6e2f67816f61d4ccfa3aa580737b69ccc649e1a2
[platform/adaptation/renesas_rcar/renesas_kernel.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22
23 /*
24  * Ceph uses the messenger to exchange ceph_msg messages with other
25  * hosts in the system.  The messenger provides ordered and reliable
26  * delivery.  We tolerate TCP disconnects by reconnecting (with
27  * exponential backoff) in the case of a fault (disconnection, bad
28  * crc, protocol error).  Acks allow sent messages to be discarded by
29  * the sender.
30  */
31
32 /*
33  * We track the state of the socket on a given connection using
34  * values defined below.  The transition to a new socket state is
35  * handled by a function which verifies we aren't coming from an
36  * unexpected state.
37  *
38  *      --------
39  *      | NEW* |  transient initial state
40  *      --------
41  *          | con_sock_state_init()
42  *          v
43  *      ----------
44  *      | CLOSED |  initialized, but no socket (and no
45  *      ----------  TCP connection)
46  *       ^      \
47  *       |       \ con_sock_state_connecting()
48  *       |        ----------------------
49  *       |                              \
50  *       + con_sock_state_closed()       \
51  *       |+---------------------------    \
52  *       | \                          \    \
53  *       |  -----------                \    \
54  *       |  | CLOSING |  socket event;  \    \
55  *       |  -----------  await close     \    \
56  *       |       ^                        \   |
57  *       |       |                         \  |
58  *       |       + con_sock_state_closing() \ |
59  *       |      / \                         | |
60  *       |     /   ---------------          | |
61  *       |    /                   \         v v
62  *       |   /                    --------------
63  *       |  /    -----------------| CONNECTING |  socket created, TCP
64  *       |  |   /                 --------------  connect initiated
65  *       |  |   | con_sock_state_connected()
66  *       |  |   v
67  *      -------------
68  *      | CONNECTED |  TCP connection established
69  *      -------------
70  *
71  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
72  */
73
74 #define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
75 #define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
76 #define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
77 #define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
78 #define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
79
80 /* static tag bytes (protocol control messages) */
81 static char tag_msg = CEPH_MSGR_TAG_MSG;
82 static char tag_ack = CEPH_MSGR_TAG_ACK;
83 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
84
85 #ifdef CONFIG_LOCKDEP
86 static struct lock_class_key socket_class;
87 #endif
88
89 /*
90  * When skipping (ignoring) a block of input we read it into a "skip
91  * buffer," which is this many bytes in size.
92  */
93 #define SKIP_BUF_SIZE   1024
94
95 static void queue_con(struct ceph_connection *con);
96 static void con_work(struct work_struct *);
97 static void ceph_fault(struct ceph_connection *con);
98
99 /*
100  * Nicely render a sockaddr as a string.  An array of formatted
101  * strings is used, to approximate reentrancy.
102  */
103 #define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
104 #define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
105 #define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
106 #define MAX_ADDR_STR_LEN        64      /* 54 is enough */
107
108 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
109 static atomic_t addr_str_seq = ATOMIC_INIT(0);
110
111 static struct page *zero_page;          /* used in certain error cases */
112
113 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
114 {
115         int i;
116         char *s;
117         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
118         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
119
120         i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
121         s = addr_str[i];
122
123         switch (ss->ss_family) {
124         case AF_INET:
125                 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
126                          ntohs(in4->sin_port));
127                 break;
128
129         case AF_INET6:
130                 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
131                          ntohs(in6->sin6_port));
132                 break;
133
134         default:
135                 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
136                          ss->ss_family);
137         }
138
139         return s;
140 }
141 EXPORT_SYMBOL(ceph_pr_addr);
142
143 static void encode_my_addr(struct ceph_messenger *msgr)
144 {
145         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
146         ceph_encode_addr(&msgr->my_enc_addr);
147 }
148
149 /*
150  * work queue for all reading and writing to/from the socket.
151  */
152 static struct workqueue_struct *ceph_msgr_wq;
153
154 void _ceph_msgr_exit(void)
155 {
156         if (ceph_msgr_wq) {
157                 destroy_workqueue(ceph_msgr_wq);
158                 ceph_msgr_wq = NULL;
159         }
160
161         BUG_ON(zero_page == NULL);
162         kunmap(zero_page);
163         page_cache_release(zero_page);
164         zero_page = NULL;
165 }
166
167 int ceph_msgr_init(void)
168 {
169         BUG_ON(zero_page != NULL);
170         zero_page = ZERO_PAGE(0);
171         page_cache_get(zero_page);
172
173         ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
174         if (ceph_msgr_wq)
175                 return 0;
176
177         pr_err("msgr_init failed to create workqueue\n");
178         _ceph_msgr_exit();
179
180         return -ENOMEM;
181 }
182 EXPORT_SYMBOL(ceph_msgr_init);
183
184 void ceph_msgr_exit(void)
185 {
186         BUG_ON(ceph_msgr_wq == NULL);
187
188         _ceph_msgr_exit();
189 }
190 EXPORT_SYMBOL(ceph_msgr_exit);
191
192 void ceph_msgr_flush(void)
193 {
194         flush_workqueue(ceph_msgr_wq);
195 }
196 EXPORT_SYMBOL(ceph_msgr_flush);
197
198 /* Connection socket state transition functions */
199
200 static void con_sock_state_init(struct ceph_connection *con)
201 {
202         int old_state;
203
204         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
205         if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
206                 printk("%s: unexpected old state %d\n", __func__, old_state);
207 }
208
209 static void con_sock_state_connecting(struct ceph_connection *con)
210 {
211         int old_state;
212
213         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
214         if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
215                 printk("%s: unexpected old state %d\n", __func__, old_state);
216 }
217
218 static void con_sock_state_connected(struct ceph_connection *con)
219 {
220         int old_state;
221
222         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
223         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
224                 printk("%s: unexpected old state %d\n", __func__, old_state);
225 }
226
227 static void con_sock_state_closing(struct ceph_connection *con)
228 {
229         int old_state;
230
231         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
232         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
233                         old_state != CON_SOCK_STATE_CONNECTED &&
234                         old_state != CON_SOCK_STATE_CLOSING))
235                 printk("%s: unexpected old state %d\n", __func__, old_state);
236 }
237
238 static void con_sock_state_closed(struct ceph_connection *con)
239 {
240         int old_state;
241
242         old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
243         if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
244                     old_state != CON_SOCK_STATE_CLOSING &&
245                     old_state != CON_SOCK_STATE_CONNECTING))
246                 printk("%s: unexpected old state %d\n", __func__, old_state);
247 }
248
249 /*
250  * socket callback functions
251  */
252
253 /* data available on socket, or listen socket received a connect */
254 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
255 {
256         struct ceph_connection *con = sk->sk_user_data;
257         if (atomic_read(&con->msgr->stopping)) {
258                 return;
259         }
260
261         if (sk->sk_state != TCP_CLOSE_WAIT) {
262                 dout("%s on %p state = %lu, queueing work\n", __func__,
263                      con, con->state);
264                 queue_con(con);
265         }
266 }
267
268 /* socket has buffer space for writing */
269 static void ceph_sock_write_space(struct sock *sk)
270 {
271         struct ceph_connection *con = sk->sk_user_data;
272
273         /* only queue to workqueue if there is data we want to write,
274          * and there is sufficient space in the socket buffer to accept
275          * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
276          * doesn't get called again until try_write() fills the socket
277          * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
278          * and net/core/stream.c:sk_stream_write_space().
279          */
280         if (test_bit(WRITE_PENDING, &con->flags)) {
281                 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
282                         dout("%s %p queueing write work\n", __func__, con);
283                         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
284                         queue_con(con);
285                 }
286         } else {
287                 dout("%s %p nothing to write\n", __func__, con);
288         }
289 }
290
291 /* socket's state has changed */
292 static void ceph_sock_state_change(struct sock *sk)
293 {
294         struct ceph_connection *con = sk->sk_user_data;
295
296         dout("%s %p state = %lu sk_state = %u\n", __func__,
297              con, con->state, sk->sk_state);
298
299         if (test_bit(CLOSED, &con->state))
300                 return;
301
302         switch (sk->sk_state) {
303         case TCP_CLOSE:
304                 dout("%s TCP_CLOSE\n", __func__);
305         case TCP_CLOSE_WAIT:
306                 dout("%s TCP_CLOSE_WAIT\n", __func__);
307                 con_sock_state_closing(con);
308                 set_bit(SOCK_CLOSED, &con->flags);
309                 queue_con(con);
310                 break;
311         case TCP_ESTABLISHED:
312                 dout("%s TCP_ESTABLISHED\n", __func__);
313                 con_sock_state_connected(con);
314                 queue_con(con);
315                 break;
316         default:        /* Everything else is uninteresting */
317                 break;
318         }
319 }
320
321 /*
322  * set up socket callbacks
323  */
324 static void set_sock_callbacks(struct socket *sock,
325                                struct ceph_connection *con)
326 {
327         struct sock *sk = sock->sk;
328         sk->sk_user_data = con;
329         sk->sk_data_ready = ceph_sock_data_ready;
330         sk->sk_write_space = ceph_sock_write_space;
331         sk->sk_state_change = ceph_sock_state_change;
332 }
333
334
335 /*
336  * socket helpers
337  */
338
339 /*
340  * initiate connection to a remote socket.
341  */
342 static int ceph_tcp_connect(struct ceph_connection *con)
343 {
344         struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
345         struct socket *sock;
346         int ret;
347
348         BUG_ON(con->sock);
349         ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
350                                IPPROTO_TCP, &sock);
351         if (ret)
352                 return ret;
353         sock->sk->sk_allocation = GFP_NOFS;
354
355 #ifdef CONFIG_LOCKDEP
356         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
357 #endif
358
359         set_sock_callbacks(sock, con);
360
361         dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
362
363         con_sock_state_connecting(con);
364         ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
365                                  O_NONBLOCK);
366         if (ret == -EINPROGRESS) {
367                 dout("connect %s EINPROGRESS sk_state = %u\n",
368                      ceph_pr_addr(&con->peer_addr.in_addr),
369                      sock->sk->sk_state);
370         } else if (ret < 0) {
371                 pr_err("connect %s error %d\n",
372                        ceph_pr_addr(&con->peer_addr.in_addr), ret);
373                 sock_release(sock);
374                 con->error_msg = "connect error";
375
376                 return ret;
377         }
378         con->sock = sock;
379         return 0;
380 }
381
382 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
383 {
384         struct kvec iov = {buf, len};
385         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
386         int r;
387
388         r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
389         if (r == -EAGAIN)
390                 r = 0;
391         return r;
392 }
393
394 /*
395  * write something.  @more is true if caller will be sending more data
396  * shortly.
