libceph: encapsulate connection kvec operations
[platform/kernel/linux-rpi.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22
23 /*
24  * Ceph uses the messenger to exchange ceph_msg messages with other
25  * hosts in the system.  The messenger provides ordered and reliable
26  * delivery.  We tolerate TCP disconnects by reconnecting (with
27  * exponential backoff) in the case of a fault (disconnection, bad
28  * crc, protocol error).  Acks allow sent messages to be discarded by
29  * the sender.
30  */
31
32 /* static tag bytes (protocol control messages) */
33 static char tag_msg = CEPH_MSGR_TAG_MSG;
34 static char tag_ack = CEPH_MSGR_TAG_ACK;
35 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
36
37 #ifdef CONFIG_LOCKDEP
38 static struct lock_class_key socket_class;
39 #endif
40
41
42 static void queue_con(struct ceph_connection *con);
43 static void con_work(struct work_struct *);
44 static void ceph_fault(struct ceph_connection *con);
45
46 /*
47  * Nicely render a sockaddr as a string.  An array of formatted
48  * strings is used, to approximate reentrancy.
49  */
50 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
51 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
52 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
53 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
54
55 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
56 static atomic_t addr_str_seq = ATOMIC_INIT(0);
57
58 static struct page *zero_page;          /* used in certain error cases */
59 static void *zero_page_address;         /* kernel virtual addr of zero_page */
60
61 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
62 {
63         int i;
64         char *s;
65         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
66         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
67
68         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
69         s = addr_str[i];
70
71         switch (ss->ss_family) {
72         case AF_INET:
73                 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
74                          ntohs(in4->sin_port));
75                 break;
76
77         case AF_INET6:
78                 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
79                          ntohs(in6->sin6_port));
80                 break;
81
82         default:
83                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %d)",
84                          (int)ss->ss_family);
85         }
86
87         return s;
88 }
89 EXPORT_SYMBOL(ceph_pr_addr);
90
91 static void encode_my_addr(struct ceph_messenger *msgr)
92 {
93         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
94         ceph_encode_addr(&msgr->my_enc_addr);
95 }
96
97 /*
98  * work queue for all reading and writing to/from the socket.
99  */
100 struct workqueue_struct *ceph_msgr_wq;
101
102 int ceph_msgr_init(void)
103 {
104         BUG_ON(zero_page != NULL);
105         zero_page = ZERO_PAGE(0);
106         page_cache_get(zero_page);
107
108         BUG_ON(zero_page_address != NULL);
109         zero_page_address = kmap(zero_page);
110
111         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
112         if (!ceph_msgr_wq) {
113                 pr_err("msgr_init failed to create workqueue\n");
114
115                 zero_page_address = NULL;
116                 kunmap(zero_page);
117                 page_cache_release(zero_page);
118                 zero_page = NULL;
119
120                 return -ENOMEM;
121         }
122
123         return 0;
124 }
125 EXPORT_SYMBOL(ceph_msgr_init);
126
127 void ceph_msgr_exit(void)
128 {
129         BUG_ON(ceph_msgr_wq == NULL);
130         destroy_workqueue(ceph_msgr_wq);
131
132         BUG_ON(zero_page_address == NULL);
133         zero_page_address = NULL;
134
135         BUG_ON(zero_page == NULL);
136         kunmap(zero_page);
137         page_cache_release(zero_page);
138         zero_page = NULL;
139 }
140 EXPORT_SYMBOL(ceph_msgr_exit);
141
142 void ceph_msgr_flush(void)
143 {
144         flush_workqueue(ceph_msgr_wq);
145 }
146 EXPORT_SYMBOL(ceph_msgr_flush);
147
148
149 /*
150  * socket callback functions
151  */
152
153 /* data available on socket, or listen socket received a connect */
154 static void ceph_data_ready(struct sock *sk, int count_unused)
155 {
156         struct ceph_connection *con = sk->sk_user_data;
157
158         if (sk->sk_state != TCP_CLOSE_WAIT) {
159                 dout("ceph_data_ready on %p state = %lu, queueing work\n",
160                      con, con->state);
161                 queue_con(con);
162         }
163 }
164
165 /* socket has buffer space for writing */
166 static void ceph_write_space(struct sock *sk)
167 {
168         struct ceph_connection *con =
169                 (struct ceph_connection *)sk->sk_user_data;
170
171         /* only queue to workqueue if there is data we want to write,
172          * and there is sufficient space in the socket buffer to accept
173          * more data.  clear SOCK_NOSPACE so that ceph_write_space()
174          * doesn't get called again until try_write() fills the socket
175          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
176          * and net/core/stream.c:sk_stream_write_space().
177          */
178         if (test_bit(WRITE_PENDING, &con->state)) {
179                 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
180                         dout("ceph_write_space %p queueing write work\n", con);
181                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
182                         queue_con(con);
183                 }
184         } else {
185                 dout("ceph_write_space %p nothing to write\n", con);
186         }
187 }
188
189 /* socket's state has changed */
190 static void ceph_state_change(struct sock *sk)
191 {
192         struct ceph_connection *con = sk->sk_user_data;
193
194         dout("ceph_state_change %p state = %lu sk_state = %u\n",
195              con, con->state, sk->sk_state);
196
197         if (test_bit(CLOSED, &con->state))
198                 return;
199
200         switch (sk->sk_state) {
201         case TCP_CLOSE:
202                 dout("ceph_state_change TCP_CLOSE\n");
203         case TCP_CLOSE_WAIT:
204                 dout("ceph_state_change TCP_CLOSE_WAIT\n");
205                 if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
206                         if (test_bit(CONNECTING, &con->state))
207                                 con->error_msg = "connection failed";
208                         else
209                                 con->error_msg = "socket closed";
210                         queue_con(con);
211                 }
212                 break;
213         case TCP_ESTABLISHED:
214                 dout("ceph_state_change TCP_ESTABLISHED\n");
215                 queue_con(con);
216                 break;
217         }
218 }
219
220 /*
221  * set up socket callbacks
222  */
223 static void set_sock_callbacks(struct socket *sock,
224                                struct ceph_connection *con)
225 {
226         struct sock *sk = sock->sk;
227         sk->sk_user_data = con;
228         sk->sk_data_ready = ceph_data_ready;
229         sk->sk_write_space = ceph_write_space;
230         sk->sk_state_change = ceph_state_change;
231 }
232
233
234 /*
235  * socket helpers
236  */
237
238 /*
239  * initiate connection to a remote socket.
240  */
241 static struct socket *ceph_tcp_connect(struct ceph_connection *con)
242 {
243         struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
244         struct socket *sock;
245         int ret;
246
247         BUG_ON(con->sock);
248         ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
249                                IPPROTO_TCP, &sock);
250         if (ret)
251                 return ERR_PTR(ret);
252         sock->sk->sk_allocation = GFP_NOFS;
253
254 #ifdef CONFIG_LOCKDEP
255         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
256 #endif
257
258         set_sock_callbacks(sock, con);
259
260         dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
261
262         ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
263                                  O_NONBLOCK);
264         if (ret == -EINPROGRESS) {
265                 dout("connect %s EINPROGRESS sk_state = %u\n",
266                      ceph_pr_addr(&con->peer_addr.in_addr),
267                      sock->sk->sk_state);
268         } else if (ret < 0) {
269                 pr_err("connect %s error %d\n",
270                        ceph_pr_addr(&con->peer_addr.in_addr), ret);
271                 sock_release(sock);
272                 con->error_msg = "connect error";
273
274                 return ERR_PTR(ret);
275         }
276         con->sock = sock;
277
278         return sock;
279 }
280
281 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
282 {
283         struct kvec iov = {buf, len};
284         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
285         int r;
286
287         r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
288         if (r == -EAGAIN)
289                 r = 0;
290         return r;
291 }
292
293 /*
294  * write something.  @more is true if caller will be sending more data
295  * shortly.
296  */
297 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
298                      size_t kvlen, size_t len, int more)
299 {
300         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
301         int r;
302
303         if (more)
304                 msg.msg_flags |= MSG_MORE;
305         else
306                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
307
308         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
309         if (r == -EAGAIN)
310                 r = 0;
311         return r;
312 }
313
314
315 /*
316  * Shutdown/close the socket for the given connection.
317  */
318 static int con_close_socket(struct ceph_connection *con)
319 {
320         int rc;
321
322         dout("con_close_socket on %p sock %p\n", con, con->sock);
323         if (!con->sock)
324                 return 0;
325         set_bit(SOCK_CLOSED, &con->state);
326         rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
327         sock_release(con->sock);
328         con->sock = NULL;
329         clear_bit(SOCK_CLOSED, &con->state);
330         return rc;
331 }
332
333 /*
334  * Reset a connection.  Discard all incoming and outgoing messages
335  * and clear *_seq state.
336  */
337 static void ceph_msg_remove(struct ceph_msg *msg)
338 {
339         list_del_init(&msg->list_head);
340         ceph_msg_put(msg);
341 }
342 static void ceph_msg_remove_list(struct list_head *head)
343 {
344         while (!list_empty(head)) {
345                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
346                                                         list_head);
347                 ceph_msg_remove(msg);
348         }
349 }
350
351 static void reset_connection(struct ceph_connection *con)
352 {
353         /* reset connection, out_queue, msg_ and connect_seq */
354         /* discard existing out_queue and msg_seq */
355         ceph_msg_remove_list(&con->out_queue);
356         ceph_msg_remove_list(&con->out_sent);
357
358         if (con->in_msg) {
359                 ceph_msg_put(con->in_msg);
360                 con->in_msg = NULL;
361         }
362
363         con->connect_seq = 0;
364         con->out_seq = 0;
365         if (con->out_msg) {
366                 ceph_msg_put(con->out_msg);
367                 con->out_msg = NULL;
368         }
369         con->in_seq = 0;
370         con->in_seq_acked = 0;
371 }
372
373 /*
374  * mark a peer down.  drop any open connections.
