2 BlueZ - Bluetooth protocol stack for Linux
4 Copyright (C) 2014 Intel Corporation
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License version 2 as
8 published by the Free Software Foundation;
10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
21 SOFTWARE IS DISCLAIMED.
24 #include <linux/sched/signal.h>
26 #include <net/bluetooth/bluetooth.h>
27 #include <net/bluetooth/hci_core.h>
28 #include <net/bluetooth/mgmt.h>
31 #include "hci_request.h"
33 #define HCI_REQ_DONE 0
34 #define HCI_REQ_PEND 1
35 #define HCI_REQ_CANCELED 2
37 void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
39 skb_queue_head_init(&req->cmd_q);
44 static int req_run(struct hci_request *req, hci_req_complete_t complete,
45 hci_req_complete_skb_t complete_skb)
47 struct hci_dev *hdev = req->hdev;
51 BT_DBG("length %u", skb_queue_len(&req->cmd_q));
53 /* If an error occurred during request building, remove all HCI
54 * commands queued on the HCI request queue.
57 skb_queue_purge(&req->cmd_q);
61 /* Do not allow empty requests */
62 if (skb_queue_empty(&req->cmd_q))
65 skb = skb_peek_tail(&req->cmd_q);
67 bt_cb(skb)->hci.req_complete = complete;
68 } else if (complete_skb) {
69 bt_cb(skb)->hci.req_complete_skb = complete_skb;
70 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
73 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
74 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
75 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
77 queue_work(hdev->workqueue, &hdev->cmd_work);
82 int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
84 return req_run(req, complete, NULL);
87 int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
89 return req_run(req, NULL, complete);
92 static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
95 BT_DBG("%s result 0x%2.2x", hdev->name, result);
97 if (hdev->req_status == HCI_REQ_PEND) {
98 hdev->req_result = result;
99 hdev->req_status = HCI_REQ_DONE;
101 hdev->req_skb = skb_get(skb);
102 wake_up_interruptible(&hdev->req_wait_q);
106 void hci_req_sync_cancel(struct hci_dev *hdev, int err)
108 BT_DBG("%s err 0x%2.2x", hdev->name, err);
110 if (hdev->req_status == HCI_REQ_PEND) {
111 hdev->req_result = err;
112 hdev->req_status = HCI_REQ_CANCELED;
113 wake_up_interruptible(&hdev->req_wait_q);
117 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
118 const void *param, u8 event, u32 timeout)
120 DECLARE_WAITQUEUE(wait, current);
121 struct hci_request req;
125 BT_DBG("%s", hdev->name);
127 hci_req_init(&req, hdev);
129 hci_req_add_ev(&req, opcode, plen, param, event);
131 hdev->req_status = HCI_REQ_PEND;
133 add_wait_queue(&hdev->req_wait_q, &wait);
134 set_current_state(TASK_INTERRUPTIBLE);
136 err = hci_req_run_skb(&req, hci_req_sync_complete);
138 remove_wait_queue(&hdev->req_wait_q, &wait);
139 set_current_state(TASK_RUNNING);
143 schedule_timeout(timeout);
145 remove_wait_queue(&hdev->req_wait_q, &wait);
147 if (signal_pending(current))
148 return ERR_PTR(-EINTR);
150 switch (hdev->req_status) {
152 err = -bt_to_errno(hdev->req_result);
155 case HCI_REQ_CANCELED:
156 err = -hdev->req_result;
164 hdev->req_status = hdev->req_result = 0;
166 hdev->req_skb = NULL;
168 BT_DBG("%s end: err %d", hdev->name, err);
176 return ERR_PTR(-ENODATA);
180 EXPORT_SYMBOL(__hci_cmd_sync_ev);
182 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
183 const void *param, u32 timeout)
185 return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
187 EXPORT_SYMBOL(__hci_cmd_sync);
189 /* Execute request and wait for completion. */
190 int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
192 unsigned long opt, u32 timeout, u8 *hci_status)
194 struct hci_request req;
195 DECLARE_WAITQUEUE(wait, current);
198 BT_DBG("%s start", hdev->name);
200 hci_req_init(&req, hdev);
202 hdev->req_status = HCI_REQ_PEND;
204 err = func(&req, opt);
207 *hci_status = HCI_ERROR_UNSPECIFIED;
211 add_wait_queue(&hdev->req_wait_q, &wait);
212 set_current_state(TASK_INTERRUPTIBLE);
214 err = hci_req_run_skb(&req, hci_req_sync_complete);
216 hdev->req_status = 0;
218 remove_wait_queue(&hdev->req_wait_q, &wait);
219 set_current_state(TASK_RUNNING);
221 /* ENODATA means the HCI request command queue is empty.
222 * This can happen when a request with conditionals doesn't
223 * trigger any commands to be sent. This is normal behavior
224 * and should not trigger an error return.