397  */
398 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
399                      size_t kvlen, size_t len, int more)
400 {
401         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
402         int r;
403
404         if (more)
405                 msg.msg_flags |= MSG_MORE;
406         else
407                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
408
409         r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
410         if (r == -EAGAIN)
411                 r = 0;
412         return r;
413 }
414
415 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
416                      int offset, size_t size, int more)
417 {
418         int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
419         int ret;
420
421         ret = kernel_sendpage(sock, page, offset, size, flags);
422         if (ret == -EAGAIN)
423                 ret = 0;
424
425         return ret;
426 }
427
428
429 /*
430  * Shutdown/close the socket for the given connection.
431  */
432 static int con_close_socket(struct ceph_connection *con)
433 {
434         int rc;
435
436         dout("con_close_socket on %p sock %p\n", con, con->sock);
437         if (!con->sock)
438                 return 0;
439         rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
440         sock_release(con->sock);
441         con->sock = NULL;
442
443         /*
444          * Forcibly clear the SOCK_CLOSE flag.  It gets set
445          * independent of the connection mutex, and we could have
446          * received a socket close event before we had the chance to
447          * shut the socket down.
448          */
449         clear_bit(SOCK_CLOSED, &con->flags);
450         con_sock_state_closed(con);
451         return rc;
452 }
453
454 /*
455  * Reset a connection.  Discard all incoming and outgoing messages
456  * and clear *_seq state.
457  */
458 static void ceph_msg_remove(struct ceph_msg *msg)
459 {
460         list_del_init(&msg->list_head);
461         BUG_ON(msg->con == NULL);
462         msg->con->ops->put(msg->con);
463         msg->con = NULL;
464
465         ceph_msg_put(msg);
466 }
467 static void ceph_msg_remove_list(struct list_head *head)
468 {
469         while (!list_empty(head)) {
470                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
471                                                         list_head);
472                 ceph_msg_remove(msg);
473         }
474 }
475
476 static void reset_connection(struct ceph_connection *con)
477 {
478         /* reset connection, out_queue, msg_ and connect_seq */
479         /* discard existing out_queue and msg_seq */
480         ceph_msg_remove_list(&con->out_queue);
481         ceph_msg_remove_list(&con->out_sent);
482
483         if (con->in_msg) {
484                 BUG_ON(con->in_msg->con != con);
485                 con->in_msg->con = NULL;
486                 ceph_msg_put(con->in_msg);
487                 con->in_msg = NULL;
488                 con->ops->put(con);
489         }
490
491         con->connect_seq = 0;
492         con->out_seq = 0;
493         if (con->out_msg) {
494                 ceph_msg_put(con->out_msg);
495                 con->out_msg = NULL;
496         }
497         con->in_seq = 0;
498         con->in_seq_acked = 0;
499 }
500
501 /*
502  * mark a peer down.  drop any open connections.
503  */
504 void ceph_con_close(struct ceph_connection *con)
505 {
506         dout("con_close %p peer %s\n", con,
507              ceph_pr_addr(&con->peer_addr.in_addr));
508         clear_bit(NEGOTIATING, &con->state);
509         clear_bit(CONNECTING, &con->state);
510         clear_bit(CONNECTED, &con->state);
511         clear_bit(STANDBY, &con->state);  /* avoid connect_seq bump */
512         set_bit(CLOSED, &con->state);
513
514         clear_bit(LOSSYTX, &con->flags);  /* so we retry next connect */
515         clear_bit(KEEPALIVE_PENDING, &con->flags);
516         clear_bit(WRITE_PENDING, &con->flags);
517
518         mutex_lock(&con->mutex);
519         reset_connection(con);
520         con->peer_global_seq = 0;
521         cancel_delayed_work(&con->work);
522         mutex_unlock(&con->mutex);
523         queue_con(con);
524 }
525 EXPORT_SYMBOL(ceph_con_close);
526
527 /*
528  * Reopen a closed connection, with a new peer address.
529  */
530 void ceph_con_open(struct ceph_connection *con,
531                    __u8 entity_type, __u64 entity_num,
532                    struct ceph_entity_addr *addr)
533 {
534         dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
535         set_bit(OPENING, &con->state);
536         WARN_ON(!test_and_clear_bit(CLOSED, &con->state));
537
538         con->peer_name.type = (__u8) entity_type;
539         con->peer_name.num = cpu_to_le64(entity_num);
540
541         memcpy(&con->peer_addr, addr, sizeof(*addr));
542         con->delay = 0;      /* reset backoff memory */
543         queue_con(con);
544 }
545 EXPORT_SYMBOL(ceph_con_open);
546
547 /*
548  * return true if this connection ever successfully opened
549  */
550 bool ceph_con_opened(struct ceph_connection *con)
551 {
552         return con->connect_seq > 0;
553 }
554
555 /*
556  * initialize a new connection.
557  */
558 void ceph_con_init(struct ceph_connection *con, void *private,
559         const struct ceph_connection_operations *ops,
560         struct ceph_messenger *msgr)
561 {
562         dout("con_init %p\n", con);
563         memset(con, 0, sizeof(*con));
564         con->private = private;
565         con->ops = ops;
566         con->msgr = msgr;
567
568         con_sock_state_init(con);
569
570         mutex_init(&con->mutex);
571         INIT_LIST_HEAD(&con->out_queue);
572         INIT_LIST_HEAD(&con->out_sent);
573         INIT_DELAYED_WORK(&con->work, con_work);
574
575         set_bit(CLOSED, &con->state);
576 }
577 EXPORT_SYMBOL(ceph_con_init);
578
579
580 /*
581  * We maintain a global counter to order connection attempts.  Get
582  * a unique seq greater than @gt.
583  */
584 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
585 {
586         u32 ret;
587
588         spin_lock(&msgr->global_seq_lock);
589         if (msgr->global_seq < gt)
590                 msgr->global_seq = gt;
591         ret = ++msgr->global_seq;
592         spin_unlock(&msgr->global_seq_lock);
593         return ret;
594 }
595
596 static void con_out_kvec_reset(struct ceph_connection *con)
597 {
598         con->out_kvec_left = 0;
599         con->out_kvec_bytes = 0;
600         con->out_kvec_cur = &con->out_kvec[0];
601 }
602
603 static void con_out_kvec_add(struct ceph_connection *con,
604                                 size_t size, void *data)
605 {
606         int index;
607
608         index = con->out_kvec_left;
609         BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
610
611         con->out_kvec[index].iov_len = size;
612         con->out_kvec[index].iov_base = data;
613         con->out_kvec_left++;
614         con->out_kvec_bytes += size;
615 }
616
617 #ifdef CONFIG_BLOCK
618 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
619 {
620         if (!bio) {
621                 *iter = NULL;
622                 *seg = 0;
623                 return;
624         }
625         *iter = bio;
626         *seg = bio->bi_idx;
627 }
628
629 static void iter_bio_next(struct bio **bio_iter, int *seg)
630 {
631         if (*bio_iter == NULL)
632                 return;
633
634         BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
635
636         (*seg)++;
637         if (*seg == (*bio_iter)->bi_vcnt)
638                 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
639 }
640 #endif
641
642 static void prepare_write_message_data(struct ceph_connection *con)
643 {
644         struct ceph_msg *msg = con->out_msg;
645
646         BUG_ON(!msg);
647         BUG_ON(!msg->hdr.data_len);
648
649         /* initialize page iterator */
650         con->out_msg_pos.page = 0;
651         if (msg->pages)
652                 con->out_msg_pos.page_pos = msg->page_alignment;
653         else
654                 con->out_msg_pos.page_pos = 0;
655 #ifdef CONFIG_BLOCK
656         if (msg->bio)
657                 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
658 #endif
659         con->out_msg_pos.data_pos = 0;
660         con->out_msg_pos.did_page_crc = false;
661         con->out_more = 1;  /* data + footer will follow */
662 }
663
664 /*
665  * Prepare footer for currently outgoing message, and finish things
666  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
667  */
668 static void prepare_write_message_footer(struct ceph_connection *con)
669 {
670         struct ceph_msg *m = con->out_msg;
671         int v = con->out_kvec_left;
672
673         m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
674
675         dout("prepare_write_message_footer %p\n", con);
676         con->out_kvec_is_msg = true;
677         con->out_kvec[v].iov_base = &m->footer;
678         con->out_kvec[v].iov_len = sizeof(m->footer);
679         con->out_kvec_bytes += sizeof(m->footer);
680         con->out_kvec_left++;
681         con->out_more = m->more_to_follow;
682         con->out_msg_done = true;
683 }
684
685 /*
686  * Prepare headers for the next outgoing message.
687  */
688 static void prepare_write_message(struct ceph_connection *con)
689 {
690         struct ceph_msg *m;
691         u32 crc;
692
693         con_out_kvec_reset(con);
694         con->out_kvec_is_msg = true;
695         con->out_msg_done = false;
696
697         /* Sneak an ack in there first?  If we can get it into the same
698          * TCP packet that's a good thing. */
699         if (con->in_seq > con->in_seq_acked) {
700                 con->in_seq_acked = con->in_seq;
701                 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
702                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
703                 con_out_kvec_add(con, sizeof (con->out_temp_ack),
704                         &con->out_temp_ack);
705         }
706
707         BUG_ON(list_empty(&con->out_queue));
708         m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
709         con->out_msg = m;
710         BUG_ON(m->con != con);
711
712         /* put message on sent list */
713         ceph_msg_get(m);
714         list_move_tail(&m->list_head, &con->out_sent);
715
716         /*
717          * only assign outgoing seq # if we haven't sent this message
718          * yet.  if it is requeued, resend with it's original seq.
719          */
720         if (m->needs_out_seq) {
721                 m->hdr.seq = cpu_to_le64(++con->out_seq);
722                 m->needs_out_seq = false;
723         }
724
725         dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
726              m, con->out_seq, le16_to_cpu(m->hdr.type),
727              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
728              le32_to_cpu(m->hdr.data_len),
729              m->nr_pages);
730         BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
731
732         /* tag + hdr + front + middle */
733         con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
734         con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
735         con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
736
737         if (m->middle)
738                 con_out_kvec_add(con, m->middle->vec.iov_len,
739                         m->middle->vec.iov_base);
740
741         /* fill in crc (except data pages), footer */
742         crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
743         con->out_msg->hdr.crc = cpu_to_le32(crc);
744         con->out_msg->footer.flags = 0;
745
746         crc = crc32c(0, m->front.iov_base, m->front.iov_len);
747         con->out_msg->footer.front_crc = cpu_to_le32(crc);
748         if (m->middle) {
749                 crc = crc32c(0, m->middle->vec.iov_base,
750                                 m->middle->vec.iov_len);
751                 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
752         } else
753                 con->out_msg->footer.middle_crc = 0;
754         dout("%s front_crc %u middle_crc %u\n", __func__,
755              le32_to_cpu(con->out_msg->footer.front_crc),
756              le32_to_cpu(con->out_msg->footer.middle_crc));
757
758         /* is there a data payload? */
759         con->out_msg->footer.data_crc = 0;
760         if (m->hdr.data_len)
761                 prepare_write_message_data(con);
762         else
763                 /* no, queue up footer too and be done */
764                 prepare_write_message_footer(con);
765
766         set_bit(WRITE_PENDING, &con->flags);
767 }
768
769 /*
770  * Prepare an ack.