375  */
376 void ceph_con_close(struct ceph_connection *con)
377 {
378         dout("con_close %p peer %s\n", con,
379              ceph_pr_addr(&con->peer_addr.in_addr));
380         set_bit(CLOSED, &con->state);  /* in case there's queued work */
381         clear_bit(STANDBY, &con->state);  /* avoid connect_seq bump */
382         clear_bit(LOSSYTX, &con->state);  /* so we retry next connect */
383         clear_bit(KEEPALIVE_PENDING, &con->state);
384         clear_bit(WRITE_PENDING, &con->state);
385         mutex_lock(&con->mutex);
386         reset_connection(con);
387         con->peer_global_seq = 0;
388         cancel_delayed_work(&con->work);
389         mutex_unlock(&con->mutex);
390         queue_con(con);
391 }
392 EXPORT_SYMBOL(ceph_con_close);
393
394 /*
395  * Reopen a closed connection, with a new peer address.
396  */
397 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
398 {
399         dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
400         set_bit(OPENING, &con->state);
401         clear_bit(CLOSED, &con->state);
402         memcpy(&con->peer_addr, addr, sizeof(*addr));
403         con->delay = 0;      /* reset backoff memory */
404         queue_con(con);
405 }
406 EXPORT_SYMBOL(ceph_con_open);
407
408 /*
409  * return true if this connection ever successfully opened
410  */
411 bool ceph_con_opened(struct ceph_connection *con)
412 {
413         return con->connect_seq > 0;
414 }
415
416 /*
417  * generic get/put
418  */
419 struct ceph_connection *ceph_con_get(struct ceph_connection *con)
420 {
421         dout("con_get %p nref = %d -> %d\n", con,
422              atomic_read(&con->nref), atomic_read(&con->nref) + 1);
423         if (atomic_inc_not_zero(&con->nref))
424                 return con;
425         return NULL;
426 }
427
428 void ceph_con_put(struct ceph_connection *con)
429 {
430         dout("con_put %p nref = %d -> %d\n", con,
431              atomic_read(&con->nref), atomic_read(&con->nref) - 1);
432         BUG_ON(atomic_read(&con->nref) == 0);
433         if (atomic_dec_and_test(&con->nref)) {
434                 BUG_ON(con->sock);
435                 kfree(con);
436         }
437 }
438
439 /*
440  * initialize a new connection.
441  */
442 void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
443 {
444         dout("con_init %p\n", con);
445         memset(con, 0, sizeof(*con));
446         atomic_set(&con->nref, 1);
447         con->msgr = msgr;
448         mutex_init(&con->mutex);
449         INIT_LIST_HEAD(&con->out_queue);
450         INIT_LIST_HEAD(&con->out_sent);
451         INIT_DELAYED_WORK(&con->work, con_work);
452 }
453 EXPORT_SYMBOL(ceph_con_init);
454
455
456 /*
457  * We maintain a global counter to order connection attempts.  Get
458  * a unique seq greater than @gt.
459  */
460 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
461 {
462         u32 ret;
463
464         spin_lock(&msgr->global_seq_lock);
465         if (msgr->global_seq < gt)
466                 msgr->global_seq = gt;
467         ret = ++msgr->global_seq;
468         spin_unlock(&msgr->global_seq_lock);
469         return ret;
470 }
471
472 static void ceph_con_out_kvec_reset(struct ceph_connection *con)
473 {
474         con->out_kvec_left = 0;
475         con->out_kvec_bytes = 0;
476         con->out_kvec_cur = &con->out_kvec[0];
477 }
478
479 static void ceph_con_out_kvec_add(struct ceph_connection *con,
480                                 size_t size, void *data)
481 {
482         int index;
483
484         index = con->out_kvec_left;
485         BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
486
487         con->out_kvec[index].iov_len = size;
488         con->out_kvec[index].iov_base = data;
489         con->out_kvec_left++;
490         con->out_kvec_bytes += size;
491 }
492
493 /*
494  * Prepare footer for currently outgoing message, and finish things
495  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
496  */
497 static void prepare_write_message_footer(struct ceph_connection *con)
498 {
499         struct ceph_msg *m = con->out_msg;
500         int v = con->out_kvec_left;
501
502         dout("prepare_write_message_footer %p\n", con);
503         con->out_kvec_is_msg = true;
504         con->out_kvec[v].iov_base = &m->footer;
505         con->out_kvec[v].iov_len = sizeof(m->footer);
506         con->out_kvec_bytes += sizeof(m->footer);
507         con->out_kvec_left++;
508         con->out_more = m->more_to_follow;
509         con->out_msg_done = true;
510 }
511
512 /*
513  * Prepare headers for the next outgoing message.
514  */
515 static void prepare_write_message(struct ceph_connection *con)
516 {
517         struct ceph_msg *m;
518
519         ceph_con_out_kvec_reset(con);
520         con->out_kvec_is_msg = true;
521         con->out_msg_done = false;
522
523         /* Sneak an ack in there first?  If we can get it into the same
524          * TCP packet that's a good thing. */
525         if (con->in_seq > con->in_seq_acked) {
526                 con->in_seq_acked = con->in_seq;
527                 ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
528                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
529                 ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
530                         &con->out_temp_ack);
531         }
532
533         m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
534         con->out_msg = m;
535
536         /* put message on sent list */
537         ceph_msg_get(m);
538         list_move_tail(&m->list_head, &con->out_sent);
539
540         /*
541          * only assign outgoing seq # if we haven't sent this message
542          * yet.  if it is requeued, resend with it's original seq.
543          */
544         if (m->needs_out_seq) {
545                 m->hdr.seq = cpu_to_le64(++con->out_seq);
546                 m->needs_out_seq = false;
547         }
548
549         dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
550              m, con->out_seq, le16_to_cpu(m->hdr.type),
551              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
552              le32_to_cpu(m->hdr.data_len),
553              m->nr_pages);
554         BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
555
556         /* tag + hdr + front + middle */
557         ceph_con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
558         ceph_con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
559         ceph_con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
560
561         if (m->middle)
562                 ceph_con_out_kvec_add(con, m->middle->vec.iov_len,
563                         m->middle->vec.iov_base);
564
565         /* fill in crc (except data pages), footer */
566         con->out_msg->hdr.crc =
567                 cpu_to_le32(crc32c(0, &m->hdr,
568                                       sizeof(m->hdr) - sizeof(m->hdr.crc)));
569         con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
570         con->out_msg->footer.front_crc =
571                 cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
572         if (m->middle)
573                 con->out_msg->footer.middle_crc =
574                         cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
575                                            m->middle->vec.iov_len));
576         else
577                 con->out_msg->footer.middle_crc = 0;
578         con->out_msg->footer.data_crc = 0;
579         dout("prepare_write_message front_crc %u data_crc %u\n",
580              le32_to_cpu(con->out_msg->footer.front_crc),
581              le32_to_cpu(con->out_msg->footer.middle_crc));
582
583         /* is there a data payload? */
584         if (le32_to_cpu(m->hdr.data_len) > 0) {
585                 /* initialize page iterator */
586                 con->out_msg_pos.page = 0;
587                 if (m->pages)
588                         con->out_msg_pos.page_pos = m->page_alignment;
589                 else
590                         con->out_msg_pos.page_pos = 0;
591                 con->out_msg_pos.data_pos = 0;
592                 con->out_msg_pos.did_page_crc = 0;
593                 con->out_more = 1;  /* data + footer will follow */
594         } else {
595                 /* no, queue up footer too and be done */
596                 prepare_write_message_footer(con);
597         }
598
599         set_bit(WRITE_PENDING, &con->state);
600 }
601
602 /*
603  * Prepare an ack.
604  */
605 static void prepare_write_ack(struct ceph_connection *con)
606 {
607         dout("prepare_write_ack %p %llu -> %llu\n", con,
608              con->in_seq_acked, con->in_seq);
609         con->in_seq_acked = con->in_seq;
610
611         ceph_con_out_kvec_reset(con);
612
613         ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
614
615         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
616         ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
617                                 &con->out_temp_ack);
618
619         con->out_more = 1;  /* more will follow.. eventually.. */
620         set_bit(WRITE_PENDING, &con->state);
621 }
622
623 /*
624  * Prepare to write keepalive byte.
625  */
626 static void prepare_write_keepalive(struct ceph_connection *con)
627 {
628         dout("prepare_write_keepalive %p\n", con);
629         ceph_con_out_kvec_reset(con);
630         ceph_con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
631         set_bit(WRITE_PENDING, &con->state);
632 }
633
634 /*
635  * Connection negotiation.
636  */
637
638 static int prepare_connect_authorizer(struct ceph_connection *con)
639 {
640         void *auth_buf;
641         int auth_len = 0;
642         int auth_protocol = 0;
643
644         mutex_unlock(&con->mutex);
645         if (con->ops->get_authorizer)
646                 con->ops->get_authorizer(con, &auth_buf, &auth_len,
647                                          &auth_protocol, &con->auth_reply_buf,
648                                          &con->auth_reply_buf_len,
649                                          con->auth_retry);
650         mutex_lock(&con->mutex);
651
652         if (test_bit(CLOSED, &con->state) ||
653             test_bit(OPENING, &con->state))
654                 return -EAGAIN;
655
656         con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
657         con->out_connect.authorizer_len = cpu_to_le32(auth_len);
658
659         if (auth_len)
660                 ceph_con_out_kvec_add(con, auth_len, auth_buf);
661
662         return 0;
663 }
664
665 /*
666  * We connected to a peer and are saying hello.
