b634d2098777656fef8156b3e5270e0126134c39
[profile/ivi/kernel-x86-ivi.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef  CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif  /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17
18 #include <linux/ceph/libceph.h>
19 #include <linux/ceph/messenger.h>
20 #include <linux/ceph/decode.h>
21 #include <linux/ceph/pagelist.h>
22 #include <linux/export.h>
23
24 #define list_entry_next(pos, member)                                    \
25         list_entry(pos->member.next, typeof(*pos), member)
26
27 /*
28  * Ceph uses the messenger to exchange ceph_msg messages with other
29  * hosts in the system.  The messenger provides ordered and reliable
30  * delivery.  We tolerate TCP disconnects by reconnecting (with
31  * exponential backoff) in the case of a fault (disconnection, bad
32  * crc, protocol error).  Acks allow sent messages to be discarded by
33  * the sender.
34  */
35
36 /*
37  * We track the state of the socket on a given connection using
38  * values defined below.  The transition to a new socket state is
39  * handled by a function which verifies we aren't coming from an
40  * unexpected state.
41  *
42  *      --------
43  *      | NEW* |  transient initial state
44  *      --------
45  *          | con_sock_state_init()
46  *          v
47  *      ----------
48  *      | CLOSED |  initialized, but no socket (and no
49  *      ----------  TCP connection)
50  *       ^      \
51  *       |       \ con_sock_state_connecting()
52  *       |        ----------------------
53  *       |                              \
54  *       + con_sock_state_closed()       \
55  *       |+---------------------------    \
56  *       | \                          \    \
57  *       |  -----------                \    \
58  *       |  | CLOSING |  socket event;  \    \
59  *       |  -----------  await close     \    \
60  *       |       ^                        \   |
61  *       |       |                         \  |
62  *       |       + con_sock_state_closing() \ |
63  *       |      / \                         | |
64  *       |     /   ---------------          | |
65  *       |    /                   \         v v
66  *       |   /                    --------------
67  *       |  /    -----------------| CONNECTING |  socket created, TCP
68  *       |  |   /                 --------------  connect initiated
69  *       |  |   | con_sock_state_connected()
70  *       |  |   v
71  *      -------------
72  *      | CONNECTED |  TCP connection established
73  *      -------------
74  *
75  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
76  */
77
78 #define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
79 #define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
80 #define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
81 #define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
82 #define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
83
84 /*
85  * connection states
86  */
87 #define CON_STATE_CLOSED        1  /* -> PREOPEN */
88 #define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
89 #define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
90 #define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
91 #define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
92 #define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
93
94 /*
95  * ceph_connection flag bits
96  */
97 #define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
98                                        * messages on errors */
99 #define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
100 #define CON_FLAG_WRITE_PENDING     2  /* we have data ready to send */
101 #define CON_FLAG_SOCK_CLOSED       3  /* socket state changed to closed */
102 #define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
103
104 static bool con_flag_valid(unsigned long con_flag)
105 {
106         switch (con_flag) {
107         case CON_FLAG_LOSSYTX:
108         case CON_FLAG_KEEPALIVE_PENDING:
109         case CON_FLAG_WRITE_PENDING:
110         case CON_FLAG_SOCK_CLOSED:
111         case CON_FLAG_BACKOFF:
112                 return true;
113         default:
114                 return false;
115         }
116 }
117
118 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
119 {
120         BUG_ON(!con_flag_valid(con_flag));
121
122         clear_bit(con_flag, &con->flags);
123 }
124
125 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
126 {
127         BUG_ON(!con_flag_valid(con_flag));
128
129         set_bit(con_flag, &con->flags);
130 }
131
132 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
133 {
134         BUG_ON(!con_flag_valid(con_flag));
135
136         return test_bit(con_flag, &con->flags);
137 }
138
139 static bool con_flag_test_and_clear(struct ceph_connection *con,
140                                         unsigned long con_flag)
141 {
142         BUG_ON(!con_flag_valid(con_flag));
143
144         return test_and_clear_bit(con_flag, &con->flags);
145 }
146
147 static bool con_flag_test_and_set(struct ceph_connection *con,
148                                         unsigned long con_flag)
149 {
150         BUG_ON(!con_flag_valid(con_flag));
151
152         return test_and_set_bit(con_flag, &con->flags);
153 }
154
155 /* static tag bytes (protocol control messages) */
156 static char tag_msg = CEPH_MSGR_TAG_MSG;
157 static char tag_ack = CEPH_MSGR_TAG_ACK;
158 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
159
160 #ifdef CONFIG_LOCKDEP
161 static struct lock_class_key socket_class;
162 #endif
163
164 /*
165  * When skipping (ignoring) a block of input we read it into a "skip
166  * buffer," which is this many bytes in size.
167  */
168 #define SKIP_BUF_SIZE   1024
169
170 static void queue_con(struct ceph_connection *con);
171 static void con_work(struct work_struct *);
172 static void con_fault(struct ceph_connection *con);
173
174 /*
175  * Nicely render a sockaddr as a string.  An array of formatted
176  * strings is used, to approximate reentrancy.
177  */
178 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
179 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
180 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
181 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
182
183 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
184 static atomic_t addr_str_seq = ATOMIC_INIT(0);
185
186 static struct page *zero_page;          /* used in certain error cases */
187
188 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
189 {
190         int i;
191         char *s;
192         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
193         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
194
195         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
196         s = addr_str[i];
197
198         switch (ss->ss_family) {
199         case AF_INET:
200                 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
201                          ntohs(in4->sin_port));
202                 break;
203
204         case AF_INET6:
205                 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
206                          ntohs(in6->sin6_port));
207                 break;
208
209         default:
210                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
211                          ss->ss_family);
212         }
213
214         return s;
215 }
216 EXPORT_SYMBOL(ceph_pr_addr);
217
218 static void encode_my_addr(struct ceph_messenger *msgr)
219 {
220         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
221         ceph_encode_addr(&msgr->my_enc_addr);
222 }
223
224 /*
225  * work queue for all reading and writing to/from the socket.
226  */
227 static struct workqueue_struct *ceph_msgr_wq;
228
229 static void _ceph_msgr_exit(void)
230 {
231         if (ceph_msgr_wq) {
232                 destroy_workqueue(ceph_msgr_wq);
233                 ceph_msgr_wq = NULL;
234         }
235
236         BUG_ON(zero_page == NULL);
237         kunmap(zero_page);
238         page_cache_release(zero_page);
239         zero_page = NULL;
240 }
241
242 int ceph_msgr_init(void)
243 {
244         BUG_ON(zero_page != NULL);
245         zero_page = ZERO_PAGE(0);
246         page_cache_get(zero_page);
247
248         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
249         if (ceph_msgr_wq)
250                 return 0;
251
252         pr_err("msgr_init failed to create workqueue\n");
253         _ceph_msgr_exit();
254
255         return -ENOMEM;
256 }
257 EXPORT_SYMBOL(ceph_msgr_init);
258
259 void ceph_msgr_exit(void)
260 {
261         BUG_ON(ceph_msgr_wq == NULL);
262
263         _ceph_msgr_exit();
264 }
265 EXPORT_SYMBOL(ceph_msgr_exit);
266
267 void ceph_msgr_flush(void)
268 {
269         flush_workqueue(ceph_msgr_wq);
270 }
271 EXPORT_SYMBOL(ceph_msgr_flush);
272
273 /* Connection socket state transition functions */
274
275 static void con_sock_state_init(struct ceph_connection *con)
276 {
277         int old_state;
278
279         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
280         if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
281                 printk("%s: unexpected old state %d\n", __func__, old_state);
282         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
283              CON_SOCK_STATE_CLOSED);
284 }
285
286 static void con_sock_state_connecting(struct ceph_connection *con)
287 {
288         int old_state;
289
290         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
291         if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
292                 printk("%s: unexpected old state %d\n", __func__, old_state);
293         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
294              CON_SOCK_STATE_CONNECTING);
295 }
296
297 static void con_sock_state_connected(struct ceph_connection *con)
298 {
299         int old_state;
300
301         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
302         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
303                 printk("%s: unexpected old state %d\n", __func__, old_state);
304         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
305              CON_SOCK_STATE_CONNECTED);
306 }
307
308 static void con_sock_state_closing(struct ceph_connection *con)
309 {
310         int old_state;
311
312         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
313         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
314                         old_state != CON_SOCK_STATE_CONNECTED &&
315                         old_state != CON_SOCK_STATE_CLOSING))
316                 printk("%s: unexpected old state %d\n", __func__, old_state);
317         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
318              CON_SOCK_STATE_CLOSING);
319 }
320
321 static void con_sock_state_closed(struct ceph_connection *con)
322 {
323         int old_state;
324
325         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
326         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
327                     old_state != CON_SOCK_STATE_CLOSING &&
328                     old_state != CON_SOCK_STATE_CONNECTING &&
329                     old_state != CON_SOCK_STATE_CLOSED))
330                 printk("%s: unexpected old state %d\n", __func__, old_state);
331         dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
332              CON_SOCK_STATE_CLOSED);
333 }
334
335 /*
336  * socket callback functions
337  */
338
339 /* data available on socket, or listen socket received a connect */
340 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
341 {
342         struct ceph_connection *con = sk->sk_user_data;
343         if (atomic_read(&con->msgr->stopping)) {
344                 return;
345         }
346
347         if (sk->sk_state != TCP_CLOSE_WAIT) {
348                 dout("%s on %p state = %lu, queueing work\n", __func__,
349                      con, con->state);
350                 queue_con(con);
351         }
352 }
353
354 /* socket has buffer space for writing */
355 static void ceph_sock_write_space(struct sock *sk)
356 {
357         struct ceph_connection *con = sk->sk_user_data;
358
359         /* only queue to workqueue if there is data we want to write,
360          * and there is sufficient space in the socket buffer to accept
361          * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
362          * doesn't get called again until try_write() fills the socket
363          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
364          * and net/core/stream.c:sk_stream_write_space().
365          */
366         if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
367                 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
368                         dout("%s %p queueing write work\n", __func__, con);
369                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
370                         queue_con(con);
371                 }
372         } else {
373                 dout("%s %p nothing to write\n", __func__, con);
374         }
375 }
376
377 /* socket's state has changed */
378 static void ceph_sock_state_change(struct sock *sk)
379 {
380         struct ceph_connection *con = sk->sk_user_data;
381
382         dout("%s %p state = %lu sk_state = %u\n", __func__,
383              con, con->state, sk->sk_state);
384
385         switch (sk->sk_state) {
386         case TCP_CLOSE:
387                 dout("%s TCP_CLOSE\n", __func__);
388         case TCP_CLOSE_WAIT:
389                 dout("%s TCP_CLOSE_WAIT\n", __func__);
390                 con_sock_state_closing(con);
391                 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
392                 queue_con(con);
393                 break;
394         case TCP_ESTABLISHED:
395                 dout("%s TCP_ESTABLISHED\n", __func__);
396                 con_sock_state_connected(con);
397                 queue_con(con);
398                 break;
399         default:        /* Everything else is uninteresting */
400                 break;
401         }
402 }
403
404 /*
405  * set up socket callbacks
406  */
407 static void set_sock_callbacks(struct socket *sock,
408                                struct ceph_connection *con)
409 {
410         struct sock *sk = sock->sk;
411         sk->sk_user_data = con;
412         sk->sk_data_ready = ceph_sock_data_ready;
413         sk->sk_write_space = ceph_sock_write_space;
414         sk->sk_state_change = ceph_sock_state_change;
415 }
416
417
418 /*
419  * socket helpers
420  */
421
422 /*
423  * initiate connection to a remote socket.
424  */
425 static int ceph_tcp_connect(struct ceph_connection *con)
426 {
427         struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
428         struct socket *sock;
429         int ret;
430
431         BUG_ON(con->sock);
432         ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
433                                IPPROTO_TCP, &sock);
434         if (ret)
435                 return ret;
436         sock->sk->sk_allocation = GFP_NOFS;
437
438 #ifdef CONFIG_LOCKDEP
439         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
440 #endif
441
442         set_sock_callbacks(sock, con);
443
444         dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
445
446         con_sock_state_connecting(con);
447         ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
448                                  O_NONBLOCK);
449         if (ret == -EINPROGRESS) {
450                 dout("connect %s EINPROGRESS sk_state = %u\n",
451                      ceph_pr_addr(&con->peer_addr.in_addr),
452                      sock->sk->sk_state);
453         } else if (ret < 0) {
454                 pr_err("connect %s error %d\n",
455                        ceph_pr_addr(&con->peer_addr.in_addr), ret);
456                 sock_release(sock);
457                 con->error_msg = "connect error";
458
459                 return ret;
460         }
461         con->sock = sock;
462         return 0;
463 }
464
465 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
466 {
467         struct kvec iov = {buf, len};
468         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
469         int r;
470
471         r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
472         if (r == -EAGAIN)
473                 r = 0;
474         return r;
475 }
476
477 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
478                      int page_offset, size_t length)
479 {
480         void *kaddr;
481         int ret;
482
483         BUG_ON(page_offset + length > PAGE_SIZE);
484
485         kaddr = kmap(page);
486         BUG_ON(!kaddr);
487         ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
488         kunmap(page);
489
490         return ret;
491 }
492
493 /*
494  * write something.  @more is true if caller will be sending more data
495  * shortly.