771  */
772 static void prepare_write_ack(struct ceph_connection *con)
773 {
774         dout("prepare_write_ack %p %llu -> %llu\n", con,
775              con->in_seq_acked, con->in_seq);
776         con->in_seq_acked = con->in_seq;
777
778         con_out_kvec_reset(con);
779
780         con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
781
782         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
783         con_out_kvec_add(con, sizeof (con->out_temp_ack),
784                                 &con->out_temp_ack);
785
786         con->out_more = 1;  /* more will follow.. eventually.. */
787         set_bit(WRITE_PENDING, &con->flags);
788 }
789
790 /*
791  * Prepare to write keepalive byte.
792  */
793 static void prepare_write_keepalive(struct ceph_connection *con)
794 {
795         dout("prepare_write_keepalive %p\n", con);
796         con_out_kvec_reset(con);
797         con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
798         set_bit(WRITE_PENDING, &con->flags);
799 }
800
801 /*
802  * Connection negotiation.
803  */
804
805 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
806                                                 int *auth_proto)
807 {
808         struct ceph_auth_handshake *auth;
809
810         if (!con->ops->get_authorizer) {
811                 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
812                 con->out_connect.authorizer_len = 0;
813
814                 return NULL;
815         }
816
817         /* Can't hold the mutex while getting authorizer */
818
819         mutex_unlock(&con->mutex);
820
821         auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
822
823         mutex_lock(&con->mutex);
824
825         if (IS_ERR(auth))
826                 return auth;
827         if (test_bit(CLOSED, &con->state) || test_bit(OPENING, &con->flags))
828                 return ERR_PTR(-EAGAIN);
829
830         con->auth_reply_buf = auth->authorizer_reply_buf;
831         con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
832
833
834         return auth;
835 }
836
837 /*
838  * We connected to a peer and are saying hello.
839  */
840 static void prepare_write_banner(struct ceph_connection *con)
841 {
842         con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
843         con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
844                                         &con->msgr->my_enc_addr);
845
846         con->out_more = 0;
847         set_bit(WRITE_PENDING, &con->flags);
848 }
849
850 static int prepare_write_connect(struct ceph_connection *con)
851 {
852         unsigned int global_seq = get_global_seq(con->msgr, 0);
853         int proto;
854         int auth_proto;
855         struct ceph_auth_handshake *auth;
856
857         switch (con->peer_name.type) {
858         case CEPH_ENTITY_TYPE_MON:
859                 proto = CEPH_MONC_PROTOCOL;
860                 break;
861         case CEPH_ENTITY_TYPE_OSD:
862                 proto = CEPH_OSDC_PROTOCOL;
863                 break;
864         case CEPH_ENTITY_TYPE_MDS:
865                 proto = CEPH_MDSC_PROTOCOL;
866                 break;
867         default:
868                 BUG();
869         }
870
871         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
872              con->connect_seq, global_seq, proto);
873
874         con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
875         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
876         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
877         con->out_connect.global_seq = cpu_to_le32(global_seq);
878         con->out_connect.protocol_version = cpu_to_le32(proto);
879         con->out_connect.flags = 0;
880
881         auth_proto = CEPH_AUTH_UNKNOWN;
882         auth = get_connect_authorizer(con, &auth_proto);
883         if (IS_ERR(auth))
884                 return PTR_ERR(auth);
885
886         con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
887         con->out_connect.authorizer_len = auth ?
888                 cpu_to_le32(auth->authorizer_buf_len) : 0;
889
890         con_out_kvec_reset(con);
891         con_out_kvec_add(con, sizeof (con->out_connect),
892                                         &con->out_connect);
893         if (auth && auth->authorizer_buf_len)
894                 con_out_kvec_add(con, auth->authorizer_buf_len,
895                                         auth->authorizer_buf);
896
897         con->out_more = 0;
898         set_bit(WRITE_PENDING, &con->flags);
899
900         return 0;
901 }
902
903 /*
904  * write as much of pending kvecs to the socket as we can.
905  *  1 -> done
906  *  0 -> socket full, but more to do
907  * <0 -> error
908  */
909 static int write_partial_kvec(struct ceph_connection *con)
910 {
911         int ret;
912
913         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
914         while (con->out_kvec_bytes > 0) {
915                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
916                                        con->out_kvec_left, con->out_kvec_bytes,
917                                        con->out_more);
918                 if (ret <= 0)
919                         goto out;
920                 con->out_kvec_bytes -= ret;
921                 if (con->out_kvec_bytes == 0)
922                         break;            /* done */
923
924                 /* account for full iov entries consumed */
925                 while (ret >= con->out_kvec_cur->iov_len) {
926                         BUG_ON(!con->out_kvec_left);
927                         ret -= con->out_kvec_cur->iov_len;
928                         con->out_kvec_cur++;
929                         con->out_kvec_left--;
930                 }
931                 /* and for a partially-consumed entry */
932                 if (ret) {
933                         con->out_kvec_cur->iov_len -= ret;
934                         con->out_kvec_cur->iov_base += ret;
935                 }
936         }
937         con->out_kvec_left = 0;
938         con->out_kvec_is_msg = false;
939         ret = 1;
940 out:
941         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
942              con->out_kvec_bytes, con->out_kvec_left, ret);
943         return ret;  /* done! */
944 }
945
946 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
947                         size_t len, size_t sent, bool in_trail)
948 {
949         struct ceph_msg *msg = con->out_msg;
950
951         BUG_ON(!msg);
952         BUG_ON(!sent);
953
954         con->out_msg_pos.data_pos += sent;
955         con->out_msg_pos.page_pos += sent;
956         if (sent < len)
957                 return;
958
959         BUG_ON(sent != len);
960         con->out_msg_pos.page_pos = 0;
961         con->out_msg_pos.page++;
962         con->out_msg_pos.did_page_crc = false;
963         if (in_trail)
964                 list_move_tail(&page->lru,
965                                &msg->trail->head);
966         else if (msg->pagelist)
967                 list_move_tail(&page->lru,
968                                &msg->pagelist->head);
969 #ifdef CONFIG_BLOCK
970         else if (msg->bio)
971                 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
972 #endif
973 }
974
975 /*
976  * Write as much message data payload as we can.  If we finish, queue
977  * up the footer.
978  *  1 -> done, footer is now queued in out_kvec[].
979  *  0 -> socket full, but more to do
980  * <0 -> error
981  */
982 static int write_partial_msg_pages(struct ceph_connection *con)
983 {
984         struct ceph_msg *msg = con->out_msg;
985         unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
986         size_t len;
987         bool do_datacrc = !con->msgr->nocrc;
988         int ret;
989         int total_max_write;
990         bool in_trail = false;
991         const size_t trail_len = (msg->trail ? msg->trail->length : 0);
992         const size_t trail_off = data_len - trail_len;
993
994         dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
995              con, msg, con->out_msg_pos.page, msg->nr_pages,
996              con->out_msg_pos.page_pos);
997
998         /*
999          * Iterate through each page that contains data to be
1000          * written, and send as much as possible for each.
1001          *
1002          * If we are calculating the data crc (the default), we will
1003          * need to map the page.  If we have no pages, they have
1004          * been revoked, so use the zero page.
1005          */
1006         while (data_len > con->out_msg_pos.data_pos) {
1007                 struct page *page = NULL;
1008                 int max_write = PAGE_SIZE;
1009                 int bio_offset = 0;
1010
1011                 in_trail = in_trail || con->out_msg_pos.data_pos >= trail_off;
1012                 if (!in_trail)
1013                         total_max_write = trail_off - con->out_msg_pos.data_pos;
1014
1015                 if (in_trail) {
1016                         total_max_write = data_len - con->out_msg_pos.data_pos;
1017
1018                         page = list_first_entry(&msg->trail->head,
1019                                                 struct page, lru);
1020                 } else if (msg->pages) {
1021                         page = msg->pages[con->out_msg_pos.page];
1022                 } else if (msg->pagelist) {
1023                         page = list_first_entry(&msg->pagelist->head,
1024                                                 struct page, lru);
1025 #ifdef CONFIG_BLOCK
1026                 } else if (msg->bio) {
1027                         struct bio_vec *bv;
1028
1029                         bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
1030                         page = bv->bv_page;
1031                         bio_offset = bv->bv_offset;
1032                         max_write = bv->bv_len;
1033 #endif
1034                 } else {
1035                         page = zero_page;
1036                 }
1037                 len = min_t(int, max_write - con->out_msg_pos.page_pos,
1038                             total_max_write);
1039
1040                 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
1041                         void *base;
1042                         u32 crc = le32_to_cpu(msg->footer.data_crc);
1043                         char *kaddr;
1044
1045                         kaddr = kmap(page);
1046                         BUG_ON(kaddr == NULL);
1047                         base = kaddr + con->out_msg_pos.page_pos + bio_offset;
1048                         crc = crc32c(crc, base, len);
1049                         msg->footer.data_crc = cpu_to_le32(crc);
1050                         con->out_msg_pos.did_page_crc = true;
1051                 }
1052                 ret = ceph_tcp_sendpage(con->sock, page,
1053                                       con->out_msg_pos.page_pos + bio_offset,
1054                                       len, 1);
1055
1056                 if (do_datacrc)
1057                         kunmap(page);
1058
1059                 if (ret <= 0)
1060                         goto out;
1061
1062                 out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
1063         }
1064
1065         dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1066
1067         /* prepare and queue up footer, too */
1068         if (!do_datacrc)
1069                 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1070         con_out_kvec_reset(con);
1071         prepare_write_message_footer(con);
1072         ret = 1;
1073 out:
1074         return ret;
1075 }
1076
1077 /*
1078  * write some zeros
1079  */
1080 static int write_partial_skip(struct ceph_connection *con)
1081 {
1082         int ret;
1083
1084         while (con->out_skip > 0) {
1085                 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1086
1087                 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1088                 if (ret <= 0)
1089                         goto out;
1090                 con->out_skip -= ret;
1091         }
1092         ret = 1;
1093 out:
1094         return ret;
1095 }
1096
1097 /*
1098  * Prepare to read connection handshake, or an ack.
1099  */
1100 static void prepare_read_banner(struct ceph_connection *con)
1101 {
1102         dout("prepare_read_banner %p\n", con);
1103         con->in_base_pos = 0;
1104 }
1105
1106 static void prepare_read_connect(struct ceph_connection *con)
1107 {
1108         dout("prepare_read_connect %p\n", con);
1109         con->in_base_pos = 0;
1110 }
1111
1112 static void prepare_read_ack(struct ceph_connection *con)
1113 {
1114         dout("prepare_read_ack %p\n", con);
1115         con->in_base_pos = 0;
1116 }
1117
1118 static void prepare_read_tag(struct ceph_connection *con)
1119 {
1120         dout("prepare_read_tag %p\n", con);
1121         con->in_base_pos = 0;
1122         con->in_tag = CEPH_MSGR_TAG_READY;
1123 }
1124
1125 /*
1126  * Prepare to read a message.
