 }
619
620 /*
621  * Prepare an ack.
622  */
623 static void prepare_write_ack(struct ceph_connection *con)
624 {
625         dout("prepare_write_ack %p %llu -> %llu\n", con,
626              con->in_seq_acked, con->in_seq);
627         con->in_seq_acked = con->in_seq;
628
629         ceph_con_out_kvec_reset(con);
630
631         ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
632
633         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
634         ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
635                                 &con->out_temp_ack);
636
637         con->out_more = 1;  /* more will follow.. eventually.. */
638         set_bit(WRITE_PENDING, &con->state);
639 }
640
641 /*
642  * Prepare to write keepalive byte.
643  */
644 static void prepare_write_keepalive(struct ceph_connection *con)
645 {
646         dout("prepare_write_keepalive %p\n", con);
647         ceph_con_out_kvec_reset(con);
648         ceph_con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
649         set_bit(WRITE_PENDING, &con->state);
650 }
651
652 /*
653  * Connection negotiation.
654  */
655
656 static int prepare_connect_authorizer(struct ceph_connection *con)
657 {
658         void *auth_buf;
659         int auth_len = 0;
660         int auth_protocol = 0;
661
662         mutex_unlock(&con->mutex);
663         if (con->ops->get_authorizer)
664                 con->ops->get_authorizer(con, &auth_buf, &auth_len,
665                                          &auth_protocol, &con->auth_reply_buf,
666                                          &con->auth_reply_buf_len,
667                                          con->auth_retry);
668         mutex_lock(&con->mutex);
669
670         if (test_bit(CLOSED, &con->state) ||
671             test_bit(OPENING, &con->state))
672                 return -EAGAIN;
673
674         con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
675         con->out_connect.authorizer_len = cpu_to_le32(auth_len);
676
677         if (auth_len)
678                 ceph_con_out_kvec_add(con, auth_len, auth_buf);
679
680         return 0;
681 }
682
683 /*
684  * We connected to a peer and are saying hello.
685  */
686 static void prepare_write_banner(struct ceph_messenger *msgr,
687                                  struct ceph_connection *con)
688 {
689         ceph_con_out_kvec_reset(con);
690         ceph_con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
691         ceph_con_out_kvec_add(con, sizeof (msgr->my_enc_addr),
692                                         &msgr->my_enc_addr);
693
694         con->out_more = 0;
695         set_bit(WRITE_PENDING, &con->state);
696 }
697
698 static int prepare_write_connect(struct ceph_messenger *msgr,
699                                  struct ceph_connection *con,
700                                  int include_banner)
701 {
702         unsigned global_seq = get_global_seq(con->msgr, 0);
703         int proto;
704
705         switch (con->peer_name.type) {
706         case CEPH_ENTITY_TYPE_MON:
707                 proto = CEPH_MONC_PROTOCOL;
708                 break;
709         case CEPH_ENTITY_TYPE_OSD:
710                 proto = CEPH_OSDC_PROTOCOL;
711                 break;
712         case CEPH_ENTITY_TYPE_MDS:
713                 proto = CEPH_MDSC_PROTOCOL;
714                 break;
715         default:
716                 BUG();
717         }
718
719         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
720              con->connect_seq, global_seq, proto);
721
722         con->out_connect.features = cpu_to_le64(msgr->supported_features);
723         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
724         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
725         con->out_connect.global_seq = cpu_to_le32(global_seq);
726         con->out_connect.protocol_version = cpu_to_le32(proto);
727         con->out_connect.flags = 0;
728
729         if (include_banner)
730                 prepare_write_banner(msgr, con);
731         else
732                 ceph_con_out_kvec_reset(con);
733         ceph_con_out_kvec_add(con, sizeof (con->out_connect), &con->out_connect);
734
735         con->out_more = 0;
736         set_bit(WRITE_PENDING, &con->state);
737
738         return prepare_connect_authorizer(con);
739 }
740
741 /*
742  * write as much of pending kvecs to the socket as we can.
743  *  1 -> done
744  *  0 -> socket full, but more to do
745  * <0 -> error
746  */
747 static int write_partial_kvec(struct ceph_connection *con)
748 {
749         int ret;
750
751         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
752         while (con->out_kvec_bytes > 0) {
753                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
754                                        con->out_kvec_left, con->out_kvec_bytes,
755                                        con->out_more);
756                 if (ret <= 0)
757                         goto out;
758                 con->out_kvec_bytes -= ret;
759                 if (con->out_kvec_bytes == 0)
760                         break;            /* done */
761
762                 /* account for full iov entries consumed */
763                 while (ret >= con->out_kvec_cur->iov_len) {
764                         BUG_ON(!con->out_kvec_left);
765                         ret -= con->out_kvec_cur->iov_len;
766                         con->out_kvec_cur++;
767                         con->out_kvec_left--;
768                 }
769                 /* and for a partially-consumed entry */
770                 if (ret) {
771                         con->out_kvec_cur->iov_len -= ret;
772                         con->out_kvec_cur->iov_base += ret;
773                 }
774         }
775         con->out_kvec_left = 0;
776         con->out_kvec_is_msg = false;
777         ret = 1;
778 out:
779         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
780              con->out_kvec_bytes, con->out_kvec_left, ret);
781         return ret;  /* done! */
782 }
783
784 #ifdef CONFIG_BLOCK
785 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
786 {
787         if (!bio) {
788                 *iter = NULL;
789                 *seg = 0;
790                 return;
791         }
792         *iter = bio;
793         *seg = bio->bi_idx;
794 }
795
796 static void iter_bio_next(struct bio **bio_iter, int *seg)
797 {
798         if (*bio_iter == NULL)
799                 return;
800
801         BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
802
803         (*seg)++;
804         if (*seg == (*bio_iter)->bi_vcnt)
805                 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
806 }
807 #endif
808
809 /*
810  * Write as much message data payload as we can.  If we finish, queue
811  * up the footer.
812  *  1 -> done, footer is now queued in out_kvec[].
813  *  0 -> socket full, but more to do
814  * <0 -> error
815  */
816 static int write_partial_msg_pages(struct ceph_connection *con)
817 {
818         struct ceph_msg *msg = con->out_msg;
819         unsigned data_len = le32_to_cpu(msg->hdr.data_len);
820         size_t len;
821         bool do_datacrc = !con->msgr->nocrc;
822         int ret;
823         int total_max_write;
824         int in_trail = 0;
825         size_t trail_len = (msg->trail ? msg->trail->length : 0);
826
827         dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
828              con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
829              con->out_msg_pos.page_pos);
830
831 #ifdef CONFIG_BLOCK
832         if (msg->bio && !msg->bio_iter)
833                 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
834 #endif
835
836         while (data_len > con->out_msg_pos.data_pos) {
837                 struct page *page = NULL;
838                 void *kaddr = NULL;
839                 int max_write = PAGE_SIZE;
840                 int bio_offset = 0;
841
842                 total_max_write = data_len - trail_len -
843                         con->out_msg_pos.data_pos;
844
845                 /*
846                  * if we are calculating the data crc (the default), we need
847                  * to map the page.  if our pages[] has been revoked, use the
848                  * zero page.