496  */
497 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
498                      size_t kvlen, size_t len, int more)
499 {
500         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
501         int r;
502
503         if (more)
504                 msg.msg_flags |= MSG_MORE;
505         else
506                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
507
508         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
509         if (r == -EAGAIN)
510                 r = 0;
511         return r;
512 }
513
514 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
515                      int offset, size_t size, bool more)
516 {
517         int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
518         int ret;
519
520         ret = kernel_sendpage(sock, page, offset, size, flags);
521         if (ret == -EAGAIN)
522                 ret = 0;
523
524         return ret;
525 }
526
527
528 /*
529  * Shutdown/close the socket for the given connection.
530  */
531 static int con_close_socket(struct ceph_connection *con)
532 {
533         int rc = 0;
534
535         dout("con_close_socket on %p sock %p\n", con, con->sock);
536         if (con->sock) {
537                 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
538                 sock_release(con->sock);
539                 con->sock = NULL;
540         }
541
542         /*
543          * Forcibly clear the SOCK_CLOSED flag.  It gets set
544          * independent of the connection mutex, and we could have
545          * received a socket close event before we had the chance to
546          * shut the socket down.
547          */
548         con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
549
550         con_sock_state_closed(con);
551         return rc;
552 }
553
554 /*
555  * Reset a connection.  Discard all incoming and outgoing messages
556  * and clear *_seq state.
557  */
558 static void ceph_msg_remove(struct ceph_msg *msg)
559 {
560         list_del_init(&msg->list_head);
561         BUG_ON(msg->con == NULL);
562         msg->con->ops->put(msg->con);
563         msg->con = NULL;
564
565         ceph_msg_put(msg);
566 }
567 static void ceph_msg_remove_list(struct list_head *head)
568 {
569         while (!list_empty(head)) {
570                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
571                                                         list_head);
572                 ceph_msg_remove(msg);
573         }
574 }
575
576 static void reset_connection(struct ceph_connection *con)
577 {
578         /* reset connection, out_queue, msg_ and connect_seq */
579         /* discard existing out_queue and msg_seq */
580         dout("reset_connection %p\n", con);
581         ceph_msg_remove_list(&con->out_queue);
582         ceph_msg_remove_list(&con->out_sent);
583
584         if (con->in_msg) {
585                 BUG_ON(con->in_msg->con != con);
586                 con->in_msg->con = NULL;
587                 ceph_msg_put(con->in_msg);
588                 con->in_msg = NULL;
589                 con->ops->put(con);
590         }
591
592         con->connect_seq = 0;
593         con->out_seq = 0;
594         if (con->out_msg) {
595                 ceph_msg_put(con->out_msg);
596                 con->out_msg = NULL;
597         }
598         con->in_seq = 0;
599         con->in_seq_acked = 0;
600 }
601
602 /*
603  * mark a peer down.  drop any open connections.
604  */
605 void ceph_con_close(struct ceph_connection *con)
606 {
607         mutex_lock(&con->mutex);
608         dout("con_close %p peer %s\n", con,
609              ceph_pr_addr(&con->peer_addr.in_addr));
610         con->state = CON_STATE_CLOSED;
611
612         con_flag_clear(con, CON_FLAG_LOSSYTX);  /* so we retry next connect */
613         con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
614         con_flag_clear(con, CON_FLAG_WRITE_PENDING);
615         con_flag_clear(con, CON_FLAG_BACKOFF);
616
617         reset_connection(con);
618         con->peer_global_seq = 0;
619         cancel_delayed_work(&con->work);
620         con_close_socket(con);
621         mutex_unlock(&con->mutex);
622 }
623 EXPORT_SYMBOL(ceph_con_close);
624
625 /*
626  * Reopen a closed connection, with a new peer address.
627  */
628 void ceph_con_open(struct ceph_connection *con,
629                    __u8 entity_type, __u64 entity_num,
630                    struct ceph_entity_addr *addr)
631 {
632         mutex_lock(&con->mutex);
633         dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
634
635         WARN_ON(con->state != CON_STATE_CLOSED);
636         con->state = CON_STATE_PREOPEN;
637
638         con->peer_name.type = (__u8) entity_type;
639         con->peer_name.num = cpu_to_le64(entity_num);
640
641         memcpy(&con->peer_addr, addr, sizeof(*addr));
642         con->delay = 0;      /* reset backoff memory */
643         mutex_unlock(&con->mutex);
644         queue_con(con);
645 }
646 EXPORT_SYMBOL(ceph_con_open);
647
648 /*
649  * return true if this connection ever successfully opened
650  */
651 bool ceph_con_opened(struct ceph_connection *con)
652 {
653         return con->connect_seq > 0;
654 }
655
656 /*
657  * initialize a new connection.
658  */
659 void ceph_con_init(struct ceph_connection *con, void *private,
660         const struct ceph_connection_operations *ops,
661         struct ceph_messenger *msgr)
662 {
663         dout("con_init %p\n", con);
664         memset(con, 0, sizeof(*con));
665         con->private = private;
666         con->ops = ops;
667         con->msgr = msgr;
668
669         con_sock_state_init(con);
670
671         mutex_init(&con->mutex);
672         INIT_LIST_HEAD(&con->out_queue);
673         INIT_LIST_HEAD(&con->out_sent);
674         INIT_DELAYED_WORK(&con->work, con_work);
675
676         con->state = CON_STATE_CLOSED;
677 }
678 EXPORT_SYMBOL(ceph_con_init);
679
680
681 /*
682  * We maintain a global counter to order connection attempts.  Get
683  * a unique seq greater than @gt.
684  */
685 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
686 {
687         u32 ret;
688
689         spin_lock(&msgr->global_seq_lock);
690         if (msgr->global_seq < gt)
691                 msgr->global_seq = gt;
692         ret = ++msgr->global_seq;
693         spin_unlock(&msgr->global_seq_lock);
694         return ret;
695 }
696
697 static void con_out_kvec_reset(struct ceph_connection *con)
698 {
699         con->out_kvec_left = 0;
700         con->out_kvec_bytes = 0;
701         con->out_kvec_cur = &con->out_kvec[0];
702 }
703
704 static void con_out_kvec_add(struct ceph_connection *con,
705                                 size_t size, void *data)
706 {
707         int index;
708
709         index = con->out_kvec_left;
710         BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
711
712         con->out_kvec[index].iov_len = size;
713         con->out_kvec[index].iov_base = data;
714         con->out_kvec_left++;
715         con->out_kvec_bytes += size;
716 }
717
718 #ifdef CONFIG_BLOCK
719
720 /*
721  * For a bio data item, a piece is whatever remains of the next
722  * entry in the current bio iovec, or the first entry in the next
723  * bio in the list.
724  */
725 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data *data,
726                                         size_t length)
727 {
728         struct ceph_msg_data_cursor *cursor = &data->cursor;
729         struct bio *bio;
730
731         BUG_ON(data->type != CEPH_MSG_DATA_BIO);
732
733         bio = data->bio;
734         BUG_ON(!bio);
735         BUG_ON(!bio->bi_vcnt);
736
737         cursor->resid = length;
738         cursor->bio = bio;
739         cursor->vector_index = 0;
740         cursor->vector_offset = 0;
741         cursor->last_piece = length <= bio->bi_io_vec[0].bv_len;
742 }
743
744 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data *data,
745                                                 size_t *page_offset,
746                                                 size_t *length)
747 {
748         struct ceph_msg_data_cursor *cursor = &data->cursor;
749         struct bio *bio;
750         struct bio_vec *bio_vec;
751         unsigned int index;
752
753         BUG_ON(data->type != CEPH_MSG_DATA_BIO);
754
755         bio = cursor->bio;
756         BUG_ON(!bio);
757
758         index = cursor->vector_index;
759         BUG_ON(index >= (unsigned int) bio->bi_vcnt);
760
761         bio_vec = &bio->bi_io_vec[index];
762         BUG_ON(cursor->vector_offset >= bio_vec->bv_len);
763         *page_offset = (size_t) (bio_vec->bv_offset + cursor->vector_offset);
764         BUG_ON(*page_offset >= PAGE_SIZE);
765         if (cursor->last_piece) /* pagelist offset is always 0 */
766                 *length = cursor->resid;
767         else
768                 *length = (size_t) (bio_vec->bv_len - cursor->vector_offset);
769         BUG_ON(*length > PAGE_SIZE);
770         BUG_ON(*length > cursor->resid);
771
772         return bio_vec->bv_page;
773 }
774
775 static bool ceph_msg_data_bio_advance(struct ceph_msg_data *data, size_t bytes)
776 {
777         struct ceph_msg_data_cursor *cursor = &data->cursor;
778         struct bio *bio;
779         struct bio_vec *bio_vec;
780         unsigned int index;
781
782         BUG_ON(data->type != CEPH_MSG_DATA_BIO);
783
784         bio = cursor->bio;
785         BUG_ON(!bio);
786
787         index = cursor->vector_index;
788         BUG_ON(index >= (unsigned int) bio->bi_vcnt);
789         bio_vec = &bio->bi_io_vec[index];
790
791         /* Advance the cursor offset */
792
793         BUG_ON(cursor->resid < bytes);
794         cursor->resid -= bytes;
795         cursor->vector_offset += bytes;
796         if (cursor->vector_offset < bio_vec->bv_len)
797                 return false;   /* more bytes to process in this segment */
798         BUG_ON(cursor->vector_offset != bio_vec->bv_len);
799
800         /* Move on to the next segment, and possibly the next bio */
801
802         if (++index == (unsigned int) bio->bi_vcnt) {
803                 bio = bio->bi_next;
804                 index = 0;
805         }
806         cursor->bio = bio;
807         cursor->vector_index = index;
808         cursor->vector_offset = 0;
809
810         if (!cursor->last_piece) {
811                 BUG_ON(!cursor->resid);
812                 BUG_ON(!bio);
813                 /* A short read is OK, so use <= rather than == */
814                 if (cursor->resid <= bio->bi_io_vec[index].bv_len)
815                         cursor->last_piece = true;
816         }
817
818         return true;
819 }
820 #endif
821
822 /*
823  * For a page array, a piece comes from the first page in the array
824  * that has not already been fully consumed.
825  */
826 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data *data,
827                                         size_t length)
828 {
829         struct ceph_msg_data_cursor *cursor = &data->cursor;
830         int page_count;
831
832         BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
833
834         BUG_ON(!data->pages);
835         BUG_ON(!data->length);
836         BUG_ON(length != data->length);
837
838         cursor->resid = length;
839         page_count = calc_pages_for(data->alignment, (u64)data->length);
840         cursor->page_offset = data->alignment & ~PAGE_MASK;
841         cursor->page_index = 0;
842         BUG_ON(page_count > (int) USHRT_MAX);
843         cursor->page_count = (unsigned short) page_count;
844         cursor->last_piece = length <= PAGE_SIZE;
845 }
846
847 static struct page *ceph_msg_data_pages_next(struct ceph_msg_data *data,
848                                         size_t *page_offset,
849                                         size_t *length)
850 {
851         struct ceph_msg_data_cursor *cursor = &data->cursor;
852
853         BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
854
855         BUG_ON(cursor->page_index >= cursor->page_count);
856         BUG_ON(cursor->page_offset >= PAGE_SIZE);
857
858         *page_offset = cursor->page_offset;
859         if (cursor->last_piece)
860                 *length = cursor->resid;
861         else
862                 *length = PAGE_SIZE - *page_offset;
863
864         return data->pages[cursor->page_index];
865 }
866
867 static bool ceph_msg_data_pages_advance(struct ceph_msg_data *data,
868                                                 size_t bytes)
869 {
870         struct ceph_msg_data_cursor *cursor = &data->cursor;
871
872         BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
873
874         BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
875
876         /* Advance the cursor page offset */
877
878         cursor->resid -= bytes;
879         cursor->page_offset += bytes;
880         if (!bytes || cursor->page_offset & ~PAGE_MASK)
881                 return false;   /* more bytes to process in the current page */
882
883         /* Move on to the next page */
884
885         BUG_ON(cursor->page_index >= cursor->page_count);
886         cursor->page_offset = 0;
887         cursor->page_index++;
888         cursor->last_piece = cursor->resid <= PAGE_SIZE;
889
890         return true;
891 }
892
893 /*
894  * For a pagelist, a piece is whatever remains to be consumed in the
895  * first page in the list, or the front of the next page.