226 if (err == -ENODATA) {
233 *hci_status = HCI_ERROR_UNSPECIFIED;
238 schedule_timeout(timeout);
240 remove_wait_queue(&hdev->req_wait_q, &wait);
242 if (signal_pending(current))
245 switch (hdev->req_status) {
247 err = -bt_to_errno(hdev->req_result);
249 *hci_status = hdev->req_result;
252 case HCI_REQ_CANCELED:
253 err = -hdev->req_result;
255 *hci_status = HCI_ERROR_UNSPECIFIED;
261 *hci_status = HCI_ERROR_UNSPECIFIED;
265 kfree_skb(hdev->req_skb);
266 hdev->req_skb = NULL;
267 hdev->req_status = hdev->req_result = 0;
269 BT_DBG("%s end: err %d", hdev->name, err);
274 int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
276 unsigned long opt, u32 timeout, u8 *hci_status)
280 if (!test_bit(HCI_UP, &hdev->flags))
283 /* Serialize all requests */
284 hci_req_sync_lock(hdev);
285 ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
286 hci_req_sync_unlock(hdev);
291 struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
294 int len = HCI_COMMAND_HDR_SIZE + plen;
295 struct hci_command_hdr *hdr;
298 skb = bt_skb_alloc(len, GFP_ATOMIC);
302 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
303 hdr->opcode = cpu_to_le16(opcode);
307 skb_put_data(skb, param, plen);
309 BT_DBG("skb len %d", skb->len);
311 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
312 hci_skb_opcode(skb) = opcode;
317 /* Queue a command to an asynchronous HCI request */
318 void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
319 const void *param, u8 event)
321 struct hci_dev *hdev = req->hdev;
324 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
326 /* If an error occurred during request building, there is no point in
327 * queueing the HCI command. We can simply return.
332 skb = hci_prepare_cmd(hdev, opcode, plen, param);
334 BT_ERR("%s no memory for command (opcode 0x%4.4x)",
340 if (skb_queue_empty(&req->cmd_q))
341 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
343 bt_cb(skb)->hci.req_event = event;
345 skb_queue_tail(&req->cmd_q, skb);
348 void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
351 hci_req_add_ev(req, opcode, plen, param, 0);
354 void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
356 struct hci_dev *hdev = req->hdev;
357 struct hci_cp_write_page_scan_activity acp;
360 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
363 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
367 type = PAGE_SCAN_TYPE_INTERLACED;
369 /* 160 msec page scan interval */
370 acp.interval = cpu_to_le16(0x0100);
372 type = PAGE_SCAN_TYPE_STANDARD; /* default */
374 /* default 1.28 sec page scan */
375 acp.interval = cpu_to_le16(0x0800);
378 acp.window = cpu_to_le16(0x0012);
380 if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
381 __cpu_to_le16(hdev->page_scan_window) != acp.window)
382 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
385 if (hdev->page_scan_type != type)
386 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
389 /* This function controls the background scanning based on hdev->pend_le_conns
390 * list. If there are pending LE connection we start the background scanning,
391 * otherwise we stop it.
393 * This function requires the caller holds hdev->lock.
395 static void __hci_update_background_scan(struct hci_request *req)
397 struct hci_dev *hdev = req->hdev;
399 if (!test_bit(HCI_UP, &hdev->flags) ||
400 test_bit(HCI_INIT, &hdev->flags) ||
401 hci_dev_test_flag(hdev, HCI_SETUP) ||
402 hci_dev_test_flag(hdev, HCI_CONFIG) ||
403 hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
404 hci_dev_test_flag(hdev, HCI_UNREGISTER))
407 /* No point in doing scanning if LE support hasn't been enabled */
408 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
411 /* If discovery is active don't interfere with it */
412 if (hdev->discovery.state != DISCOVERY_STOPPED)
415 /* Reset RSSI and UUID filters when starting background scanning
416 * since these filters are meant for service discovery only.
418 * The Start Discovery and Start Service Discovery operations
419 * ensure to set proper values for RSSI threshold and UUID
420 * filter list. So it is safe to just reset them here.
422 hci_discovery_filter_clear(hdev);
424 if (list_empty(&hdev->pend_le_conns) &&
425 list_empty(&hdev->pend_le_reports)) {
426 /* If there is no pending LE connections or devices
427 * to be scanned for, we should stop the background
431 /* If controller is not scanning we are done. */
432 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
435 hci_req_add_le_scan_disable(req);
437 BT_DBG("%s stopping background scanning", hdev->name);
439 /* If there is at least one pending LE connection, we should
440 * keep the background scan running.
443 /* If controller is connecting, we should not start scanning
444 * since some controllers are not able to scan and connect at
447 if (hci_lookup_le_connect(hdev))
450 /* If controller is currently scanning, we stop it to ensure we
451 * don't miss any advertising (due to duplicates filter).