1127  */
1128 static int prepare_read_message(struct ceph_connection *con)
1129 {
1130         dout("prepare_read_message %p\n", con);
1131         BUG_ON(con->in_msg != NULL);
1132         con->in_base_pos = 0;
1133         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1134         return 0;
1135 }
1136
1137
1138 static int read_partial(struct ceph_connection *con,
1139                         int end, int size, void *object)
1140 {
1141         while (con->in_base_pos < end) {
1142                 int left = end - con->in_base_pos;
1143                 int have = size - left;
1144                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1145                 if (ret <= 0)
1146                         return ret;
1147                 con->in_base_pos += ret;
1148         }
1149         return 1;
1150 }
1151
1152
1153 /*
1154  * Read all or part of the connect-side handshake on a new connection
1155  */
1156 static int read_partial_banner(struct ceph_connection *con)
1157 {
1158         int size;
1159         int end;
1160         int ret;
1161
1162         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1163
1164         /* peer's banner */
1165         size = strlen(CEPH_BANNER);
1166         end = size;
1167         ret = read_partial(con, end, size, con->in_banner);
1168         if (ret <= 0)
1169                 goto out;
1170
1171         size = sizeof (con->actual_peer_addr);
1172         end += size;
1173         ret = read_partial(con, end, size, &con->actual_peer_addr);
1174         if (ret <= 0)
1175                 goto out;
1176
1177         size = sizeof (con->peer_addr_for_me);
1178         end += size;
1179         ret = read_partial(con, end, size, &con->peer_addr_for_me);
1180         if (ret <= 0)
1181                 goto out;
1182
1183 out:
1184         return ret;
1185 }
1186
1187 static int read_partial_connect(struct ceph_connection *con)
1188 {
1189         int size;
1190         int end;
1191         int ret;
1192
1193         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1194
1195         size = sizeof (con->in_reply);
1196         end = size;
1197         ret = read_partial(con, end, size, &con->in_reply);
1198         if (ret <= 0)
1199                 goto out;
1200
1201         size = le32_to_cpu(con->in_reply.authorizer_len);
1202         end += size;
1203         ret = read_partial(con, end, size, con->auth_reply_buf);
1204         if (ret <= 0)
1205                 goto out;
1206
1207         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1208              con, (int)con->in_reply.tag,
1209              le32_to_cpu(con->in_reply.connect_seq),
1210              le32_to_cpu(con->in_reply.global_seq));
1211 out:
1212         return ret;
1213
1214 }
1215
1216 /*
1217  * Verify the hello banner looks okay.
1218  */
1219 static int verify_hello(struct ceph_connection *con)
1220 {
1221         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1222                 pr_err("connect to %s got bad banner\n",
1223                        ceph_pr_addr(&con->peer_addr.in_addr));
1224                 con->error_msg = "protocol error, bad banner";
1225                 return -1;
1226         }
1227         return 0;
1228 }
1229
1230 static bool addr_is_blank(struct sockaddr_storage *ss)
1231 {
1232         switch (ss->ss_family) {
1233         case AF_INET:
1234                 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1235         case AF_INET6:
1236                 return
1237                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1238                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1239                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1240                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1241         }
1242         return false;
1243 }
1244
1245 static int addr_port(struct sockaddr_storage *ss)
1246 {
1247         switch (ss->ss_family) {
1248         case AF_INET:
1249                 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1250         case AF_INET6:
1251                 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1252         }
1253         return 0;
1254 }
1255
1256 static void addr_set_port(struct sockaddr_storage *ss, int p)
1257 {
1258         switch (ss->ss_family) {
1259         case AF_INET:
1260                 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1261                 break;
1262         case AF_INET6:
1263                 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1264                 break;
1265         }
1266 }
1267
1268 /*
1269  * Unlike other *_pton function semantics, zero indicates success.
1270  */
1271 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1272                 char delim, const char **ipend)
1273 {
1274         struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1275         struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1276
1277         memset(ss, 0, sizeof(*ss));
1278
1279         if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1280                 ss->ss_family = AF_INET;
1281                 return 0;
1282         }
1283
1284         if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1285                 ss->ss_family = AF_INET6;
1286                 return 0;
1287         }
1288
1289         return -EINVAL;
1290 }
1291
1292 /*
1293  * Extract hostname string and resolve using kernel DNS facility.
1294  */
1295 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1296 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1297                 struct sockaddr_storage *ss, char delim, const char **ipend)
1298 {
1299         const char *end, *delim_p;
1300         char *colon_p, *ip_addr = NULL;
1301         int ip_len, ret;
1302
1303         /*
1304          * The end of the hostname occurs immediately preceding the delimiter or
1305          * the port marker (':') where the delimiter takes precedence.
1306          */
1307         delim_p = memchr(name, delim, namelen);
1308         colon_p = memchr(name, ':', namelen);
1309
1310         if (delim_p && colon_p)
1311                 end = delim_p < colon_p ? delim_p : colon_p;
1312         else if (!delim_p && colon_p)
1313                 end = colon_p;
1314         else {
1315                 end = delim_p;
1316                 if (!end) /* case: hostname:/ */
1317                         end = name + namelen;
1318         }
1319
1320         if (end <= name)
1321                 return -EINVAL;
1322
1323         /* do dns_resolve upcall */
1324         ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1325         if (ip_len > 0)
1326                 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1327         else
1328                 ret = -ESRCH;
1329
1330         kfree(ip_addr);
1331
1332         *ipend = end;
1333
1334         pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1335                         ret, ret ? "failed" : ceph_pr_addr(ss));
1336
1337         return ret;
1338 }
1339 #else
1340 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1341                 struct sockaddr_storage *ss, char delim, const char **ipend)
1342 {
1343         return -EINVAL;
1344 }
1345 #endif
1346
1347 /*
1348  * Parse a server name (IP or hostname). If a valid IP address is not found
1349  * then try to extract a hostname to resolve using userspace DNS upcall.
1350  */
1351 static int ceph_parse_server_name(const char *name, size_t namelen,
1352                         struct sockaddr_storage *ss, char delim, const char **ipend)
1353 {
1354         int ret;
1355
1356         ret = ceph_pton(name, namelen, ss, delim, ipend);
1357         if (ret)
1358                 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1359
1360         return ret;
1361 }
1362
1363 /*
1364  * Parse an ip[:port] list into an addr array.  Use the default
1365  * monitor port if a port isn't specified.
1366  */
1367 int ceph_parse_ips(const char *c, const char *end,
1368                    struct ceph_entity_addr *addr,
1369                    int max_count, int *count)
1370 {
1371         int i, ret = -EINVAL;
1372         const char *p = c;
1373
1374         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1375         for (i = 0; i < max_count; i++) {
1376                 const char *ipend;
1377                 struct sockaddr_storage *ss = &addr[i].in_addr;
1378                 int port;
1379                 char delim = ',';
1380
1381                 if (*p == '[') {
1382                         delim = ']';
1383                         p++;
1384                 }
1385
1386                 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1387                 if (ret)
1388                         goto bad;
1389                 ret = -EINVAL;
1390
1391                 p = ipend;
1392
1393                 if (delim == ']') {
1394                         if (*p != ']') {
1395                                 dout("missing matching ']'\n");
1396                                 goto bad;
1397                         }
1398                         p++;
1399                 }
1400
1401                 /* port? */
1402                 if (p < end && *p == ':') {
1403                         port = 0;
1404                         p++;
1405                         while (p < end && *p >= '0' && *p <= '9') {
1406                                 port = (port * 10) + (*p - '0');
1407                                 p++;
1408                         }
1409                         if (port > 65535 || port == 0)
1410                                 goto bad;
1411                 } else {
1412                         port = CEPH_MON_PORT;
1413                 }
1414
1415                 addr_set_port(ss, port);
1416
1417                 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1418
1419                 if (p == end)
1420                         break;
1421                 if (*p != ',')
1422                         goto bad;
1423                 p++;
1424         }
1425
1426         if (p != end)
1427                 goto bad;
1428
1429         if (count)
1430                 *count = i + 1;
1431         return 0;
1432
1433 bad:
1434         pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1435         return ret;
1436 }
1437 EXPORT_SYMBOL(ceph_parse_ips);
1438
1439 static int process_banner(struct ceph_connection *con)
1440 {
1441         dout("process_banner on %p\n", con);
1442
1443         if (verify_hello(con) < 0)
1444                 return -1;
1445
1446         ceph_decode_addr(&con->actual_peer_addr);
1447         ceph_decode_addr(&con->peer_addr_for_me);
1448
1449         /*
1450          * Make sure the other end is who we wanted.  note that the other
1451          * end may not yet know their ip address, so if it's 0.0.0.0, give
1452          * them the benefit of the doubt.
1453          */
1454         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1455                    sizeof(con->peer_addr)) != 0 &&
1456             !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1457               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1458                 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1459                            ceph_pr_addr(&con->peer_addr.in_addr),
1460                            (int)le32_to_cpu(con->peer_addr.nonce),
1461                            ceph_pr_addr(&con->actual_peer_addr.in_addr),
1462                            (int)le32_to_cpu(con->actual_peer_addr.nonce));
1463                 con->error_msg = "wrong peer at address";
1464                 return -1;
1465         }
1466
1467         /*
1468          * did we learn our address?