849                  */
850
851                 /* have we reached the trail part of the data? */
852                 if (con->out_msg_pos.data_pos >= data_len - trail_len) {
853                         in_trail = 1;
854
855                         total_max_write = data_len - con->out_msg_pos.data_pos;
856
857                         page = list_first_entry(&msg->trail->head,
858                                                 struct page, lru);
859                         if (do_datacrc)
860                                 kaddr = kmap(page);
861                         max_write = PAGE_SIZE;
862                 } else if (msg->pages) {
863                         page = msg->pages[con->out_msg_pos.page];
864                         if (do_datacrc)
865                                 kaddr = kmap(page);
866                 } else if (msg->pagelist) {
867                         page = list_first_entry(&msg->pagelist->head,
868                                                 struct page, lru);
869                         if (do_datacrc)
870                                 kaddr = kmap(page);
871 #ifdef CONFIG_BLOCK
872                 } else if (msg->bio) {
873                         struct bio_vec *bv;
874
875                         bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
876                         page = bv->bv_page;
877                         bio_offset = bv->bv_offset;
878                         if (do_datacrc)
879                                 kaddr = kmap(page);
880                         max_write = bv->bv_len;
881 #endif
882                 } else {
883                         page = zero_page;
884                         if (do_datacrc)
885                                 kaddr = kmap(page);
886                 }
887                 len = min_t(int, max_write - con->out_msg_pos.page_pos,
888                             total_max_write);
889
890                 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
891                         void *base;
892                         u32 crc;
893                         u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
894
895                         BUG_ON(kaddr == NULL);
896                         base = kaddr + con->out_msg_pos.page_pos + bio_offset;
897                         crc = crc32c(tmpcrc, base, len);
898                         con->out_msg->footer.data_crc = cpu_to_le32(crc);
899                         con->out_msg_pos.did_page_crc = true;
900                 }
901                 ret = ceph_tcp_sendpage(con->sock, page,
902                                       con->out_msg_pos.page_pos + bio_offset,
903                                       len, 1);
904
905                 if (do_datacrc)
906                         kunmap(page);
907
908                 if (ret <= 0)
909                         goto out;
910
911                 con->out_msg_pos.data_pos += ret;
912                 con->out_msg_pos.page_pos += ret;
913                 if (ret == len) {
914                         con->out_msg_pos.page_pos = 0;
915                         con->out_msg_pos.page++;
916                         con->out_msg_pos.did_page_crc = false;
917                         if (in_trail)
918                                 list_move_tail(&page->lru,
919                                                &msg->trail->head);
920                         else if (msg->pagelist)
921                                 list_move_tail(&page->lru,
922                                                &msg->pagelist->head);
923 #ifdef CONFIG_BLOCK
924                         else if (msg->bio)
925                                 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
926 #endif
927                 }
928         }
929
930         dout("write_partial_msg_pages %p msg %p done\n", con, msg);
931
932         /* prepare and queue up footer, too */
933         if (!do_datacrc)
934                 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
935         ceph_con_out_kvec_reset(con);
936         prepare_write_message_footer(con);
937         ret = 1;
938 out:
939         return ret;
940 }
941
942 /*
943  * write some zeros
944  */
945 static int write_partial_skip(struct ceph_connection *con)
946 {
947         int ret;
948
949         while (con->out_skip > 0) {
950                 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
951
952                 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
953                 if (ret <= 0)
954                         goto out;
955                 con->out_skip -= ret;
956         }
957         ret = 1;
958 out:
959         return ret;
960 }
961
962 /*
963  * Prepare to read connection handshake, or an ack.
964  */
965 static void prepare_read_banner(struct ceph_connection *con)
966 {
967         dout("prepare_read_banner %p\n", con);
968         con->in_base_pos = 0;
969 }
970
971 static void prepare_read_connect(struct ceph_connection *con)
972 {
973         dout("prepare_read_connect %p\n", con);
974         con->in_base_pos = 0;
975 }
976
977 static void prepare_read_ack(struct ceph_connection *con)
978 {
979         dout("prepare_read_ack %p\n", con);
980         con->in_base_pos = 0;
981 }
982
983 static void prepare_read_tag(struct ceph_connection *con)
984 {
985         dout("prepare_read_tag %p\n", con);
986         con->in_base_pos = 0;
987         con->in_tag = CEPH_MSGR_TAG_READY;
988 }
989
990 /*
991  * Prepare to read a message.
992  */
993 static int prepare_read_message(struct ceph_connection *con)
994 {
995         dout("prepare_read_message %p\n", con);
996         BUG_ON(con->in_msg != NULL);
997         con->in_base_pos = 0;
998         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
999         return 0;
1000 }
1001
1002
1003 static int read_partial(struct ceph_connection *con,
1004                         int *to, int size, void *object)
1005 {
1006         *to += size;
1007         while (con->in_base_pos < *to) {
1008                 int left = *to - con->in_base_pos;
1009                 int have = size - left;
1010                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1011                 if (ret <= 0)
1012                         return ret;
1013                 con->in_base_pos += ret;
1014         }
1015         return 1;
1016 }
1017
1018
1019 /*
1020  * Read all or part of the connect-side handshake on a new connection
1021  */
1022 static int read_partial_banner(struct ceph_connection *con)
1023 {
1024         int ret, to = 0;
1025
1026         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1027
1028         /* peer's banner */
1029         ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
1030         if (ret <= 0)
1031                 goto out;
1032         ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
1033                            &con->actual_peer_addr);
1034         if (ret <= 0)
1035                 goto out;
1036         ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
1037                            &con->peer_addr_for_me);
1038         if (ret <= 0)
1039                 goto out;
1040 out:
1041         return ret;
1042 }
1043
1044 static int read_partial_connect(struct ceph_connection *con)
1045 {
1046         int ret, to = 0;
1047
1048         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1049
1050         ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
1051         if (ret <= 0)
1052                 goto out;
1053         ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
1054                            con->auth_reply_buf);
1055         if (ret <= 0)
1056                 goto out;
1057
1058         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1059              con, (int)con->in_reply.tag,
1060              le32_to_cpu(con->in_reply.connect_seq),
1061              le32_to_cpu(con->in_reply.global_seq));
1062 out:
1063         return ret;
1064
1065 }
1066
1067 /*
1068  * Verify the hello banner looks okay.
1069  */
1070 static int verify_hello(struct ceph_connection *con)
1071 {
1072         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1073                 pr_err("connect to %s got bad banner\n",
1074                        ceph_pr_addr(&con->peer_addr.in_addr));
1075                 con->error_msg = "protocol error, bad banner";
1076                 return -1;
1077         }
1078         return 0;
1079 }
1080
1081 static bool addr_is_blank(struct sockaddr_storage *ss)
1082 {
1083         switch (ss->ss_family) {
1084         case AF_INET:
1085                 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1086         case AF_INET6:
1087                 return
1088                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1089                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1090                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1091                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1092         }
1093         return false;
1094 }
1095
1096 static int addr_port(struct sockaddr_storage *ss)
1097 {
1098         switch (ss->ss_family) {
1099         case AF_INET:
1100                 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1101         case AF_INET6:
1102                 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1103         }
1104         return 0;
1105 }
1106
1107 static void addr_set_port(struct sockaddr_storage *ss, int p)
1108 {
1109         switch (ss->ss_family) {
1110         case AF_INET:
1111                 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1112                 break;
1113         case AF_INET6:
1114                 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1115                 break;
1116         }
1117 }
1118
1119 /*
1120  * Unlike other *_pton function semantics, zero indicates success.
1121  */
1122 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1123                 char delim, const char **ipend)
1124 {
1125         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1126         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1127
1128         memset(ss, 0, sizeof(*ss));
1129
1130         if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1131                 ss->ss_family = AF_INET;
1132                 return 0;
1133         }
1134
1135         if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1136                 ss->ss_family = AF_INET6;
1137                 return 0;
1138         }
1139
1140         return -EINVAL;
1141 }
1142
1143 /*
1144  * Extract hostname string and resolve using kernel DNS facility.
1145  */
1146 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1147 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1148                 struct sockaddr_storage *ss, char delim, const char **ipend)
1149 {
1150         const char *end, *delim_p;
1151         char *colon_p, *ip_addr = NULL;
1152         int ip_len, ret;
1153
1154         /*
1155          * The end of the hostname occurs immediately preceding the delimiter or
1156          * the port marker (':') where the delimiter takes precedence.