453 if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
454 hci_req_add_le_scan_disable(req);
456 hci_req_add_le_passive_scan(req);
458 BT_DBG("%s starting background scanning", hdev->name);
462 void __hci_req_update_name(struct hci_request *req)
464 struct hci_dev *hdev = req->hdev;
465 struct hci_cp_write_local_name cp;
467 memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
469 hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
472 #define PNP_INFO_SVCLASS_ID 0x1200
474 static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
476 u8 *ptr = data, *uuids_start = NULL;
477 struct bt_uuid *uuid;
482 list_for_each_entry(uuid, &hdev->uuids, list) {
485 if (uuid->size != 16)
488 uuid16 = get_unaligned_le16(&uuid->uuid[12]);
492 if (uuid16 == PNP_INFO_SVCLASS_ID)
498 uuids_start[1] = EIR_UUID16_ALL;
502 /* Stop if not enough space to put next UUID */
503 if ((ptr - data) + sizeof(u16) > len) {
504 uuids_start[1] = EIR_UUID16_SOME;
508 *ptr++ = (uuid16 & 0x00ff);
509 *ptr++ = (uuid16 & 0xff00) >> 8;
510 uuids_start[0] += sizeof(uuid16);
516 static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
518 u8 *ptr = data, *uuids_start = NULL;
519 struct bt_uuid *uuid;
524 list_for_each_entry(uuid, &hdev->uuids, list) {
525 if (uuid->size != 32)
531 uuids_start[1] = EIR_UUID32_ALL;
535 /* Stop if not enough space to put next UUID */
536 if ((ptr - data) + sizeof(u32) > len) {
537 uuids_start[1] = EIR_UUID32_SOME;
541 memcpy(ptr, &uuid->uuid[12], sizeof(u32));
543 uuids_start[0] += sizeof(u32);
549 static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
551 u8 *ptr = data, *uuids_start = NULL;
552 struct bt_uuid *uuid;
557 list_for_each_entry(uuid, &hdev->uuids, list) {
558 if (uuid->size != 128)
564 uuids_start[1] = EIR_UUID128_ALL;
568 /* Stop if not enough space to put next UUID */
569 if ((ptr - data) + 16 > len) {
570 uuids_start[1] = EIR_UUID128_SOME;
574 memcpy(ptr, uuid->uuid, 16);
576 uuids_start[0] += 16;
582 static void create_eir(struct hci_dev *hdev, u8 *data)
587 name_len = strlen(hdev->dev_name);
593 ptr[1] = EIR_NAME_SHORT;
595 ptr[1] = EIR_NAME_COMPLETE;
597 /* EIR Data length */
598 ptr[0] = name_len + 1;
600 memcpy(ptr + 2, hdev->dev_name, name_len);
602 ptr += (name_len + 2);
605 if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) {
607 ptr[1] = EIR_TX_POWER;
608 ptr[2] = (u8) hdev->inq_tx_power;
613 if (hdev->devid_source > 0) {
615 ptr[1] = EIR_DEVICE_ID;
617 put_unaligned_le16(hdev->devid_source, ptr + 2);
618 put_unaligned_le16(hdev->devid_vendor, ptr + 4);
619 put_unaligned_le16(hdev->devid_product, ptr + 6);
620 put_unaligned_le16(hdev->devid_version, ptr + 8);
625 ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
626 ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
627 ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
630 void __hci_req_update_eir(struct hci_request *req)
632 struct hci_dev *hdev = req->hdev;
633 struct hci_cp_write_eir cp;
635 if (!hdev_is_powered(hdev))
638 if (!lmp_ext_inq_capable(hdev))
641 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
644 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
647 memset(&cp, 0, sizeof(cp));
649 create_eir(hdev, cp.data);
651 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
654 memcpy(hdev->eir, cp.data, sizeof(cp.data));
656 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
659 void hci_req_add_le_scan_disable(struct hci_request *req)
661 struct hci_cp_le_set_scan_enable cp;
663 memset(&cp, 0, sizeof(cp));
664 cp.enable = LE_SCAN_DISABLE;
665 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
668 static void add_to_white_list(struct hci_request *req,
669 struct hci_conn_params *params)
671 struct hci_cp_le_add_to_white_list cp;
673 cp.bdaddr_type = params->addr_type;
674 bacpy(&cp.bdaddr, ¶ms->addr);
676 hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
679 static u8 update_white_list(struct hci_request *req)
681 struct hci_dev *hdev = req->hdev;
682 struct hci_conn_params *params;
683 struct bdaddr_list *b;
684 uint8_t white_list_entries = 0;
686 /* Go through the current white list programmed into the
687 * controller one by one and check if that address is still
688 * in the list of pending connections or list of devices to
689 * report. If not present in either list, then queue the
690 * command to remove it from the controller.
692 list_for_each_entry(b, &hdev->le_white_list, list) {
693 /* If the device is neither in pend_le_conns nor
694 * pend_le_reports then remove it from the whitelist.
696 if (!hci_pend_le_action_lookup(&hdev->pend_le_conns,
697 &b->bdaddr, b->bdaddr_type) &&
698 !hci_pend_le_action_lookup(&hdev->pend_le_reports,
699 &b->bdaddr, b->bdaddr_type)) {
700 struct hci_cp_le_del_from_white_list cp;
702 cp.bdaddr_type = b->bdaddr_type;
703 bacpy(&cp.bdaddr, &b->bdaddr);
705 hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST,
710 if (hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
711 /* White list can not be used with RPAs */
715 white_list_entries++;
718 /* Since all no longer valid white list entries have been
719 * removed, walk through the list of pending connections
720 * and ensure that any new device gets programmed into
723 * If the list of the devices is larger than the list of
724 * available white list entries in the controller, then
725 * just abort and return filer policy value to not use the
728 list_for_each_entry(params, &hdev->pend_le_conns, action) {
729 if (hci_bdaddr_list_lookup(&hdev->le_white_list,
730 ¶ms->addr, params->addr_type))
733 if (white_list_entries >= hdev->le_white_list_size) {
734 /* Select filter policy to accept all advertising */
738 if (hci_find_irk_by_addr(hdev, ¶ms->addr,
739 params->addr_type)) {
740 /* White list can not be used with RPAs */
744 white_list_entries++;
745 add_to_white_list(req, params);
748 /* After adding all new pending connections, walk through
749 * the list of pending reports and also add these to the
750 * white list if there is still space.