667  */
668 static void prepare_write_banner(struct ceph_messenger *msgr,
669                                  struct ceph_connection *con)
670 {
671         ceph_con_out_kvec_reset(con);
672         ceph_con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
673         ceph_con_out_kvec_add(con, sizeof (msgr->my_enc_addr),
674                                         &msgr->my_enc_addr);
675
676         con->out_more = 0;
677         set_bit(WRITE_PENDING, &con->state);
678 }
679
680 static int prepare_write_connect(struct ceph_messenger *msgr,
681                                  struct ceph_connection *con,
682                                  int include_banner)
683 {
684         unsigned global_seq = get_global_seq(con->msgr, 0);
685         int proto;
686
687         switch (con->peer_name.type) {
688         case CEPH_ENTITY_TYPE_MON:
689                 proto = CEPH_MONC_PROTOCOL;
690                 break;
691         case CEPH_ENTITY_TYPE_OSD:
692                 proto = CEPH_OSDC_PROTOCOL;
693                 break;
694         case CEPH_ENTITY_TYPE_MDS:
695                 proto = CEPH_MDSC_PROTOCOL;
696                 break;
697         default:
698                 BUG();
699         }
700
701         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
702              con->connect_seq, global_seq, proto);
703
704         con->out_connect.features = cpu_to_le64(msgr->supported_features);
705         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
706         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
707         con->out_connect.global_seq = cpu_to_le32(global_seq);
708         con->out_connect.protocol_version = cpu_to_le32(proto);
709         con->out_connect.flags = 0;
710
711         if (include_banner)
712                 prepare_write_banner(msgr, con);
713         else
714                 ceph_con_out_kvec_reset(con);
715         ceph_con_out_kvec_add(con, sizeof (con->out_connect), &con->out_connect);
716
717         con->out_more = 0;
718         set_bit(WRITE_PENDING, &con->state);
719
720         return prepare_connect_authorizer(con);
721 }
722
723 /*
724  * write as much of pending kvecs to the socket as we can.
725  *  1 -> done
726  *  0 -> socket full, but more to do
727  * <0 -> error
728  */
729 static int write_partial_kvec(struct ceph_connection *con)
730 {
731         int ret;
732
733         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
734         while (con->out_kvec_bytes > 0) {
735                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
736                                        con->out_kvec_left, con->out_kvec_bytes,
737                                        con->out_more);
738                 if (ret <= 0)
739                         goto out;
740                 con->out_kvec_bytes -= ret;
741                 if (con->out_kvec_bytes == 0)
742                         break;            /* done */
743                 while (ret > 0) {
744                         if (ret >= con->out_kvec_cur->iov_len) {
745                                 ret -= con->out_kvec_cur->iov_len;
746                                 con->out_kvec_cur++;
747                                 con->out_kvec_left--;
748                         } else {
749                                 con->out_kvec_cur->iov_len -= ret;
750                                 con->out_kvec_cur->iov_base += ret;
751                                 ret = 0;
752                                 break;
753                         }
754                 }
755         }
756         con->out_kvec_left = 0;
757         con->out_kvec_is_msg = false;
758         ret = 1;
759 out:
760         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
761              con->out_kvec_bytes, con->out_kvec_left, ret);
762         return ret;  /* done! */
763 }
764
765 #ifdef CONFIG_BLOCK
766 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
767 {
768         if (!bio) {
769                 *iter = NULL;
770                 *seg = 0;
771                 return;
772         }
773         *iter = bio;
774         *seg = bio->bi_idx;
775 }
776
777 static void iter_bio_next(struct bio **bio_iter, int *seg)
778 {
779         if (*bio_iter == NULL)
780                 return;
781
782         BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
783
784         (*seg)++;
785         if (*seg == (*bio_iter)->bi_vcnt)
786                 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
787 }
788 #endif
789
790 /*
791  * Write as much message data payload as we can.  If we finish, queue
792  * up the footer.
793  *  1 -> done, footer is now queued in out_kvec[].
794  *  0 -> socket full, but more to do
795  * <0 -> error
796  */
797 static int write_partial_msg_pages(struct ceph_connection *con)
798 {
799         struct ceph_msg *msg = con->out_msg;
800         unsigned data_len = le32_to_cpu(msg->hdr.data_len);
801         size_t len;
802         int crc = con->msgr->nocrc;
803         int ret;
804         int total_max_write;
805         int in_trail = 0;
806         size_t trail_len = (msg->trail ? msg->trail->length : 0);
807
808         dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
809              con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
810              con->out_msg_pos.page_pos);
811
812 #ifdef CONFIG_BLOCK
813         if (msg->bio && !msg->bio_iter)
814                 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
815 #endif
816
817         while (data_len > con->out_msg_pos.data_pos) {
818                 struct page *page = NULL;
819                 void *kaddr = NULL;
820                 int max_write = PAGE_SIZE;
821                 int page_shift = 0;
822
823                 total_max_write = data_len - trail_len -
824                         con->out_msg_pos.data_pos;
825
826                 /*
827                  * if we are calculating the data crc (the default), we need
828                  * to map the page.  if our pages[] has been revoked, use the
829                  * zero page.
830                  */
831
832                 /* have we reached the trail part of the data? */
833                 if (con->out_msg_pos.data_pos >= data_len - trail_len) {
834                         in_trail = 1;
835
836                         total_max_write = data_len - con->out_msg_pos.data_pos;
837
838                         page = list_first_entry(&msg->trail->head,
839                                                 struct page, lru);
840                         if (crc)
841                                 kaddr = kmap(page);
842                         max_write = PAGE_SIZE;
843                 } else if (msg->pages) {
844                         page = msg->pages[con->out_msg_pos.page];
845                         if (crc)
846                                 kaddr = kmap(page);
847                 } else if (msg->pagelist) {
848                         page = list_first_entry(&msg->pagelist->head,
849                                                 struct page, lru);
850                         if (crc)
851                                 kaddr = kmap(page);
852 #ifdef CONFIG_BLOCK
853                 } else if (msg->bio) {
854                         struct bio_vec *bv;
855
856                         bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
857                         page = bv->bv_page;
858                         page_shift = bv->bv_offset;
859                         if (crc)
860                                 kaddr = kmap(page) + page_shift;
861                         max_write = bv->bv_len;
862 #endif
863                 } else {
864                         page = zero_page;
865                         if (crc)
866                                 kaddr = zero_page_address;
867                 }
868                 len = min_t(int, max_write - con->out_msg_pos.page_pos,
869                             total_max_write);
870
871                 if (crc && !con->out_msg_pos.did_page_crc) {
872                         void *base = kaddr + con->out_msg_pos.page_pos;
873                         u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
874
875                         BUG_ON(kaddr == NULL);
876                         con->out_msg->footer.data_crc =
877                                 cpu_to_le32(crc32c(tmpcrc, base, len));
878                         con->out_msg_pos.did_page_crc = 1;
879                 }
880                 ret = kernel_sendpage(con->sock, page,
881                                       con->out_msg_pos.page_pos + page_shift,
882                                       len,
883                                       MSG_DONTWAIT | MSG_NOSIGNAL |
884                                       MSG_MORE);
885
886                 if (crc &&
887                     (msg->pages || msg->pagelist || msg->bio || in_trail))
888                         kunmap(page);
889
890                 if (ret == -EAGAIN)
891                         ret = 0;
892                 if (ret <= 0)
893                         goto out;
894
895                 con->out_msg_pos.data_pos += ret;
896                 con->out_msg_pos.page_pos += ret;
897                 if (ret == len) {
898                         con->out_msg_pos.page_pos = 0;
899                         con->out_msg_pos.page++;
900                         con->out_msg_pos.did_page_crc = 0;
901                         if (in_trail)
902                                 list_move_tail(&page->lru,
903                                                &msg->trail->head);
904                         else if (msg->pagelist)
905                                 list_move_tail(&page->lru,
906                                                &msg->pagelist->head);
907 #ifdef CONFIG_BLOCK
908                         else if (msg->bio)
909                                 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
910 #endif
911                 }
912         }
913
914         dout("write_partial_msg_pages %p msg %p done\n", con, msg);
915
916         /* prepare and queue up footer, too */
917         if (!crc)
918                 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
919         ceph_con_out_kvec_reset(con);
920         prepare_write_message_footer(con);
921         ret = 1;
922 out:
923         return ret;
924 }
925
926 /*
927  * write some zeros
928  */
929 static int write_partial_skip(struct ceph_connection *con)
930 {
931         int ret;
932
933         while (con->out_skip > 0) {
934                 struct kvec iov = {
935                         .iov_base = zero_page_address,
936                         .iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
937                 };
938
939                 ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
940                 if (ret <= 0)
941                         goto out;
942                 con->out_skip -= ret;
943         }
944         ret = 1;
945 out:
946         return ret;
947 }
948
949 /*
950  * Prepare to read connection handshake, or an ack.
951  */
952 static void prepare_read_banner(struct ceph_connection *con)
953 {
954         dout("prepare_read_banner %p\n", con);
955         con->in_base_pos = 0;
956 }
957
958 static void prepare_read_connect(struct ceph_connection *con)
959 {
960         dout("prepare_read_connect %p\n", con);
961         con->in_base_pos = 0;
962 }
963
964 static void prepare_read_ack(struct ceph_connection *con)
965 {
966         dout("prepare_read_ack %p\n", con);
967         con->in_base_pos = 0;
968 }
969
970 static void prepare_read_tag(struct ceph_connection *con)
971 {
972         dout("prepare_read_tag %p\n", con);
973         con->in_base_pos = 0;
974         con->in_tag = CEPH_MSGR_TAG_READY;
975 }
976
977 /*
978  * Prepare to read a message.
979  */
980 static int prepare_read_message(struct ceph_connection *con)
981 {
982         dout("prepare_read_message %p\n", con);
983         BUG_ON(con->in_msg != NULL);
984         con->in_base_pos = 0;
985         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
986         return 0;
987 }
988
989
990 static int read_partial(struct ceph_connection *con,
991                         int *to, int size, void *object)
992 {
993         *to += size;
994         while (con->in_base_pos < *to) {
995                 int left = *to - con->in_base_pos;
996                 int have = size - left;
997                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
998                 if (ret <= 0)
999                         return ret;
1000                 con->in_base_pos += ret;
1001         }
1002         return 1;
1003 }
1004
1005
1006 /*
1007  * Read all or part of the connect-side handshake on a new connection
1008  */
1009 static int read_partial_banner(struct ceph_connection *con)
1010 {
1011         int ret, to = 0;
1012
1013         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1014
1015         /* peer's banner */
1016         ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
1017         if (ret <= 0)
1018                 goto out;
1019         ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
1020                            &con->actual_peer_addr);
1021         if (ret <= 0)
1022                 goto out;
1023         ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
1024                            &con->peer_addr_for_me);
1025         if (ret <= 0)
1026                 goto out;
1027 out:
1028         return ret;
1029 }
1030
1031 static int read_partial_connect(struct ceph_connection *con)
1032 {
1033         int ret, to = 0;
1034
1035         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1036
1037         ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
1038         if (ret <= 0)
1039                 goto out;
1040         ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
1041                            con->auth_reply_buf);
1042         if (ret <= 0)
1043                 goto out;
1044
1045         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1046              con, (int)con->in_reply.tag,
1047              le32_to_cpu(con->in_reply.connect_seq),
1048              le32_to_cpu(con->in_reply.global_seq));
1049 out:
1050         return ret;
1051
1052 }
1053
1054 /*
1055  * Verify the hello banner looks okay.