1469          */
1470         if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1471                 int port = addr_port(&con->msgr->inst.addr.in_addr);
1472
1473                 memcpy(&con->msgr->inst.addr.in_addr,
1474                        &con->peer_addr_for_me.in_addr,
1475                        sizeof(con->peer_addr_for_me.in_addr));
1476                 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1477                 encode_my_addr(con->msgr);
1478                 dout("process_banner learned my addr is %s\n",
1479                      ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1480         }
1481
1482         return 0;
1483 }
1484
1485 static void fail_protocol(struct ceph_connection *con)
1486 {
1487         reset_connection(con);
1488         set_bit(CLOSED, &con->state);  /* in case there's queued work */
1489 }
1490
1491 static int process_connect(struct ceph_connection *con)
1492 {
1493         u64 sup_feat = con->msgr->supported_features;
1494         u64 req_feat = con->msgr->required_features;
1495         u64 server_feat = le64_to_cpu(con->in_reply.features);
1496         int ret;
1497
1498         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1499
1500         switch (con->in_reply.tag) {
1501         case CEPH_MSGR_TAG_FEATURES:
1502                 pr_err("%s%lld %s feature set mismatch,"
1503                        " my %llx < server's %llx, missing %llx\n",
1504                        ENTITY_NAME(con->peer_name),
1505                        ceph_pr_addr(&con->peer_addr.in_addr),
1506                        sup_feat, server_feat, server_feat & ~sup_feat);
1507                 con->error_msg = "missing required protocol features";
1508                 fail_protocol(con);
1509                 return -1;
1510
1511         case CEPH_MSGR_TAG_BADPROTOVER:
1512                 pr_err("%s%lld %s protocol version mismatch,"
1513                        " my %d != server's %d\n",
1514                        ENTITY_NAME(con->peer_name),
1515                        ceph_pr_addr(&con->peer_addr.in_addr),
1516                        le32_to_cpu(con->out_connect.protocol_version),
1517                        le32_to_cpu(con->in_reply.protocol_version));
1518                 con->error_msg = "protocol version mismatch";
1519                 fail_protocol(con);
1520                 return -1;
1521
1522         case CEPH_MSGR_TAG_BADAUTHORIZER:
1523                 con->auth_retry++;
1524                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1525                      con->auth_retry);
1526                 if (con->auth_retry == 2) {
1527                         con->error_msg = "connect authorization failure";
1528                         return -1;
1529                 }
1530                 con->auth_retry = 1;
1531                 ret = prepare_write_connect(con);
1532                 if (ret < 0)
1533                         return ret;
1534                 prepare_read_connect(con);
1535                 break;
1536
1537         case CEPH_MSGR_TAG_RESETSESSION:
1538                 /*
1539                  * If we connected with a large connect_seq but the peer
1540                  * has no record of a session with us (no connection, or
1541                  * connect_seq == 0), they will send RESETSESION to indicate
1542                  * that they must have reset their session, and may have
1543                  * dropped messages.
1544                  */
1545                 dout("process_connect got RESET peer seq %u\n",
1546                      le32_to_cpu(con->in_reply.connect_seq));
1547                 pr_err("%s%lld %s connection reset\n",
1548                        ENTITY_NAME(con->peer_name),
1549                        ceph_pr_addr(&con->peer_addr.in_addr));
1550                 reset_connection(con);
1551                 ret = prepare_write_connect(con);
1552                 if (ret < 0)
1553                         return ret;
1554                 prepare_read_connect(con);
1555
1556                 /* Tell ceph about it. */
1557                 mutex_unlock(&con->mutex);
1558                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1559                 if (con->ops->peer_reset)
1560                         con->ops->peer_reset(con);
1561                 mutex_lock(&con->mutex);
1562                 if (test_bit(CLOSED, &con->state) ||
1563                     test_bit(OPENING, &con->state))
1564                         return -EAGAIN;
1565                 break;
1566
1567         case CEPH_MSGR_TAG_RETRY_SESSION:
1568                 /*
1569                  * If we sent a smaller connect_seq than the peer has, try
1570                  * again with a larger value.
1571                  */
1572                 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1573                      le32_to_cpu(con->out_connect.connect_seq),
1574                      le32_to_cpu(con->in_reply.connect_seq));
1575                 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1576                 ret = prepare_write_connect(con);
1577                 if (ret < 0)
1578                         return ret;
1579                 prepare_read_connect(con);
1580                 break;
1581
1582         case CEPH_MSGR_TAG_RETRY_GLOBAL:
1583                 /*
1584                  * If we sent a smaller global_seq than the peer has, try
1585                  * again with a larger value.
1586                  */
1587                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1588                      con->peer_global_seq,
1589                      le32_to_cpu(con->in_reply.global_seq));
1590                 get_global_seq(con->msgr,
1591                                le32_to_cpu(con->in_reply.global_seq));
1592                 ret = prepare_write_connect(con);
1593                 if (ret < 0)
1594                         return ret;
1595                 prepare_read_connect(con);
1596                 break;
1597
1598         case CEPH_MSGR_TAG_READY:
1599                 if (req_feat & ~server_feat) {
1600                         pr_err("%s%lld %s protocol feature mismatch,"
1601                                " my required %llx > server's %llx, need %llx\n",
1602                                ENTITY_NAME(con->peer_name),
1603                                ceph_pr_addr(&con->peer_addr.in_addr),
1604                                req_feat, server_feat, req_feat & ~server_feat);
1605                         con->error_msg = "missing required protocol features";
1606                         fail_protocol(con);
1607                         return -1;
1608                 }
1609                 clear_bit(NEGOTIATING, &con->state);
1610                 set_bit(CONNECTED, &con->state);
1611                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1612                 con->connect_seq++;
1613                 con->peer_features = server_feat;
1614                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1615                      con->peer_global_seq,
1616                      le32_to_cpu(con->in_reply.connect_seq),
1617                      con->connect_seq);
1618                 WARN_ON(con->connect_seq !=
1619                         le32_to_cpu(con->in_reply.connect_seq));
1620
1621                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1622                         set_bit(LOSSYTX, &con->flags);
1623
1624                 prepare_read_tag(con);
1625                 break;
1626
1627         case CEPH_MSGR_TAG_WAIT:
1628                 /*
1629                  * If there is a connection race (we are opening
1630                  * connections to each other), one of us may just have
1631                  * to WAIT.  This shouldn't happen if we are the
1632                  * client.
1633                  */
1634                 pr_err("process_connect got WAIT as client\n");
1635                 con->error_msg = "protocol error, got WAIT as client";
1636                 return -1;
1637
1638         default:
1639                 pr_err("connect protocol error, will retry\n");
1640                 con->error_msg = "protocol error, garbage tag during connect";
1641                 return -1;
1642         }
1643         return 0;
1644 }
1645
1646
1647 /*
1648  * read (part of) an ack
1649  */
1650 static int read_partial_ack(struct ceph_connection *con)
1651 {
1652         int size = sizeof (con->in_temp_ack);
1653         int end = size;
1654
1655         return read_partial(con, end, size, &con->in_temp_ack);
1656 }
1657
1658
1659 /*
1660  * We can finally discard anything that's been acked.
1661  */
1662 static void process_ack(struct ceph_connection *con)
1663 {
1664         struct ceph_msg *m;
1665         u64 ack = le64_to_cpu(con->in_temp_ack);
1666         u64 seq;
1667
1668         while (!list_empty(&con->out_sent)) {
1669                 m = list_first_entry(&con->out_sent, struct ceph_msg,
1670                                      list_head);
1671                 seq = le64_to_cpu(m->hdr.seq);
1672                 if (seq > ack)
1673                         break;
1674                 dout("got ack for seq %llu type %d at %p\n", seq,
1675                      le16_to_cpu(m->hdr.type), m);
1676                 m->ack_stamp = jiffies;
1677                 ceph_msg_remove(m);
1678         }
1679         prepare_read_tag(con);
1680 }
1681
1682
1683
1684
1685 static int read_partial_message_section(struct ceph_connection *con,
1686                                         struct kvec *section,
1687                                         unsigned int sec_len, u32 *crc)
1688 {
1689         int ret, left;
1690
1691         BUG_ON(!section);
1692
1693         while (section->iov_len < sec_len) {
1694                 BUG_ON(section->iov_base == NULL);
1695                 left = sec_len - section->iov_len;
1696                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1697                                        section->iov_len, left);
1698                 if (ret <= 0)
1699                         return ret;
1700                 section->iov_len += ret;
1701         }
1702         if (section->iov_len == sec_len)
1703                 *crc = crc32c(0, section->iov_base, section->iov_len);
1704
1705         return 1;
1706 }
1707
1708 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
1709                                 struct ceph_msg_header *hdr);
1710
1711
1712 static int read_partial_message_pages(struct ceph_connection *con,
1713                                       struct page **pages,
1714                                       unsigned int data_len, bool do_datacrc)
1715 {
1716         void *p;
1717         int ret;
1718         int left;
1719
1720         left = min((int)(data_len - con->in_msg_pos.data_pos),
1721                    (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1722         /* (page) data */
1723         BUG_ON(pages == NULL);
1724         p = kmap(pages[con->in_msg_pos.page]);
1725         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1726                                left);
1727         if (ret > 0 && do_datacrc)
1728                 con->in_data_crc =
1729                         crc32c(con->in_data_crc,
1730                                   p + con->in_msg_pos.page_pos, ret);
1731         kunmap(pages[con->in_msg_pos.page]);
1732         if (ret <= 0)
1733                 return ret;
1734         con->in_msg_pos.data_pos += ret;
1735         con->in_msg_pos.page_pos += ret;
1736         if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1737                 con->in_msg_pos.page_pos = 0;
1738                 con->in_msg_pos.page++;
1739         }
1740
1741         return ret;
1742 }
1743
1744 #ifdef CONFIG_BLOCK
1745 static int read_partial_message_bio(struct ceph_connection *con,
1746                                     struct bio **bio_iter, int *bio_seg,
1747                                     unsigned int data_len, bool do_datacrc)
1748 {
1749         struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1750         void *p;
1751         int ret, left;
1752
1753         left = min((int)(data_len - con->in_msg_pos.data_pos),
1754                    (int)(bv->bv_len - con->in_msg_pos.page_pos));
1755
1756         p = kmap(bv->bv_page) + bv->bv_offset;
1757
1758         ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1759                                left);
1760         if (ret > 0 && do_datacrc)
1761                 con->in_data_crc =
1762                         crc32c(con->in_data_crc,
1763                                   p + con->in_msg_pos.page_pos, ret);
1764         kunmap(bv->bv_page);
1765         if (ret <= 0)
1766                 return ret;
1767         con->in_msg_pos.data_pos += ret;
1768         con->in_msg_pos.page_pos += ret;
1769         if (con->in_msg_pos.page_pos == bv->bv_len) {
1770                 con->in_msg_pos.page_pos = 0;
1771                 iter_bio_next(bio_iter, bio_seg);
1772         }
1773
1774         return ret;
1775 }
1776 #endif
1777
1778 /*
1779  * read (part of) a message.