896  */
897 static void ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data *data,
898                                         size_t length)
899 {
900         struct ceph_msg_data_cursor *cursor = &data->cursor;
901         struct ceph_pagelist *pagelist;
902         struct page *page;
903
904         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
905
906         pagelist = data->pagelist;
907         BUG_ON(!pagelist);
908         BUG_ON(length != pagelist->length);
909
910         if (!length)
911                 return;         /* pagelist can be assigned but empty */
912
913         BUG_ON(list_empty(&pagelist->head));
914         page = list_first_entry(&pagelist->head, struct page, lru);
915
916         cursor->resid = length;
917         cursor->page = page;
918         cursor->offset = 0;
919         cursor->last_piece = length <= PAGE_SIZE;
920 }
921
922 static struct page *ceph_msg_data_pagelist_next(struct ceph_msg_data *data,
923                                                 size_t *page_offset,
924                                                 size_t *length)
925 {
926         struct ceph_msg_data_cursor *cursor = &data->cursor;
927         struct ceph_pagelist *pagelist;
928
929         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
930
931         pagelist = data->pagelist;
932         BUG_ON(!pagelist);
933
934         BUG_ON(!cursor->page);
935         BUG_ON(cursor->offset + cursor->resid != pagelist->length);
936
937         *page_offset = cursor->offset & ~PAGE_MASK;
938         if (cursor->last_piece) /* pagelist offset is always 0 */
939                 *length = cursor->resid;
940         else
941                 *length = PAGE_SIZE - *page_offset;
942
943         return data->cursor.page;
944 }
945
946 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data *data,
947                                                 size_t bytes)
948 {
949         struct ceph_msg_data_cursor *cursor = &data->cursor;
950         struct ceph_pagelist *pagelist;
951
952         BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
953
954         pagelist = data->pagelist;
955         BUG_ON(!pagelist);
956
957         BUG_ON(cursor->offset + cursor->resid != pagelist->length);
958         BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
959
960         /* Advance the cursor offset */
961
962         cursor->resid -= bytes;
963         cursor->offset += bytes;
964         /* pagelist offset is always 0 */
965         if (!bytes || cursor->offset & ~PAGE_MASK)
966                 return false;   /* more bytes to process in the current page */
967
968         /* Move on to the next page */
969
970         BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
971         cursor->page = list_entry_next(cursor->page, lru);
972         cursor->last_piece = cursor->resid <= PAGE_SIZE;
973
974         return true;
975 }
976
977 /*
978  * Message data is handled (sent or received) in pieces, where each
979  * piece resides on a single page.  The network layer might not
980  * consume an entire piece at once.  A data item's cursor keeps
981  * track of which piece is next to process and how much remains to
982  * be processed in that piece.  It also tracks whether the current
983  * piece is the last one in the data item.
984  */
985 static void ceph_msg_data_cursor_init(struct ceph_msg_data *data,
986                                         size_t length)
987 {
988         switch (data->type) {
989         case CEPH_MSG_DATA_PAGELIST:
990                 ceph_msg_data_pagelist_cursor_init(data, length);
991                 break;
992         case CEPH_MSG_DATA_PAGES:
993                 ceph_msg_data_pages_cursor_init(data, length);
994                 break;
995 #ifdef CONFIG_BLOCK
996         case CEPH_MSG_DATA_BIO:
997                 ceph_msg_data_bio_cursor_init(data, length);
998                 break;
999 #endif /* CONFIG_BLOCK */
1000         case CEPH_MSG_DATA_NONE:
1001         default:
1002                 /* BUG(); */
1003                 break;
1004         }
1005 }
1006
1007 /*
1008  * Return the page containing the next piece to process for a given
1009  * data item, and supply the page offset and length of that piece.
1010  * Indicate whether this is the last piece in this data item.
1011  */
1012 static struct page *ceph_msg_data_next(struct ceph_msg_data *data,
1013                                         size_t *page_offset,
1014                                         size_t *length,
1015                                         bool *last_piece)
1016 {
1017         struct page *page;
1018
1019         switch (data->type) {
1020         case CEPH_MSG_DATA_PAGELIST:
1021                 page = ceph_msg_data_pagelist_next(data, page_offset, length);
1022                 break;
1023         case CEPH_MSG_DATA_PAGES:
1024                 page = ceph_msg_data_pages_next(data, page_offset, length);
1025                 break;
1026 #ifdef CONFIG_BLOCK
1027         case CEPH_MSG_DATA_BIO:
1028                 page = ceph_msg_data_bio_next(data, page_offset, length);
1029                 break;
1030 #endif /* CONFIG_BLOCK */
1031         case CEPH_MSG_DATA_NONE:
1032         default:
1033                 page = NULL;
1034                 break;
1035         }
1036         BUG_ON(!page);
1037         BUG_ON(*page_offset + *length > PAGE_SIZE);
1038         BUG_ON(!*length);
1039         if (last_piece)
1040                 *last_piece = data->cursor.last_piece;
1041
1042         return page;
1043 }
1044
1045 /*
1046  * Returns true if the result moves the cursor on to the next piece
1047  * of the data item.
1048  */
1049 static bool ceph_msg_data_advance(struct ceph_msg_data *data, size_t bytes)
1050 {
1051         struct ceph_msg_data_cursor *cursor = &data->cursor;
1052         bool new_piece;
1053
1054         BUG_ON(bytes > cursor->resid);
1055         switch (data->type) {
1056         case CEPH_MSG_DATA_PAGELIST:
1057                 new_piece = ceph_msg_data_pagelist_advance(data, bytes);
1058                 break;
1059         case CEPH_MSG_DATA_PAGES:
1060                 new_piece = ceph_msg_data_pages_advance(data, bytes);
1061                 break;
1062 #ifdef CONFIG_BLOCK
1063         case CEPH_MSG_DATA_BIO:
1064                 new_piece = ceph_msg_data_bio_advance(data, bytes);
1065                 break;
1066 #endif /* CONFIG_BLOCK */
1067         case CEPH_MSG_DATA_NONE:
1068         default:
1069                 BUG();
1070                 break;
1071         }
1072
1073         return new_piece;
1074 }
1075
1076 static void prepare_message_data(struct ceph_msg *msg,
1077                                 struct ceph_msg_pos *msg_pos)
1078 {
1079         size_t data_len;
1080
1081         BUG_ON(!msg);
1082
1083         data_len = le32_to_cpu(msg->hdr.data_len);
1084         BUG_ON(!data_len);
1085
1086         /* initialize page iterator */
1087         msg_pos->page = 0;
1088         if (ceph_msg_has_pages(msg))
1089                 msg_pos->page_pos = msg->p.alignment;
1090         else
1091                 msg_pos->page_pos = 0;
1092         msg_pos->data_pos = 0;
1093
1094         /* Initialize data cursors */
1095
1096 #ifdef CONFIG_BLOCK
1097         if (ceph_msg_has_bio(msg))
1098                 ceph_msg_data_cursor_init(&msg->b, data_len);
1099 #endif /* CONFIG_BLOCK */
1100         if (ceph_msg_has_pages(msg))
1101                 ceph_msg_data_cursor_init(&msg->p, data_len);
1102         if (ceph_msg_has_pagelist(msg))
1103                 ceph_msg_data_cursor_init(&msg->l, data_len);
1104
1105         msg_pos->did_page_crc = false;
1106 }
1107
1108 /*
1109  * Prepare footer for currently outgoing message, and finish things
1110  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1111  */
1112 static void prepare_write_message_footer(struct ceph_connection *con)
1113 {
1114         struct ceph_msg *m = con->out_msg;
1115         int v = con->out_kvec_left;
1116
1117         m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1118
1119         dout("prepare_write_message_footer %p\n", con);
1120         con->out_kvec_is_msg = true;
1121         con->out_kvec[v].iov_base = &m->footer;
1122         con->out_kvec[v].iov_len = sizeof(m->footer);
1123         con->out_kvec_bytes += sizeof(m->footer);
1124         con->out_kvec_left++;
1125         con->out_more = m->more_to_follow;
1126         con->out_msg_done = true;
1127 }
1128
1129 /*
1130  * Prepare headers for the next outgoing message.
1131  */
1132 static void prepare_write_message(struct ceph_connection *con)
1133 {
1134         struct ceph_msg *m;
1135         u32 crc;
1136
1137         con_out_kvec_reset(con);
1138         con->out_kvec_is_msg = true;
1139         con->out_msg_done = false;
1140
1141         /* Sneak an ack in there first?  If we can get it into the same
1142          * TCP packet that's a good thing. */
1143         if (con->in_seq > con->in_seq_acked) {
1144                 con->in_seq_acked = con->in_seq;
1145                 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1146                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1147                 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1148                         &con->out_temp_ack);
1149         }
1150
1151         BUG_ON(list_empty(&con->out_queue));
1152         m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1153         con->out_msg = m;
1154         BUG_ON(m->con != con);
1155
1156         /* put message on sent list */
1157         ceph_msg_get(m);
1158         list_move_tail(&m->list_head, &con->out_sent);
1159
1160         /*
1161          * only assign outgoing seq # if we haven't sent this message
1162          * yet.  if it is requeued, resend with it's original seq.
1163          */
1164         if (m->needs_out_seq) {
1165                 m->hdr.seq = cpu_to_le64(++con->out_seq);
1166                 m->needs_out_seq = false;
1167         }
1168
1169         dout("prepare_write_message %p seq %lld type %d len %d+%d+%d (%zd)\n",
1170              m, con->out_seq, le16_to_cpu(m->hdr.type),
1171              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1172              le32_to_cpu(m->hdr.data_len), m->p.length);
1173         BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1174
1175         /* tag + hdr + front + middle */
1176         con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1177         con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1178         con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1179
1180         if (m->middle)
1181                 con_out_kvec_add(con, m->middle->vec.iov_len,
1182                         m->middle->vec.iov_base);
1183
1184         /* fill in crc (except data pages), footer */
1185         crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1186         con->out_msg->hdr.crc = cpu_to_le32(crc);
1187         con->out_msg->footer.flags = 0;
1188
1189         crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1190         con->out_msg->footer.front_crc = cpu_to_le32(crc);
1191         if (m->middle) {
1192                 crc = crc32c(0, m->middle->vec.iov_base,
1193                                 m->middle->vec.iov_len);
1194                 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1195         } else
1196                 con->out_msg->footer.middle_crc = 0;
1197         dout("%s front_crc %u middle_crc %u\n", __func__,
1198              le32_to_cpu(con->out_msg->footer.front_crc),
1199              le32_to_cpu(con->out_msg->footer.middle_crc));
1200
1201         /* is there a data payload? */
1202         con->out_msg->footer.data_crc = 0;
1203         if (m->hdr.data_len) {
1204                 prepare_message_data(con->out_msg, &con->out_msg_pos);
1205                 con->out_more = 1;  /* data + footer will follow */
1206         } else {
1207                 /* no, queue up footer too and be done */
1208                 prepare_write_message_footer(con);
1209         }
1210
1211         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1212 }
1213
1214 /*
1215  * Prepare an ack.
1216  */
1217 static void prepare_write_ack(struct ceph_connection *con)
1218 {
1219         dout("prepare_write_ack %p %llu -> %llu\n", con,
1220              con->in_seq_acked, con->in_seq);
1221         con->in_seq_acked = con->in_seq;
1222
1223         con_out_kvec_reset(con);
1224
1225         con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1226
1227         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1228         con_out_kvec_add(con, sizeof (con->out_temp_ack),
1229                                 &con->out_temp_ack);
1230
1231         con->out_more = 1;  /* more will follow.. eventually.. */
1232         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1233 }
1234
1235 /*
1236  * Prepare to share the seq during handshake
1237  */
1238 static void prepare_write_seq(struct ceph_connection *con)
1239 {
1240         dout("prepare_write_seq %p %llu -> %llu\n", con,
1241              con->in_seq_acked, con->in_seq);
1242         con->in_seq_acked = con->in_seq;
1243
1244         con_out_kvec_reset(con);
1245
1246         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1247         con_out_kvec_add(con, sizeof (con->out_temp_ack),
1248                          &con->out_temp_ack);
1249
1250         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1251 }
1252
1253 /*
1254  * Prepare to write keepalive byte.
1255  */
1256 static void prepare_write_keepalive(struct ceph_connection *con)
1257 {
1258         dout("prepare_write_keepalive %p\n", con);
1259         con_out_kvec_reset(con);
1260         con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1261         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1262 }
1263
1264 /*
1265  * Connection negotiation.
1266  */
1267
1268 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1269                                                 int *auth_proto)
1270 {
1271         struct ceph_auth_handshake *auth;
1272
1273         if (!con->ops->get_authorizer) {
1274                 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1275                 con->out_connect.authorizer_len = 0;
1276                 return NULL;
1277         }
1278
1279         /* Can't hold the mutex while getting authorizer */
1280         mutex_unlock(&con->mutex);
1281         auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1282         mutex_lock(&con->mutex);
1283
1284         if (IS_ERR(auth))
1285                 return auth;
1286         if (con->state != CON_STATE_NEGOTIATING)
1287                 return ERR_PTR(-EAGAIN);
1288
1289         con->auth_reply_buf = auth->authorizer_reply_buf;
1290         con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1291         return auth;
1292 }
1293
1294 /*
1295  * We connected to a peer and are saying hello.