752 list_for_each_entry(params, &hdev->pend_le_reports, action) {
753 if (hci_bdaddr_list_lookup(&hdev->le_white_list,
754 ¶ms->addr, params->addr_type))
757 if (white_list_entries >= hdev->le_white_list_size) {
758 /* Select filter policy to accept all advertising */
762 if (hci_find_irk_by_addr(hdev, ¶ms->addr,
763 params->addr_type)) {
764 /* White list can not be used with RPAs */
768 white_list_entries++;
769 add_to_white_list(req, params);
772 /* Select filter policy to use white list */
776 static bool scan_use_rpa(struct hci_dev *hdev)
778 return hci_dev_test_flag(hdev, HCI_PRIVACY);
781 void hci_req_add_le_passive_scan(struct hci_request *req)
783 struct hci_cp_le_set_scan_param param_cp;
784 struct hci_cp_le_set_scan_enable enable_cp;
785 struct hci_dev *hdev = req->hdev;
789 /* Set require_privacy to false since no SCAN_REQ are send
790 * during passive scanning. Not using an non-resolvable address
791 * here is important so that peer devices using direct
792 * advertising with our address will be correctly reported
795 if (hci_update_random_address(req, false, scan_use_rpa(hdev),
799 /* Adding or removing entries from the white list must
800 * happen before enabling scanning. The controller does
801 * not allow white list modification while scanning.
803 filter_policy = update_white_list(req);
805 /* When the controller is using random resolvable addresses and
806 * with that having LE privacy enabled, then controllers with
807 * Extended Scanner Filter Policies support can now enable support
808 * for handling directed advertising.
810 * So instead of using filter polices 0x00 (no whitelist)
811 * and 0x01 (whitelist enabled) use the new filter policies
812 * 0x02 (no whitelist) and 0x03 (whitelist enabled).
814 if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
815 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
816 filter_policy |= 0x02;
818 memset(¶m_cp, 0, sizeof(param_cp));
819 param_cp.type = LE_SCAN_PASSIVE;
820 param_cp.interval = cpu_to_le16(hdev->le_scan_interval);
821 param_cp.window = cpu_to_le16(hdev->le_scan_window);
822 param_cp.own_address_type = own_addr_type;
823 param_cp.filter_policy = filter_policy;
824 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
827 memset(&enable_cp, 0, sizeof(enable_cp));
828 enable_cp.enable = LE_SCAN_ENABLE;
829 enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
830 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
834 static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev)
836 u8 instance = hdev->cur_adv_instance;
837 struct adv_info *adv_instance;
839 /* Ignore instance 0 */
840 if (instance == 0x00)
843 adv_instance = hci_find_adv_instance(hdev, instance);
847 /* TODO: Take into account the "appearance" and "local-name" flags here.
848 * These are currently being ignored as they are not supported.
850 return adv_instance->scan_rsp_len;
853 void __hci_req_disable_advertising(struct hci_request *req)
857 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
860 static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance)
863 struct adv_info *adv_instance;
865 if (instance == 0x00) {
866 /* Instance 0 always manages the "Tx Power" and "Flags"
869 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
871 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
872 * corresponds to the "connectable" instance flag.
874 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
875 flags |= MGMT_ADV_FLAG_CONNECTABLE;
877 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
878 flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
879 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
880 flags |= MGMT_ADV_FLAG_DISCOV;
885 adv_instance = hci_find_adv_instance(hdev, instance);
887 /* Return 0 when we got an invalid instance identifier. */
891 return adv_instance->flags;
894 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
896 /* If privacy is not enabled don't use RPA */
897 if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
900 /* If basic privacy mode is enabled use RPA */
901 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
904 /* If limited privacy mode is enabled don't use RPA if we're
905 * both discoverable and bondable.
907 if ((flags & MGMT_ADV_FLAG_DISCOV) &&
908 hci_dev_test_flag(hdev, HCI_BONDABLE))
911 /* We're neither bondable nor discoverable in the limited
912 * privacy mode, therefore use RPA.
917 void __hci_req_enable_advertising(struct hci_request *req)
919 struct hci_dev *hdev = req->hdev;
920 struct hci_cp_le_set_adv_param cp;
921 u8 own_addr_type, enable = 0x01;
925 if (hci_conn_num(hdev, LE_LINK) > 0)
928 if (hci_dev_test_flag(hdev, HCI_LE_ADV))
929 __hci_req_disable_advertising(req);
931 /* Clear the HCI_LE_ADV bit temporarily so that the
932 * hci_update_random_address knows that it's safe to go ahead
933 * and write a new random address. The flag will be set back on
934 * as soon as the SET_ADV_ENABLE HCI command completes.