1780  */
1781 static int read_partial_message(struct ceph_connection *con)
1782 {
1783         struct ceph_msg *m = con->in_msg;
1784         int size;
1785         int end;
1786         int ret;
1787         unsigned int front_len, middle_len, data_len;
1788         bool do_datacrc = !con->msgr->nocrc;
1789         u64 seq;
1790         u32 crc;
1791
1792         dout("read_partial_message con %p msg %p\n", con, m);
1793
1794         /* header */
1795         size = sizeof (con->in_hdr);
1796         end = size;
1797         ret = read_partial(con, end, size, &con->in_hdr);
1798         if (ret <= 0)
1799                 return ret;
1800
1801         crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1802         if (cpu_to_le32(crc) != con->in_hdr.crc) {
1803                 pr_err("read_partial_message bad hdr "
1804                        " crc %u != expected %u\n",
1805                        crc, con->in_hdr.crc);
1806                 return -EBADMSG;
1807         }
1808
1809         front_len = le32_to_cpu(con->in_hdr.front_len);
1810         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1811                 return -EIO;
1812         middle_len = le32_to_cpu(con->in_hdr.middle_len);
1813         if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1814                 return -EIO;
1815         data_len = le32_to_cpu(con->in_hdr.data_len);
1816         if (data_len > CEPH_MSG_MAX_DATA_LEN)
1817                 return -EIO;
1818
1819         /* verify seq# */
1820         seq = le64_to_cpu(con->in_hdr.seq);
1821         if ((s64)seq - (s64)con->in_seq < 1) {
1822                 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1823                         ENTITY_NAME(con->peer_name),
1824                         ceph_pr_addr(&con->peer_addr.in_addr),
1825                         seq, con->in_seq + 1);
1826                 con->in_base_pos = -front_len - middle_len - data_len -
1827                         sizeof(m->footer);
1828                 con->in_tag = CEPH_MSGR_TAG_READY;
1829                 return 0;
1830         } else if ((s64)seq - (s64)con->in_seq > 1) {
1831                 pr_err("read_partial_message bad seq %lld expected %lld\n",
1832                        seq, con->in_seq + 1);
1833                 con->error_msg = "bad message sequence # for incoming message";
1834                 return -EBADMSG;
1835         }
1836
1837         /* allocate message? */
1838         if (!con->in_msg) {
1839                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1840                      con->in_hdr.front_len, con->in_hdr.data_len);
1841                 if (ceph_con_in_msg_alloc(con, &con->in_hdr)) {
1842                         /* skip this message */
1843                         dout("alloc_msg said skip message\n");
1844                         BUG_ON(con->in_msg);
1845                         con->in_base_pos = -front_len - middle_len - data_len -
1846                                 sizeof(m->footer);
1847                         con->in_tag = CEPH_MSGR_TAG_READY;
1848                         con->in_seq++;
1849                         return 0;
1850                 }
1851                 if (!con->in_msg) {
1852                         con->error_msg =
1853                                 "error allocating memory for incoming message";
1854                         return -ENOMEM;
1855                 }
1856
1857                 BUG_ON(con->in_msg->con != con);
1858                 m = con->in_msg;
1859                 m->front.iov_len = 0;    /* haven't read it yet */
1860                 if (m->middle)
1861                         m->middle->vec.iov_len = 0;
1862
1863                 con->in_msg_pos.page = 0;
1864                 if (m->pages)
1865                         con->in_msg_pos.page_pos = m->page_alignment;
1866                 else
1867                         con->in_msg_pos.page_pos = 0;
1868                 con->in_msg_pos.data_pos = 0;
1869         }
1870
1871         /* front */
1872         ret = read_partial_message_section(con, &m->front, front_len,
1873                                            &con->in_front_crc);
1874         if (ret <= 0)
1875                 return ret;
1876
1877         /* middle */
1878         if (m->middle) {
1879                 ret = read_partial_message_section(con, &m->middle->vec,
1880                                                    middle_len,
1881                                                    &con->in_middle_crc);
1882                 if (ret <= 0)
1883                         return ret;
1884         }
1885 #ifdef CONFIG_BLOCK
1886         if (m->bio && !m->bio_iter)
1887                 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1888 #endif
1889
1890         /* (page) data */
1891         while (con->in_msg_pos.data_pos < data_len) {
1892                 if (m->pages) {
1893                         ret = read_partial_message_pages(con, m->pages,
1894                                                  data_len, do_datacrc);
1895                         if (ret <= 0)
1896                                 return ret;
1897 #ifdef CONFIG_BLOCK
1898                 } else if (m->bio) {
1899
1900                         ret = read_partial_message_bio(con,
1901                                                  &m->bio_iter, &m->bio_seg,
1902                                                  data_len, do_datacrc);
1903                         if (ret <= 0)
1904                                 return ret;
1905 #endif
1906                 } else {
1907                         BUG_ON(1);
1908                 }
1909         }
1910
1911         /* footer */
1912         size = sizeof (m->footer);
1913         end += size;
1914         ret = read_partial(con, end, size, &m->footer);
1915         if (ret <= 0)
1916                 return ret;
1917
1918         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1919              m, front_len, m->footer.front_crc, middle_len,
1920              m->footer.middle_crc, data_len, m->footer.data_crc);
1921
1922         /* crc ok? */
1923         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1924                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1925                        m, con->in_front_crc, m->footer.front_crc);
1926                 return -EBADMSG;
1927         }
1928         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1929                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1930                        m, con->in_middle_crc, m->footer.middle_crc);
1931                 return -EBADMSG;
1932         }
1933         if (do_datacrc &&
1934             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1935             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1936                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1937                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1938                 return -EBADMSG;
1939         }
1940
1941         return 1; /* done! */
1942 }
1943
1944 /*
1945  * Process message.  This happens in the worker thread.  The callback should
1946  * be careful not to do anything that waits on other incoming messages or it
1947  * may deadlock.
1948  */
1949 static void process_message(struct ceph_connection *con)
1950 {
1951         struct ceph_msg *msg;
1952
1953         BUG_ON(con->in_msg->con != con);
1954         con->in_msg->con = NULL;
1955         msg = con->in_msg;
1956         con->in_msg = NULL;
1957         con->ops->put(con);
1958
1959         /* if first message, set peer_name */
1960         if (con->peer_name.type == 0)
1961                 con->peer_name = msg->hdr.src;
1962
1963         con->in_seq++;
1964         mutex_unlock(&con->mutex);
1965
1966         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1967              msg, le64_to_cpu(msg->hdr.seq),
1968              ENTITY_NAME(msg->hdr.src),
1969              le16_to_cpu(msg->hdr.type),
1970              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1971              le32_to_cpu(msg->hdr.front_len),
1972              le32_to_cpu(msg->hdr.data_len),
1973              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1974         con->ops->dispatch(con, msg);
1975
1976         mutex_lock(&con->mutex);
1977         prepare_read_tag(con);
1978 }
1979
1980
1981 /*
1982  * Write something to the socket.  Called in a worker thread when the
1983  * socket appears to be writeable and we have something ready to send.
1984  */
1985 static int try_write(struct ceph_connection *con)
1986 {
1987         int ret = 1;
1988
1989         dout("try_write start %p state %lu\n", con, con->state);
1990
1991 more:
1992         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1993
1994         /* open the socket first? */
1995         if (con->sock == NULL) {
1996                 set_bit(CONNECTING, &con->state);
1997
1998                 con_out_kvec_reset(con);
1999                 prepare_write_banner(con);
2000                 prepare_read_banner(con);
2001
2002                 BUG_ON(con->in_msg);
2003                 con->in_tag = CEPH_MSGR_TAG_READY;
2004                 dout("try_write initiating connect on %p new state %lu\n",
2005                      con, con->state);
2006                 ret = ceph_tcp_connect(con);
2007                 if (ret < 0) {
2008                         con->error_msg = "connect error";
2009                         goto out;
2010                 }
2011         }
2012
2013 more_kvec:
2014         /* kvec data queued? */
2015         if (con->out_skip) {
2016                 ret = write_partial_skip(con);
2017                 if (ret <= 0)
2018                         goto out;
2019         }
2020         if (con->out_kvec_left) {
2021                 ret = write_partial_kvec(con);
2022                 if (ret <= 0)
2023                         goto out;
2024         }
2025
2026         /* msg pages? */
2027         if (con->out_msg) {
2028                 if (con->out_msg_done) {
2029                         ceph_msg_put(con->out_msg);
2030                         con->out_msg = NULL;   /* we're done with this one */
2031                         goto do_next;
2032                 }
2033
2034                 ret = write_partial_msg_pages(con);
2035                 if (ret == 1)
2036                         goto more_kvec;  /* we need to send the footer, too! */
2037                 if (ret == 0)
2038                         goto out;
2039                 if (ret < 0) {
2040                         dout("try_write write_partial_msg_pages err %d\n",
2041                              ret);
2042                         goto out;
2043                 }
2044         }
2045
2046 do_next:
2047         if (!test_bit(CONNECTING, &con->state) &&
2048                         !test_bit(NEGOTIATING, &con->state)) {
2049                 /* is anything else pending? */
2050                 if (!list_empty(&con->out_queue)) {
2051                         prepare_write_message(con);
2052                         goto more;
2053                 }
2054                 if (con->in_seq > con->in_seq_acked) {
2055                         prepare_write_ack(con);
2056                         goto more;
2057                 }
2058                 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->flags)) {
2059                         prepare_write_keepalive(con);
2060                         goto more;
2061                 }
2062         }
2063
2064         /* Nothing to do! */
2065         clear_bit(WRITE_PENDING, &con->flags);
2066         dout("try_write nothing else to write.\n");
2067         ret = 0;
2068 out:
2069         dout("try_write done on %p ret %d\n", con, ret);
2070         return ret;
2071 }
2072
2073
2074
2075 /*
2076  * Read what we can from the socket.
2077  */
2078 static int try_read(struct ceph_connection *con)
2079 {
2080         int ret = -1;
2081
2082         if (!con->sock)
2083                 return 0;
2084
2085         if (test_bit(STANDBY, &con->state))
2086                 return 0;
2087
2088         dout("try_read start on %p\n", con);
2089
2090 more:
2091         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2092              con->in_base_pos);
2093
2094         /*
2095          * process_connect and process_message drop and re-take
2096          * con->mutex.  make sure we handle a racing close or reopen.
2097          */
2098         if (test_bit(CLOSED, &con->state) ||
2099             test_bit(OPENING, &con->state)) {
2100                 ret = -EAGAIN;
2101                 goto out;
2102         }
2103
2104         if (test_bit(CONNECTING, &con->state)) {
2105                 dout("try_read connecting\n");
2106                 ret = read_partial_banner(con);
2107                 if (ret <= 0)
2108                         goto out;
2109                 ret = process_banner(con);
2110                 if (ret < 0)
2111                         goto out;
2112
2113                 clear_bit(CONNECTING, &con->state);
2114                 set_bit(NEGOTIATING, &con->state);
2115
2116                 /* Banner is good, exchange connection info */
2117                 ret = prepare_write_connect(con);
2118                 if (ret < 0)
2119                         goto out;
2120                 prepare_read_connect(con);
2121
2122                 /* Send connection info before awaiting response */
2123                 goto out;
2124         }
2125
2126         if (test_bit(NEGOTIATING, &con->state)) {
2127                 dout("try_read negotiating\n");
2128                 ret = read_partial_connect(con);
2129                 if (ret <= 0)
2130                         goto out;
2131                 ret = process_connect(con);
2132                 if (ret < 0)
2133                         goto out;
2134                 goto more;
2135         }
2136
2137         if (con->in_base_pos < 0) {
2138                 /*
2139                  * skipping + discarding content.
2140                  *
2141                  * FIXME: there must be a better way to do this!
2142                  */
2143                 static char buf[SKIP_BUF_SIZE];
2144                 int skip = min((int) sizeof (buf), -con->in_base_pos);
2145
2146                 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2147                 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2148                 if (ret <= 0)
2149                         goto out;
2150                 con->in_base_pos += ret;
2151                 if (con->in_base_pos)
2152                         goto more;
2153         }
2154         if (con->in_tag == CEPH_MSGR_TAG_READY) {
2155                 /*
2156                  * what's next?