1056  */
1057 static int verify_hello(struct ceph_connection *con)
1058 {
1059         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1060                 pr_err("connect to %s got bad banner\n",
1061                        ceph_pr_addr(&con->peer_addr.in_addr));
1062                 con->error_msg = "protocol error, bad banner";
1063                 return -1;
1064         }
1065         return 0;
1066 }
1067
1068 static bool addr_is_blank(struct sockaddr_storage *ss)
1069 {
1070         switch (ss->ss_family) {
1071         case AF_INET:
1072                 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1073         case AF_INET6:
1074                 return
1075                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1076                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1077                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1078                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1079         }
1080         return false;
1081 }
1082
1083 static int addr_port(struct sockaddr_storage *ss)
1084 {
1085         switch (ss->ss_family) {
1086         case AF_INET:
1087                 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1088         case AF_INET6:
1089                 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1090         }
1091         return 0;
1092 }
1093
1094 static void addr_set_port(struct sockaddr_storage *ss, int p)
1095 {
1096         switch (ss->ss_family) {
1097         case AF_INET:
1098                 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1099                 break;
1100         case AF_INET6:
1101                 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1102                 break;
1103         }
1104 }
1105
1106 /*
1107  * Unlike other *_pton function semantics, zero indicates success.
1108  */
1109 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1110                 char delim, const char **ipend)
1111 {
1112         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1113         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1114
1115         memset(ss, 0, sizeof(*ss));
1116
1117         if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1118                 ss->ss_family = AF_INET;
1119                 return 0;
1120         }
1121
1122         if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1123                 ss->ss_family = AF_INET6;
1124                 return 0;
1125         }
1126
1127         return -EINVAL;
1128 }
1129
1130 /*
1131  * Extract hostname string and resolve using kernel DNS facility.
1132  */
1133 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1134 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1135                 struct sockaddr_storage *ss, char delim, const char **ipend)
1136 {
1137         const char *end, *delim_p;
1138         char *colon_p, *ip_addr = NULL;
1139         int ip_len, ret;
1140
1141         /*
1142          * The end of the hostname occurs immediately preceding the delimiter or
1143          * the port marker (':') where the delimiter takes precedence.
1144          */
1145         delim_p = memchr(name, delim, namelen);
1146         colon_p = memchr(name, ':', namelen);
1147
1148         if (delim_p && colon_p)
1149                 end = delim_p < colon_p ? delim_p : colon_p;
1150         else if (!delim_p && colon_p)
1151                 end = colon_p;
1152         else {
1153                 end = delim_p;
1154                 if (!end) /* case: hostname:/ */
1155                         end = name + namelen;
1156         }
1157
1158         if (end <= name)
1159                 return -EINVAL;
1160
1161         /* do dns_resolve upcall */
1162         ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1163         if (ip_len > 0)
1164                 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1165         else
1166                 ret = -ESRCH;
1167
1168         kfree(ip_addr);
1169
1170         *ipend = end;
1171
1172         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1173                         ret, ret ? "failed" : ceph_pr_addr(ss));
1174
1175         return ret;
1176 }
1177 #else
1178 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1179                 struct sockaddr_storage *ss, char delim, const char **ipend)
1180 {
1181         return -EINVAL;
1182 }
1183 #endif
1184
1185 /*
1186  * Parse a server name (IP or hostname). If a valid IP address is not found
1187  * then try to extract a hostname to resolve using userspace DNS upcall.
1188  */
1189 static int ceph_parse_server_name(const char *name, size_t namelen,
1190                         struct sockaddr_storage *ss, char delim, const char **ipend)
1191 {
1192         int ret;
1193
1194         ret = ceph_pton(name, namelen, ss, delim, ipend);
1195         if (ret)
1196                 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1197
1198         return ret;
1199 }
1200
1201 /*
1202  * Parse an ip[:port] list into an addr array.  Use the default
1203  * monitor port if a port isn't specified.
1204  */
1205 int ceph_parse_ips(const char *c, const char *end,
1206                    struct ceph_entity_addr *addr,
1207                    int max_count, int *count)
1208 {
1209         int i, ret = -EINVAL;
1210         const char *p = c;
1211
1212         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1213         for (i = 0; i < max_count; i++) {
1214                 const char *ipend;
1215                 struct sockaddr_storage *ss = &addr[i].in_addr;
1216                 int port;
1217                 char delim = ',';
1218
1219                 if (*p == '[') {
1220                         delim = ']';
1221                         p++;
1222                 }
1223
1224                 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1225                 if (ret)
1226                         goto bad;
1227                 ret = -EINVAL;
1228
1229                 p = ipend;
1230
1231                 if (delim == ']') {
1232                         if (*p != ']') {
1233                                 dout("missing matching ']'\n");
1234                                 goto bad;
1235                         }
1236                         p++;
1237                 }
1238
1239                 /* port? */
1240                 if (p < end && *p == ':') {
1241                         port = 0;
1242                         p++;
1243                         while (p < end && *p >= '0' && *p <= '9') {
1244                                 port = (port * 10) + (*p - '0');
1245                                 p++;
1246                         }
1247                         if (port > 65535 || port == 0)
1248                                 goto bad;
1249                 } else {
1250                         port = CEPH_MON_PORT;
1251                 }
1252
1253                 addr_set_port(ss, port);
1254
1255                 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1256
1257                 if (p == end)
1258                         break;
1259                 if (*p != ',')
1260                         goto bad;
1261                 p++;
1262         }
1263
1264         if (p != end)
1265                 goto bad;
1266
1267         if (count)
1268                 *count = i + 1;
1269         return 0;
1270
1271 bad:
1272         pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1273         return ret;
1274 }
1275 EXPORT_SYMBOL(ceph_parse_ips);
1276
1277 static int process_banner(struct ceph_connection *con)
1278 {
1279         dout("process_banner on %p\n", con);
1280
1281         if (verify_hello(con) < 0)
1282                 return -1;
1283
1284         ceph_decode_addr(&con->actual_peer_addr);
1285         ceph_decode_addr(&con->peer_addr_for_me);
1286
1287         /*
1288          * Make sure the other end is who we wanted.  note that the other
1289          * end may not yet know their ip address, so if it's 0.0.0.0, give
1290          * them the benefit of the doubt.
1291          */
1292         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1293                    sizeof(con->peer_addr)) != 0 &&
1294             !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1295               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1296                 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1297                            ceph_pr_addr(&con->peer_addr.in_addr),
1298                            (int)le32_to_cpu(con->peer_addr.nonce),
1299                            ceph_pr_addr(&con->actual_peer_addr.in_addr),
1300                            (int)le32_to_cpu(con->actual_peer_addr.nonce));
1301                 con->error_msg = "wrong peer at address";
1302                 return -1;
1303         }
1304
1305         /*
1306          * did we learn our address?
1307          */
1308         if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1309                 int port = addr_port(&con->msgr->inst.addr.in_addr);
1310
1311                 memcpy(&con->msgr->inst.addr.in_addr,
1312                        &con->peer_addr_for_me.in_addr,
1313                        sizeof(con->peer_addr_for_me.in_addr));
1314                 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1315                 encode_my_addr(con->msgr);
1316                 dout("process_banner learned my addr is %s\n",
1317                      ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1318         }
1319
1320         set_bit(NEGOTIATING, &con->state);
1321         prepare_read_connect(con);
1322         return 0;
1323 }
1324
1325 static void fail_protocol(struct ceph_connection *con)
1326 {
1327         reset_connection(con);
1328         set_bit(CLOSED, &con->state);  /* in case there's queued work */
1329
1330         mutex_unlock(&con->mutex);
1331         if (con->ops->bad_proto)
1332                 con->ops->bad_proto(con);
1333         mutex_lock(&con->mutex);
1334 }
1335
1336 static int process_connect(struct ceph_connection *con)
1337 {
1338         u64 sup_feat = con->msgr->supported_features;
1339         u64 req_feat = con->msgr->required_features;
1340         u64 server_feat = le64_to_cpu(con->in_reply.features);
1341         int ret;
1342
1343         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1344
1345         switch (con->in_reply.tag) {
1346         case CEPH_MSGR_TAG_FEATURES:
1347                 pr_err("%s%lld %s feature set mismatch,"
1348                        " my %llx < server's %llx, missing %llx\n",
1349                        ENTITY_NAME(con->peer_name),
1350                        ceph_pr_addr(&con->peer_addr.in_addr),
1351                        sup_feat, server_feat, server_feat & ~sup_feat);
1352                 con->error_msg = "missing required protocol features";
1353                 fail_protocol(con);
1354                 return -1;
1355
1356         case CEPH_MSGR_TAG_BADPROTOVER:
1357                 pr_err("%s%lld %s protocol version mismatch,"
1358                        " my %d != server's %d\n",
1359                        ENTITY_NAME(con->peer_name),
1360                        ceph_pr_addr(&con->peer_addr.in_addr),
1361                        le32_to_cpu(con->out_connect.protocol_version),
1362                        le32_to_cpu(con->in_reply.protocol_version));
1363                 con->error_msg = "protocol version mismatch";
1364                 fail_protocol(con);
1365                 return -1;
1366
1367         case CEPH_MSGR_TAG_BADAUTHORIZER:
1368                 con->auth_retry++;
1369                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1370                      con->auth_retry);
1371                 if (con->auth_retry == 2) {
1372                         con->error_msg = "connect authorization failure";
1373                         return -1;
1374                 }
1375                 con->auth_retry = 1;
1376                 ret = prepare_write_connect(con->msgr, con, 0);
1377                 if (ret < 0)
1378                         return ret;
1379                 prepare_read_connect(con);
1380                 break;
1381
1382         case CEPH_MSGR_TAG_RESETSESSION:
1383                 /*
1384                  * If we connected with a large connect_seq but the peer
1385                  * has no record of a session with us (no connection, or
1386                  * connect_seq == 0), they will send RESETSESION to indicate
1387                  * that they must have reset their session, and may have
1388                  * dropped messages.
