1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
16 #include <linux/bio.h>
17 #endif /* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
21 #include <linux/ceph/ceph_features.h>
22 #include <linux/ceph/libceph.h>
23 #include <linux/ceph/messenger.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/pagelist.h>
26 #include <linux/export.h>
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
44 * | NEW* | transient initial state
46 * | con_sock_state_init()
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
52 * | \ con_sock_state_connecting()
53 * | ----------------------
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
63 * | + con_sock_state_closing() \ |
65 * | / --------------- | |
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
73 * | CONNECTED | TCP connection established
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
85 static bool con_flag_valid(unsigned long con_flag)
88 case CEPH_CON_F_LOSSYTX:
89 case CEPH_CON_F_KEEPALIVE_PENDING:
90 case CEPH_CON_F_WRITE_PENDING:
91 case CEPH_CON_F_SOCK_CLOSED:
92 case CEPH_CON_F_BACKOFF:
99 void ceph_con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
101 BUG_ON(!con_flag_valid(con_flag));
103 clear_bit(con_flag, &con->flags);
106 void ceph_con_flag_set(struct ceph_connection *con, unsigned long con_flag)
108 BUG_ON(!con_flag_valid(con_flag));
110 set_bit(con_flag, &con->flags);
113 bool ceph_con_flag_test(struct ceph_connection *con, unsigned long con_flag)
115 BUG_ON(!con_flag_valid(con_flag));
117 return test_bit(con_flag, &con->flags);
120 bool ceph_con_flag_test_and_clear(struct ceph_connection *con,
121 unsigned long con_flag)
123 BUG_ON(!con_flag_valid(con_flag));
125 return test_and_clear_bit(con_flag, &con->flags);
128 bool ceph_con_flag_test_and_set(struct ceph_connection *con,
129 unsigned long con_flag)
131 BUG_ON(!con_flag_valid(con_flag));
133 return test_and_set_bit(con_flag, &con->flags);
136 /* Slab caches for frequently-allocated structures */
138 static struct kmem_cache *ceph_msg_cache;
140 #ifdef CONFIG_LOCKDEP
141 static struct lock_class_key socket_class;
144 static void queue_con(struct ceph_connection *con);
145 static void cancel_con(struct ceph_connection *con);
146 static void ceph_con_workfn(struct work_struct *);
147 static void con_fault(struct ceph_connection *con);
150 * Nicely render a sockaddr as a string. An array of formatted
151 * strings is used, to approximate reentrancy.
153 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
154 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
155 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
156 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
158 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
159 static atomic_t addr_str_seq = ATOMIC_INIT(0);
161 struct page *ceph_zero_page; /* used in certain error cases */
163 const char *ceph_pr_addr(const struct ceph_entity_addr *addr)
167 struct sockaddr_storage ss = addr->in_addr; /* align */
168 struct sockaddr_in *in4 = (struct sockaddr_in *)&ss;
169 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *)&ss;
171 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
174 switch (ss.ss_family) {
176 snprintf(s, MAX_ADDR_STR_LEN, "(%d)%pI4:%hu",
177 le32_to_cpu(addr->type), &in4->sin_addr,
178 ntohs(in4->sin_port));
182 snprintf(s, MAX_ADDR_STR_LEN, "(%d)[%pI6c]:%hu",
183 le32_to_cpu(addr->type), &in6->sin6_addr,
184 ntohs(in6->sin6_port));
188 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
194 EXPORT_SYMBOL(ceph_pr_addr);
196 void ceph_encode_my_addr(struct ceph_messenger *msgr)
198 if (!ceph_msgr2(from_msgr(msgr))) {
199 memcpy(&msgr->my_enc_addr, &msgr->inst.addr,
200 sizeof(msgr->my_enc_addr));
201 ceph_encode_banner_addr(&msgr->my_enc_addr);
206 * work queue for all reading and writing to/from the socket.
208 static struct workqueue_struct *ceph_msgr_wq;
210 static int ceph_msgr_slab_init(void)
212 BUG_ON(ceph_msg_cache);
213 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
220 static void ceph_msgr_slab_exit(void)
222 BUG_ON(!ceph_msg_cache);
223 kmem_cache_destroy(ceph_msg_cache);
224 ceph_msg_cache = NULL;
227 static void _ceph_msgr_exit(void)
230 destroy_workqueue(ceph_msgr_wq);
234 BUG_ON(!ceph_zero_page);
235 put_page(ceph_zero_page);
236 ceph_zero_page = NULL;
238 ceph_msgr_slab_exit();
241 int __init ceph_msgr_init(void)
243 if (ceph_msgr_slab_init())
246 BUG_ON(ceph_zero_page);
247 ceph_zero_page = ZERO_PAGE(0);
248 get_page(ceph_zero_page);
251 * The number of active work items is limited by the number of
252 * connections, so leave @max_active at default.
254 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
258 pr_err("msgr_init failed to create workqueue\n");
264 void ceph_msgr_exit(void)
266 BUG_ON(ceph_msgr_wq == NULL);
271 void ceph_msgr_flush(void)
273 flush_workqueue(ceph_msgr_wq);
275 EXPORT_SYMBOL(ceph_msgr_flush);
277 /* Connection socket state transition functions */
279 static void con_sock_state_init(struct ceph_connection *con)
283 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
284 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
285 printk("%s: unexpected old state %d\n", __func__, old_state);
286 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
287 CON_SOCK_STATE_CLOSED);
290 static void con_sock_state_connecting(struct ceph_connection *con)
294 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
295 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
296 printk("%s: unexpected old state %d\n", __func__, old_state);
297 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
298 CON_SOCK_STATE_CONNECTING);
301 static void con_sock_state_connected(struct ceph_connection *con)
305 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
306 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
307 printk("%s: unexpected old state %d\n", __func__, old_state);
308 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
309 CON_SOCK_STATE_CONNECTED);
312 static void con_sock_state_closing(struct ceph_connection *con)
316 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
317 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
318 old_state != CON_SOCK_STATE_CONNECTED &&
319 old_state != CON_SOCK_STATE_CLOSING))
320 printk("%s: unexpected old state %d\n", __func__, old_state);
321 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
322 CON_SOCK_STATE_CLOSING);
325 static void con_sock_state_closed(struct ceph_connection *con)
329 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
330 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
331 old_state != CON_SOCK_STATE_CLOSING &&
332 old_state != CON_SOCK_STATE_CONNECTING &&
333 old_state != CON_SOCK_STATE_CLOSED))
334 printk("%s: unexpected old state %d\n", __func__, old_state);
335 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
336 CON_SOCK_STATE_CLOSED);
340 * socket callback functions
343 /* data available on socket, or listen socket received a connect */
344 static void ceph_sock_data_ready(struct sock *sk)
346 struct ceph_connection *con = sk->sk_user_data;
347 if (atomic_read(&con->msgr->stopping)) {
351 if (sk->sk_state != TCP_CLOSE_WAIT) {
352 dout("%s %p state = %d, queueing work\n", __func__,
358 /* socket has buffer space for writing */
359 static void ceph_sock_write_space(struct sock *sk)
361 struct ceph_connection *con = sk->sk_user_data;
363 /* only queue to workqueue if there is data we want to write,
364 * and there is sufficient space in the socket buffer to accept
365 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
366 * doesn't get called again until try_write() fills the socket
367 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
368 * and net/core/stream.c:sk_stream_write_space().