2157                  */
2158                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2159                 if (ret <= 0)
2160                         goto out;
2161                 dout("try_read got tag %d\n", (int)con->in_tag);
2162                 switch (con->in_tag) {
2163                 case CEPH_MSGR_TAG_MSG:
2164                         prepare_read_message(con);
2165                         break;
2166                 case CEPH_MSGR_TAG_ACK:
2167                         prepare_read_ack(con);
2168                         break;
2169                 case CEPH_MSGR_TAG_CLOSE:
2170                         clear_bit(CONNECTED, &con->state);
2171                         set_bit(CLOSED, &con->state);   /* fixme */
2172                         goto out;
2173                 default:
2174                         goto bad_tag;
2175                 }
2176         }
2177         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2178                 ret = read_partial_message(con);
2179                 if (ret <= 0) {
2180                         switch (ret) {
2181                         case -EBADMSG:
2182                                 con->error_msg = "bad crc";
2183                                 ret = -EIO;
2184                                 break;
2185                         case -EIO:
2186                                 con->error_msg = "io error";
2187                                 break;
2188                         }
2189                         goto out;
2190                 }
2191                 if (con->in_tag == CEPH_MSGR_TAG_READY)
2192                         goto more;
2193                 process_message(con);
2194                 goto more;
2195         }
2196         if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2197                 ret = read_partial_ack(con);
2198                 if (ret <= 0)
2199                         goto out;
2200                 process_ack(con);
2201                 goto more;
2202         }
2203
2204 out:
2205         dout("try_read done on %p ret %d\n", con, ret);
2206         return ret;
2207
2208 bad_tag:
2209         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2210         con->error_msg = "protocol error, garbage tag";
2211         ret = -1;
2212         goto out;
2213 }
2214
2215
2216 /*
2217  * Atomically queue work on a connection.  Bump @con reference to
2218  * avoid races with connection teardown.
2219  */
2220 static void queue_con(struct ceph_connection *con)
2221 {
2222         if (!con->ops->get(con)) {
2223                 dout("queue_con %p ref count 0\n", con);
2224                 return;
2225         }
2226
2227         if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2228                 dout("queue_con %p - already queued\n", con);
2229                 con->ops->put(con);
2230         } else {
2231                 dout("queue_con %p\n", con);
2232         }
2233 }
2234
2235 /*
2236  * Do some work on a connection.  Drop a connection ref when we're done.
2237  */
2238 static void con_work(struct work_struct *work)
2239 {
2240         struct ceph_connection *con = container_of(work, struct ceph_connection,
2241                                                    work.work);
2242         int ret;
2243
2244         mutex_lock(&con->mutex);
2245 restart:
2246         if (test_and_clear_bit(SOCK_CLOSED, &con->flags)) {
2247                 if (test_and_clear_bit(CONNECTED, &con->state))
2248                         con->error_msg = "socket closed";
2249                 else if (test_and_clear_bit(NEGOTIATING, &con->state))
2250                         con->error_msg = "negotiation failed";
2251                 else if (test_and_clear_bit(CONNECTING, &con->state))
2252                         con->error_msg = "connection failed";
2253                 else
2254                         con->error_msg = "unrecognized con state";
2255                 goto fault;
2256         }
2257
2258         if (test_and_clear_bit(BACKOFF, &con->flags)) {
2259                 dout("con_work %p backing off\n", con);
2260                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2261                                        round_jiffies_relative(con->delay))) {
2262                         dout("con_work %p backoff %lu\n", con, con->delay);
2263                         mutex_unlock(&con->mutex);
2264                         return;
2265                 } else {
2266                         con->ops->put(con);
2267                         dout("con_work %p FAILED to back off %lu\n", con,
2268                              con->delay);
2269                 }
2270         }
2271
2272         if (test_bit(STANDBY, &con->state)) {
2273                 dout("con_work %p STANDBY\n", con);
2274                 goto done;
2275         }
2276         if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
2277                 dout("con_work CLOSED\n");
2278                 con_close_socket(con);
2279                 goto done;
2280         }
2281         if (test_and_clear_bit(OPENING, &con->state)) {
2282                 /* reopen w/ new peer */
2283                 dout("con_work OPENING\n");
2284                 con_close_socket(con);
2285         }
2286
2287         ret = try_read(con);
2288         if (ret == -EAGAIN)
2289                 goto restart;
2290         if (ret < 0) {
2291                 con->error_msg = "socket error on read";
2292                 goto fault;
2293         }
2294
2295         ret = try_write(con);
2296         if (ret == -EAGAIN)
2297                 goto restart;
2298         if (ret < 0) {
2299                 con->error_msg = "socket error on write";
2300                 goto fault;
2301         }
2302
2303 done:
2304         mutex_unlock(&con->mutex);
2305 done_unlocked:
2306         con->ops->put(con);
2307         return;
2308
2309 fault:
2310         mutex_unlock(&con->mutex);
2311         ceph_fault(con);     /* error/fault path */
2312         goto done_unlocked;
2313 }
2314
2315
2316 /*
2317  * Generic error/fault handler.  A retry mechanism is used with
2318  * exponential backoff
2319  */
2320 static void ceph_fault(struct ceph_connection *con)
2321 {
2322         pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2323                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2324         dout("fault %p state %lu to peer %s\n",
2325              con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2326
2327         if (test_bit(LOSSYTX, &con->flags)) {
2328                 dout("fault on LOSSYTX channel\n");
2329                 goto out;
2330         }
2331
2332         mutex_lock(&con->mutex);
2333         if (test_bit(CLOSED, &con->state))
2334                 goto out_unlock;
2335
2336         con_close_socket(con);
2337
2338         if (con->in_msg) {
2339                 BUG_ON(con->in_msg->con != con);
2340                 con->in_msg->con = NULL;
2341                 ceph_msg_put(con->in_msg);
2342                 con->in_msg = NULL;
2343                 con->ops->put(con);
2344         }
2345
2346         /* Requeue anything that hasn't been acked */
2347         list_splice_init(&con->out_sent, &con->out_queue);
2348
2349         /* If there are no messages queued or keepalive pending, place
2350          * the connection in a STANDBY state */
2351         if (list_empty(&con->out_queue) &&
2352             !test_bit(KEEPALIVE_PENDING, &con->flags)) {
2353                 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2354                 clear_bit(WRITE_PENDING, &con->flags);
2355                 set_bit(STANDBY, &con->state);
2356         } else {
2357                 /* retry after a delay. */
2358                 if (con->delay == 0)
2359                         con->delay = BASE_DELAY_INTERVAL;
2360                 else if (con->delay < MAX_DELAY_INTERVAL)
2361                         con->delay *= 2;
2362                 con->ops->get(con);
2363                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2364                                        round_jiffies_relative(con->delay))) {
2365                         dout("fault queued %p delay %lu\n", con, con->delay);
2366                 } else {
2367                         con->ops->put(con);
2368                         dout("fault failed to queue %p delay %lu, backoff\n",
2369                              con, con->delay);
2370                         /*
2371                          * In many cases we see a socket state change
2372                          * while con_work is running and end up
2373                          * queuing (non-delayed) work, such that we
2374                          * can't backoff with a delay.  Set a flag so
2375                          * that when con_work restarts we schedule the
2376                          * delay then.
2377                          */
2378                         set_bit(BACKOFF, &con->flags);
2379                 }
2380         }
2381
2382 out_unlock:
2383         mutex_unlock(&con->mutex);
2384 out:
2385         /*
2386          * in case we faulted due to authentication, invalidate our
2387          * current tickets so that we can get new ones.
2388          */
2389         if (con->auth_retry && con->ops->invalidate_authorizer) {
2390                 dout("calling invalidate_authorizer()\n");
2391                 con->ops->invalidate_authorizer(con);
2392         }
2393
2394         if (con->ops->fault)
2395                 con->ops->fault(con);
2396 }
2397
2398
2399
2400 /*
2401  * initialize a new messenger instance
2402  */
2403 void ceph_messenger_init(struct ceph_messenger *msgr,
2404                         struct ceph_entity_addr *myaddr,
2405                         u32 supported_features,
2406                         u32 required_features,
2407                         bool nocrc)
2408 {
2409         msgr->supported_features = supported_features;
2410         msgr->required_features = required_features;
2411
2412         spin_lock_init(&msgr->global_seq_lock);
2413
2414         if (myaddr)
2415                 msgr->inst.addr = *myaddr;
2416
2417         /* select a random nonce */
2418         msgr->inst.addr.type = 0;
2419         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2420         encode_my_addr(msgr);
2421         msgr->nocrc = nocrc;
2422
2423         atomic_set(&msgr->stopping, 0);
2424
2425         dout("%s %p\n", __func__, msgr);
2426 }
2427 EXPORT_SYMBOL(ceph_messenger_init);
2428
2429 static void clear_standby(struct ceph_connection *con)
2430 {
2431         /* come back from STANDBY? */
2432         if (test_and_clear_bit(STANDBY, &con->state)) {
2433                 mutex_lock(&con->mutex);
2434                 dout("clear_standby %p and ++connect_seq\n", con);
2435                 con->connect_seq++;
2436                 WARN_ON(test_bit(WRITE_PENDING, &con->flags));
2437                 WARN_ON(test_bit(KEEPALIVE_PENDING, &con->flags));
2438                 mutex_unlock(&con->mutex);
2439         }
2440 }
2441
2442 /*
2443  * Queue up an outgoing message on the given connection.