1296  */
1297 static void prepare_write_banner(struct ceph_connection *con)
1298 {
1299         con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1300         con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1301                                         &con->msgr->my_enc_addr);
1302
1303         con->out_more = 0;
1304         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1305 }
1306
1307 static int prepare_write_connect(struct ceph_connection *con)
1308 {
1309         unsigned int global_seq = get_global_seq(con->msgr, 0);
1310         int proto;
1311         int auth_proto;
1312         struct ceph_auth_handshake *auth;
1313
1314         switch (con->peer_name.type) {
1315         case CEPH_ENTITY_TYPE_MON:
1316                 proto = CEPH_MONC_PROTOCOL;
1317                 break;
1318         case CEPH_ENTITY_TYPE_OSD:
1319                 proto = CEPH_OSDC_PROTOCOL;
1320                 break;
1321         case CEPH_ENTITY_TYPE_MDS:
1322                 proto = CEPH_MDSC_PROTOCOL;
1323                 break;
1324         default:
1325                 BUG();
1326         }
1327
1328         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1329              con->connect_seq, global_seq, proto);
1330
1331         con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1332         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1333         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1334         con->out_connect.global_seq = cpu_to_le32(global_seq);
1335         con->out_connect.protocol_version = cpu_to_le32(proto);
1336         con->out_connect.flags = 0;
1337
1338         auth_proto = CEPH_AUTH_UNKNOWN;
1339         auth = get_connect_authorizer(con, &auth_proto);
1340         if (IS_ERR(auth))
1341                 return PTR_ERR(auth);
1342
1343         con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1344         con->out_connect.authorizer_len = auth ?
1345                 cpu_to_le32(auth->authorizer_buf_len) : 0;
1346
1347         con_out_kvec_add(con, sizeof (con->out_connect),
1348                                         &con->out_connect);
1349         if (auth && auth->authorizer_buf_len)
1350                 con_out_kvec_add(con, auth->authorizer_buf_len,
1351                                         auth->authorizer_buf);
1352
1353         con->out_more = 0;
1354         con_flag_set(con, CON_FLAG_WRITE_PENDING);
1355
1356         return 0;
1357 }
1358
1359 /*
1360  * write as much of pending kvecs to the socket as we can.
1361  *  1 -> done
1362  *  0 -> socket full, but more to do
1363  * <0 -> error
1364  */
1365 static int write_partial_kvec(struct ceph_connection *con)
1366 {
1367         int ret;
1368
1369         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1370         while (con->out_kvec_bytes > 0) {
1371                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1372                                        con->out_kvec_left, con->out_kvec_bytes,
1373                                        con->out_more);
1374                 if (ret <= 0)
1375                         goto out;
1376                 con->out_kvec_bytes -= ret;
1377                 if (con->out_kvec_bytes == 0)
1378                         break;            /* done */
1379
1380                 /* account for full iov entries consumed */
1381                 while (ret >= con->out_kvec_cur->iov_len) {
1382                         BUG_ON(!con->out_kvec_left);
1383                         ret -= con->out_kvec_cur->iov_len;
1384                         con->out_kvec_cur++;
1385                         con->out_kvec_left--;
1386                 }
1387                 /* and for a partially-consumed entry */
1388                 if (ret) {
1389                         con->out_kvec_cur->iov_len -= ret;
1390                         con->out_kvec_cur->iov_base += ret;
1391                 }
1392         }
1393         con->out_kvec_left = 0;
1394         con->out_kvec_is_msg = false;
1395         ret = 1;
1396 out:
1397         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1398              con->out_kvec_bytes, con->out_kvec_left, ret);
1399         return ret;  /* done! */
1400 }
1401
1402 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
1403                         size_t len, size_t sent)
1404 {
1405         struct ceph_msg *msg = con->out_msg;
1406         struct ceph_msg_pos *msg_pos = &con->out_msg_pos;
1407         bool need_crc = false;
1408
1409         BUG_ON(!msg);
1410         BUG_ON(!sent);
1411
1412         msg_pos->data_pos += sent;
1413         msg_pos->page_pos += sent;
1414         if (ceph_msg_has_pages(msg))
1415                 need_crc = ceph_msg_data_advance(&msg->p, sent);
1416         else if (ceph_msg_has_pagelist(msg))
1417                 need_crc = ceph_msg_data_advance(&msg->l, sent);
1418 #ifdef CONFIG_BLOCK
1419         else if (ceph_msg_has_bio(msg))
1420                 need_crc = ceph_msg_data_advance(&msg->b, sent);
1421 #endif /* CONFIG_BLOCK */
1422         BUG_ON(need_crc && sent != len);
1423
1424         if (sent < len)
1425                 return;
1426
1427         BUG_ON(sent != len);
1428         msg_pos->page_pos = 0;
1429         msg_pos->page++;
1430         msg_pos->did_page_crc = false;
1431 }
1432
1433 static void in_msg_pos_next(struct ceph_connection *con, size_t len,
1434                                 size_t received)
1435 {
1436         struct ceph_msg *msg = con->in_msg;
1437         struct ceph_msg_pos *msg_pos = &con->in_msg_pos;
1438
1439         BUG_ON(!msg);
1440         BUG_ON(!received);
1441
1442         msg_pos->data_pos += received;
1443         msg_pos->page_pos += received;
1444 #ifdef CONFIG_BLOCK
1445         if (ceph_msg_has_bio(msg))
1446                 (void) ceph_msg_data_advance(&msg->b, received);
1447 #endif /* CONFIG_BLOCK */
1448         if (received < len)
1449                 return;
1450
1451         BUG_ON(received != len);
1452         msg_pos->page_pos = 0;
1453         msg_pos->page++;
1454 }
1455
1456 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1457                                 unsigned int page_offset,
1458                                 unsigned int length)
1459 {
1460         char *kaddr;
1461
1462         kaddr = kmap(page);
1463         BUG_ON(kaddr == NULL);
1464         crc = crc32c(crc, kaddr + page_offset, length);
1465         kunmap(page);
1466
1467         return crc;
1468 }
1469 /*
1470  * Write as much message data payload as we can.  If we finish, queue
1471  * up the footer.
1472  *  1 -> done, footer is now queued in out_kvec[].
1473  *  0 -> socket full, but more to do
1474  * <0 -> error
1475  */
1476 static int write_partial_message_data(struct ceph_connection *con)
1477 {
1478         struct ceph_msg *msg = con->out_msg;
1479         struct ceph_msg_pos *msg_pos = &con->out_msg_pos;
1480         unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
1481         bool do_datacrc = !con->msgr->nocrc;
1482         int ret;
1483
1484         dout("%s %p msg %p page %d offset %d\n", __func__,
1485              con, msg, msg_pos->page, msg_pos->page_pos);
1486
1487         /*
1488          * Iterate through each page that contains data to be
1489          * written, and send as much as possible for each.
1490          *
1491          * If we are calculating the data crc (the default), we will
1492          * need to map the page.  If we have no pages, they have
1493          * been revoked, so use the zero page.
1494          */
1495         while (data_len > msg_pos->data_pos) {
1496                 struct page *page;
1497                 size_t page_offset;
1498                 size_t length;
1499                 bool last_piece;
1500
1501                 if (ceph_msg_has_pages(msg)) {
1502                         page = ceph_msg_data_next(&msg->p, &page_offset,
1503                                                         &length, &last_piece);
1504                 } else if (ceph_msg_has_pagelist(msg)) {
1505                         page = ceph_msg_data_next(&msg->l, &page_offset,
1506                                                         &length, &last_piece);
1507 #ifdef CONFIG_BLOCK
1508                 } else if (ceph_msg_has_bio(msg)) {
1509                         page = ceph_msg_data_next(&msg->b, &page_offset,
1510                                                         &length, &last_piece);
1511 #endif
1512                 } else {
1513                         size_t resid = data_len - msg_pos->data_pos;
1514
1515                         page = zero_page;
1516                         page_offset = msg_pos->page_pos;
1517                         length = PAGE_SIZE - page_offset;
1518                         length = min(resid, length);
1519                         last_piece = length == resid;
1520                 }
1521                 if (do_datacrc && !msg_pos->did_page_crc) {
1522                         u32 crc = le32_to_cpu(msg->footer.data_crc);
1523
1524                         crc = ceph_crc32c_page(crc, page, page_offset, length);
1525                         msg->footer.data_crc = cpu_to_le32(crc);
1526                         msg_pos->did_page_crc = true;
1527                 }
1528                 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1529                                       length, last_piece);
1530                 if (ret <= 0)
1531                         goto out;
1532
1533                 out_msg_pos_next(con, page, length, (size_t) ret);
1534         }
1535
1536         dout("%s %p msg %p done\n", __func__, con, msg);
1537
1538         /* prepare and queue up footer, too */
1539         if (!do_datacrc)
1540                 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1541         con_out_kvec_reset(con);
1542         prepare_write_message_footer(con);
1543         ret = 1;
1544 out:
1545         return ret;
1546 }
1547
1548 /*
1549  * write some zeros
1550  */
1551 static int write_partial_skip(struct ceph_connection *con)
1552 {
1553         int ret;
1554
1555         while (con->out_skip > 0) {
1556                 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1557
1558                 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1559                 if (ret <= 0)
1560                         goto out;
1561                 con->out_skip -= ret;
1562         }
1563         ret = 1;
1564 out:
1565         return ret;
1566 }
1567
1568 /*
1569  * Prepare to read connection handshake, or an ack.
1570  */
1571 static void prepare_read_banner(struct ceph_connection *con)
1572 {
1573         dout("prepare_read_banner %p\n", con);
1574         con->in_base_pos = 0;
1575 }
1576
1577 static void prepare_read_connect(struct ceph_connection *con)
1578 {
1579         dout("prepare_read_connect %p\n", con);
1580         con->in_base_pos = 0;
1581 }
1582
1583 static void prepare_read_ack(struct ceph_connection *con)
1584 {
1585         dout("prepare_read_ack %p\n", con);
1586         con->in_base_pos = 0;
1587 }
1588
1589 static void prepare_read_seq(struct ceph_connection *con)
1590 {
1591         dout("prepare_read_seq %p\n", con);
1592         con->in_base_pos = 0;
1593         con->in_tag = CEPH_MSGR_TAG_SEQ;
1594 }
1595
1596 static void prepare_read_tag(struct ceph_connection *con)
1597 {
1598         dout("prepare_read_tag %p\n", con);
1599         con->in_base_pos = 0;
1600         con->in_tag = CEPH_MSGR_TAG_READY;
1601 }
1602
1603 /*
1604  * Prepare to read a message.
1605  */
1606 static int prepare_read_message(struct ceph_connection *con)
1607 {
1608         dout("prepare_read_message %p\n", con);
1609         BUG_ON(con->in_msg != NULL);
1610         con->in_base_pos = 0;
1611         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1612         return 0;
1613 }
1614
1615
1616 static int read_partial(struct ceph_connection *con,
1617                         int end, int size, void *object)
1618 {
1619         while (con->in_base_pos < end) {
1620                 int left = end - con->in_base_pos;
1621                 int have = size - left;
1622                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1623                 if (ret <= 0)
1624                         return ret;
1625                 con->in_base_pos += ret;
1626         }
1627         return 1;
1628 }
1629
1630
1631 /*
1632  * Read all or part of the connect-side handshake on a new connection
1633  */
1634 static int read_partial_banner(struct ceph_connection *con)
1635 {
1636         int size;
1637         int end;
1638         int ret;
1639
1640         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1641
1642         /* peer's banner */
1643         size = strlen(CEPH_BANNER);
1644         end = size;
1645         ret = read_partial(con, end, size, con->in_banner);
1646         if (ret <= 0)
1647                 goto out;
1648
1649         size = sizeof (con->actual_peer_addr);
1650         end += size;
1651         ret = read_partial(con, end, size, &con->actual_peer_addr);
1652         if (ret <= 0)
1653                 goto out;
1654
1655         size = sizeof (con->peer_addr_for_me);
1656         end += size;
1657         ret = read_partial(con, end, size, &con->peer_addr_for_me);
1658         if (ret <= 0)
1659                 goto out;
1660
1661 out:
1662         return ret;
1663 }
1664
1665 static int read_partial_connect(struct ceph_connection *con)
1666 {
1667         int size;
1668         int end;
1669         int ret;
1670
1671         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1672
1673         size = sizeof (con->in_reply);
1674         end = size;
1675         ret = read_partial(con, end, size, &con->in_reply);
1676         if (ret <= 0)
1677                 goto out;
1678
1679         size = le32_to_cpu(con->in_reply.authorizer_len);
1680         end += size;
1681         ret = read_partial(con, end, size, con->auth_reply_buf);
1682         if (ret <= 0)
1683                 goto out;
1684
1685         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1686              con, (int)con->in_reply.tag,
1687              le32_to_cpu(con->in_reply.connect_seq),
1688              le32_to_cpu(con->in_reply.global_seq));
1689 out:
1690         return ret;
1691
1692 }
1693
1694 /*
1695  * Verify the hello banner looks okay.
1696  */
1697 static int verify_hello(struct ceph_connection *con)
1698 {
1699         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1700                 pr_err("connect to %s got bad banner\n",
1701                        ceph_pr_addr(&con->peer_addr.in_addr));
1702                 con->error_msg = "protocol error, bad banner";
1703                 return -1;
1704         }
1705         return 0;
1706 }
1707
1708 static bool addr_is_blank(struct sockaddr_storage *ss)
1709 {
1710         switch (ss->ss_family) {
1711         case AF_INET:
1712                 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1713         case AF_INET6:
1714                 return
1715                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1716                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1717                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1718                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1719         }
1720         return false;
1721 }
1722
1723 static int addr_port(struct sockaddr_storage *ss)
1724 {
1725         switch (ss->ss_family) {
1726         case AF_INET:
1727                 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1728         case AF_INET6:
1729                 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1730         }
1731         return 0;
1732 }
1733
1734 static void addr_set_port(struct sockaddr_storage *ss, int p)
1735 {
1736         switch (ss->ss_family) {
1737         case AF_INET:
1738                 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1739                 break;
1740         case AF_INET6:
1741                 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1742                 break;
1743         }
1744 }
1745
1746 /*
1747  * Unlike other *_pton function semantics, zero indicates success.