1157          */
1158         delim_p = memchr(name, delim, namelen);
1159         colon_p = memchr(name, ':', namelen);
1160
1161         if (delim_p && colon_p)
1162                 end = delim_p < colon_p ? delim_p : colon_p;
1163         else if (!delim_p && colon_p)
1164                 end = colon_p;
1165         else {
1166                 end = delim_p;
1167                 if (!end) /* case: hostname:/ */
1168                         end = name + namelen;
1169         }
1170
1171         if (end <= name)
1172                 return -EINVAL;
1173
1174         /* do dns_resolve upcall */
1175         ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1176         if (ip_len > 0)
1177                 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1178         else
1179                 ret = -ESRCH;
1180
1181         kfree(ip_addr);
1182
1183         *ipend = end;
1184
1185         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1186                         ret, ret ? "failed" : ceph_pr_addr(ss));
1187
1188         return ret;
1189 }
1190 #else
1191 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1192                 struct sockaddr_storage *ss, char delim, const char **ipend)
1193 {
1194         return -EINVAL;
1195 }
1196 #endif
1197
1198 /*
1199  * Parse a server name (IP or hostname). If a valid IP address is not found
1200  * then try to extract a hostname to resolve using userspace DNS upcall.
1201  */
1202 static int ceph_parse_server_name(const char *name, size_t namelen,
1203                         struct sockaddr_storage *ss, char delim, const char **ipend)
1204 {
1205         int ret;
1206
1207         ret = ceph_pton(name, namelen, ss, delim, ipend);
1208         if (ret)
1209                 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1210
1211         return ret;
1212 }
1213
1214 /*
1215  * Parse an ip[:port] list into an addr array.  Use the default
1216  * monitor port if a port isn't specified.
1217  */
1218 int ceph_parse_ips(const char *c, const char *end,
1219                    struct ceph_entity_addr *addr,
1220                    int max_count, int *count)
1221 {
1222         int i, ret = -EINVAL;
1223         const char *p = c;
1224
1225         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1226         for (i = 0; i < max_count; i++) {
1227                 const char *ipend;
1228                 struct sockaddr_storage *ss = &addr[i].in_addr;
1229                 int port;
1230                 char delim = ',';
1231
1232                 if (*p == '[') {
1233                         delim = ']';
1234                         p++;
1235                 }
1236
1237                 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1238                 if (ret)
1239                         goto bad;
1240                 ret = -EINVAL;
1241
1242                 p = ipend;
1243
1244                 if (delim == ']') {
1245                         if (*p != ']') {
1246                                 dout("missing matching ']'\n");
1247                                 goto bad;
1248                         }
1249                         p++;
1250                 }
1251
1252                 /* port? */
1253                 if (p < end && *p == ':') {
1254                         port = 0;
1255                         p++;
1256                         while (p < end && *p >= '0' && *p <= '9') {
1257                                 port = (port * 10) + (*p - '0');
1258                                 p++;
1259                         }
1260                         if (port > 65535 || port == 0)
1261                                 goto bad;
1262                 } else {
1263                         port = CEPH_MON_PORT;
1264                 }
1265
1266                 addr_set_port(ss, port);
1267
1268                 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1269
1270                 if (p == end)
1271                         break;
1272                 if (*p != ',')
1273                         goto bad;
1274                 p++;
1275         }
1276
1277         if (p != end)
1278                 goto bad;
1279
1280         if (count)
1281                 *count = i + 1;
1282         return 0;
1283
1284 bad:
1285         pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1286         return ret;
1287 }
1288 EXPORT_SYMBOL(ceph_parse_ips);
1289
1290 static int process_banner(struct ceph_connection *con)
1291 {
1292         dout("process_banner on %p\n", con);
1293
1294         if (verify_hello(con) < 0)
1295                 return -1;
1296
1297         ceph_decode_addr(&con->actual_peer_addr);
1298         ceph_decode_addr(&con->peer_addr_for_me);
1299
1300         /*
1301          * Make sure the other end is who we wanted.  note that the other
1302          * end may not yet know their ip address, so if it's 0.0.0.0, give
1303          * them the benefit of the doubt.
1304          */
1305         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1306                    sizeof(con->peer_addr)) != 0 &&
1307             !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1308               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1309                 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1310                            ceph_pr_addr(&con->peer_addr.in_addr),
1311                            (int)le32_to_cpu(con->peer_addr.nonce),
1312                            ceph_pr_addr(&con->actual_peer_addr.in_addr),
1313                            (int)le32_to_cpu(con->actual_peer_addr.nonce));
1314                 con->error_msg = "wrong peer at address";
1315                 return -1;
1316         }
1317
1318         /*
1319          * did we learn our address?
1320          */
1321         if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1322                 int port = addr_port(&con->msgr->inst.addr.in_addr);
1323
1324                 memcpy(&con->msgr->inst.addr.in_addr,
1325                        &con->peer_addr_for_me.in_addr,
1326                        sizeof(con->peer_addr_for_me.in_addr));
1327                 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1328                 encode_my_addr(con->msgr);
1329                 dout("process_banner learned my addr is %s\n",
1330                      ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1331         }
1332
1333         set_bit(NEGOTIATING, &con->state);
1334         prepare_read_connect(con);
1335         return 0;
1336 }
1337
1338 static void fail_protocol(struct ceph_connection *con)
1339 {
1340         reset_connection(con);
1341         set_bit(CLOSED, &con->state);  /* in case there's queued work */
1342
1343         mutex_unlock(&con->mutex);
1344         if (con->ops->bad_proto)
1345                 con->ops->bad_proto(con);
1346         mutex_lock(&con->mutex);
1347 }
1348
1349 static int process_connect(struct ceph_connection *con)
1350 {
1351         u64 sup_feat = con->msgr->supported_features;
1352         u64 req_feat = con->msgr->required_features;
1353         u64 server_feat = le64_to_cpu(con->in_reply.features);
1354         int ret;
1355
1356         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1357
1358         switch (con->in_reply.tag) {
1359         case CEPH_MSGR_TAG_FEATURES:
1360                 pr_err("%s%lld %s feature set mismatch,"
1361                        " my %llx < server's %llx, missing %llx\n",
1362                        ENTITY_NAME(con->peer_name),
1363                        ceph_pr_addr(&con->peer_addr.in_addr),
1364                        sup_feat, server_feat, server_feat & ~sup_feat);
1365                 con->error_msg = "missing required protocol features";
1366                 fail_protocol(con);
1367                 return -1;
1368
1369         case CEPH_MSGR_TAG_BADPROTOVER:
1370                 pr_err("%s%lld %s protocol version mismatch,"
1371                        " my %d != server's %d\n",
1372                        ENTITY_NAME(con->peer_name),
1373                        ceph_pr_addr(&con->peer_addr.in_addr),
1374                        le32_to_cpu(con->out_connect.protocol_version),
1375                        le32_to_cpu(con->in_reply.protocol_version));
1376                 con->error_msg = "protocol version mismatch";
1377                 fail_protocol(con);
1378                 return -1;
1379
1380         case CEPH_MSGR_TAG_BADAUTHORIZER:
1381                 con->auth_retry++;
1382                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1383                      con->auth_retry);
1384                 if (con->auth_retry == 2) {
1385                         con->error_msg = "connect authorization failure";
1386                         return -1;
1387                 }
1388                 con->auth_retry = 1;
1389                 ret = prepare_write_connect(con->msgr, con, 0);
1390                 if (ret < 0)
1391                         return ret;
1392                 prepare_read_connect(con);
1393                 break;
1394
1395         case CEPH_MSGR_TAG_RESETSESSION:
1396                 /*
1397                  * If we connected with a large connect_seq but the peer
1398                  * has no record of a session with us (no connection, or
1399                  * connect_seq == 0), they will send RESETSESION to indicate
1400                  * that they must have reset their session, and may have
1401                  * dropped messages.