1389                  */
1390                 dout("process_connect got RESET peer seq %u\n",
1391                      le32_to_cpu(con->in_connect.connect_seq));
1392                 pr_err("%s%lld %s connection reset\n",
1393                        ENTITY_NAME(con->peer_name),
1394                        ceph_pr_addr(&con->peer_addr.in_addr));
1395                 reset_connection(con);
1396                 prepare_write_connect(con->msgr, con, 0);
1397                 prepare_read_connect(con);
1398
1399                 /* Tell ceph about it. */
1400                 mutex_unlock(&con->mutex);
1401                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1402                 if (con->ops->peer_reset)
1403                         con->ops->peer_reset(con);
1404                 mutex_lock(&con->mutex);
1405                 if (test_bit(CLOSED, &con->state) ||
1406                     test_bit(OPENING, &con->state))
1407                         return -EAGAIN;
1408                 break;
1409
1410         case CEPH_MSGR_TAG_RETRY_SESSION:
1411                 /*
1412                  * If we sent a smaller connect_seq than the peer has, try
1413                  * again with a larger value.
1414                  */
1415                 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1416                      le32_to_cpu(con->out_connect.connect_seq),
1417                      le32_to_cpu(con->in_connect.connect_seq));
1418                 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1419                 prepare_write_connect(con->msgr, con, 0);
1420                 prepare_read_connect(con);
1421                 break;
1422
1423         case CEPH_MSGR_TAG_RETRY_GLOBAL:
1424                 /*
1425                  * If we sent a smaller global_seq than the peer has, try
1426                  * again with a larger value.
1427                  */
1428                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1429                      con->peer_global_seq,
1430                      le32_to_cpu(con->in_connect.global_seq));
1431                 get_global_seq(con->msgr,
1432                                le32_to_cpu(con->in_connect.global_seq));
1433                 prepare_write_connect(con->msgr, con, 0);
1434                 prepare_read_connect(con);
1435                 break;
1436
1437         case CEPH_MSGR_TAG_READY:
1438                 if (req_feat & ~server_feat) {
1439                         pr_err("%s%lld %s protocol feature mismatch,"
1440                                " my required %llx > server's %llx, need %llx\n",
1441                                ENTITY_NAME(con->peer_name),
1442                                ceph_pr_addr(&con->peer_addr.in_addr),
1443                                req_feat, server_feat, req_feat & ~server_feat);
1444                         con->error_msg = "missing required protocol features";
1445                         fail_protocol(con);
1446                         return -1;
1447                 }
1448                 clear_bit(CONNECTING, &con->state);
1449                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1450                 con->connect_seq++;
1451                 con->peer_features = server_feat;
1452                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1453                      con->peer_global_seq,
1454                      le32_to_cpu(con->in_reply.connect_seq),
1455                      con->connect_seq);
1456                 WARN_ON(con->connect_seq !=
1457                         le32_to_cpu(con->in_reply.connect_seq));
1458
1459                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1460                         set_bit(LOSSYTX, &con->state);
1461
1462                 prepare_read_tag(con);
1463                 break;
1464
1465         case CEPH_MSGR_TAG_WAIT:
1466                 /*
1467                  * If there is a connection race (we are opening
1468                  * connections to each other), one of us may just have
1469                  * to WAIT.  This shouldn't happen if we are the
1470                  * client.
1471                  */
1472                 pr_err("process_connect got WAIT as client\n");
1473                 con->error_msg = "protocol error, got WAIT as client";
1474                 return -1;
1475
1476         default:
1477                 pr_err("connect protocol error, will retry\n");
1478                 con->error_msg = "protocol error, garbage tag during connect";
1479                 return -1;
1480         }
1481         return 0;
1482 }
1483
1484
1485 /*
1486  * read (part of) an ack
1487  */
1488 static int read_partial_ack(struct ceph_connection *con)
1489 {
1490         int to = 0;
1491
1492         return read_partial(con, &to, sizeof(con->in_temp_ack),
1493                             &con->in_temp_ack);
1494 }
1495
1496
1497 /*
1498  * We can finally discard anything that's been acked.
1499  */
1500 static void process_ack(struct ceph_connection *con)
1501 {
1502         struct ceph_msg *m;
1503         u64 ack = le64_to_cpu(con->in_temp_ack);
1504         u64 seq;
1505
1506         while (!list_empty(&con->out_sent)) {
1507                 m = list_first_entry(&con->out_sent, struct ceph_msg,
1508                                      list_head);
1509                 seq = le64_to_cpu(m->hdr.seq);
1510                 if (seq > ack)
1511                         break;
1512                 dout("got ack for seq %llu type %d at %p\n", seq,
1513                      le16_to_cpu(m->hdr.type), m);
1514                 m->ack_stamp = jiffies;
1515                 ceph_msg_remove(m);
1516         }
1517         prepare_read_tag(con);
1518 }
1519
1520
1521
1522
1523 static int read_partial_message_section(struct ceph_connection *con,
1524                                         struct kvec *section,
1525                                         unsigned int sec_len, u32 *crc)
1526 {
1527         int ret, left;
1528
1529         BUG_ON(!section);
1530
1531         while (section->iov_len < sec_len) {
1532                 BUG_ON(section->iov_base == NULL);
1533                 left = sec_len - section->iov_len;
1534                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1535                                        section->iov_len, left);
1536                 if (ret <= 0)
1537                         return ret;
1538                 section->iov_len += ret;
1539                 if (section->iov_len == sec_len)
1540                         *crc = crc32c(0, section->iov_base,
1541                                       section->iov_len);
1542         }
1543
1544         return 1;
1545 }
1546
1547 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1548                                 struct ceph_msg_header *hdr,
1549                                 int *skip);
1550
1551
1552 static int read_partial_message_pages(struct ceph_connection *con,
1553                                       struct page **pages,
1554                                       unsigned data_len, int datacrc)
1555 {
1556         void *p;
1557         int ret;
1558         int left;
1559
1560         left = min((int)(data_len - con->in_msg_pos.data_pos),
1561                    (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1562         /* (page) data */
1563         BUG_ON(pages == NULL);
1564         p = kmap(pages[con->in_msg_pos.page]);
1565         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1566                                left);
1567         if (ret > 0 && datacrc)
1568                 con->in_data_crc =
1569                         crc32c(con->in_data_crc,
1570                                   p + con->in_msg_pos.page_pos, ret);
1571         kunmap(pages[con->in_msg_pos.page]);
1572         if (ret <= 0)
1573                 return ret;
1574         con->in_msg_pos.data_pos += ret;
1575         con->in_msg_pos.page_pos += ret;
1576         if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1577                 con->in_msg_pos.page_pos = 0;
1578                 con->in_msg_pos.page++;
1579         }
1580
1581         return ret;
1582 }
1583
1584 #ifdef CONFIG_BLOCK
1585 static int read_partial_message_bio(struct ceph_connection *con,
1586                                     struct bio **bio_iter, int *bio_seg,
1587                                     unsigned data_len, int datacrc)
1588 {
1589         struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1590         void *p;
1591         int ret, left;
1592
1593         if (IS_ERR(bv))
1594                 return PTR_ERR(bv);
1595
1596         left = min((int)(data_len - con->in_msg_pos.data_pos),
1597                    (int)(bv->bv_len - con->in_msg_pos.page_pos));
1598
1599         p = kmap(bv->bv_page) + bv->bv_offset;
1600
1601         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1602                                left);
1603         if (ret > 0 && datacrc)
1604                 con->in_data_crc =
1605                         crc32c(con->in_data_crc,
1606                                   p + con->in_msg_pos.page_pos, ret);
1607         kunmap(bv->bv_page);
1608         if (ret <= 0)
1609                 return ret;
1610         con->in_msg_pos.data_pos += ret;
1611         con->in_msg_pos.page_pos += ret;
1612         if (con->in_msg_pos.page_pos == bv->bv_len) {
1613                 con->in_msg_pos.page_pos = 0;
1614                 iter_bio_next(bio_iter, bio_seg);
1615         }
1616
1617         return ret;
1618 }
1619 #endif
1620
1621 /*
1622  * read (part of) a message.