370 if (ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING)) {
371 if (sk_stream_is_writeable(sk)) {
372 dout("%s %p queueing write work\n", __func__, con);
373 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
377 dout("%s %p nothing to write\n", __func__, con);
381 /* socket's state has changed */
382 static void ceph_sock_state_change(struct sock *sk)
384 struct ceph_connection *con = sk->sk_user_data;
386 dout("%s %p state = %d sk_state = %u\n", __func__,
387 con, con->state, sk->sk_state);
389 switch (sk->sk_state) {
391 dout("%s TCP_CLOSE\n", __func__);
394 dout("%s TCP_CLOSE_WAIT\n", __func__);
395 con_sock_state_closing(con);
396 ceph_con_flag_set(con, CEPH_CON_F_SOCK_CLOSED);
399 case TCP_ESTABLISHED:
400 dout("%s TCP_ESTABLISHED\n", __func__);
401 con_sock_state_connected(con);
404 default: /* Everything else is uninteresting */
410 * set up socket callbacks
412 static void set_sock_callbacks(struct socket *sock,
413 struct ceph_connection *con)
415 struct sock *sk = sock->sk;
416 sk->sk_user_data = con;
417 sk->sk_data_ready = ceph_sock_data_ready;
418 sk->sk_write_space = ceph_sock_write_space;
419 sk->sk_state_change = ceph_sock_state_change;
428 * initiate connection to a remote socket.
430 int ceph_tcp_connect(struct ceph_connection *con)
432 struct sockaddr_storage ss = con->peer_addr.in_addr; /* align */
434 unsigned int noio_flag;
437 dout("%s con %p peer_addr %s\n", __func__, con,
438 ceph_pr_addr(&con->peer_addr));
441 /* sock_create_kern() allocates with GFP_KERNEL */
442 noio_flag = memalloc_noio_save();
443 ret = sock_create_kern(read_pnet(&con->msgr->net), ss.ss_family,
444 SOCK_STREAM, IPPROTO_TCP, &sock);
445 memalloc_noio_restore(noio_flag);
448 sock->sk->sk_allocation = GFP_NOFS;
450 #ifdef CONFIG_LOCKDEP
451 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
454 set_sock_callbacks(sock, con);
456 con_sock_state_connecting(con);
457 ret = sock->ops->connect(sock, (struct sockaddr *)&ss, sizeof(ss),
459 if (ret == -EINPROGRESS) {
460 dout("connect %s EINPROGRESS sk_state = %u\n",
461 ceph_pr_addr(&con->peer_addr),
463 } else if (ret < 0) {
464 pr_err("connect %s error %d\n",
465 ceph_pr_addr(&con->peer_addr), ret);
470 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY))
471 tcp_sock_set_nodelay(sock->sk);
478 * Shutdown/close the socket for the given connection.
480 int ceph_con_close_socket(struct ceph_connection *con)
484 dout("%s con %p sock %p\n", __func__, con, con->sock);
486 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
487 sock_release(con->sock);
492 * Forcibly clear the SOCK_CLOSED flag. It gets set
493 * independent of the connection mutex, and we could have
494 * received a socket close event before we had the chance to
495 * shut the socket down.
497 ceph_con_flag_clear(con, CEPH_CON_F_SOCK_CLOSED);
499 con_sock_state_closed(con);
503 static void ceph_con_reset_protocol(struct ceph_connection *con)
505 dout("%s con %p\n", __func__, con);
507 ceph_con_close_socket(con);
509 WARN_ON(con->in_msg->con != con);
510 ceph_msg_put(con->in_msg);
514 WARN_ON(con->out_msg->con != con);
515 ceph_msg_put(con->out_msg);
518 if (con->bounce_page) {
519 __free_page(con->bounce_page);
520 con->bounce_page = NULL;
523 if (ceph_msgr2(from_msgr(con->msgr)))
524 ceph_con_v2_reset_protocol(con);
526 ceph_con_v1_reset_protocol(con);
530 * Reset a connection. Discard all incoming and outgoing messages
531 * and clear *_seq state.
533 static void ceph_msg_remove(struct ceph_msg *msg)
535 list_del_init(&msg->list_head);
540 static void ceph_msg_remove_list(struct list_head *head)
542 while (!list_empty(head)) {
543 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
545 ceph_msg_remove(msg);
549 void ceph_con_reset_session(struct ceph_connection *con)
551 dout("%s con %p\n", __func__, con);
553 WARN_ON(con->in_msg);
554 WARN_ON(con->out_msg);
555 ceph_msg_remove_list(&con->out_queue);
556 ceph_msg_remove_list(&con->out_sent);
559 con->in_seq_acked = 0;
561 if (ceph_msgr2(from_msgr(con->msgr)))
562 ceph_con_v2_reset_session(con);
564 ceph_con_v1_reset_session(con);
568 * mark a peer down. drop any open connections.
570 void ceph_con_close(struct ceph_connection *con)
572 mutex_lock(&con->mutex);
573 dout("con_close %p peer %s\n", con, ceph_pr_addr(&con->peer_addr));
574 con->state = CEPH_CON_S_CLOSED;
576 ceph_con_flag_clear(con, CEPH_CON_F_LOSSYTX); /* so we retry next
578 ceph_con_flag_clear(con, CEPH_CON_F_KEEPALIVE_PENDING);
579 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
580 ceph_con_flag_clear(con, CEPH_CON_F_BACKOFF);
582 ceph_con_reset_protocol(con);
583 ceph_con_reset_session(con);
585 mutex_unlock(&con->mutex);
587 EXPORT_SYMBOL(ceph_con_close);
590 * Reopen a closed connection, with a new peer address.