1402                  */
1403                 dout("process_connect got RESET peer seq %u\n",
1404                      le32_to_cpu(con->in_connect.connect_seq));
1405                 pr_err("%s%lld %s connection reset\n",
1406                        ENTITY_NAME(con->peer_name),
1407                        ceph_pr_addr(&con->peer_addr.in_addr));
1408                 reset_connection(con);
1409                 prepare_write_connect(con->msgr, con, 0);
1410                 prepare_read_connect(con);
1411
1412                 /* Tell ceph about it. */
1413                 mutex_unlock(&con->mutex);
1414                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1415                 if (con->ops->peer_reset)
1416                         con->ops->peer_reset(con);
1417                 mutex_lock(&con->mutex);
1418                 if (test_bit(CLOSED, &con->state) ||
1419                     test_bit(OPENING, &con->state))
1420                         return -EAGAIN;
1421                 break;
1422
1423         case CEPH_MSGR_TAG_RETRY_SESSION:
1424                 /*
1425                  * If we sent a smaller connect_seq than the peer has, try
1426                  * again with a larger value.
1427                  */
1428                 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1429                      le32_to_cpu(con->out_connect.connect_seq),
1430                      le32_to_cpu(con->in_connect.connect_seq));
1431                 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1432                 prepare_write_connect(con->msgr, con, 0);
1433                 prepare_read_connect(con);
1434                 break;
1435
1436         case CEPH_MSGR_TAG_RETRY_GLOBAL:
1437                 /*
1438                  * If we sent a smaller global_seq than the peer has, try
1439                  * again with a larger value.
1440                  */
1441                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1442                      con->peer_global_seq,
1443                      le32_to_cpu(con->in_connect.global_seq));
1444                 get_global_seq(con->msgr,
1445                                le32_to_cpu(con->in_connect.global_seq));
1446                 prepare_write_connect(con->msgr, con, 0);
1447                 prepare_read_connect(con);
1448                 break;
1449
1450         case CEPH_MSGR_TAG_READY:
1451                 if (req_feat & ~server_feat) {
1452                         pr_err("%s%lld %s protocol feature mismatch,"
1453                                " my required %llx > server's %llx, need %llx\n",
1454                                ENTITY_NAME(con->peer_name),
1455                                ceph_pr_addr(&con->peer_addr.in_addr),
1456                                req_feat, server_feat, req_feat & ~server_feat);
1457                         con->error_msg = "missing required protocol features";
1458                         fail_protocol(con);
1459                         return -1;
1460                 }
1461                 clear_bit(CONNECTING, &con->state);
1462                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1463                 con->connect_seq++;
1464                 con->peer_features = server_feat;
1465                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1466                      con->peer_global_seq,
1467                      le32_to_cpu(con->in_reply.connect_seq),
1468                      con->connect_seq);
1469                 WARN_ON(con->connect_seq !=
1470                         le32_to_cpu(con->in_reply.connect_seq));
1471
1472                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1473                         set_bit(LOSSYTX, &con->state);
1474
1475                 prepare_read_tag(con);
1476                 break;
1477
1478         case CEPH_MSGR_TAG_WAIT:
1479                 /*
1480                  * If there is a connection race (we are opening
1481                  * connections to each other), one of us may just have
1482                  * to WAIT.  This shouldn't happen if we are the
1483                  * client.
1484                  */
1485                 pr_err("process_connect got WAIT as client\n");
1486                 con->error_msg = "protocol error, got WAIT as client";
1487                 return -1;
1488
1489         default:
1490                 pr_err("connect protocol error, will retry\n");
1491                 con->error_msg = "protocol error, garbage tag during connect";
1492                 return -1;
1493         }
1494         return 0;
1495 }
1496
1497
1498 /*
1499  * read (part of) an ack
1500  */
1501 static int read_partial_ack(struct ceph_connection *con)
1502 {
1503         int to = 0;
1504
1505         return read_partial(con, &to, sizeof(con->in_temp_ack),
1506                             &con->in_temp_ack);
1507 }
1508
1509
1510 /*
1511  * We can finally discard anything that's been acked.
1512  */
1513 static void process_ack(struct ceph_connection *con)
1514 {
1515         struct ceph_msg *m;
1516         u64 ack = le64_to_cpu(con->in_temp_ack);
1517         u64 seq;
1518
1519         while (!list_empty(&con->out_sent)) {
1520                 m = list_first_entry(&con->out_sent, struct ceph_msg,
1521                                      list_head);
1522                 seq = le64_to_cpu(m->hdr.seq);
1523                 if (seq > ack)
1524                         break;
1525                 dout("got ack for seq %llu type %d at %p\n", seq,
1526                      le16_to_cpu(m->hdr.type), m);
1527                 m->ack_stamp = jiffies;
1528                 ceph_msg_remove(m);
1529         }
1530         prepare_read_tag(con);
1531 }
1532
1533
1534
1535
1536 static int read_partial_message_section(struct ceph_connection *con,
1537                                         struct kvec *section,
1538                                         unsigned int sec_len, u32 *crc)
1539 {
1540         int ret, left;
1541
1542         BUG_ON(!section);
1543
1544         while (section->iov_len < sec_len) {
1545                 BUG_ON(section->iov_base == NULL);
1546                 left = sec_len - section->iov_len;
1547                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1548                                        section->iov_len, left);
1549                 if (ret <= 0)
1550                         return ret;
1551                 section->iov_len += ret;
1552         }
1553         if (section->iov_len == sec_len)
1554                 *crc = crc32c(0, section->iov_base, section->iov_len);
1555
1556         return 1;
1557 }
1558
1559 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1560                                 struct ceph_msg_header *hdr,
1561                                 int *skip);
1562
1563
1564 static int read_partial_message_pages(struct ceph_connection *con,
1565                                       struct page **pages,
1566                                       unsigned data_len, bool do_datacrc)
1567 {
1568         void *p;
1569         int ret;
1570         int left;
1571
1572         left = min((int)(data_len - con->in_msg_pos.data_pos),
1573                    (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1574         /* (page) data */
1575         BUG_ON(pages == NULL);
1576         p = kmap(pages[con->in_msg_pos.page]);
1577         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1578                                left);
1579         if (ret > 0 && do_datacrc)
1580                 con->in_data_crc =
1581                         crc32c(con->in_data_crc,
1582                                   p + con->in_msg_pos.page_pos, ret);
1583         kunmap(pages[con->in_msg_pos.page]);
1584         if (ret <= 0)
1585                 return ret;
1586         con->in_msg_pos.data_pos += ret;
1587         con->in_msg_pos.page_pos += ret;
1588         if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1589                 con->in_msg_pos.page_pos = 0;
1590                 con->in_msg_pos.page++;
1591         }
1592
1593         return ret;
1594 }
1595
1596 #ifdef CONFIG_BLOCK
1597 static int read_partial_message_bio(struct ceph_connection *con,
1598                                     struct bio **bio_iter, int *bio_seg,
1599                                     unsigned data_len, bool do_datacrc)
1600 {
1601         struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1602         void *p;
1603         int ret, left;
1604
1605         if (IS_ERR(bv))
1606                 return PTR_ERR(bv);
1607
1608         left = min((int)(data_len - con->in_msg_pos.data_pos),
1609                    (int)(bv->bv_len - con->in_msg_pos.page_pos));
1610
1611         p = kmap(bv->bv_page) + bv->bv_offset;
1612
1613         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1614                                left);
1615         if (ret > 0 && do_datacrc)
1616                 con->in_data_crc =
1617                         crc32c(con->in_data_crc,
1618                                   p + con->in_msg_pos.page_pos, ret);
1619         kunmap(bv->bv_page);
1620         if (ret <= 0)
1621                 return ret;
1622         con->in_msg_pos.data_pos += ret;
1623         con->in_msg_pos.page_pos += ret;
1624         if (con->in_msg_pos.page_pos == bv->bv_len) {
1625                 con->in_msg_pos.page_pos = 0;
1626                 iter_bio_next(bio_iter, bio_seg);
1627         }
1628
1629         return ret;
1630 }
1631 #endif
1632
1633 /*
1634  * read (part of) a message.