1623  */
1624 static int read_partial_message(struct ceph_connection *con)
1625 {
1626         struct ceph_msg *m = con->in_msg;
1627         int ret;
1628         int to, left;
1629         unsigned front_len, middle_len, data_len;
1630         int datacrc = con->msgr->nocrc;
1631         int skip;
1632         u64 seq;
1633
1634         dout("read_partial_message con %p msg %p\n", con, m);
1635
1636         /* header */
1637         while (con->in_base_pos < sizeof(con->in_hdr)) {
1638                 left = sizeof(con->in_hdr) - con->in_base_pos;
1639                 ret = ceph_tcp_recvmsg(con->sock,
1640                                        (char *)&con->in_hdr + con->in_base_pos,
1641                                        left);
1642                 if (ret <= 0)
1643                         return ret;
1644                 con->in_base_pos += ret;
1645                 if (con->in_base_pos == sizeof(con->in_hdr)) {
1646                         u32 crc = crc32c(0, &con->in_hdr,
1647                                  sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
1648                         if (crc != le32_to_cpu(con->in_hdr.crc)) {
1649                                 pr_err("read_partial_message bad hdr "
1650                                        " crc %u != expected %u\n",
1651                                        crc, con->in_hdr.crc);
1652                                 return -EBADMSG;
1653                         }
1654                 }
1655         }
1656         front_len = le32_to_cpu(con->in_hdr.front_len);
1657         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1658                 return -EIO;
1659         middle_len = le32_to_cpu(con->in_hdr.middle_len);
1660         if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1661                 return -EIO;
1662         data_len = le32_to_cpu(con->in_hdr.data_len);
1663         if (data_len > CEPH_MSG_MAX_DATA_LEN)
1664                 return -EIO;
1665
1666         /* verify seq# */
1667         seq = le64_to_cpu(con->in_hdr.seq);
1668         if ((s64)seq - (s64)con->in_seq < 1) {
1669                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1670                         ENTITY_NAME(con->peer_name),
1671                         ceph_pr_addr(&con->peer_addr.in_addr),
1672                         seq, con->in_seq + 1);
1673                 con->in_base_pos = -front_len - middle_len - data_len -
1674                         sizeof(m->footer);
1675                 con->in_tag = CEPH_MSGR_TAG_READY;
1676                 return 0;
1677         } else if ((s64)seq - (s64)con->in_seq > 1) {
1678                 pr_err("read_partial_message bad seq %lld expected %lld\n",
1679                        seq, con->in_seq + 1);
1680                 con->error_msg = "bad message sequence # for incoming message";
1681                 return -EBADMSG;
1682         }
1683
1684         /* allocate message? */
1685         if (!con->in_msg) {
1686                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1687                      con->in_hdr.front_len, con->in_hdr.data_len);
1688                 skip = 0;
1689                 con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1690                 if (skip) {
1691                         /* skip this message */
1692                         dout("alloc_msg said skip message\n");
1693                         BUG_ON(con->in_msg);
1694                         con->in_base_pos = -front_len - middle_len - data_len -
1695                                 sizeof(m->footer);
1696                         con->in_tag = CEPH_MSGR_TAG_READY;
1697                         con->in_seq++;
1698                         return 0;
1699                 }
1700                 if (!con->in_msg) {
1701                         con->error_msg =
1702                                 "error allocating memory for incoming message";
1703                         return -ENOMEM;
1704                 }
1705                 m = con->in_msg;
1706                 m->front.iov_len = 0;    /* haven't read it yet */
1707                 if (m->middle)
1708                         m->middle->vec.iov_len = 0;
1709
1710                 con->in_msg_pos.page = 0;
1711                 if (m->pages)
1712                         con->in_msg_pos.page_pos = m->page_alignment;
1713                 else
1714                         con->in_msg_pos.page_pos = 0;
1715                 con->in_msg_pos.data_pos = 0;
1716         }
1717
1718         /* front */
1719         ret = read_partial_message_section(con, &m->front, front_len,
1720                                            &con->in_front_crc);
1721         if (ret <= 0)
1722                 return ret;
1723
1724         /* middle */
1725         if (m->middle) {
1726                 ret = read_partial_message_section(con, &m->middle->vec,
1727                                                    middle_len,
1728                                                    &con->in_middle_crc);
1729                 if (ret <= 0)
1730                         return ret;
1731         }
1732 #ifdef CONFIG_BLOCK
1733         if (m->bio && !m->bio_iter)
1734                 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1735 #endif
1736
1737         /* (page) data */
1738         while (con->in_msg_pos.data_pos < data_len) {
1739                 if (m->pages) {
1740                         ret = read_partial_message_pages(con, m->pages,
1741                                                  data_len, datacrc);
1742                         if (ret <= 0)
1743                                 return ret;
1744 #ifdef CONFIG_BLOCK
1745                 } else if (m->bio) {
1746
1747                         ret = read_partial_message_bio(con,
1748                                                  &m->bio_iter, &m->bio_seg,
1749                                                  data_len, datacrc);
1750                         if (ret <= 0)
1751                                 return ret;
1752 #endif
1753                 } else {
1754                         BUG_ON(1);
1755                 }
1756         }
1757
1758         /* footer */
1759         to = sizeof(m->hdr) + sizeof(m->footer);
1760         while (con->in_base_pos < to) {
1761                 left = to - con->in_base_pos;
1762                 ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
1763                                        (con->in_base_pos - sizeof(m->hdr)),
1764                                        left);
1765                 if (ret <= 0)
1766                         return ret;
1767                 con->in_base_pos += ret;
1768         }
1769         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1770              m, front_len, m->footer.front_crc, middle_len,
1771              m->footer.middle_crc, data_len, m->footer.data_crc);
1772
1773         /* crc ok? */
1774         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1775                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1776                        m, con->in_front_crc, m->footer.front_crc);
1777                 return -EBADMSG;
1778         }
1779         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1780                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1781                        m, con->in_middle_crc, m->footer.middle_crc);
1782                 return -EBADMSG;
1783         }
1784         if (datacrc &&
1785             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1786             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1787                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1788                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1789                 return -EBADMSG;
1790         }
1791
1792         return 1; /* done! */
1793 }
1794
1795 /*
1796  * Process message.  This happens in the worker thread.  The callback should
1797  * be careful not to do anything that waits on other incoming messages or it
1798  * may deadlock.
1799  */
1800 static void process_message(struct ceph_connection *con)
1801 {
1802         struct ceph_msg *msg;
1803
1804         msg = con->in_msg;
1805         con->in_msg = NULL;
1806
1807         /* if first message, set peer_name */
1808         if (con->peer_name.type == 0)
1809                 con->peer_name = msg->hdr.src;
1810
1811         con->in_seq++;
1812         mutex_unlock(&con->mutex);
1813
1814         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1815              msg, le64_to_cpu(msg->hdr.seq),
1816              ENTITY_NAME(msg->hdr.src),
1817              le16_to_cpu(msg->hdr.type),
1818              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1819              le32_to_cpu(msg->hdr.front_len),
1820              le32_to_cpu(msg->hdr.data_len),
1821              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1822         con->ops->dispatch(con, msg);
1823
1824         mutex_lock(&con->mutex);
1825         prepare_read_tag(con);
1826 }
1827
1828
1829 /*
1830  * Write something to the socket.  Called in a worker thread when the
1831  * socket appears to be writeable and we have something ready to send.
1832  */
1833 static int try_write(struct ceph_connection *con)
1834 {
1835         struct ceph_messenger *msgr = con->msgr;
1836         int ret = 1;
1837
1838         dout("try_write start %p state %lu nref %d\n", con, con->state,
1839              atomic_read(&con->nref));
1840
1841 more:
1842         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1843
1844         /* open the socket first? */
1845         if (con->sock == NULL) {
1846                 prepare_write_connect(msgr, con, 1);
1847                 prepare_read_banner(con);
1848                 set_bit(CONNECTING, &con->state);
1849                 clear_bit(NEGOTIATING, &con->state);
1850
1851                 BUG_ON(con->in_msg);
1852                 con->in_tag = CEPH_MSGR_TAG_READY;
1853                 dout("try_write initiating connect on %p new state %lu\n",
1854                      con, con->state);
1855                 con->sock = ceph_tcp_connect(con);
1856                 if (IS_ERR(con->sock)) {
1857                         con->sock = NULL;
1858                         con->error_msg = "connect error";
1859                         ret = -1;
1860                         goto out;
1861                 }
1862         }
1863
1864 more_kvec:
1865         /* kvec data queued? */
1866         if (con->out_skip) {
1867                 ret = write_partial_skip(con);
1868                 if (ret <= 0)
1869                         goto out;
1870         }
1871         if (con->out_kvec_left) {
1872                 ret = write_partial_kvec(con);
1873                 if (ret <= 0)
1874                         goto out;
1875         }
1876
1877         /* msg pages? */
1878         if (con->out_msg) {
1879                 if (con->out_msg_done) {
1880                         ceph_msg_put(con->out_msg);
1881                         con->out_msg = NULL;   /* we're done with this one */
1882                         goto do_next;
1883                 }
1884
1885                 ret = write_partial_msg_pages(con);
1886                 if (ret == 1)
1887                         goto more_kvec;  /* we need to send the footer, too! */
1888                 if (ret == 0)
1889                         goto out;
1890                 if (ret < 0) {
1891                         dout("try_write write_partial_msg_pages err %d\n",
1892                              ret);
1893                         goto out;
1894                 }
1895         }
1896
1897 do_next:
1898         if (!test_bit(CONNECTING, &con->state)) {
1899                 /* is anything else pending? */
1900                 if (!list_empty(&con->out_queue)) {
1901                         prepare_write_message(con);
1902                         goto more;
1903                 }
1904                 if (con->in_seq > con->in_seq_acked) {
1905                         prepare_write_ack(con);
1906                         goto more;
1907                 }
1908                 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1909                         prepare_write_keepalive(con);
1910                         goto more;
1911                 }
1912         }
1913
1914         /* Nothing to do! */
1915         clear_bit(WRITE_PENDING, &con->state);
1916         dout("try_write nothing else to write.\n");
1917         ret = 0;
1918 out:
1919         dout("try_write done on %p ret %d\n", con, ret);
1920         return ret;
1921 }
1922
1923
1924
1925 /*
1926  * Read what we can from the socket.
1927  */
1928 static int try_read(struct ceph_connection *con)
1929 {
1930         int ret = -1;
1931
1932         if (!con->sock)
1933                 return 0;
1934
1935         if (test_bit(STANDBY, &con->state))
1936                 return 0;
1937
1938         dout("try_read start on %p\n", con);
1939
1940 more:
1941         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1942              con->in_base_pos);
1943
1944         /*
1945          * process_connect and process_message drop and re-take
1946          * con->mutex.  make sure we handle a racing close or reopen.
1947          */
1948         if (test_bit(CLOSED, &con->state) ||
1949             test_bit(OPENING, &con->state)) {
1950                 ret = -EAGAIN;
1951                 goto out;
1952         }
1953
1954         if (test_bit(CONNECTING, &con->state)) {
1955                 if (!test_bit(NEGOTIATING, &con->state)) {
1956                         dout("try_read connecting\n");
1957                         ret = read_partial_banner(con);
1958                         if (ret <= 0)
1959                                 goto out;
1960                         ret = process_banner(con);
1961                         if (ret < 0)
1962                                 goto out;
1963                 }
1964                 ret = read_partial_connect(con);
1965                 if (ret <= 0)
1966                         goto out;
1967                 ret = process_connect(con);
1968                 if (ret < 0)
1969                         goto out;
1970                 goto more;
1971         }
1972
1973         if (con->in_base_pos < 0) {
1974                 /*
1975                  * skipping + discarding content.