592 void ceph_con_open(struct ceph_connection *con,
593 __u8 entity_type, __u64 entity_num,
594 struct ceph_entity_addr *addr)
596 mutex_lock(&con->mutex);
597 dout("con_open %p %s\n", con, ceph_pr_addr(addr));
599 WARN_ON(con->state != CEPH_CON_S_CLOSED);
600 con->state = CEPH_CON_S_PREOPEN;
602 con->peer_name.type = (__u8) entity_type;
603 con->peer_name.num = cpu_to_le64(entity_num);
605 memcpy(&con->peer_addr, addr, sizeof(*addr));
606 con->delay = 0; /* reset backoff memory */
607 mutex_unlock(&con->mutex);
610 EXPORT_SYMBOL(ceph_con_open);
613 * return true if this connection ever successfully opened
615 bool ceph_con_opened(struct ceph_connection *con)
617 if (ceph_msgr2(from_msgr(con->msgr)))
618 return ceph_con_v2_opened(con);
620 return ceph_con_v1_opened(con);
624 * initialize a new connection.
626 void ceph_con_init(struct ceph_connection *con, void *private,
627 const struct ceph_connection_operations *ops,
628 struct ceph_messenger *msgr)
630 dout("con_init %p\n", con);
631 memset(con, 0, sizeof(*con));
632 con->private = private;
636 con_sock_state_init(con);
638 mutex_init(&con->mutex);
639 INIT_LIST_HEAD(&con->out_queue);
640 INIT_LIST_HEAD(&con->out_sent);
641 INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
643 con->state = CEPH_CON_S_CLOSED;
645 EXPORT_SYMBOL(ceph_con_init);
648 * We maintain a global counter to order connection attempts. Get
649 * a unique seq greater than @gt.
651 u32 ceph_get_global_seq(struct ceph_messenger *msgr, u32 gt)
655 spin_lock(&msgr->global_seq_lock);
656 if (msgr->global_seq < gt)
657 msgr->global_seq = gt;
658 ret = ++msgr->global_seq;
659 spin_unlock(&msgr->global_seq_lock);
664 * Discard messages that have been acked by the server.
666 void ceph_con_discard_sent(struct ceph_connection *con, u64 ack_seq)
668 struct ceph_msg *msg;
671 dout("%s con %p ack_seq %llu\n", __func__, con, ack_seq);
672 while (!list_empty(&con->out_sent)) {
673 msg = list_first_entry(&con->out_sent, struct ceph_msg,
675 WARN_ON(msg->needs_out_seq);
676 seq = le64_to_cpu(msg->hdr.seq);
680 dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
682 ceph_msg_remove(msg);
687 * Discard messages that have been requeued in con_fault(), up to
688 * reconnect_seq. This avoids gratuitously resending messages that
689 * the server had received and handled prior to reconnect.
691 void ceph_con_discard_requeued(struct ceph_connection *con, u64 reconnect_seq)
693 struct ceph_msg *msg;
696 dout("%s con %p reconnect_seq %llu\n", __func__, con, reconnect_seq);
697 while (!list_empty(&con->out_queue)) {
698 msg = list_first_entry(&con->out_queue, struct ceph_msg,
700 if (msg->needs_out_seq)
702 seq = le64_to_cpu(msg->hdr.seq);
703 if (seq > reconnect_seq)
706 dout("%s con %p discarding msg %p seq %llu\n", __func__, con,
708 ceph_msg_remove(msg);
715 * For a bio data item, a piece is whatever remains of the next
716 * entry in the current bio iovec, or the first entry in the next
719 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
722 struct ceph_msg_data *data = cursor->data;
723 struct ceph_bio_iter *it = &cursor->bio_iter;
725 cursor->resid = min_t(size_t, length, data->bio_length);
727 if (cursor->resid < it->iter.bi_size)
728 it->iter.bi_size = cursor->resid;
730 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
731 cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
734 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
738 struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
739 cursor->bio_iter.iter);
741 *page_offset = bv.bv_offset;
746 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
749 struct ceph_bio_iter *it = &cursor->bio_iter;
750 struct page *page = bio_iter_page(it->bio, it->iter);
752 BUG_ON(bytes > cursor->resid);
753 BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
754 cursor->resid -= bytes;
755 bio_advance_iter(it->bio, &it->iter, bytes);
757 if (!cursor->resid) {
758 BUG_ON(!cursor->last_piece);
759 return false; /* no more data */
762 if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done &&
763 page == bio_iter_page(it->bio, it->iter)))
764 return false; /* more bytes to process in this segment */
766 if (!it->iter.bi_size) {
767 it->bio = it->bio->bi_next;
768 it->iter = it->bio->bi_iter;
769 if (cursor->resid < it->iter.bi_size)
770 it->iter.bi_size = cursor->resid;
773 BUG_ON(cursor->last_piece);
774 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
775 cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
778 #endif /* CONFIG_BLOCK */
780 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
783 struct ceph_msg_data *data = cursor->data;
784 struct bio_vec *bvecs = data->bvec_pos.bvecs;
786 cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
787 cursor->bvec_iter = data->bvec_pos.iter;
788 cursor->bvec_iter.bi_size = cursor->resid;
790 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
792 cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
795 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
799 struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
802 *page_offset = bv.bv_offset;
807 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
810 struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
811 struct page *page = bvec_iter_page(bvecs, cursor->bvec_iter);
813 BUG_ON(bytes > cursor->resid);
814 BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
815 cursor->resid -= bytes;
816 bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
818 if (!cursor->resid) {
819 BUG_ON(!cursor->last_piece);
820 return false; /* no more data */
823 if (!bytes || (cursor->bvec_iter.bi_bvec_done &&
824 page == bvec_iter_page(bvecs, cursor->bvec_iter)))
825 return false; /* more bytes to process in this segment */
827 BUG_ON(cursor->last_piece);
828 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
830 cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
835 * For a page array, a piece comes from the first page in the array
836 * that has not already been fully consumed.