1748  */
1749 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1750                 char delim, const char **ipend)
1751 {
1752         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1753         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1754
1755         memset(ss, 0, sizeof(*ss));
1756
1757         if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1758                 ss->ss_family = AF_INET;
1759                 return 0;
1760         }
1761
1762         if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1763                 ss->ss_family = AF_INET6;
1764                 return 0;
1765         }
1766
1767         return -EINVAL;
1768 }
1769
1770 /*
1771  * Extract hostname string and resolve using kernel DNS facility.
1772  */
1773 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1774 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1775                 struct sockaddr_storage *ss, char delim, const char **ipend)
1776 {
1777         const char *end, *delim_p;
1778         char *colon_p, *ip_addr = NULL;
1779         int ip_len, ret;
1780
1781         /*
1782          * The end of the hostname occurs immediately preceding the delimiter or
1783          * the port marker (':') where the delimiter takes precedence.
1784          */
1785         delim_p = memchr(name, delim, namelen);
1786         colon_p = memchr(name, ':', namelen);
1787
1788         if (delim_p && colon_p)
1789                 end = delim_p < colon_p ? delim_p : colon_p;
1790         else if (!delim_p && colon_p)
1791                 end = colon_p;
1792         else {
1793                 end = delim_p;
1794                 if (!end) /* case: hostname:/ */
1795                         end = name + namelen;
1796         }
1797
1798         if (end <= name)
1799                 return -EINVAL;
1800
1801         /* do dns_resolve upcall */
1802         ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1803         if (ip_len > 0)
1804                 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1805         else
1806                 ret = -ESRCH;
1807
1808         kfree(ip_addr);
1809
1810         *ipend = end;
1811
1812         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1813                         ret, ret ? "failed" : ceph_pr_addr(ss));
1814
1815         return ret;
1816 }
1817 #else
1818 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1819                 struct sockaddr_storage *ss, char delim, const char **ipend)
1820 {
1821         return -EINVAL;
1822 }
1823 #endif
1824
1825 /*
1826  * Parse a server name (IP or hostname). If a valid IP address is not found
1827  * then try to extract a hostname to resolve using userspace DNS upcall.
1828  */
1829 static int ceph_parse_server_name(const char *name, size_t namelen,
1830                         struct sockaddr_storage *ss, char delim, const char **ipend)
1831 {
1832         int ret;
1833
1834         ret = ceph_pton(name, namelen, ss, delim, ipend);
1835         if (ret)
1836                 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1837
1838         return ret;
1839 }
1840
1841 /*
1842  * Parse an ip[:port] list into an addr array.  Use the default
1843  * monitor port if a port isn't specified.
1844  */
1845 int ceph_parse_ips(const char *c, const char *end,
1846                    struct ceph_entity_addr *addr,
1847                    int max_count, int *count)
1848 {
1849         int i, ret = -EINVAL;
1850         const char *p = c;
1851
1852         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1853         for (i = 0; i < max_count; i++) {
1854                 const char *ipend;
1855                 struct sockaddr_storage *ss = &addr[i].in_addr;
1856                 int port;
1857                 char delim = ',';
1858
1859                 if (*p == '[') {
1860                         delim = ']';
1861                         p++;
1862                 }
1863
1864                 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1865                 if (ret)
1866                         goto bad;
1867                 ret = -EINVAL;
1868
1869                 p = ipend;
1870
1871                 if (delim == ']') {
1872                         if (*p != ']') {
1873                                 dout("missing matching ']'\n");
1874                                 goto bad;
1875                         }
1876                         p++;
1877                 }
1878
1879                 /* port? */
1880                 if (p < end && *p == ':') {
1881                         port = 0;
1882                         p++;
1883                         while (p < end && *p >= '0' && *p <= '9') {
1884                                 port = (port * 10) + (*p - '0');
1885                                 p++;
1886                         }
1887                         if (port > 65535 || port == 0)
1888                                 goto bad;
1889                 } else {
1890                         port = CEPH_MON_PORT;
1891                 }
1892
1893                 addr_set_port(ss, port);
1894
1895                 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1896
1897                 if (p == end)
1898                         break;
1899                 if (*p != ',')
1900                         goto bad;
1901                 p++;
1902         }
1903
1904         if (p != end)
1905                 goto bad;
1906
1907         if (count)
1908                 *count = i + 1;
1909         return 0;
1910
1911 bad:
1912         pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1913         return ret;
1914 }
1915 EXPORT_SYMBOL(ceph_parse_ips);
1916
1917 static int process_banner(struct ceph_connection *con)
1918 {
1919         dout("process_banner on %p\n", con);
1920
1921         if (verify_hello(con) < 0)
1922                 return -1;
1923
1924         ceph_decode_addr(&con->actual_peer_addr);
1925         ceph_decode_addr(&con->peer_addr_for_me);
1926
1927         /*
1928          * Make sure the other end is who we wanted.  note that the other
1929          * end may not yet know their ip address, so if it's 0.0.0.0, give
1930          * them the benefit of the doubt.
1931          */
1932         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1933                    sizeof(con->peer_addr)) != 0 &&
1934             !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1935               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1936                 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1937                            ceph_pr_addr(&con->peer_addr.in_addr),
1938                            (int)le32_to_cpu(con->peer_addr.nonce),
1939                            ceph_pr_addr(&con->actual_peer_addr.in_addr),
1940                            (int)le32_to_cpu(con->actual_peer_addr.nonce));
1941                 con->error_msg = "wrong peer at address";
1942                 return -1;
1943         }
1944
1945         /*
1946          * did we learn our address?
1947          */
1948         if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1949                 int port = addr_port(&con->msgr->inst.addr.in_addr);
1950
1951                 memcpy(&con->msgr->inst.addr.in_addr,
1952                        &con->peer_addr_for_me.in_addr,
1953                        sizeof(con->peer_addr_for_me.in_addr));
1954                 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1955                 encode_my_addr(con->msgr);
1956                 dout("process_banner learned my addr is %s\n",
1957                      ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1958         }
1959
1960         return 0;
1961 }
1962
1963 static int process_connect(struct ceph_connection *con)
1964 {
1965         u64 sup_feat = con->msgr->supported_features;
1966         u64 req_feat = con->msgr->required_features;
1967         u64 server_feat = le64_to_cpu(con->in_reply.features);
1968         int ret;
1969
1970         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1971
1972         switch (con->in_reply.tag) {
1973         case CEPH_MSGR_TAG_FEATURES:
1974                 pr_err("%s%lld %s feature set mismatch,"
1975                        " my %llx < server's %llx, missing %llx\n",
1976                        ENTITY_NAME(con->peer_name),
1977                        ceph_pr_addr(&con->peer_addr.in_addr),
1978                        sup_feat, server_feat, server_feat & ~sup_feat);
1979                 con->error_msg = "missing required protocol features";
1980                 reset_connection(con);
1981                 return -1;
1982
1983         case CEPH_MSGR_TAG_BADPROTOVER:
1984                 pr_err("%s%lld %s protocol version mismatch,"
1985                        " my %d != server's %d\n",
1986                        ENTITY_NAME(con->peer_name),
1987                        ceph_pr_addr(&con->peer_addr.in_addr),
1988                        le32_to_cpu(con->out_connect.protocol_version),
1989                        le32_to_cpu(con->in_reply.protocol_version));
1990                 con->error_msg = "protocol version mismatch";
1991                 reset_connection(con);
1992                 return -1;
1993
1994         case CEPH_MSGR_TAG_BADAUTHORIZER:
1995                 con->auth_retry++;
1996                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1997                      con->auth_retry);
1998                 if (con->auth_retry == 2) {
1999                         con->error_msg = "connect authorization failure";
2000                         return -1;
2001                 }
2002                 con_out_kvec_reset(con);
2003                 ret = prepare_write_connect(con);
2004                 if (ret < 0)
2005                         return ret;
2006                 prepare_read_connect(con);
2007                 break;
2008
2009         case CEPH_MSGR_TAG_RESETSESSION:
2010                 /*
2011                  * If we connected with a large connect_seq but the peer
2012                  * has no record of a session with us (no connection, or
2013                  * connect_seq == 0), they will send RESETSESION to indicate
2014                  * that they must have reset their session, and may have
2015                  * dropped messages.
2016                  */
2017                 dout("process_connect got RESET peer seq %u\n",
2018                      le32_to_cpu(con->in_reply.connect_seq));
2019                 pr_err("%s%lld %s connection reset\n",
2020                        ENTITY_NAME(con->peer_name),
2021                        ceph_pr_addr(&con->peer_addr.in_addr));
2022                 reset_connection(con);
2023                 con_out_kvec_reset(con);
2024                 ret = prepare_write_connect(con);
2025                 if (ret < 0)
2026                         return ret;
2027                 prepare_read_connect(con);
2028
2029                 /* Tell ceph about it. */
2030                 mutex_unlock(&con->mutex);
2031                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2032                 if (con->ops->peer_reset)
2033                         con->ops->peer_reset(con);
2034                 mutex_lock(&con->mutex);
2035                 if (con->state != CON_STATE_NEGOTIATING)
2036                         return -EAGAIN;
2037                 break;
2038
2039         case CEPH_MSGR_TAG_RETRY_SESSION:
2040                 /*
2041                  * If we sent a smaller connect_seq than the peer has, try
2042                  * again with a larger value.
2043                  */
2044                 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2045                      le32_to_cpu(con->out_connect.connect_seq),
2046                      le32_to_cpu(con->in_reply.connect_seq));
2047                 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2048                 con_out_kvec_reset(con);
2049                 ret = prepare_write_connect(con);
2050                 if (ret < 0)
2051                         return ret;
2052                 prepare_read_connect(con);
2053                 break;
2054
2055         case CEPH_MSGR_TAG_RETRY_GLOBAL:
2056                 /*
2057                  * If we sent a smaller global_seq than the peer has, try
2058                  * again with a larger value.
2059                  */
2060                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2061                      con->peer_global_seq,
2062                      le32_to_cpu(con->in_reply.global_seq));
2063                 get_global_seq(con->msgr,
2064                                le32_to_cpu(con->in_reply.global_seq));
2065                 con_out_kvec_reset(con);
2066                 ret = prepare_write_connect(con);
2067                 if (ret < 0)
2068                         return ret;
2069                 prepare_read_connect(con);
2070                 break;
2071
2072         case CEPH_MSGR_TAG_SEQ:
2073         case CEPH_MSGR_TAG_READY:
2074                 if (req_feat & ~server_feat) {
2075                         pr_err("%s%lld %s protocol feature mismatch,"
2076                                " my required %llx > server's %llx, need %llx\n",
2077                                ENTITY_NAME(con->peer_name),
2078                                ceph_pr_addr(&con->peer_addr.in_addr),
2079                                req_feat, server_feat, req_feat & ~server_feat);
2080                         con->error_msg = "missing required protocol features";
2081                         reset_connection(con);
2082                         return -1;
2083                 }
2084
2085                 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2086                 con->state = CON_STATE_OPEN;
2087                 con->auth_retry = 0;    /* we authenticated; clear flag */
2088                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2089                 con->connect_seq++;
2090                 con->peer_features = server_feat;
2091                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2092                      con->peer_global_seq,
2093                      le32_to_cpu(con->in_reply.connect_seq),
2094                      con->connect_seq);
2095                 WARN_ON(con->connect_seq !=
2096                         le32_to_cpu(con->in_reply.connect_seq));
2097
2098                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2099                         con_flag_set(con, CON_FLAG_LOSSYTX);
2100
2101                 con->delay = 0;      /* reset backoff memory */
2102
2103                 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2104                         prepare_write_seq(con);
2105                         prepare_read_seq(con);
2106                 } else {
2107                         prepare_read_tag(con);
2108                 }
2109                 break;
2110
2111         case CEPH_MSGR_TAG_WAIT:
2112                 /*
2113                  * If there is a connection race (we are opening
2114                  * connections to each other), one of us may just have
2115                  * to WAIT.  This shouldn't happen if we are the
2116                  * client.
2117                  */
2118                 pr_err("process_connect got WAIT as client\n");
2119                 con->error_msg = "protocol error, got WAIT as client";
2120                 return -1;
2121
2122         default:
2123                 pr_err("connect protocol error, will retry\n");
2124                 con->error_msg = "protocol error, garbage tag during connect";
2125                 return -1;
2126         }
2127         return 0;
2128 }
2129
2130
2131 /*
2132  * read (part of) an ack
2133  */
2134 static int read_partial_ack(struct ceph_connection *con)
2135 {
2136         int size = sizeof (con->in_temp_ack);
2137         int end = size;
2138
2139         return read_partial(con, end, size, &con->in_temp_ack);
2140 }
2141
2142 /*
2143  * We can finally discard anything that's been acked.