1976                  *
1977                  * FIXME: there must be a better way to do this!
1978                  */
1979                 static char buf[1024];
1980                 int skip = min(1024, -con->in_base_pos);
1981                 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1982                 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1983                 if (ret <= 0)
1984                         goto out;
1985                 con->in_base_pos += ret;
1986                 if (con->in_base_pos)
1987                         goto more;
1988         }
1989         if (con->in_tag == CEPH_MSGR_TAG_READY) {
1990                 /*
1991                  * what's next?
1992                  */
1993                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
1994                 if (ret <= 0)
1995                         goto out;
1996                 dout("try_read got tag %d\n", (int)con->in_tag);
1997                 switch (con->in_tag) {
1998                 case CEPH_MSGR_TAG_MSG:
1999                         prepare_read_message(con);
2000                         break;
2001                 case CEPH_MSGR_TAG_ACK:
2002                         prepare_read_ack(con);
2003                         break;
2004                 case CEPH_MSGR_TAG_CLOSE:
2005                         set_bit(CLOSED, &con->state);   /* fixme */
2006                         goto out;
2007                 default:
2008                         goto bad_tag;
2009                 }
2010         }
2011         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2012                 ret = read_partial_message(con);
2013                 if (ret <= 0) {
2014                         switch (ret) {
2015                         case -EBADMSG:
2016                                 con->error_msg = "bad crc";
2017                                 ret = -EIO;
2018                                 break;
2019                         case -EIO:
2020                                 con->error_msg = "io error";
2021                                 break;
2022                         }
2023                         goto out;
2024                 }
2025                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2026                         goto more;
2027                 process_message(con);
2028                 goto more;
2029         }
2030         if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2031                 ret = read_partial_ack(con);
2032                 if (ret <= 0)
2033                         goto out;
2034                 process_ack(con);
2035                 goto more;
2036         }
2037
2038 out:
2039         dout("try_read done on %p ret %d\n", con, ret);
2040         return ret;
2041
2042 bad_tag:
2043         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2044         con->error_msg = "protocol error, garbage tag";
2045         ret = -1;
2046         goto out;
2047 }
2048
2049
2050 /*
2051  * Atomically queue work on a connection.  Bump @con reference to
2052  * avoid races with connection teardown.
2053  */
2054 static void queue_con(struct ceph_connection *con)
2055 {
2056         if (test_bit(DEAD, &con->state)) {
2057                 dout("queue_con %p ignoring: DEAD\n",
2058                      con);
2059                 return;
2060         }
2061
2062         if (!con->ops->get(con)) {
2063                 dout("queue_con %p ref count 0\n", con);
2064                 return;
2065         }
2066
2067         if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2068                 dout("queue_con %p - already queued\n", con);
2069                 con->ops->put(con);
2070         } else {
2071                 dout("queue_con %p\n", con);
2072         }
2073 }
2074
2075 /*
2076  * Do some work on a connection.  Drop a connection ref when we're done.
2077  */
2078 static void con_work(struct work_struct *work)
2079 {
2080         struct ceph_connection *con = container_of(work, struct ceph_connection,
2081                                                    work.work);
2082         int ret;
2083
2084         mutex_lock(&con->mutex);
2085 restart:
2086         if (test_and_clear_bit(BACKOFF, &con->state)) {
2087                 dout("con_work %p backing off\n", con);
2088                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2089                                        round_jiffies_relative(con->delay))) {
2090                         dout("con_work %p backoff %lu\n", con, con->delay);
2091                         mutex_unlock(&con->mutex);
2092                         return;
2093                 } else {
2094                         con->ops->put(con);
2095                         dout("con_work %p FAILED to back off %lu\n", con,
2096                              con->delay);
2097                 }
2098         }
2099
2100         if (test_bit(STANDBY, &con->state)) {
2101                 dout("con_work %p STANDBY\n", con);
2102                 goto done;
2103         }
2104         if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
2105                 dout("con_work CLOSED\n");
2106                 con_close_socket(con);
2107                 goto done;
2108         }
2109         if (test_and_clear_bit(OPENING, &con->state)) {
2110                 /* reopen w/ new peer */
2111                 dout("con_work OPENING\n");
2112                 con_close_socket(con);
2113         }
2114
2115         if (test_and_clear_bit(SOCK_CLOSED, &con->state))
2116                 goto fault;
2117
2118         ret = try_read(con);
2119         if (ret == -EAGAIN)
2120                 goto restart;
2121         if (ret < 0)
2122                 goto fault;
2123
2124         ret = try_write(con);
2125         if (ret == -EAGAIN)
2126                 goto restart;
2127         if (ret < 0)
2128                 goto fault;
2129
2130 done:
2131         mutex_unlock(&con->mutex);
2132 done_unlocked:
2133         con->ops->put(con);
2134         return;
2135
2136 fault:
2137         mutex_unlock(&con->mutex);
2138         ceph_fault(con);     /* error/fault path */
2139         goto done_unlocked;
2140 }
2141
2142
2143 /*
2144  * Generic error/fault handler.  A retry mechanism is used with
2145  * exponential backoff
2146  */
2147 static void ceph_fault(struct ceph_connection *con)
2148 {
2149         pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2150                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2151         dout("fault %p state %lu to peer %s\n",
2152              con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2153
2154         if (test_bit(LOSSYTX, &con->state)) {
2155                 dout("fault on LOSSYTX channel\n");
2156                 goto out;
2157         }
2158
2159         mutex_lock(&con->mutex);
2160         if (test_bit(CLOSED, &con->state))
2161                 goto out_unlock;
2162
2163         con_close_socket(con);
2164
2165         if (con->in_msg) {
2166                 ceph_msg_put(con->in_msg);
2167                 con->in_msg = NULL;
2168         }
2169
2170         /* Requeue anything that hasn't been acked */
2171         list_splice_init(&con->out_sent, &con->out_queue);
2172
2173         /* If there are no messages queued or keepalive pending, place
2174          * the connection in a STANDBY state */
2175         if (list_empty(&con->out_queue) &&
2176             !test_bit(KEEPALIVE_PENDING, &con->state)) {
2177                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2178                 clear_bit(WRITE_PENDING, &con->state);
2179                 set_bit(STANDBY, &con->state);
2180         } else {
2181                 /* retry after a delay. */
2182                 if (con->delay == 0)
2183                         con->delay = BASE_DELAY_INTERVAL;
2184                 else if (con->delay < MAX_DELAY_INTERVAL)
2185                         con->delay *= 2;
2186                 con->ops->get(con);
2187                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2188                                        round_jiffies_relative(con->delay))) {
2189                         dout("fault queued %p delay %lu\n", con, con->delay);
2190                 } else {
2191                         con->ops->put(con);
2192                         dout("fault failed to queue %p delay %lu, backoff\n",
2193                              con, con->delay);
2194                         /*
2195                          * In many cases we see a socket state change
2196                          * while con_work is running and end up
2197                          * queuing (non-delayed) work, such that we
2198                          * can't backoff with a delay.  Set a flag so
2199                          * that when con_work restarts we schedule the
2200                          * delay then.
2201                          */
2202                         set_bit(BACKOFF, &con->state);
2203                 }
2204         }
2205
2206 out_unlock:
2207         mutex_unlock(&con->mutex);
2208 out:
2209         /*
2210          * in case we faulted due to authentication, invalidate our
2211          * current tickets so that we can get new ones.
2212          */
2213         if (con->auth_retry && con->ops->invalidate_authorizer) {
2214                 dout("calling invalidate_authorizer()\n");
2215                 con->ops->invalidate_authorizer(con);
2216         }
2217
2218         if (con->ops->fault)
2219                 con->ops->fault(con);
2220 }
2221
2222
2223
2224 /*
2225  * create a new messenger instance
2226  */
2227 struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
2228                                              u32 supported_features,
2229                                              u32 required_features)
2230 {
2231         struct ceph_messenger *msgr;
2232
2233         msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
2234         if (msgr == NULL)
2235                 return ERR_PTR(-ENOMEM);
2236
2237         msgr->supported_features = supported_features;
2238         msgr->required_features = required_features;
2239
2240         spin_lock_init(&msgr->global_seq_lock);
2241
2242         if (myaddr)
2243                 msgr->inst.addr = *myaddr;
2244
2245         /* select a random nonce */
2246         msgr->inst.addr.type = 0;
2247         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2248         encode_my_addr(msgr);
2249
2250         dout("messenger_create %p\n", msgr);
2251         return msgr;
2252 }
2253 EXPORT_SYMBOL(ceph_messenger_create);
2254
2255 void ceph_messenger_destroy(struct ceph_messenger *msgr)
2256 {
2257         dout("destroy %p\n", msgr);
2258         kfree(msgr);
2259         dout("destroyed messenger %p\n", msgr);
2260 }
2261 EXPORT_SYMBOL(ceph_messenger_destroy);
2262
2263 static void clear_standby(struct ceph_connection *con)
2264 {
2265         /* come back from STANDBY? */
2266         if (test_and_clear_bit(STANDBY, &con->state)) {
2267                 mutex_lock(&con->mutex);
2268                 dout("clear_standby %p and ++connect_seq\n", con);
2269                 con->connect_seq++;
2270                 WARN_ON(test_bit(WRITE_PENDING, &con->state));
2271                 WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
2272                 mutex_unlock(&con->mutex);
2273         }
2274 }
2275
2276 /*
2277  * Queue up an outgoing message on the given connection.