838 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
841 struct ceph_msg_data *data = cursor->data;
844 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
846 BUG_ON(!data->pages);
847 BUG_ON(!data->length);
849 cursor->resid = min(length, data->length);
850 page_count = calc_pages_for(data->alignment, (u64)data->length);
851 cursor->page_offset = data->alignment & ~PAGE_MASK;
852 cursor->page_index = 0;
853 BUG_ON(page_count > (int)USHRT_MAX);
854 cursor->page_count = (unsigned short)page_count;
855 BUG_ON(length > SIZE_MAX - cursor->page_offset);
856 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
860 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
861 size_t *page_offset, size_t *length)
863 struct ceph_msg_data *data = cursor->data;
865 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
867 BUG_ON(cursor->page_index >= cursor->page_count);
868 BUG_ON(cursor->page_offset >= PAGE_SIZE);
870 *page_offset = cursor->page_offset;
871 if (cursor->last_piece)
872 *length = cursor->resid;
874 *length = PAGE_SIZE - *page_offset;
876 return data->pages[cursor->page_index];
879 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
882 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
884 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
886 /* Advance the cursor page offset */
888 cursor->resid -= bytes;
889 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
890 if (!bytes || cursor->page_offset)
891 return false; /* more bytes to process in the current page */
894 return false; /* no more data */
896 /* Move on to the next page; offset is already at 0 */
898 BUG_ON(cursor->page_index >= cursor->page_count);
899 cursor->page_index++;
900 cursor->last_piece = cursor->resid <= PAGE_SIZE;
906 * For a pagelist, a piece is whatever remains to be consumed in the
907 * first page in the list, or the front of the next page.
910 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
913 struct ceph_msg_data *data = cursor->data;
914 struct ceph_pagelist *pagelist;
917 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
919 pagelist = data->pagelist;
923 return; /* pagelist can be assigned but empty */
925 BUG_ON(list_empty(&pagelist->head));
926 page = list_first_entry(&pagelist->head, struct page, lru);
928 cursor->resid = min(length, pagelist->length);
931 cursor->last_piece = cursor->resid <= PAGE_SIZE;
935 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
936 size_t *page_offset, size_t *length)
938 struct ceph_msg_data *data = cursor->data;
939 struct ceph_pagelist *pagelist;
941 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
943 pagelist = data->pagelist;
946 BUG_ON(!cursor->page);
947 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
949 /* offset of first page in pagelist is always 0 */
950 *page_offset = cursor->offset & ~PAGE_MASK;
951 if (cursor->last_piece)
952 *length = cursor->resid;
954 *length = PAGE_SIZE - *page_offset;
959 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
962 struct ceph_msg_data *data = cursor->data;
963 struct ceph_pagelist *pagelist;
965 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
967 pagelist = data->pagelist;
970 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
971 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
973 /* Advance the cursor offset */
975 cursor->resid -= bytes;
976 cursor->offset += bytes;
977 /* offset of first page in pagelist is always 0 */
978 if (!bytes || cursor->offset & ~PAGE_MASK)
979 return false; /* more bytes to process in the current page */
982 return false; /* no more data */
984 /* Move on to the next page */
986 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
987 cursor->page = list_next_entry(cursor->page, lru);
988 cursor->last_piece = cursor->resid <= PAGE_SIZE;
994 * Message data is handled (sent or received) in pieces, where each
995 * piece resides on a single page. The network layer might not
996 * consume an entire piece at once. A data item's cursor keeps
997 * track of which piece is next to process and how much remains to
998 * be processed in that piece. It also tracks whether the current
999 * piece is the last one in the data item.
1001 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1003 size_t length = cursor->total_resid;
1005 switch (cursor->data->type) {
1006 case CEPH_MSG_DATA_PAGELIST:
1007 ceph_msg_data_pagelist_cursor_init(cursor, length);
1009 case CEPH_MSG_DATA_PAGES:
1010 ceph_msg_data_pages_cursor_init(cursor, length);
1013 case CEPH_MSG_DATA_BIO:
1014 ceph_msg_data_bio_cursor_init(cursor, length);
1016 #endif /* CONFIG_BLOCK */
1017 case CEPH_MSG_DATA_BVECS:
1018 ceph_msg_data_bvecs_cursor_init(cursor, length);
1020 case CEPH_MSG_DATA_NONE:
1025 cursor->need_crc = true;
1028 void ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor,
1029 struct ceph_msg *msg, size_t length)
1032 BUG_ON(length > msg->data_length);
1033 BUG_ON(!msg->num_data_items);
1035 cursor->total_resid = length;
1036 cursor->data = msg->data;
1038 __ceph_msg_data_cursor_init(cursor);
1042 * Return the page containing the next piece to process for a given
1043 * data item, and supply the page offset and length of that piece.
1044 * Indicate whether this is the last piece in this data item.
1046 struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1047 size_t *page_offset, size_t *length,
1052 switch (cursor->data->type) {
1053 case CEPH_MSG_DATA_PAGELIST:
1054 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1056 case CEPH_MSG_DATA_PAGES:
1057 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1060 case CEPH_MSG_DATA_BIO:
1061 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1063 #endif /* CONFIG_BLOCK */
1064 case CEPH_MSG_DATA_BVECS:
1065 page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1067 case CEPH_MSG_DATA_NONE:
1074 BUG_ON(*page_offset + *length > PAGE_SIZE);
1076 BUG_ON(*length > cursor->resid);
1078 *last_piece = cursor->last_piece;
1084 * Returns true if the result moves the cursor on to the next piece
1087 void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor, size_t bytes)
1091 BUG_ON(bytes > cursor->resid);
1092 switch (cursor->data->type) {
1093 case CEPH_MSG_DATA_PAGELIST:
1094 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1096 case CEPH_MSG_DATA_PAGES:
1097 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1100 case CEPH_MSG_DATA_BIO:
1101 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1103 #endif /* CONFIG_BLOCK */
1104 case CEPH_MSG_DATA_BVECS:
1105 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1107 case CEPH_MSG_DATA_NONE:
1112 cursor->total_resid -= bytes;
1114 if (!cursor->resid && cursor->total_resid) {
1115 WARN_ON(!cursor->last_piece);
1117 __ceph_msg_data_cursor_init(cursor);
1120 cursor->need_crc = new_piece;
1123 u32 ceph_crc32c_page(u32 crc, struct page *page, unsigned int page_offset,
1124 unsigned int length)
1129 BUG_ON(kaddr == NULL);
1130 crc = crc32c(crc, kaddr + page_offset, length);
1136 bool ceph_addr_is_blank(const struct ceph_entity_addr *addr)
1138 struct sockaddr_storage ss = addr->in_addr; /* align */
1139 struct in_addr *addr4 = &((struct sockaddr_in *)&ss)->sin_addr;
1140 struct in6_addr *addr6 = &((struct sockaddr_in6 *)&ss)->sin6_addr;
1142 switch (ss.ss_family) {
1144 return addr4->s_addr == htonl(INADDR_ANY);
1146 return ipv6_addr_any(addr6);
1152 int ceph_addr_port(const struct ceph_entity_addr *addr)
1154 switch (get_unaligned(&addr->in_addr.ss_family)) {
1156 return ntohs(get_unaligned(&((struct sockaddr_in *)&addr->in_addr)->sin_port));
1158 return ntohs(get_unaligned(&((struct sockaddr_in6 *)&addr->in_addr)->sin6_port));
1163 void ceph_addr_set_port(struct ceph_entity_addr *addr, int p)
1165 switch (get_unaligned(&addr->in_addr.ss_family)) {
1167 put_unaligned(htons(p), &((struct sockaddr_in *)&addr->in_addr)->sin_port);
1170 put_unaligned(htons(p), &((struct sockaddr_in6 *)&addr->in_addr)->sin6_port);
1176 * Unlike other *_pton function semantics, zero indicates success.