936 hci_dev_clear_flag(hdev, HCI_LE_ADV);
938 flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance);
940 /* If the "connectable" instance flag was not set, then choose between
941 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
943 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
944 mgmt_get_connectable(hdev);
946 /* Set require_privacy to true only when non-connectable
947 * advertising is used. In that case it is fine to use a
948 * non-resolvable private address.
950 if (hci_update_random_address(req, !connectable,
951 adv_use_rpa(hdev, flags),
955 memset(&cp, 0, sizeof(cp));
956 cp.min_interval = cpu_to_le16(hdev->le_adv_min_interval);
957 cp.max_interval = cpu_to_le16(hdev->le_adv_max_interval);
960 cp.type = LE_ADV_IND;
961 else if (get_cur_adv_instance_scan_rsp_len(hdev))
962 cp.type = LE_ADV_SCAN_IND;
964 cp.type = LE_ADV_NONCONN_IND;
966 cp.own_address_type = own_addr_type;
967 cp.channel_map = hdev->le_adv_channel_map;
969 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
971 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
974 u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
979 /* no space left for name (+ NULL + type + len) */
980 if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3)
983 /* use complete name if present and fits */
984 complete_len = strlen(hdev->dev_name);
985 if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH)
986 return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE,
987 hdev->dev_name, complete_len + 1);
989 /* use short name if present */
990 short_len = strlen(hdev->short_name);
992 return eir_append_data(ptr, ad_len, EIR_NAME_SHORT,
993 hdev->short_name, short_len + 1);
995 /* use shortened full name if present, we already know that name
996 * is longer then HCI_MAX_SHORT_NAME_LENGTH
999 u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1];
1001 memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH);
1002 name[HCI_MAX_SHORT_NAME_LENGTH] = '\0';
1004 return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name,
1011 static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1013 return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance);
1016 static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr)
1018 u8 scan_rsp_len = 0;
1020 if (hdev->appearance) {
1021 scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1024 return append_local_name(hdev, ptr, scan_rsp_len);
1027 static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance,
1030 struct adv_info *adv_instance;
1032 u8 scan_rsp_len = 0;
1034 adv_instance = hci_find_adv_instance(hdev, instance);
1038 instance_flags = adv_instance->flags;
1040 if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) {
1041 scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1044 memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data,
1045 adv_instance->scan_rsp_len);
1047 scan_rsp_len += adv_instance->scan_rsp_len;
1049 if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME)
1050 scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len);
1052 return scan_rsp_len;
1055 void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1057 struct hci_dev *hdev = req->hdev;
1058 struct hci_cp_le_set_scan_rsp_data cp;
1061 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1064 memset(&cp, 0, sizeof(cp));
1067 len = create_instance_scan_rsp_data(hdev, instance, cp.data);
1069 len = create_default_scan_rsp_data(hdev, cp.data);
1071 if (hdev->scan_rsp_data_len == len &&
1072 !memcmp(cp.data, hdev->scan_rsp_data, len))
1075 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1076 hdev->scan_rsp_data_len = len;
1080 hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
1083 static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr)
1085 struct adv_info *adv_instance = NULL;
1086 u8 ad_len = 0, flags = 0;
1089 /* Return 0 when the current instance identifier is invalid. */
1091 adv_instance = hci_find_adv_instance(hdev, instance);
1096 instance_flags = get_adv_instance_flags(hdev, instance);
1098 /* The Add Advertising command allows userspace to set both the general
1099 * and limited discoverable flags.
1101 if (instance_flags & MGMT_ADV_FLAG_DISCOV)
1102 flags |= LE_AD_GENERAL;
1104 if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV)
1105 flags |= LE_AD_LIMITED;
1107 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1108 flags |= LE_AD_NO_BREDR;
1110 if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) {
1111 /* If a discovery flag wasn't provided, simply use the global
1115 flags |= mgmt_get_adv_discov_flags(hdev);
1117 /* If flags would still be empty, then there is no need to
1118 * include the "Flags" AD field".