2144  */
2145 static void process_ack(struct ceph_connection *con)
2146 {
2147         struct ceph_msg *m;
2148         u64 ack = le64_to_cpu(con->in_temp_ack);
2149         u64 seq;
2150
2151         while (!list_empty(&con->out_sent)) {
2152                 m = list_first_entry(&con->out_sent, struct ceph_msg,
2153                                      list_head);
2154                 seq = le64_to_cpu(m->hdr.seq);
2155                 if (seq > ack)
2156                         break;
2157                 dout("got ack for seq %llu type %d at %p\n", seq,
2158                      le16_to_cpu(m->hdr.type), m);
2159                 m->ack_stamp = jiffies;
2160                 ceph_msg_remove(m);
2161         }
2162         prepare_read_tag(con);
2163 }
2164
2165
2166 static int read_partial_message_section(struct ceph_connection *con,
2167                                         struct kvec *section,
2168                                         unsigned int sec_len, u32 *crc)
2169 {
2170         int ret, left;
2171
2172         BUG_ON(!section);
2173
2174         while (section->iov_len < sec_len) {
2175                 BUG_ON(section->iov_base == NULL);
2176                 left = sec_len - section->iov_len;
2177                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2178                                        section->iov_len, left);
2179                 if (ret <= 0)
2180                         return ret;
2181                 section->iov_len += ret;
2182         }
2183         if (section->iov_len == sec_len)
2184                 *crc = crc32c(0, section->iov_base, section->iov_len);
2185
2186         return 1;
2187 }
2188
2189 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2190
2191 static int read_partial_message_pages(struct ceph_connection *con,
2192                                       unsigned int data_len, bool do_datacrc)
2193 {
2194         struct ceph_msg *msg = con->in_msg;
2195         struct ceph_msg_pos *msg_pos = &con->in_msg_pos;
2196         struct page **pages;
2197         struct page *page;
2198         size_t page_offset;
2199         size_t length;
2200         unsigned int left;
2201         int ret;
2202
2203         /* (page) data */
2204         pages = msg->p.pages;
2205         BUG_ON(pages == NULL);
2206         page = pages[msg_pos->page];
2207         page_offset = msg_pos->page_pos;
2208         BUG_ON(msg_pos->data_pos >= data_len);
2209         left = data_len - msg_pos->data_pos;
2210         BUG_ON(page_offset >= PAGE_SIZE);
2211         length = min_t(unsigned int, PAGE_SIZE - page_offset, left);
2212
2213         ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2214         if (ret <= 0)
2215                 return ret;
2216
2217         if (do_datacrc)
2218                 con->in_data_crc = ceph_crc32c_page(con->in_data_crc, page,
2219                                                         page_offset, ret);
2220
2221         in_msg_pos_next(con, length, ret);
2222
2223         return ret;
2224 }
2225
2226 #ifdef CONFIG_BLOCK
2227 static int read_partial_message_bio(struct ceph_connection *con,
2228                                     unsigned int data_len, bool do_datacrc)
2229 {
2230         struct ceph_msg *msg = con->in_msg;
2231         struct page *page;
2232         size_t page_offset;
2233         size_t length;
2234         int ret;
2235
2236         BUG_ON(!msg);
2237
2238         page = ceph_msg_data_next(&msg->b, &page_offset, &length, NULL);
2239
2240         ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2241         if (ret <= 0)
2242                 return ret;
2243
2244         if (do_datacrc)
2245                 con->in_data_crc = ceph_crc32c_page(con->in_data_crc, page,
2246                                                         page_offset, ret);
2247
2248         in_msg_pos_next(con, length, ret);
2249
2250         return ret;
2251 }
2252 #endif
2253
2254 static int read_partial_msg_data(struct ceph_connection *con)
2255 {
2256         struct ceph_msg *msg = con->in_msg;
2257         struct ceph_msg_pos *msg_pos = &con->in_msg_pos;
2258         const bool do_datacrc = !con->msgr->nocrc;
2259         unsigned int data_len;
2260         int ret;
2261
2262         BUG_ON(!msg);
2263
2264         data_len = le32_to_cpu(con->in_hdr.data_len);
2265         while (msg_pos->data_pos < data_len) {
2266                 if (ceph_msg_has_pages(msg)) {
2267                         ret = read_partial_message_pages(con, data_len,
2268                                                         do_datacrc);
2269                         if (ret <= 0)
2270                                 return ret;
2271 #ifdef CONFIG_BLOCK
2272                 } else if (ceph_msg_has_bio(msg)) {
2273                         ret = read_partial_message_bio(con,
2274                                                  data_len, do_datacrc);
2275                         if (ret <= 0)
2276                                 return ret;
2277 #endif
2278                 } else {
2279                         BUG_ON(1);
2280                 }
2281         }
2282
2283         return 1;       /* must return > 0 to indicate success */
2284 }
2285
2286 /*
2287  * read (part of) a message.
2288  */
2289 static int read_partial_message(struct ceph_connection *con)
2290 {
2291         struct ceph_msg *m = con->in_msg;
2292         int size;
2293         int end;
2294         int ret;
2295         unsigned int front_len, middle_len, data_len;
2296         bool do_datacrc = !con->msgr->nocrc;
2297         u64 seq;
2298         u32 crc;
2299
2300         dout("read_partial_message con %p msg %p\n", con, m);
2301
2302         /* header */
2303         size = sizeof (con->in_hdr);
2304         end = size;
2305         ret = read_partial(con, end, size, &con->in_hdr);
2306         if (ret <= 0)
2307                 return ret;
2308
2309         crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2310         if (cpu_to_le32(crc) != con->in_hdr.crc) {
2311                 pr_err("read_partial_message bad hdr "
2312                        " crc %u != expected %u\n",
2313                        crc, con->in_hdr.crc);
2314                 return -EBADMSG;
2315         }
2316
2317         front_len = le32_to_cpu(con->in_hdr.front_len);
2318         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2319                 return -EIO;
2320         middle_len = le32_to_cpu(con->in_hdr.middle_len);
2321         if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2322                 return -EIO;
2323         data_len = le32_to_cpu(con->in_hdr.data_len);
2324         if (data_len > CEPH_MSG_MAX_DATA_LEN)
2325                 return -EIO;
2326
2327         /* verify seq# */
2328         seq = le64_to_cpu(con->in_hdr.seq);
2329         if ((s64)seq - (s64)con->in_seq < 1) {
2330                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2331                         ENTITY_NAME(con->peer_name),
2332                         ceph_pr_addr(&con->peer_addr.in_addr),
2333                         seq, con->in_seq + 1);
2334                 con->in_base_pos = -front_len - middle_len - data_len -
2335                         sizeof(m->footer);
2336                 con->in_tag = CEPH_MSGR_TAG_READY;
2337                 return 0;
2338         } else if ((s64)seq - (s64)con->in_seq > 1) {
2339                 pr_err("read_partial_message bad seq %lld expected %lld\n",
2340                        seq, con->in_seq + 1);
2341                 con->error_msg = "bad message sequence # for incoming message";
2342                 return -EBADMSG;
2343         }
2344
2345         /* allocate message? */
2346         if (!con->in_msg) {
2347                 int skip = 0;
2348
2349                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2350                      front_len, data_len);
2351                 ret = ceph_con_in_msg_alloc(con, &skip);
2352                 if (ret < 0)
2353                         return ret;
2354                 if (skip) {
2355                         /* skip this message */
2356                         dout("alloc_msg said skip message\n");
2357                         BUG_ON(con->in_msg);
2358                         con->in_base_pos = -front_len - middle_len - data_len -
2359                                 sizeof(m->footer);
2360                         con->in_tag = CEPH_MSGR_TAG_READY;
2361                         con->in_seq++;
2362                         return 0;
2363                 }
2364
2365                 BUG_ON(!con->in_msg);
2366                 BUG_ON(con->in_msg->con != con);
2367                 m = con->in_msg;
2368                 m->front.iov_len = 0;    /* haven't read it yet */
2369                 if (m->middle)
2370                         m->middle->vec.iov_len = 0;
2371
2372                 /* prepare for data payload, if any */
2373
2374                 if (data_len)
2375                         prepare_message_data(con->in_msg, &con->in_msg_pos);
2376         }
2377
2378         /* front */
2379         ret = read_partial_message_section(con, &m->front, front_len,
2380                                            &con->in_front_crc);
2381         if (ret <= 0)
2382                 return ret;
2383
2384         /* middle */
2385         if (m->middle) {
2386                 ret = read_partial_message_section(con, &m->middle->vec,
2387                                                    middle_len,
2388                                                    &con->in_middle_crc);
2389                 if (ret <= 0)
2390                         return ret;
2391         }
2392
2393         /* (page) data */
2394         if (data_len) {
2395                 ret = read_partial_msg_data(con);
2396                 if (ret <= 0)
2397                         return ret;
2398         }
2399
2400         /* footer */
2401         size = sizeof (m->footer);
2402         end += size;
2403         ret = read_partial(con, end, size, &m->footer);
2404         if (ret <= 0)
2405                 return ret;
2406
2407         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2408              m, front_len, m->footer.front_crc, middle_len,
2409              m->footer.middle_crc, data_len, m->footer.data_crc);
2410
2411         /* crc ok? */
2412         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2413                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2414                        m, con->in_front_crc, m->footer.front_crc);
2415                 return -EBADMSG;
2416         }
2417         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2418                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2419                        m, con->in_middle_crc, m->footer.middle_crc);
2420                 return -EBADMSG;
2421         }
2422         if (do_datacrc &&
2423             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2424             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2425                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2426                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2427                 return -EBADMSG;
2428         }
2429
2430         return 1; /* done! */
2431 }
2432
2433 /*
2434  * Process message.  This happens in the worker thread.  The callback should
2435  * be careful not to do anything that waits on other incoming messages or it
2436  * may deadlock.
2437  */
2438 static void process_message(struct ceph_connection *con)
2439 {
2440         struct ceph_msg *msg;
2441
2442         BUG_ON(con->in_msg->con != con);
2443         con->in_msg->con = NULL;
2444         msg = con->in_msg;
2445         con->in_msg = NULL;
2446         con->ops->put(con);
2447
2448         /* if first message, set peer_name */
2449         if (con->peer_name.type == 0)
2450                 con->peer_name = msg->hdr.src;
2451
2452         con->in_seq++;
2453         mutex_unlock(&con->mutex);
2454
2455         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2456              msg, le64_to_cpu(msg->hdr.seq),
2457              ENTITY_NAME(msg->hdr.src),
2458              le16_to_cpu(msg->hdr.type),
2459              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2460              le32_to_cpu(msg->hdr.front_len),
2461              le32_to_cpu(msg->hdr.data_len),
2462              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2463         con->ops->dispatch(con, msg);
2464
2465         mutex_lock(&con->mutex);
2466 }
2467
2468
2469 /*
2470  * Write something to the socket.  Called in a worker thread when the
2471  * socket appears to be writeable and we have something ready to send.
2472  */
2473 static int try_write(struct ceph_connection *con)
2474 {
2475         int ret = 1;
2476
2477         dout("try_write start %p state %lu\n", con, con->state);
2478
2479 more:
2480         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2481
2482         /* open the socket first? */
2483         if (con->state == CON_STATE_PREOPEN) {
2484                 BUG_ON(con->sock);
2485                 con->state = CON_STATE_CONNECTING;
2486
2487                 con_out_kvec_reset(con);
2488                 prepare_write_banner(con);
2489                 prepare_read_banner(con);
2490
2491                 BUG_ON(con->in_msg);
2492                 con->in_tag = CEPH_MSGR_TAG_READY;
2493                 dout("try_write initiating connect on %p new state %lu\n",
2494                      con, con->state);
2495                 ret = ceph_tcp_connect(con);
2496                 if (ret < 0) {
2497                         con->error_msg = "connect error";
2498                         goto out;
2499                 }
2500         }
2501
2502 more_kvec:
2503         /* kvec data queued? */
2504         if (con->out_skip) {
2505                 ret = write_partial_skip(con);
2506                 if (ret <= 0)
2507                         goto out;
2508         }
2509         if (con->out_kvec_left) {
2510                 ret = write_partial_kvec(con);
2511                 if (ret <= 0)
2512                         goto out;
2513         }
2514
2515         /* msg pages? */
2516         if (con->out_msg) {
2517                 if (con->out_msg_done) {
2518                         ceph_msg_put(con->out_msg);
2519                         con->out_msg = NULL;   /* we're done with this one */
2520                         goto do_next;
2521                 }
2522
2523                 ret = write_partial_message_data(con);
2524                 if (ret == 1)
2525                         goto more_kvec;  /* we need to send the footer, too! */
2526                 if (ret == 0)
2527                         goto out;
2528                 if (ret < 0) {
2529                         dout("try_write write_partial_message_data err %d\n",
2530                              ret);
2531                         goto out;
2532                 }
2533         }
2534
2535 do_next:
2536         if (con->state == CON_STATE_OPEN) {
2537                 /* is anything else pending? */
2538                 if (!list_empty(&con->out_queue)) {
2539                         prepare_write_message(con);
2540                         goto more;
2541                 }
2542                 if (con->in_seq > con->in_seq_acked) {
2543                         prepare_write_ack(con);
2544                         goto more;
2545                 }
2546                 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2547                         prepare_write_keepalive(con);
2548                         goto more;
2549                 }
2550         }
2551
2552         /* Nothing to do! */
2553         con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2554         dout("try_write nothing else to write.\n");
2555         ret = 0;
2556 out:
2557         dout("try_write done on %p ret %d\n", con, ret);
2558         return ret;
2559 }
2560
2561
2562
2563 /*
2564  * Read what we can from the socket.