1178 static int ceph_pton(const char *str, size_t len, struct ceph_entity_addr *addr,
1179 char delim, const char **ipend)
1181 memset(&addr->in_addr, 0, sizeof(addr->in_addr));
1183 if (in4_pton(str, len, (u8 *)&((struct sockaddr_in *)&addr->in_addr)->sin_addr.s_addr, delim, ipend)) {
1184 put_unaligned(AF_INET, &addr->in_addr.ss_family);
1188 if (in6_pton(str, len, (u8 *)&((struct sockaddr_in6 *)&addr->in_addr)->sin6_addr.s6_addr, delim, ipend)) {
1189 put_unaligned(AF_INET6, &addr->in_addr.ss_family);
1197 * Extract hostname string and resolve using kernel DNS facility.
1199 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1200 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1201 struct ceph_entity_addr *addr, char delim, const char **ipend)
1203 const char *end, *delim_p;
1204 char *colon_p, *ip_addr = NULL;
1208 * The end of the hostname occurs immediately preceding the delimiter or
1209 * the port marker (':') where the delimiter takes precedence.
1211 delim_p = memchr(name, delim, namelen);
1212 colon_p = memchr(name, ':', namelen);
1214 if (delim_p && colon_p)
1215 end = delim_p < colon_p ? delim_p : colon_p;
1216 else if (!delim_p && colon_p)
1220 if (!end) /* case: hostname:/ */
1221 end = name + namelen;
1227 /* do dns_resolve upcall */
1228 ip_len = dns_query(current->nsproxy->net_ns,
1229 NULL, name, end - name, NULL, &ip_addr, NULL, false);
1231 ret = ceph_pton(ip_addr, ip_len, addr, -1, NULL);
1239 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1240 ret, ret ? "failed" : ceph_pr_addr(addr));
1245 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1246 struct ceph_entity_addr *addr, char delim, const char **ipend)
1253 * Parse a server name (IP or hostname). If a valid IP address is not found
1254 * then try to extract a hostname to resolve using userspace DNS upcall.
1256 static int ceph_parse_server_name(const char *name, size_t namelen,
1257 struct ceph_entity_addr *addr, char delim, const char **ipend)
1261 ret = ceph_pton(name, namelen, addr, delim, ipend);
1263 ret = ceph_dns_resolve_name(name, namelen, addr, delim, ipend);
1269 * Parse an ip[:port] list into an addr array. Use the default
1270 * monitor port if a port isn't specified.
1272 int ceph_parse_ips(const char *c, const char *end,
1273 struct ceph_entity_addr *addr,
1274 int max_count, int *count, char delim)
1276 int i, ret = -EINVAL;
1279 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1280 for (i = 0; i < max_count; i++) {
1281 char cur_delim = delim;
1290 ret = ceph_parse_server_name(p, end - p, &addr[i], cur_delim,
1298 if (cur_delim == ']') {
1300 dout("missing matching ']'\n");
1307 if (p < end && *p == ':') {
1310 while (p < end && *p >= '0' && *p <= '9') {
1311 port = (port * 10) + (*p - '0');
1315 port = CEPH_MON_PORT;
1316 else if (port > 65535)
1319 port = CEPH_MON_PORT;
1322 ceph_addr_set_port(&addr[i], port);
1324 * We want the type to be set according to ms_mode
1325 * option, but options are normally parsed after mon
1326 * addresses. Rather than complicating parsing, set
1327 * to LEGACY and override in build_initial_monmap()
1328 * for mon addresses and ceph_messenger_init() for
1331 addr[i].type = CEPH_ENTITY_ADDR_TYPE_LEGACY;
1334 dout("%s got %s\n", __func__, ceph_pr_addr(&addr[i]));
1355 * Process message. This happens in the worker thread. The callback should
1356 * be careful not to do anything that waits on other incoming messages or it
1359 void ceph_con_process_message(struct ceph_connection *con)
1361 struct ceph_msg *msg = con->in_msg;
1363 BUG_ON(con->in_msg->con != con);
1366 /* if first message, set peer_name */
1367 if (con->peer_name.type == 0)
1368 con->peer_name = msg->hdr.src;
1371 mutex_unlock(&con->mutex);
1373 dout("===== %p %llu from %s%lld %d=%s len %d+%d+%d (%u %u %u) =====\n",
1374 msg, le64_to_cpu(msg->hdr.seq),
1375 ENTITY_NAME(msg->hdr.src),
1376 le16_to_cpu(msg->hdr.type),
1377 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1378 le32_to_cpu(msg->hdr.front_len),
1379 le32_to_cpu(msg->hdr.middle_len),
1380 le32_to_cpu(msg->hdr.data_len),
1381 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1382 con->ops->dispatch(con, msg);
1384 mutex_lock(&con->mutex);
1388 * Atomically queue work on a connection after the specified delay.
1389 * Bump @con reference to avoid races with connection teardown.
1390 * Returns 0 if work was queued, or an error code otherwise.
1392 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
1394 if (!con->ops->get(con)) {
1395 dout("%s %p ref count 0\n", __func__, con);
1400 delay = round_jiffies_relative(delay);
1402 dout("%s %p %lu\n", __func__, con, delay);
1403 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
1404 dout("%s %p - already queued\n", __func__, con);
1412 static void queue_con(struct ceph_connection *con)
1414 (void) queue_con_delay(con, 0);
1417 static void cancel_con(struct ceph_connection *con)
1419 if (cancel_delayed_work(&con->work)) {
1420 dout("%s %p\n", __func__, con);
1425 static bool con_sock_closed(struct ceph_connection *con)
1427 if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_SOCK_CLOSED))
1431 case CEPH_CON_S_ ## x: \
1432 con->error_msg = "socket closed (con state " #x ")"; \
1435 switch (con->state) {
1439 CASE(V1_CONNECT_MSG);
1440 CASE(V2_BANNER_PREFIX);
1441 CASE(V2_BANNER_PAYLOAD);
1444 CASE(V2_AUTH_SIGNATURE);
1445 CASE(V2_SESSION_CONNECT);
1446 CASE(V2_SESSION_RECONNECT);
1457 static bool con_backoff(struct ceph_connection *con)
1461 if (!ceph_con_flag_test_and_clear(con, CEPH_CON_F_BACKOFF))
1464 ret = queue_con_delay(con, con->delay);
1466 dout("%s: con %p FAILED to back off %lu\n", __func__,
1468 BUG_ON(ret == -ENOENT);
1469 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1475 /* Finish fault handling; con->mutex must *not* be held here */
1477 static void con_fault_finish(struct ceph_connection *con)
1479 dout("%s %p\n", __func__, con);
1482 * in case we faulted due to authentication, invalidate our
1483 * current tickets so that we can get new ones.