1131 memcpy(ptr, adv_instance->adv_data,
1132 adv_instance->adv_data_len);
1133 ad_len += adv_instance->adv_data_len;
1134 ptr += adv_instance->adv_data_len;
1137 /* Provide Tx Power only if we can provide a valid value for it */
1138 if (hdev->adv_tx_power != HCI_TX_POWER_INVALID &&
1139 (instance_flags & MGMT_ADV_FLAG_TX_POWER)) {
1141 ptr[1] = EIR_TX_POWER;
1142 ptr[2] = (u8)hdev->adv_tx_power;
1151 void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1153 struct hci_dev *hdev = req->hdev;
1154 struct hci_cp_le_set_adv_data cp;
1157 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1160 memset(&cp, 0, sizeof(cp));
1162 len = create_instance_adv_data(hdev, instance, cp.data);
1164 /* There's nothing to do if the data hasn't changed */
1165 if (hdev->adv_data_len == len &&
1166 memcmp(cp.data, hdev->adv_data, len) == 0)
1169 memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1170 hdev->adv_data_len = len;
1174 hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
1177 int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1179 struct hci_request req;
1181 hci_req_init(&req, hdev);
1182 __hci_req_update_adv_data(&req, instance);
1184 return hci_req_run(&req, NULL);
1187 static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1189 BT_DBG("%s status %u", hdev->name, status);
1192 void hci_req_reenable_advertising(struct hci_dev *hdev)
1194 struct hci_request req;
1196 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1197 list_empty(&hdev->adv_instances))
1200 hci_req_init(&req, hdev);
1202 if (hdev->cur_adv_instance) {
1203 __hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
1206 __hci_req_update_adv_data(&req, 0x00);
1207 __hci_req_update_scan_rsp_data(&req, 0x00);
1208 __hci_req_enable_advertising(&req);
1211 hci_req_run(&req, adv_enable_complete);
1214 static void adv_timeout_expire(struct work_struct *work)
1216 struct hci_dev *hdev = container_of(work, struct hci_dev,
1217 adv_instance_expire.work);
1219 struct hci_request req;
1222 BT_DBG("%s", hdev->name);
1226 hdev->adv_instance_timeout = 0;
1228 instance = hdev->cur_adv_instance;
1229 if (instance == 0x00)
1232 hci_req_init(&req, hdev);
1234 hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
1236 if (list_empty(&hdev->adv_instances))
1237 __hci_req_disable_advertising(&req);
1239 hci_req_run(&req, NULL);
1242 hci_dev_unlock(hdev);
1245 int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
1248 struct hci_dev *hdev = req->hdev;
1249 struct adv_info *adv_instance = NULL;
1252 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1253 list_empty(&hdev->adv_instances))
1256 if (hdev->adv_instance_timeout)
1259 adv_instance = hci_find_adv_instance(hdev, instance);
1263 /* A zero timeout means unlimited advertising. As long as there is
1264 * only one instance, duration should be ignored. We still set a timeout
1265 * in case further instances are being added later on.
1267 * If the remaining lifetime of the instance is more than the duration
1268 * then the timeout corresponds to the duration, otherwise it will be
1269 * reduced to the remaining instance lifetime.
1271 if (adv_instance->timeout == 0 ||
1272 adv_instance->duration <= adv_instance->remaining_time)
1273 timeout = adv_instance->duration;
1275 timeout = adv_instance->remaining_time;
1277 /* The remaining time is being reduced unless the instance is being
1278 * advertised without time limit.
1280 if (adv_instance->timeout)
1281 adv_instance->remaining_time =
1282 adv_instance->remaining_time - timeout;
1284 hdev->adv_instance_timeout = timeout;
1285 queue_delayed_work(hdev->req_workqueue,
1286 &hdev->adv_instance_expire,
1287 msecs_to_jiffies(timeout * 1000));
1289 /* If we're just re-scheduling the same instance again then do not
1290 * execute any HCI commands. This happens when a single instance is
1293 if (!force && hdev->cur_adv_instance == instance &&
1294 hci_dev_test_flag(hdev, HCI_LE_ADV))
1297 hdev->cur_adv_instance = instance;
1298 __hci_req_update_adv_data(req, instance);
1299 __hci_req_update_scan_rsp_data(req, instance);
1300 __hci_req_enable_advertising(req);
1305 static void cancel_adv_timeout(struct hci_dev *hdev)
1307 if (hdev->adv_instance_timeout) {
1308 hdev->adv_instance_timeout = 0;
1309 cancel_delayed_work(&hdev->adv_instance_expire);
1313 /* For a single instance:
1314 * - force == true: The instance will be removed even when its remaining
1315 * lifetime is not zero.
1316 * - force == false: the instance will be deactivated but kept stored unless
1317 * the remaining lifetime is zero.
1319 * For instance == 0x00:
1320 * - force == true: All instances will be removed regardless of their timeout
1322 * - force == false: Only instances that have a timeout will be removed.
1324 void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
1325 struct hci_request *req, u8 instance,
1328 struct adv_info *adv_instance, *n, *next_instance = NULL;
1332 /* Cancel any timeout concerning the removed instance(s). */
1333 if (!instance || hdev->cur_adv_instance == instance)
1334 cancel_adv_timeout(hdev);
1336 /* Get the next instance to advertise BEFORE we remove
1337 * the current one. This can be the same instance again
1338 * if there is only one instance.