2565  */
2566 static int try_read(struct ceph_connection *con)
2567 {
2568         int ret = -1;
2569
2570 more:
2571         dout("try_read start on %p state %lu\n", con, con->state);
2572         if (con->state != CON_STATE_CONNECTING &&
2573             con->state != CON_STATE_NEGOTIATING &&
2574             con->state != CON_STATE_OPEN)
2575                 return 0;
2576
2577         BUG_ON(!con->sock);
2578
2579         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2580              con->in_base_pos);
2581
2582         if (con->state == CON_STATE_CONNECTING) {
2583                 dout("try_read connecting\n");
2584                 ret = read_partial_banner(con);
2585                 if (ret <= 0)
2586                         goto out;
2587                 ret = process_banner(con);
2588                 if (ret < 0)
2589                         goto out;
2590
2591                 con->state = CON_STATE_NEGOTIATING;
2592
2593                 /*
2594                  * Received banner is good, exchange connection info.
2595                  * Do not reset out_kvec, as sending our banner raced
2596                  * with receiving peer banner after connect completed.
2597                  */
2598                 ret = prepare_write_connect(con);
2599                 if (ret < 0)
2600                         goto out;
2601                 prepare_read_connect(con);
2602
2603                 /* Send connection info before awaiting response */
2604                 goto out;
2605         }
2606
2607         if (con->state == CON_STATE_NEGOTIATING) {
2608                 dout("try_read negotiating\n");
2609                 ret = read_partial_connect(con);
2610                 if (ret <= 0)
2611                         goto out;
2612                 ret = process_connect(con);
2613                 if (ret < 0)
2614                         goto out;
2615                 goto more;
2616         }
2617
2618         WARN_ON(con->state != CON_STATE_OPEN);
2619
2620         if (con->in_base_pos < 0) {
2621                 /*
2622                  * skipping + discarding content.
2623                  *
2624                  * FIXME: there must be a better way to do this!
2625                  */
2626                 static char buf[SKIP_BUF_SIZE];
2627                 int skip = min((int) sizeof (buf), -con->in_base_pos);
2628
2629                 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2630                 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2631                 if (ret <= 0)
2632                         goto out;
2633                 con->in_base_pos += ret;
2634                 if (con->in_base_pos)
2635                         goto more;
2636         }
2637         if (con->in_tag == CEPH_MSGR_TAG_READY) {
2638                 /*
2639                  * what's next?
2640                  */
2641                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2642                 if (ret <= 0)
2643                         goto out;
2644                 dout("try_read got tag %d\n", (int)con->in_tag);
2645                 switch (con->in_tag) {
2646                 case CEPH_MSGR_TAG_MSG:
2647                         prepare_read_message(con);
2648                         break;
2649                 case CEPH_MSGR_TAG_ACK:
2650                         prepare_read_ack(con);
2651                         break;
2652                 case CEPH_MSGR_TAG_CLOSE:
2653                         con_close_socket(con);
2654                         con->state = CON_STATE_CLOSED;
2655                         goto out;
2656                 default:
2657                         goto bad_tag;
2658                 }
2659         }
2660         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2661                 ret = read_partial_message(con);
2662                 if (ret <= 0) {
2663                         switch (ret) {
2664                         case -EBADMSG:
2665                                 con->error_msg = "bad crc";
2666                                 ret = -EIO;
2667                                 break;
2668                         case -EIO:
2669                                 con->error_msg = "io error";
2670                                 break;
2671                         }
2672                         goto out;
2673                 }
2674                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2675                         goto more;
2676                 process_message(con);
2677                 if (con->state == CON_STATE_OPEN)
2678                         prepare_read_tag(con);
2679                 goto more;
2680         }
2681         if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2682             con->in_tag == CEPH_MSGR_TAG_SEQ) {
2683                 /*
2684                  * the final handshake seq exchange is semantically
2685                  * equivalent to an ACK
2686                  */
2687                 ret = read_partial_ack(con);
2688                 if (ret <= 0)
2689                         goto out;
2690                 process_ack(con);
2691                 goto more;
2692         }
2693
2694 out:
2695         dout("try_read done on %p ret %d\n", con, ret);
2696         return ret;
2697
2698 bad_tag:
2699         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2700         con->error_msg = "protocol error, garbage tag";
2701         ret = -1;
2702         goto out;
2703 }
2704
2705
2706 /*
2707  * Atomically queue work on a connection after the specified delay.
2708  * Bump @con reference to avoid races with connection teardown.
2709  * Returns 0 if work was queued, or an error code otherwise.
2710  */
2711 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2712 {
2713         if (!con->ops->get(con)) {
2714                 dout("%s %p ref count 0\n", __func__, con);
2715
2716                 return -ENOENT;
2717         }
2718
2719         if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2720                 dout("%s %p - already queued\n", __func__, con);
2721                 con->ops->put(con);
2722
2723                 return -EBUSY;
2724         }
2725
2726         dout("%s %p %lu\n", __func__, con, delay);
2727
2728         return 0;
2729 }
2730
2731 static void queue_con(struct ceph_connection *con)
2732 {
2733         (void) queue_con_delay(con, 0);
2734 }
2735
2736 static bool con_sock_closed(struct ceph_connection *con)
2737 {
2738         if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2739                 return false;
2740
2741 #define CASE(x)                                                         \
2742         case CON_STATE_ ## x:                                           \
2743                 con->error_msg = "socket closed (con state " #x ")";    \
2744                 break;
2745
2746         switch (con->state) {
2747         CASE(CLOSED);
2748         CASE(PREOPEN);
2749         CASE(CONNECTING);
2750         CASE(NEGOTIATING);
2751         CASE(OPEN);
2752         CASE(STANDBY);
2753         default:
2754                 pr_warning("%s con %p unrecognized state %lu\n",
2755                         __func__, con, con->state);
2756                 con->error_msg = "unrecognized con state";
2757                 BUG();
2758                 break;
2759         }
2760 #undef CASE
2761
2762         return true;
2763 }
2764
2765 static bool con_backoff(struct ceph_connection *con)
2766 {
2767         int ret;
2768
2769         if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2770                 return false;
2771
2772         ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2773         if (ret) {
2774                 dout("%s: con %p FAILED to back off %lu\n", __func__,
2775                         con, con->delay);
2776                 BUG_ON(ret == -ENOENT);
2777                 con_flag_set(con, CON_FLAG_BACKOFF);
2778         }
2779
2780         return true;
2781 }
2782
2783 /* Finish fault handling; con->mutex must *not* be held here */
2784
2785 static void con_fault_finish(struct ceph_connection *con)
2786 {
2787         /*
2788          * in case we faulted due to authentication, invalidate our
2789          * current tickets so that we can get new ones.
2790          */
2791         if (con->auth_retry && con->ops->invalidate_authorizer) {
2792                 dout("calling invalidate_authorizer()\n");
2793                 con->ops->invalidate_authorizer(con);
2794         }
2795
2796         if (con->ops->fault)
2797                 con->ops->fault(con);
2798 }
2799
2800 /*
2801  * Do some work on a connection.  Drop a connection ref when we're done.
2802  */
2803 static void con_work(struct work_struct *work)
2804 {
2805         struct ceph_connection *con = container_of(work, struct ceph_connection,
2806                                                    work.work);
2807         bool fault;
2808
2809         mutex_lock(&con->mutex);
2810         while (true) {
2811                 int ret;
2812
2813                 if ((fault = con_sock_closed(con))) {
2814                         dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2815                         break;
2816                 }
2817                 if (con_backoff(con)) {
2818                         dout("%s: con %p BACKOFF\n", __func__, con);
2819                         break;
2820                 }
2821                 if (con->state == CON_STATE_STANDBY) {
2822                         dout("%s: con %p STANDBY\n", __func__, con);
2823                         break;
2824                 }
2825                 if (con->state == CON_STATE_CLOSED) {
2826                         dout("%s: con %p CLOSED\n", __func__, con);
2827                         BUG_ON(con->sock);
2828                         break;
2829                 }
2830                 if (con->state == CON_STATE_PREOPEN) {
2831                         dout("%s: con %p PREOPEN\n", __func__, con);
2832                         BUG_ON(con->sock);
2833                 }
2834
2835                 ret = try_read(con);
2836                 if (ret < 0) {
2837                         if (ret == -EAGAIN)
2838                                 continue;
2839                         con->error_msg = "socket error on read";
2840                         fault = true;
2841                         break;
2842                 }
2843
2844                 ret = try_write(con);
2845                 if (ret < 0) {
2846                         if (ret == -EAGAIN)
2847                                 continue;
2848                         con->error_msg = "socket error on write";
2849                         fault = true;
2850                 }
2851
2852                 break;  /* If we make it to here, we're done */
2853         }
2854         if (fault)
2855                 con_fault(con);
2856         mutex_unlock(&con->mutex);
2857
2858         if (fault)
2859                 con_fault_finish(con);
2860
2861         con->ops->put(con);
2862 }
2863
2864 /*
2865  * Generic error/fault handler.  A retry mechanism is used with
2866  * exponential backoff
2867  */
2868 static void con_fault(struct ceph_connection *con)
2869 {
2870         pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2871                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2872         dout("fault %p state %lu to peer %s\n",
2873              con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2874
2875         WARN_ON(con->state != CON_STATE_CONNECTING &&
2876                con->state != CON_STATE_NEGOTIATING &&
2877                con->state != CON_STATE_OPEN);
2878
2879         con_close_socket(con);
2880
2881         if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2882                 dout("fault on LOSSYTX channel, marking CLOSED\n");
2883                 con->state = CON_STATE_CLOSED;
2884                 return;
2885         }
2886
2887         if (con->in_msg) {
2888                 BUG_ON(con->in_msg->con != con);
2889                 con->in_msg->con = NULL;
2890                 ceph_msg_put(con->in_msg);
2891                 con->in_msg = NULL;
2892                 con->ops->put(con);
2893         }
2894
2895         /* Requeue anything that hasn't been acked */
2896         list_splice_init(&con->out_sent, &con->out_queue);
2897
2898         /* If there are no messages queued or keepalive pending, place
2899          * the connection in a STANDBY state */
2900         if (list_empty(&con->out_queue) &&
2901             !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2902                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2903                 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2904                 con->state = CON_STATE_STANDBY;
2905         } else {
2906                 /* retry after a delay. */
2907                 con->state = CON_STATE_PREOPEN;
2908                 if (con->delay == 0)
2909                         con->delay = BASE_DELAY_INTERVAL;
2910                 else if (con->delay < MAX_DELAY_INTERVAL)
2911                         con->delay *= 2;
2912                 con_flag_set(con, CON_FLAG_BACKOFF);
2913                 queue_con(con);
2914         }
2915 }
2916
2917
2918
2919 /*
2920  * initialize a new messenger instance
2921  */
2922 void ceph_messenger_init(struct ceph_messenger *msgr,
2923                         struct ceph_entity_addr *myaddr,
2924                         u32 supported_features,
2925                         u32 required_features,
2926                         bool nocrc)
2927 {
2928         msgr->supported_features = supported_features;
2929         msgr->required_features = required_features;
2930
2931         spin_lock_init(&msgr->global_seq_lock);
2932
2933         if (myaddr)
2934                 msgr->inst.addr = *myaddr;
2935
2936         /* select a random nonce */
2937         msgr->inst.addr.type = 0;
2938         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2939         encode_my_addr(msgr);
2940         msgr->nocrc = nocrc;
2941
2942         atomic_set(&msgr->stopping, 0);
2943
2944         dout("%s %p\n", __func__, msgr);
2945 }
2946 EXPORT_SYMBOL(ceph_messenger_init);
2947
2948 static void clear_standby(struct ceph_connection *con)
2949 {
2950         /* come back from STANDBY? */
2951         if (con->state == CON_STATE_STANDBY) {
2952                 dout("clear_standby %p and ++connect_seq\n", con);
2953                 con->state = CON_STATE_PREOPEN;
2954                 con->connect_seq++;
2955                 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2956                 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2957         }
2958 }
2959
2960 /*
2961  * Queue up an outgoing message on the given connection.