1485 if (con->v1.auth_retry) {
1486 dout("auth_retry %d, invalidating\n", con->v1.auth_retry);
1487 if (con->ops->invalidate_authorizer)
1488 con->ops->invalidate_authorizer(con);
1489 con->v1.auth_retry = 0;
1492 if (con->ops->fault)
1493 con->ops->fault(con);
1497 * Do some work on a connection. Drop a connection ref when we're done.
1499 static void ceph_con_workfn(struct work_struct *work)
1501 struct ceph_connection *con = container_of(work, struct ceph_connection,
1505 mutex_lock(&con->mutex);
1509 if ((fault = con_sock_closed(con))) {
1510 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
1513 if (con_backoff(con)) {
1514 dout("%s: con %p BACKOFF\n", __func__, con);
1517 if (con->state == CEPH_CON_S_STANDBY) {
1518 dout("%s: con %p STANDBY\n", __func__, con);
1521 if (con->state == CEPH_CON_S_CLOSED) {
1522 dout("%s: con %p CLOSED\n", __func__, con);
1526 if (con->state == CEPH_CON_S_PREOPEN) {
1527 dout("%s: con %p PREOPEN\n", __func__, con);
1531 if (ceph_msgr2(from_msgr(con->msgr)))
1532 ret = ceph_con_v2_try_read(con);
1534 ret = ceph_con_v1_try_read(con);
1538 if (!con->error_msg)
1539 con->error_msg = "socket error on read";
1544 if (ceph_msgr2(from_msgr(con->msgr)))
1545 ret = ceph_con_v2_try_write(con);
1547 ret = ceph_con_v1_try_write(con);
1551 if (!con->error_msg)
1552 con->error_msg = "socket error on write";
1556 break; /* If we make it to here, we're done */
1560 mutex_unlock(&con->mutex);
1563 con_fault_finish(con);
1569 * Generic error/fault handler. A retry mechanism is used with
1570 * exponential backoff
1572 static void con_fault(struct ceph_connection *con)
1574 dout("fault %p state %d to peer %s\n",
1575 con, con->state, ceph_pr_addr(&con->peer_addr));
1577 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1578 ceph_pr_addr(&con->peer_addr), con->error_msg);
1579 con->error_msg = NULL;
1581 WARN_ON(con->state == CEPH_CON_S_STANDBY ||
1582 con->state == CEPH_CON_S_CLOSED);
1584 ceph_con_reset_protocol(con);
1586 if (ceph_con_flag_test(con, CEPH_CON_F_LOSSYTX)) {
1587 dout("fault on LOSSYTX channel, marking CLOSED\n");
1588 con->state = CEPH_CON_S_CLOSED;
1592 /* Requeue anything that hasn't been acked */
1593 list_splice_init(&con->out_sent, &con->out_queue);
1595 /* If there are no messages queued or keepalive pending, place
1596 * the connection in a STANDBY state */
1597 if (list_empty(&con->out_queue) &&
1598 !ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING)) {
1599 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
1600 ceph_con_flag_clear(con, CEPH_CON_F_WRITE_PENDING);
1601 con->state = CEPH_CON_S_STANDBY;
1603 /* retry after a delay. */
1604 con->state = CEPH_CON_S_PREOPEN;
1606 con->delay = BASE_DELAY_INTERVAL;
1607 } else if (con->delay < MAX_DELAY_INTERVAL) {
1609 if (con->delay > MAX_DELAY_INTERVAL)
1610 con->delay = MAX_DELAY_INTERVAL;
1612 ceph_con_flag_set(con, CEPH_CON_F_BACKOFF);
1617 void ceph_messenger_reset_nonce(struct ceph_messenger *msgr)
1619 u32 nonce = le32_to_cpu(msgr->inst.addr.nonce) + 1000000;
1620 msgr->inst.addr.nonce = cpu_to_le32(nonce);
1621 ceph_encode_my_addr(msgr);
1625 * initialize a new messenger instance
1627 void ceph_messenger_init(struct ceph_messenger *msgr,
1628 struct ceph_entity_addr *myaddr)
1630 spin_lock_init(&msgr->global_seq_lock);
1633 memcpy(&msgr->inst.addr.in_addr, &myaddr->in_addr,
1634 sizeof(msgr->inst.addr.in_addr));
1635 ceph_addr_set_port(&msgr->inst.addr, 0);
1639 * Since nautilus, clients are identified using type ANY.
1640 * For msgr1, ceph_encode_banner_addr() munges it to NONE.
1642 msgr->inst.addr.type = CEPH_ENTITY_ADDR_TYPE_ANY;
1644 /* generate a random non-zero nonce */
1646 get_random_bytes(&msgr->inst.addr.nonce,
1647 sizeof(msgr->inst.addr.nonce));
1648 } while (!msgr->inst.addr.nonce);
1649 ceph_encode_my_addr(msgr);
1651 atomic_set(&msgr->stopping, 0);
1652 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
1654 dout("%s %p\n", __func__, msgr);
1657 void ceph_messenger_fini(struct ceph_messenger *msgr)
1659 put_net(read_pnet(&msgr->net));
1662 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
1665 msg->con->ops->put(msg->con);
1667 msg->con = con ? con->ops->get(con) : NULL;
1668 BUG_ON(msg->con != con);
1671 static void clear_standby(struct ceph_connection *con)
1673 /* come back from STANDBY? */
1674 if (con->state == CEPH_CON_S_STANDBY) {
1675 dout("clear_standby %p and ++connect_seq\n", con);
1676 con->state = CEPH_CON_S_PREOPEN;
1677 con->v1.connect_seq++;
1678 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_WRITE_PENDING));
1679 WARN_ON(ceph_con_flag_test(con, CEPH_CON_F_KEEPALIVE_PENDING));
1684 * Queue up an outgoing message on the given connection.