1635  */
1636 static int read_partial_message(struct ceph_connection *con)
1637 {
1638         struct ceph_msg *m = con->in_msg;
1639         int ret;
1640         int to, left;
1641         unsigned front_len, middle_len, data_len;
1642         bool do_datacrc = !con->msgr->nocrc;
1643         int skip;
1644         u64 seq;
1645         u32 crc;
1646
1647         dout("read_partial_message con %p msg %p\n", con, m);
1648
1649         /* header */
1650         while (con->in_base_pos < sizeof(con->in_hdr)) {
1651                 left = sizeof(con->in_hdr) - con->in_base_pos;
1652                 ret = ceph_tcp_recvmsg(con->sock,
1653                                        (char *)&con->in_hdr + con->in_base_pos,
1654                                        left);
1655                 if (ret <= 0)
1656                         return ret;
1657                 con->in_base_pos += ret;
1658         }
1659
1660         crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1661         if (cpu_to_le32(crc) != con->in_hdr.crc) {
1662                 pr_err("read_partial_message bad hdr "
1663                        " crc %u != expected %u\n",
1664                        crc, con->in_hdr.crc);
1665                 return -EBADMSG;
1666         }
1667
1668         front_len = le32_to_cpu(con->in_hdr.front_len);
1669         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1670                 return -EIO;
1671         middle_len = le32_to_cpu(con->in_hdr.middle_len);
1672         if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1673                 return -EIO;
1674         data_len = le32_to_cpu(con->in_hdr.data_len);
1675         if (data_len > CEPH_MSG_MAX_DATA_LEN)
1676                 return -EIO;
1677
1678         /* verify seq# */
1679         seq = le64_to_cpu(con->in_hdr.seq);
1680         if ((s64)seq - (s64)con->in_seq < 1) {
1681                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1682                         ENTITY_NAME(con->peer_name),
1683                         ceph_pr_addr(&con->peer_addr.in_addr),
1684                         seq, con->in_seq + 1);
1685                 con->in_base_pos = -front_len - middle_len - data_len -
1686                         sizeof(m->footer);
1687                 con->in_tag = CEPH_MSGR_TAG_READY;
1688                 return 0;
1689         } else if ((s64)seq - (s64)con->in_seq > 1) {
1690                 pr_err("read_partial_message bad seq %lld expected %lld\n",
1691                        seq, con->in_seq + 1);
1692                 con->error_msg = "bad message sequence # for incoming message";
1693                 return -EBADMSG;
1694         }
1695
1696         /* allocate message? */
1697         if (!con->in_msg) {
1698                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1699                      con->in_hdr.front_len, con->in_hdr.data_len);
1700                 skip = 0;
1701                 con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1702                 if (skip) {
1703                         /* skip this message */
1704                         dout("alloc_msg said skip message\n");
1705                         BUG_ON(con->in_msg);
1706                         con->in_base_pos = -front_len - middle_len - data_len -
1707                                 sizeof(m->footer);
1708                         con->in_tag = CEPH_MSGR_TAG_READY;
1709                         con->in_seq++;
1710                         return 0;
1711                 }
1712                 if (!con->in_msg) {
1713                         con->error_msg =
1714                                 "error allocating memory for incoming message";
1715                         return -ENOMEM;
1716                 }
1717                 m = con->in_msg;
1718                 m->front.iov_len = 0;    /* haven't read it yet */
1719                 if (m->middle)
1720                         m->middle->vec.iov_len = 0;
1721
1722                 con->in_msg_pos.page = 0;
1723                 if (m->pages)
1724                         con->in_msg_pos.page_pos = m->page_alignment;
1725                 else
1726                         con->in_msg_pos.page_pos = 0;
1727                 con->in_msg_pos.data_pos = 0;
1728         }
1729
1730         /* front */
1731         ret = read_partial_message_section(con, &m->front, front_len,
1732                                            &con->in_front_crc);
1733         if (ret <= 0)
1734                 return ret;
1735
1736         /* middle */
1737         if (m->middle) {
1738                 ret = read_partial_message_section(con, &m->middle->vec,
1739                                                    middle_len,
1740                                                    &con->in_middle_crc);
1741                 if (ret <= 0)
1742                         return ret;
1743         }
1744 #ifdef CONFIG_BLOCK
1745         if (m->bio && !m->bio_iter)
1746                 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1747 #endif
1748
1749         /* (page) data */
1750         while (con->in_msg_pos.data_pos < data_len) {
1751                 if (m->pages) {
1752                         ret = read_partial_message_pages(con, m->pages,
1753                                                  data_len, do_datacrc);
1754                         if (ret <= 0)
1755                                 return ret;
1756 #ifdef CONFIG_BLOCK
1757                 } else if (m->bio) {
1758
1759                         ret = read_partial_message_bio(con,
1760                                                  &m->bio_iter, &m->bio_seg,
1761                                                  data_len, do_datacrc);
1762                         if (ret <= 0)
1763                                 return ret;
1764 #endif
1765                 } else {
1766                         BUG_ON(1);
1767                 }
1768         }
1769
1770         /* footer */
1771         to = sizeof(m->hdr) + sizeof(m->footer);
1772         while (con->in_base_pos < to) {
1773                 left = to - con->in_base_pos;
1774                 ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
1775                                        (con->in_base_pos - sizeof(m->hdr)),
1776                                        left);
1777                 if (ret <= 0)
1778                         return ret;
1779                 con->in_base_pos += ret;
1780         }
1781         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1782              m, front_len, m->footer.front_crc, middle_len,
1783              m->footer.middle_crc, data_len, m->footer.data_crc);
1784
1785         /* crc ok? */
1786         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1787                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1788                        m, con->in_front_crc, m->footer.front_crc);
1789                 return -EBADMSG;
1790         }
1791         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1792                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1793                        m, con->in_middle_crc, m->footer.middle_crc);
1794                 return -EBADMSG;
1795         }
1796         if (do_datacrc &&
1797             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1798             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1799                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1800                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1801                 return -EBADMSG;
1802         }
1803
1804         return 1; /* done! */
1805 }
1806
1807 /*
1808  * Process message.  This happens in the worker thread.  The callback should
1809  * be careful not to do anything that waits on other incoming messages or it
1810  * may deadlock.
1811  */
1812 static void process_message(struct ceph_connection *con)
1813 {
1814         struct ceph_msg *msg;
1815
1816         msg = con->in_msg;
1817         con->in_msg = NULL;
1818
1819         /* if first message, set peer_name */
1820         if (con->peer_name.type == 0)
1821                 con->peer_name = msg->hdr.src;
1822
1823         con->in_seq++;
1824         mutex_unlock(&con->mutex);
1825
1826         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1827              msg, le64_to_cpu(msg->hdr.seq),
1828              ENTITY_NAME(msg->hdr.src),
1829              le16_to_cpu(msg->hdr.type),
1830              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1831              le32_to_cpu(msg->hdr.front_len),
1832              le32_to_cpu(msg->hdr.data_len),
1833              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1834         con->ops->dispatch(con, msg);
1835
1836         mutex_lock(&con->mutex);
1837         prepare_read_tag(con);
1838 }
1839
1840
1841 /*
1842  * Write something to the socket.  Called in a worker thread when the
1843  * socket appears to be writeable and we have something ready to send.