2962  */
2963 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2964 {
2965         /* set src+dst */
2966         msg->hdr.src = con->msgr->inst.name;
2967         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2968         msg->needs_out_seq = true;
2969
2970         mutex_lock(&con->mutex);
2971
2972         if (con->state == CON_STATE_CLOSED) {
2973                 dout("con_send %p closed, dropping %p\n", con, msg);
2974                 ceph_msg_put(msg);
2975                 mutex_unlock(&con->mutex);
2976                 return;
2977         }
2978
2979         BUG_ON(msg->con != NULL);
2980         msg->con = con->ops->get(con);
2981         BUG_ON(msg->con == NULL);
2982
2983         BUG_ON(!list_empty(&msg->list_head));
2984         list_add_tail(&msg->list_head, &con->out_queue);
2985         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2986              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2987              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2988              le32_to_cpu(msg->hdr.front_len),
2989              le32_to_cpu(msg->hdr.middle_len),
2990              le32_to_cpu(msg->hdr.data_len));
2991
2992         clear_standby(con);
2993         mutex_unlock(&con->mutex);
2994
2995         /* if there wasn't anything waiting to send before, queue
2996          * new work */
2997         if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2998                 queue_con(con);
2999 }
3000 EXPORT_SYMBOL(ceph_con_send);
3001
3002 /*
3003  * Revoke a message that was previously queued for send
3004  */
3005 void ceph_msg_revoke(struct ceph_msg *msg)
3006 {
3007         struct ceph_connection *con = msg->con;
3008
3009         if (!con)
3010                 return;         /* Message not in our possession */
3011
3012         mutex_lock(&con->mutex);
3013         if (!list_empty(&msg->list_head)) {
3014                 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3015                 list_del_init(&msg->list_head);
3016                 BUG_ON(msg->con == NULL);
3017                 msg->con->ops->put(msg->con);
3018                 msg->con = NULL;
3019                 msg->hdr.seq = 0;
3020
3021                 ceph_msg_put(msg);
3022         }
3023         if (con->out_msg == msg) {
3024                 dout("%s %p msg %p - was sending\n", __func__, con, msg);
3025                 con->out_msg = NULL;
3026                 if (con->out_kvec_is_msg) {
3027                         con->out_skip = con->out_kvec_bytes;
3028                         con->out_kvec_is_msg = false;
3029                 }
3030                 msg->hdr.seq = 0;
3031
3032                 ceph_msg_put(msg);
3033         }
3034         mutex_unlock(&con->mutex);
3035 }
3036
3037 /*
3038  * Revoke a message that we may be reading data into
3039  */
3040 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3041 {
3042         struct ceph_connection *con;
3043
3044         BUG_ON(msg == NULL);
3045         if (!msg->con) {
3046                 dout("%s msg %p null con\n", __func__, msg);
3047
3048                 return;         /* Message not in our possession */
3049         }
3050
3051         con = msg->con;
3052         mutex_lock(&con->mutex);
3053         if (con->in_msg == msg) {
3054                 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3055                 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3056                 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3057
3058                 /* skip rest of message */
3059                 dout("%s %p msg %p revoked\n", __func__, con, msg);
3060                 con->in_base_pos = con->in_base_pos -
3061                                 sizeof(struct ceph_msg_header) -
3062                                 front_len -
3063                                 middle_len -
3064                                 data_len -
3065                                 sizeof(struct ceph_msg_footer);
3066                 ceph_msg_put(con->in_msg);
3067                 con->in_msg = NULL;
3068                 con->in_tag = CEPH_MSGR_TAG_READY;
3069                 con->in_seq++;
3070         } else {
3071                 dout("%s %p in_msg %p msg %p no-op\n",
3072                      __func__, con, con->in_msg, msg);
3073         }
3074         mutex_unlock(&con->mutex);
3075 }
3076
3077 /*
3078  * Queue a keepalive byte to ensure the tcp connection is alive.
3079  */
3080 void ceph_con_keepalive(struct ceph_connection *con)
3081 {
3082         dout("con_keepalive %p\n", con);
3083         mutex_lock(&con->mutex);
3084         clear_standby(con);
3085         mutex_unlock(&con->mutex);
3086         if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3087             con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3088                 queue_con(con);
3089 }
3090 EXPORT_SYMBOL(ceph_con_keepalive);
3091
3092 static void ceph_msg_data_init(struct ceph_msg_data *data)
3093 {
3094         data->type = CEPH_MSG_DATA_NONE;
3095 }
3096
3097 void ceph_msg_data_set_pages(struct ceph_msg *msg, struct page **pages,
3098                 size_t length, size_t alignment)
3099 {
3100         BUG_ON(!pages);
3101         BUG_ON(!length);
3102         BUG_ON(msg->p.type != CEPH_MSG_DATA_NONE);
3103
3104         msg->p.type = CEPH_MSG_DATA_PAGES;
3105         msg->p.pages = pages;
3106         msg->p.length = length;
3107         msg->p.alignment = alignment & ~PAGE_MASK;
3108 }
3109 EXPORT_SYMBOL(ceph_msg_data_set_pages);
3110
3111 void ceph_msg_data_set_pagelist(struct ceph_msg *msg,
3112                                 struct ceph_pagelist *pagelist)
3113 {
3114         BUG_ON(!pagelist);
3115         BUG_ON(!pagelist->length);
3116         BUG_ON(msg->l.type != CEPH_MSG_DATA_NONE);
3117
3118         msg->l.type = CEPH_MSG_DATA_PAGELIST;
3119         msg->l.pagelist = pagelist;
3120 }
3121 EXPORT_SYMBOL(ceph_msg_data_set_pagelist);
3122
3123 void ceph_msg_data_set_bio(struct ceph_msg *msg, struct bio *bio)
3124 {
3125         BUG_ON(!bio);
3126         BUG_ON(msg->b.type != CEPH_MSG_DATA_NONE);
3127
3128         msg->b.type = CEPH_MSG_DATA_BIO;
3129         msg->b.bio = bio;
3130 }
3131 EXPORT_SYMBOL(ceph_msg_data_set_bio);
3132
3133 /*
3134  * construct a new message with given type, size
3135  * the new msg has a ref count of 1.
3136  */
3137 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3138                               bool can_fail)
3139 {
3140         struct ceph_msg *m;
3141
3142         m = kzalloc(sizeof(*m), flags);
3143         if (m == NULL)
3144                 goto out;
3145
3146         m->hdr.type = cpu_to_le16(type);
3147         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3148         m->hdr.front_len = cpu_to_le32(front_len);
3149
3150         INIT_LIST_HEAD(&m->list_head);
3151         kref_init(&m->kref);
3152
3153         ceph_msg_data_init(&m->p);
3154         ceph_msg_data_init(&m->l);
3155         ceph_msg_data_init(&m->b);
3156
3157         /* front */
3158         m->front_max = front_len;
3159         if (front_len) {
3160                 if (front_len > PAGE_CACHE_SIZE) {
3161                         m->front.iov_base = __vmalloc(front_len, flags,
3162                                                       PAGE_KERNEL);
3163                         m->front_is_vmalloc = true;
3164                 } else {
3165                         m->front.iov_base = kmalloc(front_len, flags);
3166                 }
3167                 if (m->front.iov_base == NULL) {
3168                         dout("ceph_msg_new can't allocate %d bytes\n",
3169                              front_len);
3170                         goto out2;
3171                 }
3172         } else {
3173                 m->front.iov_base = NULL;
3174         }
3175         m->front.iov_len = front_len;
3176
3177         dout("ceph_msg_new %p front %d\n", m, front_len);
3178         return m;
3179
3180 out2:
3181         ceph_msg_put(m);
3182 out:
3183         if (!can_fail) {
3184                 pr_err("msg_new can't create type %d front %d\n", type,
3185                        front_len);
3186                 WARN_ON(1);
3187         } else {
3188                 dout("msg_new can't create type %d front %d\n", type,
3189                      front_len);
3190         }
3191         return NULL;
3192 }
3193 EXPORT_SYMBOL(ceph_msg_new);
3194
3195 /*
3196  * Allocate "middle" portion of a message, if it is needed and wasn't
3197  * allocated by alloc_msg.  This allows us to read a small fixed-size
3198  * per-type header in the front and then gracefully fail (i.e.,
3199  * propagate the error to the caller based on info in the front) when
3200  * the middle is too large.
3201  */
3202 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3203 {
3204         int type = le16_to_cpu(msg->hdr.type);
3205         int middle_len = le32_to_cpu(msg->hdr.middle_len);
3206
3207         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3208              ceph_msg_type_name(type), middle_len);
3209         BUG_ON(!middle_len);
3210         BUG_ON(msg->middle);
3211
3212         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3213         if (!msg->middle)
3214                 return -ENOMEM;
3215         return 0;
3216 }
3217
3218 /*
3219  * Allocate a message for receiving an incoming message on a
3220  * connection, and save the result in con->in_msg.  Uses the
3221  * connection's private alloc_msg op if available.
3222  *
3223  * Returns 0 on success, or a negative error code.
3224  *
3225  * On success, if we set *skip = 1:
3226  *  - the next message should be skipped and ignored.
3227  *  - con->in_msg == NULL
3228  * or if we set *skip = 0:
3229  *  - con->in_msg is non-null.
3230  * On error (ENOMEM, EAGAIN, ...),
3231  *  - con->in_msg == NULL
3232  */
3233 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3234 {
3235         struct ceph_msg_header *hdr = &con->in_hdr;
3236         int middle_len = le32_to_cpu(hdr->middle_len);
3237         struct ceph_msg *msg;
3238         int ret = 0;
3239
3240         BUG_ON(con->in_msg != NULL);
3241         BUG_ON(!con->ops->alloc_msg);
3242
3243         mutex_unlock(&con->mutex);
3244         msg = con->ops->alloc_msg(con, hdr, skip);
3245         mutex_lock(&con->mutex);
3246         if (con->state != CON_STATE_OPEN) {
3247                 if (msg)
3248                         ceph_msg_put(msg);
3249                 return -EAGAIN;
3250         }
3251         if (msg) {
3252                 BUG_ON(*skip);
3253                 con->in_msg = msg;
3254                 con->in_msg->con = con->ops->get(con);
3255                 BUG_ON(con->in_msg->con == NULL);
3256         } else {
3257                 /*
3258                  * Null message pointer means either we should skip
3259                  * this message or we couldn't allocate memory.  The
3260                  * former is not an error.
3261                  */
3262                 if (*skip)
3263                         return 0;
3264                 con->error_msg = "error allocating memory for incoming message";
3265
3266                 return -ENOMEM;
3267         }
3268         memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3269
3270         if (middle_len && !con->in_msg->middle) {
3271                 ret = ceph_alloc_middle(con, con->in_msg);
3272                 if (ret < 0) {
3273                         ceph_msg_put(con->in_msg);
3274                         con->in_msg = NULL;
3275                 }
3276         }
3277
3278         return ret;
3279 }
3280
3281
3282 /*
3283  * Free a generically kmalloc'd message.
3284  */
3285 void ceph_msg_kfree(struct ceph_msg *m)
3286 {
3287         dout("msg_kfree %p\n", m);
3288         if (m->front_is_vmalloc)
3289                 vfree(m->front.iov_base);
3290         else
3291                 kfree(m->front.iov_base);
3292         kfree(m);
3293 }
3294
3295 /*
3296  * Drop a msg ref.  Destroy as needed.
3297  */
3298 void ceph_msg_last_put(struct kref *kref)
3299 {
3300         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3301
3302         dout("ceph_msg_put last one on %p\n", m);
3303         WARN_ON(!list_empty(&m->list_head));
3304
3305         /* drop middle, data, if any */
3306         if (m->middle) {
3307                 ceph_buffer_put(m->middle);
3308                 m->middle = NULL;
3309         }
3310         if (ceph_msg_has_pages(m)) {
3311                 m->p.length = 0;
3312                 m->p.pages = NULL;
3313                 m->p.type = CEPH_OSD_DATA_TYPE_NONE;
3314         }
3315         if (ceph_msg_has_pagelist(m)) {
3316                 ceph_pagelist_release(m->l.pagelist);
3317                 kfree(m->l.pagelist);
3318                 m->l.pagelist = NULL;
3319                 m->l.type = CEPH_OSD_DATA_TYPE_NONE;
3320         }
3321         if (ceph_msg_has_bio(m)) {
3322                 m->b.bio = NULL;
3323                 m->b.type = CEPH_OSD_DATA_TYPE_NONE;
3324         }
3325
3326         if (m->pool)
3327                 ceph_msgpool_put(m->pool, m);
3328         else
3329                 ceph_msg_kfree(m);
3330 }
3331 EXPORT_SYMBOL(ceph_msg_last_put);
3332
3333 void ceph_msg_dump(struct ceph_msg *msg)
3334 {
3335         pr_debug("msg_dump %p (front_max %d length %zd)\n", msg,
3336                  msg->front_max, msg->p.length);
3337         print_hex_dump(KERN_DEBUG, "header: ",
3338                        DUMP_PREFIX_OFFSET, 16, 1,
3339                        &msg->hdr, sizeof(msg->hdr), true);
3340         print_hex_dump(KERN_DEBUG, " front: ",
3341                        DUMP_PREFIX_OFFSET, 16, 1,
3342                        msg->front.iov_base, msg->front.iov_len, true);
3343         if (msg->middle)
3344                 print_hex_dump(KERN_DEBUG, "middle: ",
3345                                DUMP_PREFIX_OFFSET, 16, 1,
3346                                msg->middle->vec.iov_base,
3347                                msg->middle->vec.iov_len, true);
3348         print_hex_dump(KERN_DEBUG, "footer: ",
3349                        DUMP_PREFIX_OFFSET, 16, 1,
3350                        &msg->footer, sizeof(msg->footer), true);
3351 }
3352 EXPORT_SYMBOL(ceph_msg_dump);