1686 * Consumes a ref on @msg.
1688 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1691 msg->hdr.src = con->msgr->inst.name;
1692 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
1693 msg->needs_out_seq = true;
1695 mutex_lock(&con->mutex);
1697 if (con->state == CEPH_CON_S_CLOSED) {
1698 dout("con_send %p closed, dropping %p\n", con, msg);
1700 mutex_unlock(&con->mutex);
1704 msg_con_set(msg, con);
1706 BUG_ON(!list_empty(&msg->list_head));
1707 list_add_tail(&msg->list_head, &con->out_queue);
1708 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1709 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1710 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1711 le32_to_cpu(msg->hdr.front_len),
1712 le32_to_cpu(msg->hdr.middle_len),
1713 le32_to_cpu(msg->hdr.data_len));
1716 mutex_unlock(&con->mutex);
1718 /* if there wasn't anything waiting to send before, queue
1720 if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1723 EXPORT_SYMBOL(ceph_con_send);
1726 * Revoke a message that was previously queued for send
1728 void ceph_msg_revoke(struct ceph_msg *msg)
1730 struct ceph_connection *con = msg->con;
1733 dout("%s msg %p null con\n", __func__, msg);
1734 return; /* Message not in our possession */
1737 mutex_lock(&con->mutex);
1738 if (list_empty(&msg->list_head)) {
1739 WARN_ON(con->out_msg == msg);
1740 dout("%s con %p msg %p not linked\n", __func__, con, msg);
1741 mutex_unlock(&con->mutex);
1745 dout("%s con %p msg %p was linked\n", __func__, con, msg);
1747 ceph_msg_remove(msg);
1749 if (con->out_msg == msg) {
1750 WARN_ON(con->state != CEPH_CON_S_OPEN);
1751 dout("%s con %p msg %p was sending\n", __func__, con, msg);
1752 if (ceph_msgr2(from_msgr(con->msgr)))
1753 ceph_con_v2_revoke(con);
1755 ceph_con_v1_revoke(con);
1756 ceph_msg_put(con->out_msg);
1757 con->out_msg = NULL;
1759 dout("%s con %p msg %p not current, out_msg %p\n", __func__,
1760 con, msg, con->out_msg);
1762 mutex_unlock(&con->mutex);
1766 * Revoke a message that we may be reading data into
1768 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
1770 struct ceph_connection *con = msg->con;
1773 dout("%s msg %p null con\n", __func__, msg);
1774 return; /* Message not in our possession */
1777 mutex_lock(&con->mutex);
1778 if (con->in_msg == msg) {
1779 WARN_ON(con->state != CEPH_CON_S_OPEN);
1780 dout("%s con %p msg %p was recving\n", __func__, con, msg);
1781 if (ceph_msgr2(from_msgr(con->msgr)))
1782 ceph_con_v2_revoke_incoming(con);
1784 ceph_con_v1_revoke_incoming(con);
1785 ceph_msg_put(con->in_msg);
1788 dout("%s con %p msg %p not current, in_msg %p\n", __func__,
1789 con, msg, con->in_msg);
1791 mutex_unlock(&con->mutex);
1795 * Queue a keepalive byte to ensure the tcp connection is alive.
1797 void ceph_con_keepalive(struct ceph_connection *con)
1799 dout("con_keepalive %p\n", con);
1800 mutex_lock(&con->mutex);
1802 ceph_con_flag_set(con, CEPH_CON_F_KEEPALIVE_PENDING);
1803 mutex_unlock(&con->mutex);
1805 if (!ceph_con_flag_test_and_set(con, CEPH_CON_F_WRITE_PENDING))
1808 EXPORT_SYMBOL(ceph_con_keepalive);
1810 bool ceph_con_keepalive_expired(struct ceph_connection *con,
1811 unsigned long interval)
1814 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
1815 struct timespec64 now;
1816 struct timespec64 ts;
1817 ktime_get_real_ts64(&now);
1818 jiffies_to_timespec64(interval, &ts);
1819 ts = timespec64_add(con->last_keepalive_ack, ts);
1820 return timespec64_compare(&now, &ts) >= 0;
1825 static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
1827 BUG_ON(msg->num_data_items >= msg->max_data_items);
1828 return &msg->data[msg->num_data_items++];
1831 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
1833 if (data->type == CEPH_MSG_DATA_PAGES && data->own_pages) {
1834 int num_pages = calc_pages_for(data->alignment, data->length);
1835 ceph_release_page_vector(data->pages, num_pages);
1836 } else if (data->type == CEPH_MSG_DATA_PAGELIST) {
1837 ceph_pagelist_release(data->pagelist);
1841 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
1842 size_t length, size_t alignment, bool own_pages)
1844 struct ceph_msg_data *data;
1849 data = ceph_msg_data_add(msg);
1850 data->type = CEPH_MSG_DATA_PAGES;
1851 data->pages = pages;
1852 data->length = length;
1853 data->alignment = alignment & ~PAGE_MASK;
1854 data->own_pages = own_pages;
1856 msg->data_length += length;
1858 EXPORT_SYMBOL(ceph_msg_data_add_pages);
1860 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
1861 struct ceph_pagelist *pagelist)
1863 struct ceph_msg_data *data;
1866 BUG_ON(!pagelist->length);
1868 data = ceph_msg_data_add(msg);
1869 data->type = CEPH_MSG_DATA_PAGELIST;
1870 refcount_inc(&pagelist->refcnt);
1871 data->pagelist = pagelist;
1873 msg->data_length += pagelist->length;
1875 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
1878 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
1881 struct ceph_msg_data *data;
1883 data = ceph_msg_data_add(msg);
1884 data->type = CEPH_MSG_DATA_BIO;
1885 data->bio_pos = *bio_pos;
1886 data->bio_length = length;
1888 msg->data_length += length;
1890 EXPORT_SYMBOL(ceph_msg_data_add_bio);
1891 #endif /* CONFIG_BLOCK */
1893 void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
1894 struct ceph_bvec_iter *bvec_pos)
1896 struct ceph_msg_data *data;
1898 data = ceph_msg_data_add(msg);
1899 data->type = CEPH_MSG_DATA_BVECS;
1900 data->bvec_pos = *bvec_pos;
1902 msg->data_length += bvec_pos->iter.bi_size;
1904 EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
1907 * construct a new message with given type, size
1908 * the new msg has a ref count of 1.