1844  */
1845 static int try_write(struct ceph_connection *con)
1846 {
1847         struct ceph_messenger *msgr = con->msgr;
1848         int ret = 1;
1849
1850         dout("try_write start %p state %lu nref %d\n", con, con->state,
1851              atomic_read(&con->nref));
1852
1853 more:
1854         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1855
1856         /* open the socket first? */
1857         if (con->sock == NULL) {
1858                 prepare_write_connect(msgr, con, 1);
1859                 prepare_read_banner(con);
1860                 set_bit(CONNECTING, &con->state);
1861                 clear_bit(NEGOTIATING, &con->state);
1862
1863                 BUG_ON(con->in_msg);
1864                 con->in_tag = CEPH_MSGR_TAG_READY;
1865                 dout("try_write initiating connect on %p new state %lu\n",
1866                      con, con->state);
1867                 ret = ceph_tcp_connect(con);
1868                 if (ret < 0) {
1869                         con->error_msg = "connect error";
1870                         goto out;
1871                 }
1872         }
1873
1874 more_kvec:
1875         /* kvec data queued? */
1876         if (con->out_skip) {
1877                 ret = write_partial_skip(con);
1878                 if (ret <= 0)
1879                         goto out;
1880         }
1881         if (con->out_kvec_left) {
1882                 ret = write_partial_kvec(con);
1883                 if (ret <= 0)
1884                         goto out;
1885         }
1886
1887         /* msg pages? */
1888         if (con->out_msg) {
1889                 if (con->out_msg_done) {
1890                         ceph_msg_put(con->out_msg);
1891                         con->out_msg = NULL;   /* we're done with this one */
1892                         goto do_next;
1893                 }
1894
1895                 ret = write_partial_msg_pages(con);
1896                 if (ret == 1)
1897                         goto more_kvec;  /* we need to send the footer, too! */
1898                 if (ret == 0)
1899                         goto out;
1900                 if (ret < 0) {
1901                         dout("try_write write_partial_msg_pages err %d\n",
1902                              ret);
1903                         goto out;
1904                 }
1905         }
1906
1907 do_next:
1908         if (!test_bit(CONNECTING, &con->state)) {
1909                 /* is anything else pending? */
1910                 if (!list_empty(&con->out_queue)) {
1911                         prepare_write_message(con);
1912                         goto more;
1913                 }
1914                 if (con->in_seq > con->in_seq_acked) {
1915                         prepare_write_ack(con);
1916                         goto more;
1917                 }
1918                 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1919                         prepare_write_keepalive(con);
1920                         goto more;
1921                 }
1922         }
1923
1924         /* Nothing to do! */
1925         clear_bit(WRITE_PENDING, &con->state);
1926         dout("try_write nothing else to write.\n");
1927         ret = 0;
1928 out:
1929         dout("try_write done on %p ret %d\n", con, ret);
1930         return ret;
1931 }
1932
1933
1934
1935 /*
1936  * Read what we can from the socket.
1937  */
1938 static int try_read(struct ceph_connection *con)
1939 {
1940         int ret = -1;
1941
1942         if (!con->sock)
1943                 return 0;
1944
1945         if (test_bit(STANDBY, &con->state))
1946                 return 0;
1947
1948         dout("try_read start on %p\n", con);
1949
1950 more:
1951         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1952              con->in_base_pos);
1953
1954         /*
1955          * process_connect and process_message drop and re-take
1956          * con->mutex.  make sure we handle a racing close or reopen.
1957          */
1958         if (test_bit(CLOSED, &con->state) ||
1959             test_bit(OPENING, &con->state)) {
1960                 ret = -EAGAIN;
1961                 goto out;
1962         }
1963
1964         if (test_bit(CONNECTING, &con->state)) {
1965                 if (!test_bit(NEGOTIATING, &con->state)) {
1966                         dout("try_read connecting\n");
1967                         ret = read_partial_banner(con);
1968                         if (ret <= 0)
1969                                 goto out;
1970                         ret = process_banner(con);
1971                         if (ret < 0)
1972                                 goto out;
1973                 }
1974                 ret = read_partial_connect(con);
1975                 if (ret <= 0)
1976                         goto out;
1977                 ret = process_connect(con);
1978                 if (ret < 0)
1979                         goto out;
1980                 goto more;
1981         }
1982
1983         if (con->in_base_pos < 0) {
1984                 /*
1985                  * skipping + discarding content.
1986                  *
1987                  * FIXME: there must be a better way to do this!
1988                  */
1989                 static char buf[SKIP_BUF_SIZE];
1990                 int skip = min((int) sizeof (buf), -con->in_base_pos);
1991
1992                 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1993                 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1994                 if (ret <= 0)
1995                         goto out;
1996                 con->in_base_pos += ret;
1997                 if (con->in_base_pos)
1998                         goto more;
1999         }
2000         if (con->in_tag == CEPH_MSGR_TAG_READY) {
2001                 /*
2002                  * what's next?
2003                  */
2004                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2005                 if (ret <= 0)
2006                         goto out;
2007                 dout("try_read got tag %d\n", (int)con->in_tag);
2008                 switch (con->in_tag) {
2009                 case CEPH_MSGR_TAG_MSG:
2010                         prepare_read_message(con);
2011                         break;
2012                 case CEPH_MSGR_TAG_ACK:
2013                         prepare_read_ack(con);
2014                         break;
2015                 case CEPH_MSGR_TAG_CLOSE:
2016                         set_bit(CLOSED, &con->state);   /* fixme */
2017                         goto out;
2018                 default:
2019                         goto bad_tag;
2020                 }
2021         }
2022         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2023                 ret = read_partial_message(con);
2024                 if (ret <= 0) {
2025                         switch (ret) {
2026                         case -EBADMSG:
2027                                 con->error_msg = "bad crc";
2028                                 ret = -EIO;
2029                                 break;
2030                         case -EIO:
2031                                 con->error_msg = "io error";
2032                                 break;
2033                         }
2034                         goto out;
2035                 }
2036                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2037                         goto more;
2038                 process_message(con);
2039                 goto more;
2040         }
2041         if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2042                 ret = read_partial_ack(con);
2043                 if (ret <= 0)
2044                         goto out;
2045                 process_ack(con);
2046                 goto more;
2047         }
2048
2049 out:
2050         dout("try_read done on %p ret %d\n", con, ret);
2051         return ret;
2052
2053 bad_tag:
2054         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2055         con->error_msg = "protocol error, garbage tag";
2056         ret = -1;
2057         goto out;
2058 }
2059
2060
2061 /*
2062  * Atomically queue work on a connection.  Bump @con reference to
2063  * avoid races with connection teardown.
2064  */
2065 static void queue_con(struct ceph_connection *con)
2066 {
2067         if (test_bit(DEAD, &con->state)) {
2068                 dout("queue_con %p ignoring: DEAD\n",
2069                      con);
2070                 return;
2071         }
2072
2073         if (!con->ops->get(con)) {
2074                 dout("queue_con %p ref count 0\n", con);
2075                 return;
2076         }
2077
2078         if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2079                 dout("queue_con %p - already queued\n", con);
2080                 con->ops->put(con);
2081         } else {
2082                 dout("queue_con %p\n", con);
2083         }
2084 }
2085
2086 /*
2087  * Do some work on a connection.  Drop a connection ref when we're done.