2444  */
2445 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2446 {
2447         if (test_bit(CLOSED, &con->state)) {
2448                 dout("con_send %p closed, dropping %p\n", con, msg);
2449                 ceph_msg_put(msg);
2450                 return;
2451         }
2452
2453         /* set src+dst */
2454         msg->hdr.src = con->msgr->inst.name;
2455
2456         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2457
2458         msg->needs_out_seq = true;
2459
2460         /* queue */
2461         mutex_lock(&con->mutex);
2462
2463         BUG_ON(msg->con != NULL);
2464         msg->con = con->ops->get(con);
2465         BUG_ON(msg->con == NULL);
2466
2467         BUG_ON(!list_empty(&msg->list_head));
2468         list_add_tail(&msg->list_head, &con->out_queue);
2469         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2470              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2471              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2472              le32_to_cpu(msg->hdr.front_len),
2473              le32_to_cpu(msg->hdr.middle_len),
2474              le32_to_cpu(msg->hdr.data_len));
2475         mutex_unlock(&con->mutex);
2476
2477         /* if there wasn't anything waiting to send before, queue
2478          * new work */
2479         clear_standby(con);
2480         if (test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
2481                 queue_con(con);
2482 }
2483 EXPORT_SYMBOL(ceph_con_send);
2484
2485 /*
2486  * Revoke a message that was previously queued for send
2487  */
2488 void ceph_msg_revoke(struct ceph_msg *msg)
2489 {
2490         struct ceph_connection *con = msg->con;
2491
2492         if (!con)
2493                 return;         /* Message not in our possession */
2494
2495         mutex_lock(&con->mutex);
2496         if (!list_empty(&msg->list_head)) {
2497                 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2498                 list_del_init(&msg->list_head);
2499                 BUG_ON(msg->con == NULL);
2500                 msg->con->ops->put(msg->con);
2501                 msg->con = NULL;
2502                 msg->hdr.seq = 0;
2503
2504                 ceph_msg_put(msg);
2505         }
2506         if (con->out_msg == msg) {
2507                 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2508                 con->out_msg = NULL;
2509                 if (con->out_kvec_is_msg) {
2510                         con->out_skip = con->out_kvec_bytes;
2511                         con->out_kvec_is_msg = false;
2512                 }
2513                 msg->hdr.seq = 0;
2514
2515                 ceph_msg_put(msg);
2516         }
2517         mutex_unlock(&con->mutex);
2518 }
2519
2520 /*
2521  * Revoke a message that we may be reading data into
2522  */
2523 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2524 {
2525         struct ceph_connection *con;
2526
2527         BUG_ON(msg == NULL);
2528         if (!msg->con) {
2529                 dout("%s msg %p null con\n", __func__, msg);
2530
2531                 return;         /* Message not in our possession */
2532         }
2533
2534         con = msg->con;
2535         mutex_lock(&con->mutex);
2536         if (con->in_msg == msg) {
2537                 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2538                 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2539                 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2540
2541                 /* skip rest of message */
2542                 dout("%s %p msg %p revoked\n", __func__, con, msg);
2543                 con->in_base_pos = con->in_base_pos -
2544                                 sizeof(struct ceph_msg_header) -
2545                                 front_len -
2546                                 middle_len -
2547                                 data_len -
2548                                 sizeof(struct ceph_msg_footer);
2549                 ceph_msg_put(con->in_msg);
2550                 con->in_msg = NULL;
2551                 con->in_tag = CEPH_MSGR_TAG_READY;
2552                 con->in_seq++;
2553         } else {
2554                 dout("%s %p in_msg %p msg %p no-op\n",
2555                      __func__, con, con->in_msg, msg);
2556         }
2557         mutex_unlock(&con->mutex);
2558 }
2559
2560 /*
2561  * Queue a keepalive byte to ensure the tcp connection is alive.
2562  */
2563 void ceph_con_keepalive(struct ceph_connection *con)
2564 {
2565         dout("con_keepalive %p\n", con);
2566         clear_standby(con);
2567         if (test_and_set_bit(KEEPALIVE_PENDING, &con->flags) == 0 &&
2568             test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
2569                 queue_con(con);
2570 }
2571 EXPORT_SYMBOL(ceph_con_keepalive);
2572
2573
2574 /*
2575  * construct a new message with given type, size
2576  * the new msg has a ref count of 1.
2577  */
2578 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2579                               bool can_fail)
2580 {
2581         struct ceph_msg *m;
2582
2583         m = kmalloc(sizeof(*m), flags);
2584         if (m == NULL)
2585                 goto out;
2586         kref_init(&m->kref);
2587
2588         m->con = NULL;
2589         INIT_LIST_HEAD(&m->list_head);
2590
2591         m->hdr.tid = 0;
2592         m->hdr.type = cpu_to_le16(type);
2593         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2594         m->hdr.version = 0;
2595         m->hdr.front_len = cpu_to_le32(front_len);
2596         m->hdr.middle_len = 0;
2597         m->hdr.data_len = 0;
2598         m->hdr.data_off = 0;
2599         m->hdr.reserved = 0;
2600         m->footer.front_crc = 0;
2601         m->footer.middle_crc = 0;
2602         m->footer.data_crc = 0;
2603         m->footer.flags = 0;
2604         m->front_max = front_len;
2605         m->front_is_vmalloc = false;
2606         m->more_to_follow = false;
2607         m->ack_stamp = 0;
2608         m->pool = NULL;
2609
2610         /* middle */
2611         m->middle = NULL;
2612
2613         /* data */
2614         m->nr_pages = 0;
2615         m->page_alignment = 0;
2616         m->pages = NULL;
2617         m->pagelist = NULL;
2618         m->bio = NULL;
2619         m->bio_iter = NULL;
2620         m->bio_seg = 0;
2621         m->trail = NULL;
2622
2623         /* front */
2624         if (front_len) {
2625                 if (front_len > PAGE_CACHE_SIZE) {
2626                         m->front.iov_base = __vmalloc(front_len, flags,
2627                                                       PAGE_KERNEL);
2628                         m->front_is_vmalloc = true;
2629                 } else {
2630                         m->front.iov_base = kmalloc(front_len, flags);
2631                 }
2632                 if (m->front.iov_base == NULL) {
2633                         dout("ceph_msg_new can't allocate %d bytes\n",
2634                              front_len);
2635                         goto out2;
2636                 }
2637         } else {
2638                 m->front.iov_base = NULL;
2639         }
2640         m->front.iov_len = front_len;
2641
2642         dout("ceph_msg_new %p front %d\n", m, front_len);
2643         return m;
2644
2645 out2:
2646         ceph_msg_put(m);
2647 out:
2648         if (!can_fail) {
2649                 pr_err("msg_new can't create type %d front %d\n", type,
2650                        front_len);
2651                 WARN_ON(1);
2652         } else {
2653                 dout("msg_new can't create type %d front %d\n", type,
2654                      front_len);
2655         }
2656         return NULL;
2657 }
2658 EXPORT_SYMBOL(ceph_msg_new);
2659
2660 /*
2661  * Allocate "middle" portion of a message, if it is needed and wasn't
2662  * allocated by alloc_msg.  This allows us to read a small fixed-size
2663  * per-type header in the front and then gracefully fail (i.e.,
2664  * propagate the error to the caller based on info in the front) when
2665  * the middle is too large.
2666  */
2667 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2668 {
2669         int type = le16_to_cpu(msg->hdr.type);
2670         int middle_len = le32_to_cpu(msg->hdr.middle_len);
2671
2672         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2673              ceph_msg_type_name(type), middle_len);
2674         BUG_ON(!middle_len);
2675         BUG_ON(msg->middle);
2676
2677         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2678         if (!msg->middle)
2679                 return -ENOMEM;
2680         return 0;
2681 }
2682
2683 /*
2684  * Allocate a message for receiving an incoming message on a
2685  * connection, and save the result in con->in_msg.  Uses the
2686  * connection's private alloc_msg op if available.
2687  *
2688  * Returns true if the message should be skipped, false otherwise.
2689  * If true is returned (skip message), con->in_msg will be NULL.
2690  * If false is returned, con->in_msg will contain a pointer to the
2691  * newly-allocated message, or NULL in case of memory exhaustion.
2692  */
2693 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
2694                                 struct ceph_msg_header *hdr)
2695 {
2696         int type = le16_to_cpu(hdr->type);
2697         int front_len = le32_to_cpu(hdr->front_len);
2698         int middle_len = le32_to_cpu(hdr->middle_len);
2699         int ret;
2700
2701         BUG_ON(con->in_msg != NULL);
2702
2703         if (con->ops->alloc_msg) {
2704                 int skip = 0;
2705
2706                 mutex_unlock(&con->mutex);
2707                 con->in_msg = con->ops->alloc_msg(con, hdr, &skip);
2708                 mutex_lock(&con->mutex);
2709                 if (con->in_msg) {
2710                         con->in_msg->con = con->ops->get(con);
2711                         BUG_ON(con->in_msg->con == NULL);
2712                 }
2713                 if (skip)
2714                         con->in_msg = NULL;
2715
2716                 if (!con->in_msg)
2717                         return skip != 0;
2718         }
2719         if (!con->in_msg) {
2720                 con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2721                 if (!con->in_msg) {
2722                         pr_err("unable to allocate msg type %d len %d\n",
2723                                type, front_len);
2724                         return false;
2725                 }
2726                 con->in_msg->con = con->ops->get(con);
2727                 BUG_ON(con->in_msg->con == NULL);
2728                 con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
2729         }
2730         memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2731
2732         if (middle_len && !con->in_msg->middle) {
2733                 ret = ceph_alloc_middle(con, con->in_msg);
2734                 if (ret < 0) {
2735                         ceph_msg_put(con->in_msg);
2736                         con->in_msg = NULL;
2737                 }
2738         }
2739
2740         return false;
2741 }
2742
2743
2744 /*
2745  * Free a generically kmalloc'd message.
2746  */
2747 void ceph_msg_kfree(struct ceph_msg *m)
2748 {
2749         dout("msg_kfree %p\n", m);
2750         if (m->front_is_vmalloc)
2751                 vfree(m->front.iov_base);
2752         else
2753                 kfree(m->front.iov_base);
2754         kfree(m);
2755 }
2756
2757 /*
2758  * Drop a msg ref.  Destroy as needed.
2759  */
2760 void ceph_msg_last_put(struct kref *kref)
2761 {
2762         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2763
2764         dout("ceph_msg_put last one on %p\n", m);
2765         WARN_ON(!list_empty(&m->list_head));
2766
2767         /* drop middle, data, if any */
2768         if (m->middle) {
2769                 ceph_buffer_put(m->middle);
2770                 m->middle = NULL;
2771         }
2772         m->nr_pages = 0;
2773         m->pages = NULL;
2774
2775         if (m->pagelist) {
2776                 ceph_pagelist_release(m->pagelist);
2777                 kfree(m->pagelist);
2778                 m->pagelist = NULL;
2779         }
2780
2781         m->trail = NULL;
2782
2783         if (m->pool)
2784                 ceph_msgpool_put(m->pool, m);
2785         else
2786                 ceph_msg_kfree(m);
2787 }
2788 EXPORT_SYMBOL(ceph_msg_last_put);
2789
2790 void ceph_msg_dump(struct ceph_msg *msg)
2791 {
2792         pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2793                  msg->front_max, msg->nr_pages);
2794         print_hex_dump(KERN_DEBUG, "header: ",
2795                        DUMP_PREFIX_OFFSET, 16, 1,
2796                        &msg->hdr, sizeof(msg->hdr), true);
2797         print_hex_dump(KERN_DEBUG, " front: ",
2798                        DUMP_PREFIX_OFFSET, 16, 1,
2799                        msg->front.iov_base, msg->front.iov_len, true);
2800         if (msg->middle)
2801                 print_hex_dump(KERN_DEBUG, "middle: ",
2802                                DUMP_PREFIX_OFFSET, 16, 1,
2803                                msg->middle->vec.iov_base,
2804                                msg->middle->vec.iov_len, true);
2805         print_hex_dump(KERN_DEBUG, "footer: ",
2806                        DUMP_PREFIX_OFFSET, 16, 1,
2807                        &msg->footer, sizeof(msg->footer), true);
2808 }
2809 EXPORT_SYMBOL(ceph_msg_dump);