1910 struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
1911 gfp_t flags, bool can_fail)
1915 m = kmem_cache_zalloc(ceph_msg_cache, flags);
1919 m->hdr.type = cpu_to_le16(type);
1920 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
1921 m->hdr.front_len = cpu_to_le32(front_len);
1923 INIT_LIST_HEAD(&m->list_head);
1924 kref_init(&m->kref);
1928 m->front.iov_base = kvmalloc(front_len, flags);
1929 if (m->front.iov_base == NULL) {
1930 dout("ceph_msg_new can't allocate %d bytes\n",
1935 m->front.iov_base = NULL;
1937 m->front_alloc_len = m->front.iov_len = front_len;
1939 if (max_data_items) {
1940 m->data = kmalloc_array(max_data_items, sizeof(*m->data),
1945 m->max_data_items = max_data_items;
1948 dout("ceph_msg_new %p front %d\n", m, front_len);
1955 pr_err("msg_new can't create type %d front %d\n", type,
1959 dout("msg_new can't create type %d front %d\n", type,
1964 EXPORT_SYMBOL(ceph_msg_new2);
1966 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
1969 return ceph_msg_new2(type, front_len, 0, flags, can_fail);
1971 EXPORT_SYMBOL(ceph_msg_new);
1974 * Allocate "middle" portion of a message, if it is needed and wasn't
1975 * allocated by alloc_msg. This allows us to read a small fixed-size
1976 * per-type header in the front and then gracefully fail (i.e.,
1977 * propagate the error to the caller based on info in the front) when
1978 * the middle is too large.
1980 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
1982 int type = le16_to_cpu(msg->hdr.type);
1983 int middle_len = le32_to_cpu(msg->hdr.middle_len);
1985 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
1986 ceph_msg_type_name(type), middle_len);
1987 BUG_ON(!middle_len);
1988 BUG_ON(msg->middle);
1990 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
1997 * Allocate a message for receiving an incoming message on a
1998 * connection, and save the result in con->in_msg. Uses the
1999 * connection's private alloc_msg op if available.
2001 * Returns 0 on success, or a negative error code.
2003 * On success, if we set *skip = 1:
2004 * - the next message should be skipped and ignored.
2005 * - con->in_msg == NULL
2006 * or if we set *skip = 0:
2007 * - con->in_msg is non-null.
2008 * On error (ENOMEM, EAGAIN, ...),
2009 * - con->in_msg == NULL
2011 int ceph_con_in_msg_alloc(struct ceph_connection *con,
2012 struct ceph_msg_header *hdr, int *skip)
2014 int middle_len = le32_to_cpu(hdr->middle_len);
2015 struct ceph_msg *msg;
2018 BUG_ON(con->in_msg != NULL);
2019 BUG_ON(!con->ops->alloc_msg);
2021 mutex_unlock(&con->mutex);
2022 msg = con->ops->alloc_msg(con, hdr, skip);
2023 mutex_lock(&con->mutex);
2024 if (con->state != CEPH_CON_S_OPEN) {
2031 msg_con_set(msg, con);
2035 * Null message pointer means either we should skip
2036 * this message or we couldn't allocate memory. The
2037 * former is not an error.
2042 con->error_msg = "error allocating memory for incoming message";
2045 memcpy(&con->in_msg->hdr, hdr, sizeof(*hdr));
2047 if (middle_len && !con->in_msg->middle) {
2048 ret = ceph_alloc_middle(con, con->in_msg);
2050 ceph_msg_put(con->in_msg);
2058 void ceph_con_get_out_msg(struct ceph_connection *con)
2060 struct ceph_msg *msg;
2062 BUG_ON(list_empty(&con->out_queue));
2063 msg = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
2064 WARN_ON(msg->con != con);
2067 * Put the message on "sent" list using a ref from ceph_con_send().
2068 * It is put when the message is acked or revoked.
2070 list_move_tail(&msg->list_head, &con->out_sent);
2073 * Only assign outgoing seq # if we haven't sent this message
2074 * yet. If it is requeued, resend with it's original seq.
2076 if (msg->needs_out_seq) {
2077 msg->hdr.seq = cpu_to_le64(++con->out_seq);
2078 msg->needs_out_seq = false;
2080 if (con->ops->reencode_message)
2081 con->ops->reencode_message(msg);
2085 * Get a ref for out_msg. It is put when we are done sending the
2086 * message or in case of a fault.
2088 WARN_ON(con->out_msg);
2089 con->out_msg = ceph_msg_get(msg);
2093 * Free a generically kmalloc'd message.
2095 static void ceph_msg_free(struct ceph_msg *m)
2097 dout("%s %p\n", __func__, m);
2098 kvfree(m->front.iov_base);
2100 kmem_cache_free(ceph_msg_cache, m);
2103 static void ceph_msg_release(struct kref *kref)
2105 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2108 dout("%s %p\n", __func__, m);
2109 WARN_ON(!list_empty(&m->list_head));
2111 msg_con_set(m, NULL);
2113 /* drop middle, data, if any */
2115 ceph_buffer_put(m->middle);
2119 for (i = 0; i < m->num_data_items; i++)
2120 ceph_msg_data_destroy(&m->data[i]);
2123 ceph_msgpool_put(m->pool, m);
2128 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
2130 dout("%s %p (was %d)\n", __func__, msg,
2131 kref_read(&msg->kref));
2132 kref_get(&msg->kref);
2135 EXPORT_SYMBOL(ceph_msg_get);
2137 void ceph_msg_put(struct ceph_msg *msg)
2139 dout("%s %p (was %d)\n", __func__, msg,
2140 kref_read(&msg->kref));
2141 kref_put(&msg->kref, ceph_msg_release);
2143 EXPORT_SYMBOL(ceph_msg_put);
2145 void ceph_msg_dump(struct ceph_msg *msg)
2147 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
2148 msg->front_alloc_len, msg->data_length);
2149 print_hex_dump(KERN_DEBUG, "header: ",
2150 DUMP_PREFIX_OFFSET, 16, 1,
2151 &msg->hdr, sizeof(msg->hdr), true);
2152 print_hex_dump(KERN_DEBUG, " front: ",
2153 DUMP_PREFIX_OFFSET, 16, 1,
2154 msg->front.iov_base, msg->front.iov_len, true);
2156 print_hex_dump(KERN_DEBUG, "middle: ",
2157 DUMP_PREFIX_OFFSET, 16, 1,
2158 msg->middle->vec.iov_base,
2159 msg->middle->vec.iov_len, true);
2160 print_hex_dump(KERN_DEBUG, "footer: ",
2161 DUMP_PREFIX_OFFSET, 16, 1,
2162 &msg->footer, sizeof(msg->footer), true);
2164 EXPORT_SYMBOL(ceph_msg_dump);