2088  */
2089 static void con_work(struct work_struct *work)
2090 {
2091         struct ceph_connection *con = container_of(work, struct ceph_connection,
2092                                                    work.work);
2093         int ret;
2094
2095         mutex_lock(&con->mutex);
2096 restart:
2097         if (test_and_clear_bit(BACKOFF, &con->state)) {
2098                 dout("con_work %p backing off\n", con);
2099                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2100                                        round_jiffies_relative(con->delay))) {
2101                         dout("con_work %p backoff %lu\n", con, con->delay);
2102                         mutex_unlock(&con->mutex);
2103                         return;
2104                 } else {
2105                         con->ops->put(con);
2106                         dout("con_work %p FAILED to back off %lu\n", con,
2107                              con->delay);
2108                 }
2109         }
2110
2111         if (test_bit(STANDBY, &con->state)) {
2112                 dout("con_work %p STANDBY\n", con);
2113                 goto done;
2114         }
2115         if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
2116                 dout("con_work CLOSED\n");
2117                 con_close_socket(con);
2118                 goto done;
2119         }
2120         if (test_and_clear_bit(OPENING, &con->state)) {
2121                 /* reopen w/ new peer */
2122                 dout("con_work OPENING\n");
2123                 con_close_socket(con);
2124         }
2125
2126         if (test_and_clear_bit(SOCK_CLOSED, &con->state))
2127                 goto fault;
2128
2129         ret = try_read(con);
2130         if (ret == -EAGAIN)
2131                 goto restart;
2132         if (ret < 0)
2133                 goto fault;
2134
2135         ret = try_write(con);
2136         if (ret == -EAGAIN)
2137                 goto restart;
2138         if (ret < 0)
2139                 goto fault;
2140
2141 done:
2142         mutex_unlock(&con->mutex);
2143 done_unlocked:
2144         con->ops->put(con);
2145         return;
2146
2147 fault:
2148         mutex_unlock(&con->mutex);
2149         ceph_fault(con);     /* error/fault path */
2150         goto done_unlocked;
2151 }
2152
2153
2154 /*
2155  * Generic error/fault handler.  A retry mechanism is used with
2156  * exponential backoff
2157  */
2158 static void ceph_fault(struct ceph_connection *con)
2159 {
2160         pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2161                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2162         dout("fault %p state %lu to peer %s\n",
2163              con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2164
2165         if (test_bit(LOSSYTX, &con->state)) {
2166                 dout("fault on LOSSYTX channel\n");
2167                 goto out;
2168         }
2169
2170         mutex_lock(&con->mutex);
2171         if (test_bit(CLOSED, &con->state))
2172                 goto out_unlock;
2173
2174         con_close_socket(con);
2175
2176         if (con->in_msg) {
2177                 ceph_msg_put(con->in_msg);
2178                 con->in_msg = NULL;
2179         }
2180
2181         /* Requeue anything that hasn't been acked */
2182         list_splice_init(&con->out_sent, &con->out_queue);
2183
2184         /* If there are no messages queued or keepalive pending, place
2185          * the connection in a STANDBY state */
2186         if (list_empty(&con->out_queue) &&
2187             !test_bit(KEEPALIVE_PENDING, &con->state)) {
2188                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2189                 clear_bit(WRITE_PENDING, &con->state);
2190                 set_bit(STANDBY, &con->state);
2191         } else {
2192                 /* retry after a delay. */
2193                 if (con->delay == 0)
2194                         con->delay = BASE_DELAY_INTERVAL;
2195                 else if (con->delay < MAX_DELAY_INTERVAL)
2196                         con->delay *= 2;
2197                 con->ops->get(con);
2198                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2199                                        round_jiffies_relative(con->delay))) {
2200                         dout("fault queued %p delay %lu\n", con, con->delay);
2201                 } else {
2202                         con->ops->put(con);
2203                         dout("fault failed to queue %p delay %lu, backoff\n",
2204                              con, con->delay);
2205                         /*
2206                          * In many cases we see a socket state change
2207                          * while con_work is running and end up
2208                          * queuing (non-delayed) work, such that we
2209                          * can't backoff with a delay.  Set a flag so
2210                          * that when con_work restarts we schedule the
2211                          * delay then.
2212                          */
2213                         set_bit(BACKOFF, &con->state);
2214                 }
2215         }
2216
2217 out_unlock:
2218         mutex_unlock(&con->mutex);
2219 out:
2220         /*
2221          * in case we faulted due to authentication, invalidate our
2222          * current tickets so that we can get new ones.
2223          */
2224         if (con->auth_retry && con->ops->invalidate_authorizer) {
2225                 dout("calling invalidate_authorizer()\n");
2226                 con->ops->invalidate_authorizer(con);
2227         }
2228
2229         if (con->ops->fault)
2230                 con->ops->fault(con);
2231 }
2232
2233
2234
2235 /*
2236  * create a new messenger instance
2237  */
2238 struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
2239                                              u32 supported_features,
2240                                              u32 required_features)
2241 {
2242         struct ceph_messenger *msgr;
2243
2244         msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
2245         if (msgr == NULL)
2246                 return ERR_PTR(-ENOMEM);
2247
2248         msgr->supported_features = supported_features;
2249         msgr->required_features = required_features;
2250
2251         spin_lock_init(&msgr->global_seq_lock);
2252
2253         if (myaddr)
2254                 msgr->inst.addr = *myaddr;
2255
2256         /* select a random nonce */
2257         msgr->inst.addr.type = 0;
2258         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2259         encode_my_addr(msgr);
2260
2261         dout("messenger_create %p\n", msgr);
2262         return msgr;
2263 }
2264 EXPORT_SYMBOL(ceph_messenger_create);
2265
2266 void ceph_messenger_destroy(struct ceph_messenger *msgr)
2267 {
2268         dout("destroy %p\n", msgr);
2269         kfree(msgr);
2270         dout("destroyed messenger %p\n", msgr);
2271 }
2272 EXPORT_SYMBOL(ceph_messenger_destroy);
2273
2274 static void clear_standby(struct ceph_connection *con)
2275 {
2276         /* come back from STANDBY? */
2277         if (test_and_clear_bit(STANDBY, &con->state)) {
2278                 mutex_lock(&con->mutex);
2279                 dout("clear_standby %p and ++connect_seq\n", con);
2280                 con->connect_seq++;
2281                 WARN_ON(test_bit(WRITE_PENDING, &con->state));
2282                 WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
2283                 mutex_unlock(&con->mutex);
2284         }
2285 }
2286
2287 /*
2288  * Queue up an outgoing message on the given connection.
2289  */
2290 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2291 {
2292         if (test_bit(CLOSED, &con->state)) {
2293                 dout("con_send %p closed, dropping %p\n", con, msg);
2294                 ceph_msg_put(msg);
2295                 return;
2296         }
2297
2298         /* set src+dst */
2299         msg->hdr.src = con->msgr->inst.name;
2300
2301         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2302
2303         msg->needs_out_seq = true;
2304
2305         /* queue */
2306         mutex_lock(&con->mutex);
2307         BUG_ON(!list_empty(&msg->list_head));
2308         list_add_tail(&msg->list_head, &con->out_queue);
2309         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2310              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2311              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2312              le32_to_cpu(msg->hdr.front_len),
2313              le32_to_cpu(msg->hdr.middle_len),
2314              le32_to_cpu(msg->hdr.data_len));
2315         mutex_unlock(&con->mutex);
2316
2317         /* if there wasn't anything waiting to send before, queue
2318          * new work */
2319         clear_standby(con);
2320         if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2321                 queue_con(con);
2322 }
2323 EXPORT_SYMBOL(ceph_con_send);
2324
2325 /*
2326  * Revoke a message that was previously queued for send
2327  */
2328 void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2329 {
2330         mutex_lock(&con->mutex);
2331         if (!list_empty(&msg->list_head)) {
2332                 dout("con_revoke %p msg %p - was on queue\n", con, msg);
2333                 list_del_init(&msg->list_head);
2334                 ceph_msg_put(msg);
2335                 msg->hdr.seq = 0;
2336         }
2337         if (con->out_msg == msg) {
2338                 dout("con_revoke %p msg %p - was sending\n", con, msg);
2339                 con->out_msg = NULL;
2340                 if (con->out_kvec_is_msg) {
2341                         con->out_skip = con->out_kvec_bytes;
2342                         con->out_kvec_is_msg = false;
2343                 }
2344                 ceph_msg_put(msg);
2345                 msg->hdr.seq = 0;
2346         }
2347         mutex_unlock(&con->mutex);
2348 }
2349
2350 /*
2351  * Revoke a message that we may be reading data into
2352  */
2353 void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2354 {
2355         mutex_lock(&con->mutex);
2356         if (con->in_msg && con->in_msg == msg) {
2357                 unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2358                 unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
2359                 unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2360
2361                 /* skip rest of message */
2362                 dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2363                         con->in_base_pos = con->in_base_pos -
2364                                 sizeof(struct ceph_msg_header) -
2365                                 front_len -
2366                                 middle_len -
2367                                 data_len -
2368                                 sizeof(struct ceph_msg_footer);
2369                 ceph_msg_put(con->in_msg);
2370                 con->in_msg = NULL;
2371                 con->in_tag = CEPH_MSGR_TAG_READY;
2372                 con->in_seq++;
2373         } else {
2374                 dout("con_revoke_pages %p msg %p pages %p no-op\n",
2375                      con, con->in_msg, msg);
2376         }
2377         mutex_unlock(&con->mutex);
2378 }
2379
2380 /*
2381  * Queue a keepalive byte to ensure the tcp connection is alive.