1340 if (instance && hdev->cur_adv_instance == instance)
1341 next_instance = hci_get_next_instance(hdev, instance);
1343 if (instance == 0x00) {
1344 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
1346 if (!(force || adv_instance->timeout))
1349 rem_inst = adv_instance->instance;
1350 err = hci_remove_adv_instance(hdev, rem_inst);
1352 mgmt_advertising_removed(sk, hdev, rem_inst);
1355 adv_instance = hci_find_adv_instance(hdev, instance);
1357 if (force || (adv_instance && adv_instance->timeout &&
1358 !adv_instance->remaining_time)) {
1359 /* Don't advertise a removed instance. */
1360 if (next_instance &&
1361 next_instance->instance == instance)
1362 next_instance = NULL;
1364 err = hci_remove_adv_instance(hdev, instance);
1366 mgmt_advertising_removed(sk, hdev, instance);
1370 if (!req || !hdev_is_powered(hdev) ||
1371 hci_dev_test_flag(hdev, HCI_ADVERTISING))
1375 __hci_req_schedule_adv_instance(req, next_instance->instance,
1379 static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
1381 struct hci_dev *hdev = req->hdev;
1383 /* If we're advertising or initiating an LE connection we can't
1384 * go ahead and change the random address at this time. This is
1385 * because the eventual initiator address used for the
1386 * subsequently created connection will be undefined (some
1387 * controllers use the new address and others the one we had
1388 * when the operation started).
1390 * In this kind of scenario skip the update and let the random
1391 * address be updated at the next cycle.
1393 if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
1394 hci_lookup_le_connect(hdev)) {
1395 BT_DBG("Deferring random address update");
1396 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1400 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
1403 int hci_update_random_address(struct hci_request *req, bool require_privacy,
1404 bool use_rpa, u8 *own_addr_type)
1406 struct hci_dev *hdev = req->hdev;
1409 /* If privacy is enabled use a resolvable private address. If
1410 * current RPA has expired or there is something else than
1411 * the current RPA in use, then generate a new one.
1416 *own_addr_type = ADDR_LE_DEV_RANDOM;
1418 if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1419 !bacmp(&hdev->random_addr, &hdev->rpa))
1422 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1424 BT_ERR("%s failed to generate new RPA", hdev->name);
1428 set_random_addr(req, &hdev->rpa);
1430 to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1431 queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);
1436 /* In case of required privacy without resolvable private address,
1437 * use an non-resolvable private address. This is useful for active
1438 * scanning and non-connectable advertising.
1440 if (require_privacy) {
1444 /* The non-resolvable private address is generated
1445 * from random six bytes with the two most significant
1448 get_random_bytes(&nrpa, 6);
1451 /* The non-resolvable private address shall not be
1452 * equal to the public address.
1454 if (bacmp(&hdev->bdaddr, &nrpa))
1458 *own_addr_type = ADDR_LE_DEV_RANDOM;
1459 set_random_addr(req, &nrpa);
1463 /* If forcing static address is in use or there is no public
1464 * address use the static address as random address (but skip
1465 * the HCI command if the current random address is already the
1468 * In case BR/EDR has been disabled on a dual-mode controller
1469 * and a static address has been configured, then use that
1470 * address instead of the public BR/EDR address.
1472 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
1473 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
1474 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
1475 bacmp(&hdev->static_addr, BDADDR_ANY))) {
1476 *own_addr_type = ADDR_LE_DEV_RANDOM;
1477 if (bacmp(&hdev->static_addr, &hdev->random_addr))
1478 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
1479 &hdev->static_addr);
1483 /* Neither privacy nor static address is being used so use a
1486 *own_addr_type = ADDR_LE_DEV_PUBLIC;
1491 static bool disconnected_whitelist_entries(struct hci_dev *hdev)
1493 struct bdaddr_list *b;
1495 list_for_each_entry(b, &hdev->whitelist, list) {
1496 struct hci_conn *conn;
1498 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
1502 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
1509 void __hci_req_update_scan(struct hci_request *req)
1511 struct hci_dev *hdev = req->hdev;
1514 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1517 if (!hdev_is_powered(hdev))
1520 if (mgmt_powering_down(hdev))
1523 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
1524 disconnected_whitelist_entries(hdev))
1527 scan = SCAN_DISABLED;
1529 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1530 scan |= SCAN_INQUIRY;
1532 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
1533 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
1536 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1539 static int update_scan(struct hci_request *req, unsigned long opt)
1541 hci_dev_lock(req->hdev);
1542 __hci_req_update_scan(req);
1543 hci_dev_unlock(req->hdev);
1547 static void scan_update_work(struct work_struct *work)
1549 struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);
1551 hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
1554 static int connectable_update(struct hci_request *req, unsigned long opt)
1556 struct hci_dev *hdev = req->hdev;
1560 __hci_req_update_scan(req);
1562 /* If BR/EDR is not enabled and we disable advertising as a
1563 * by-product of disabling connectable, we need to update the
1564 * advertising flags.