2278  */
2279 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2280 {
2281         if (test_bit(CLOSED, &con->state)) {
2282                 dout("con_send %p closed, dropping %p\n", con, msg);
2283                 ceph_msg_put(msg);
2284                 return;
2285         }
2286
2287         /* set src+dst */
2288         msg->hdr.src = con->msgr->inst.name;
2289
2290         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2291
2292         msg->needs_out_seq = true;
2293
2294         /* queue */
2295         mutex_lock(&con->mutex);
2296         BUG_ON(!list_empty(&msg->list_head));
2297         list_add_tail(&msg->list_head, &con->out_queue);
2298         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2299              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2300              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2301              le32_to_cpu(msg->hdr.front_len),
2302              le32_to_cpu(msg->hdr.middle_len),
2303              le32_to_cpu(msg->hdr.data_len));
2304         mutex_unlock(&con->mutex);
2305
2306         /* if there wasn't anything waiting to send before, queue
2307          * new work */
2308         clear_standby(con);
2309         if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2310                 queue_con(con);
2311 }
2312 EXPORT_SYMBOL(ceph_con_send);
2313
2314 /*
2315  * Revoke a message that was previously queued for send
2316  */
2317 void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2318 {
2319         mutex_lock(&con->mutex);
2320         if (!list_empty(&msg->list_head)) {
2321                 dout("con_revoke %p msg %p - was on queue\n", con, msg);
2322                 list_del_init(&msg->list_head);
2323                 ceph_msg_put(msg);
2324                 msg->hdr.seq = 0;
2325         }
2326         if (con->out_msg == msg) {
2327                 dout("con_revoke %p msg %p - was sending\n", con, msg);
2328                 con->out_msg = NULL;
2329                 if (con->out_kvec_is_msg) {
2330                         con->out_skip = con->out_kvec_bytes;
2331                         con->out_kvec_is_msg = false;
2332                 }
2333                 ceph_msg_put(msg);
2334                 msg->hdr.seq = 0;
2335         }
2336         mutex_unlock(&con->mutex);
2337 }
2338
2339 /*
2340  * Revoke a message that we may be reading data into
2341  */
2342 void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2343 {
2344         mutex_lock(&con->mutex);
2345         if (con->in_msg && con->in_msg == msg) {
2346                 unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2347                 unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
2348                 unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2349
2350                 /* skip rest of message */
2351                 dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2352                         con->in_base_pos = con->in_base_pos -
2353                                 sizeof(struct ceph_msg_header) -
2354                                 front_len -
2355                                 middle_len -
2356                                 data_len -
2357                                 sizeof(struct ceph_msg_footer);
2358                 ceph_msg_put(con->in_msg);
2359                 con->in_msg = NULL;
2360                 con->in_tag = CEPH_MSGR_TAG_READY;
2361                 con->in_seq++;
2362         } else {
2363                 dout("con_revoke_pages %p msg %p pages %p no-op\n",
2364                      con, con->in_msg, msg);
2365         }
2366         mutex_unlock(&con->mutex);
2367 }
2368
2369 /*
2370  * Queue a keepalive byte to ensure the tcp connection is alive.
2371  */
2372 void ceph_con_keepalive(struct ceph_connection *con)
2373 {
2374         dout("con_keepalive %p\n", con);
2375         clear_standby(con);
2376         if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2377             test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2378                 queue_con(con);
2379 }
2380 EXPORT_SYMBOL(ceph_con_keepalive);
2381
2382
2383 /*
2384  * construct a new message with given type, size
2385  * the new msg has a ref count of 1.
2386  */
2387 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2388                               bool can_fail)
2389 {
2390         struct ceph_msg *m;
2391
2392         m = kmalloc(sizeof(*m), flags);
2393         if (m == NULL)
2394                 goto out;
2395         kref_init(&m->kref);
2396         INIT_LIST_HEAD(&m->list_head);
2397
2398         m->hdr.tid = 0;
2399         m->hdr.type = cpu_to_le16(type);
2400         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2401         m->hdr.version = 0;
2402         m->hdr.front_len = cpu_to_le32(front_len);
2403         m->hdr.middle_len = 0;
2404         m->hdr.data_len = 0;
2405         m->hdr.data_off = 0;
2406         m->hdr.reserved = 0;
2407         m->footer.front_crc = 0;
2408         m->footer.middle_crc = 0;
2409         m->footer.data_crc = 0;
2410         m->footer.flags = 0;
2411         m->front_max = front_len;
2412         m->front_is_vmalloc = false;
2413         m->more_to_follow = false;
2414         m->ack_stamp = 0;
2415         m->pool = NULL;
2416
2417         /* middle */
2418         m->middle = NULL;
2419
2420         /* data */
2421         m->nr_pages = 0;
2422         m->page_alignment = 0;
2423         m->pages = NULL;
2424         m->pagelist = NULL;
2425         m->bio = NULL;
2426         m->bio_iter = NULL;
2427         m->bio_seg = 0;
2428         m->trail = NULL;
2429
2430         /* front */
2431         if (front_len) {
2432                 if (front_len > PAGE_CACHE_SIZE) {
2433                         m->front.iov_base = __vmalloc(front_len, flags,
2434                                                       PAGE_KERNEL);
2435                         m->front_is_vmalloc = true;
2436                 } else {
2437                         m->front.iov_base = kmalloc(front_len, flags);
2438                 }
2439                 if (m->front.iov_base == NULL) {
2440                         dout("ceph_msg_new can't allocate %d bytes\n",
2441                              front_len);
2442                         goto out2;
2443                 }
2444         } else {
2445                 m->front.iov_base = NULL;
2446         }
2447         m->front.iov_len = front_len;
2448
2449         dout("ceph_msg_new %p front %d\n", m, front_len);
2450         return m;
2451
2452 out2:
2453         ceph_msg_put(m);
2454 out:
2455         if (!can_fail) {
2456                 pr_err("msg_new can't create type %d front %d\n", type,
2457                        front_len);
2458                 WARN_ON(1);
2459         } else {
2460                 dout("msg_new can't create type %d front %d\n", type,
2461                      front_len);
2462         }
2463         return NULL;
2464 }
2465 EXPORT_SYMBOL(ceph_msg_new);
2466
2467 /*
2468  * Allocate "middle" portion of a message, if it is needed and wasn't
2469  * allocated by alloc_msg.  This allows us to read a small fixed-size
2470  * per-type header in the front and then gracefully fail (i.e.,
2471  * propagate the error to the caller based on info in the front) when
2472  * the middle is too large.
2473  */
2474 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2475 {
2476         int type = le16_to_cpu(msg->hdr.type);
2477         int middle_len = le32_to_cpu(msg->hdr.middle_len);
2478
2479         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2480              ceph_msg_type_name(type), middle_len);
2481         BUG_ON(!middle_len);
2482         BUG_ON(msg->middle);
2483
2484         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2485         if (!msg->middle)
2486                 return -ENOMEM;
2487         return 0;
2488 }
2489
2490 /*
2491  * Generic message allocator, for incoming messages.
2492  */
2493 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2494                                 struct ceph_msg_header *hdr,
2495                                 int *skip)
2496 {
2497         int type = le16_to_cpu(hdr->type);
2498         int front_len = le32_to_cpu(hdr->front_len);
2499         int middle_len = le32_to_cpu(hdr->middle_len);
2500         struct ceph_msg *msg = NULL;
2501         int ret;
2502
2503         if (con->ops->alloc_msg) {
2504                 mutex_unlock(&con->mutex);
2505                 msg = con->ops->alloc_msg(con, hdr, skip);
2506                 mutex_lock(&con->mutex);
2507                 if (!msg || *skip)
2508                         return NULL;
2509         }
2510         if (!msg) {
2511                 *skip = 0;
2512                 msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2513                 if (!msg) {
2514                         pr_err("unable to allocate msg type %d len %d\n",
2515                                type, front_len);
2516                         return NULL;
2517                 }
2518                 msg->page_alignment = le16_to_cpu(hdr->data_off);
2519         }
2520         memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2521
2522         if (middle_len && !msg->middle) {
2523                 ret = ceph_alloc_middle(con, msg);
2524                 if (ret < 0) {
2525                         ceph_msg_put(msg);
2526                         return NULL;
2527                 }
2528         }
2529
2530         return msg;
2531 }
2532
2533
2534 /*
2535  * Free a generically kmalloc'd message.
2536  */
2537 void ceph_msg_kfree(struct ceph_msg *m)
2538 {
2539         dout("msg_kfree %p\n", m);
2540         if (m->front_is_vmalloc)
2541                 vfree(m->front.iov_base);
2542         else
2543                 kfree(m->front.iov_base);
2544         kfree(m);
2545 }
2546
2547 /*
2548  * Drop a msg ref.  Destroy as needed.
2549  */
2550 void ceph_msg_last_put(struct kref *kref)
2551 {
2552         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2553
2554         dout("ceph_msg_put last one on %p\n", m);
2555         WARN_ON(!list_empty(&m->list_head));
2556
2557         /* drop middle, data, if any */
2558         if (m->middle) {
2559                 ceph_buffer_put(m->middle);
2560                 m->middle = NULL;
2561         }
2562         m->nr_pages = 0;
2563         m->pages = NULL;
2564
2565         if (m->pagelist) {
2566                 ceph_pagelist_release(m->pagelist);
2567                 kfree(m->pagelist);
2568                 m->pagelist = NULL;
2569         }
2570
2571         m->trail = NULL;
2572
2573         if (m->pool)
2574                 ceph_msgpool_put(m->pool, m);
2575         else
2576                 ceph_msg_kfree(m);
2577 }
2578 EXPORT_SYMBOL(ceph_msg_last_put);
2579
2580 void ceph_msg_dump(struct ceph_msg *msg)
2581 {
2582         pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2583                  msg->front_max, msg->nr_pages);
2584         print_hex_dump(KERN_DEBUG, "header: ",
2585                        DUMP_PREFIX_OFFSET, 16, 1,
2586                        &msg->hdr, sizeof(msg->hdr), true);
2587         print_hex_dump(KERN_DEBUG, " front: ",
2588                        DUMP_PREFIX_OFFSET, 16, 1,
2589                        msg->front.iov_base, msg->front.iov_len, true);
2590         if (msg->middle)
2591                 print_hex_dump(KERN_DEBUG, "middle: ",
2592                                DUMP_PREFIX_OFFSET, 16, 1,
2593                                msg->middle->vec.iov_base,
2594                                msg->middle->vec.iov_len, true);
2595         print_hex_dump(KERN_DEBUG, "footer: ",
2596                        DUMP_PREFIX_OFFSET, 16, 1,
2597                        &msg->footer, sizeof(msg->footer), true);
2598 }
2599 EXPORT_SYMBOL(ceph_msg_dump);