2382  */
2383 void ceph_con_keepalive(struct ceph_connection *con)
2384 {
2385         dout("con_keepalive %p\n", con);
2386         clear_standby(con);
2387         if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2388             test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2389                 queue_con(con);
2390 }
2391 EXPORT_SYMBOL(ceph_con_keepalive);
2392
2393
2394 /*
2395  * construct a new message with given type, size
2396  * the new msg has a ref count of 1.
2397  */
2398 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2399                               bool can_fail)
2400 {
2401         struct ceph_msg *m;
2402
2403         m = kmalloc(sizeof(*m), flags);
2404         if (m == NULL)
2405                 goto out;
2406         kref_init(&m->kref);
2407         INIT_LIST_HEAD(&m->list_head);
2408
2409         m->hdr.tid = 0;
2410         m->hdr.type = cpu_to_le16(type);
2411         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2412         m->hdr.version = 0;
2413         m->hdr.front_len = cpu_to_le32(front_len);
2414         m->hdr.middle_len = 0;
2415         m->hdr.data_len = 0;
2416         m->hdr.data_off = 0;
2417         m->hdr.reserved = 0;
2418         m->footer.front_crc = 0;
2419         m->footer.middle_crc = 0;
2420         m->footer.data_crc = 0;
2421         m->footer.flags = 0;
2422         m->front_max = front_len;
2423         m->front_is_vmalloc = false;
2424         m->more_to_follow = false;
2425         m->ack_stamp = 0;
2426         m->pool = NULL;
2427
2428         /* middle */
2429         m->middle = NULL;
2430
2431         /* data */
2432         m->nr_pages = 0;
2433         m->page_alignment = 0;
2434         m->pages = NULL;
2435         m->pagelist = NULL;
2436         m->bio = NULL;
2437         m->bio_iter = NULL;
2438         m->bio_seg = 0;
2439         m->trail = NULL;
2440
2441         /* front */
2442         if (front_len) {
2443                 if (front_len > PAGE_CACHE_SIZE) {
2444                         m->front.iov_base = __vmalloc(front_len, flags,
2445                                                       PAGE_KERNEL);
2446                         m->front_is_vmalloc = true;
2447                 } else {
2448                         m->front.iov_base = kmalloc(front_len, flags);
2449                 }
2450                 if (m->front.iov_base == NULL) {
2451                         dout("ceph_msg_new can't allocate %d bytes\n",
2452                              front_len);
2453                         goto out2;
2454                 }
2455         } else {
2456                 m->front.iov_base = NULL;
2457         }
2458         m->front.iov_len = front_len;
2459
2460         dout("ceph_msg_new %p front %d\n", m, front_len);
2461         return m;
2462
2463 out2:
2464         ceph_msg_put(m);
2465 out:
2466         if (!can_fail) {
2467                 pr_err("msg_new can't create type %d front %d\n", type,
2468                        front_len);
2469                 WARN_ON(1);
2470         } else {
2471                 dout("msg_new can't create type %d front %d\n", type,
2472                      front_len);
2473         }
2474         return NULL;
2475 }
2476 EXPORT_SYMBOL(ceph_msg_new);
2477
2478 /*
2479  * Allocate "middle" portion of a message, if it is needed and wasn't
2480  * allocated by alloc_msg.  This allows us to read a small fixed-size
2481  * per-type header in the front and then gracefully fail (i.e.,
2482  * propagate the error to the caller based on info in the front) when
2483  * the middle is too large.
2484  */
2485 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2486 {
2487         int type = le16_to_cpu(msg->hdr.type);
2488         int middle_len = le32_to_cpu(msg->hdr.middle_len);
2489
2490         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2491              ceph_msg_type_name(type), middle_len);
2492         BUG_ON(!middle_len);
2493         BUG_ON(msg->middle);
2494
2495         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2496         if (!msg->middle)
2497                 return -ENOMEM;
2498         return 0;
2499 }
2500
2501 /*
2502  * Generic message allocator, for incoming messages.
2503  */
2504 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2505                                 struct ceph_msg_header *hdr,
2506                                 int *skip)
2507 {
2508         int type = le16_to_cpu(hdr->type);
2509         int front_len = le32_to_cpu(hdr->front_len);
2510         int middle_len = le32_to_cpu(hdr->middle_len);
2511         struct ceph_msg *msg = NULL;
2512         int ret;
2513
2514         if (con->ops->alloc_msg) {
2515                 mutex_unlock(&con->mutex);
2516                 msg = con->ops->alloc_msg(con, hdr, skip);
2517                 mutex_lock(&con->mutex);
2518                 if (!msg || *skip)
2519                         return NULL;
2520         }
2521         if (!msg) {
2522                 *skip = 0;
2523                 msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2524                 if (!msg) {
2525                         pr_err("unable to allocate msg type %d len %d\n",
2526                                type, front_len);
2527                         return NULL;
2528                 }
2529                 msg->page_alignment = le16_to_cpu(hdr->data_off);
2530         }
2531         memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2532
2533         if (middle_len && !msg->middle) {
2534                 ret = ceph_alloc_middle(con, msg);
2535                 if (ret < 0) {
2536                         ceph_msg_put(msg);
2537                         return NULL;
2538                 }
2539         }
2540
2541         return msg;
2542 }
2543
2544
2545 /*
2546  * Free a generically kmalloc'd message.
2547  */
2548 void ceph_msg_kfree(struct ceph_msg *m)
2549 {
2550         dout("msg_kfree %p\n", m);
2551         if (m->front_is_vmalloc)
2552                 vfree(m->front.iov_base);
2553         else
2554                 kfree(m->front.iov_base);
2555         kfree(m);
2556 }
2557
2558 /*
2559  * Drop a msg ref.  Destroy as needed.
2560  */
2561 void ceph_msg_last_put(struct kref *kref)
2562 {
2563         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2564
2565         dout("ceph_msg_put last one on %p\n", m);
2566         WARN_ON(!list_empty(&m->list_head));
2567
2568         /* drop middle, data, if any */
2569         if (m->middle) {
2570                 ceph_buffer_put(m->middle);
2571                 m->middle = NULL;
2572         }
2573         m->nr_pages = 0;
2574         m->pages = NULL;
2575
2576         if (m->pagelist) {
2577                 ceph_pagelist_release(m->pagelist);
2578                 kfree(m->pagelist);
2579                 m->pagelist = NULL;
2580         }
2581
2582         m->trail = NULL;
2583
2584         if (m->pool)
2585                 ceph_msgpool_put(m->pool, m);
2586         else
2587                 ceph_msg_kfree(m);
2588 }
2589 EXPORT_SYMBOL(ceph_msg_last_put);
2590
2591 void ceph_msg_dump(struct ceph_msg *msg)
2592 {
2593         pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2594                  msg->front_max, msg->nr_pages);
2595         print_hex_dump(KERN_DEBUG, "header: ",
2596                        DUMP_PREFIX_OFFSET, 16, 1,
2597                        &msg->hdr, sizeof(msg->hdr), true);
2598         print_hex_dump(KERN_DEBUG, " front: ",
2599                        DUMP_PREFIX_OFFSET, 16, 1,
2600                        msg->front.iov_base, msg->front.iov_len, true);
2601         if (msg->middle)
2602                 print_hex_dump(KERN_DEBUG, "middle: ",
2603                                DUMP_PREFIX_OFFSET, 16, 1,
2604                                msg->middle->vec.iov_base,
2605                                msg->middle->vec.iov_len, true);
2606         print_hex_dump(KERN_DEBUG, "footer: ",
2607                        DUMP_PREFIX_OFFSET, 16, 1,
2608                        &msg->footer, sizeof(msg->footer), true);
2609 }
2610 EXPORT_SYMBOL(ceph_msg_dump);