1566 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1567 __hci_req_update_adv_data(req, hdev->cur_adv_instance);
1569 /* Update the advertising parameters if necessary */
1570 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1571 !list_empty(&hdev->adv_instances))
1572 __hci_req_enable_advertising(req);
1574 __hci_update_background_scan(req);
1576 hci_dev_unlock(hdev);
1581 static void connectable_update_work(struct work_struct *work)
1583 struct hci_dev *hdev = container_of(work, struct hci_dev,
1584 connectable_update);
1587 hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
1588 mgmt_set_connectable_complete(hdev, status);
1591 static u8 get_service_classes(struct hci_dev *hdev)
1593 struct bt_uuid *uuid;
1596 list_for_each_entry(uuid, &hdev->uuids, list)
1597 val |= uuid->svc_hint;
1602 void __hci_req_update_class(struct hci_request *req)
1604 struct hci_dev *hdev = req->hdev;
1607 BT_DBG("%s", hdev->name);
1609 if (!hdev_is_powered(hdev))
1612 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1615 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
1618 cod[0] = hdev->minor_class;
1619 cod[1] = hdev->major_class;
1620 cod[2] = get_service_classes(hdev);
1622 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1625 if (memcmp(cod, hdev->dev_class, 3) == 0)
1628 hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
1631 static void write_iac(struct hci_request *req)
1633 struct hci_dev *hdev = req->hdev;
1634 struct hci_cp_write_current_iac_lap cp;
1636 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1639 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1640 /* Limited discoverable mode */
1641 cp.num_iac = min_t(u8, hdev->num_iac, 2);
1642 cp.iac_lap[0] = 0x00; /* LIAC */
1643 cp.iac_lap[1] = 0x8b;
1644 cp.iac_lap[2] = 0x9e;
1645 cp.iac_lap[3] = 0x33; /* GIAC */
1646 cp.iac_lap[4] = 0x8b;
1647 cp.iac_lap[5] = 0x9e;
1649 /* General discoverable mode */
1651 cp.iac_lap[0] = 0x33; /* GIAC */
1652 cp.iac_lap[1] = 0x8b;
1653 cp.iac_lap[2] = 0x9e;
1656 hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
1657 (cp.num_iac * 3) + 1, &cp);
1660 static int discoverable_update(struct hci_request *req, unsigned long opt)
1662 struct hci_dev *hdev = req->hdev;
1666 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1668 __hci_req_update_scan(req);
1669 __hci_req_update_class(req);
1672 /* Advertising instances don't use the global discoverable setting, so
1673 * only update AD if advertising was enabled using Set Advertising.
1675 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
1676 __hci_req_update_adv_data(req, 0x00);
1678 /* Discoverable mode affects the local advertising
1679 * address in limited privacy mode.
1681 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
1682 __hci_req_enable_advertising(req);
1685 hci_dev_unlock(hdev);
1690 static void discoverable_update_work(struct work_struct *work)
1692 struct hci_dev *hdev = container_of(work, struct hci_dev,
1693 discoverable_update);
1696 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
1697 mgmt_set_discoverable_complete(hdev, status);
1700 void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
1703 switch (conn->state) {
1706 if (conn->type == AMP_LINK) {
1707 struct hci_cp_disconn_phy_link cp;
1709 cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
1711 hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
1714 struct hci_cp_disconnect dc;
1716 dc.handle = cpu_to_le16(conn->handle);
1718 hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
1721 conn->state = BT_DISCONN;
1725 if (conn->type == LE_LINK) {
1726 if (test_bit(HCI_CONN_SCANNING, &conn->flags))
1728 hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
1730 } else if (conn->type == ACL_LINK) {
1731 if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
1733 hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
1738 if (conn->type == ACL_LINK) {
1739 struct hci_cp_reject_conn_req rej;
1741 bacpy(&rej.bdaddr, &conn->dst);
1742 rej.reason = reason;
1744 hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
1746 } else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
1747 struct hci_cp_reject_sync_conn_req rej;
1749 bacpy(&rej.bdaddr, &conn->dst);
1751 /* SCO rejection has its own limited set of
1752 * allowed error values (0x0D-0x0F) which isn't
1753 * compatible with most values passed to this
1754 * function. To be safe hard-code one of the
1755 * values that's suitable for SCO.
1757 rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
1759 hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
1764 conn->state = BT_CLOSED;
1769 static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1772 BT_DBG("Failed to abort connection: status 0x%2.2x", status);
1775 int hci_abort_conn(struct hci_conn *conn, u8 reason)
1777 struct hci_request req;
1780 hci_req_init(&req, conn->hdev);
1782 __hci_abort_conn(&req, conn, reason);
1784 err = hci_req_run(&req, abort_conn_complete);
1785 if (err && err != -ENODATA) {
1786 BT_ERR("Failed to run HCI request: err %d", err);
1793 static int update_bg_scan(struct hci_request *req, unsigned long opt)
1795 hci_dev_lock(req->hdev);
1796 __hci_update_background_scan(req);
1797 hci_dev_unlock(req->hdev);
1801 static void bg_scan_update(struct work_struct *work)
1803 struct hci_dev *hdev = container_of(work, struct hci_dev,
1805 struct hci_conn *conn;
1809 err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
1815 conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
1817 hci_le_conn_failed(conn, status);
1819 hci_dev_unlock(hdev);
1822 static int le_scan_disable(struct hci_request *req, unsigned long opt)
1824 hci_req_add_le_scan_disable(req);
1828 static int bredr_inquiry(struct hci_request *req, unsigned long opt)
1831 const u8 giac[3] = { 0x33, 0x8b, 0x9e };
1832 const u8 liac[3] = { 0x00, 0x8b, 0x9e };
1833 struct hci_cp_inquiry cp;
1835 BT_DBG("%s", req->hdev->name);
1837 hci_dev_lock(req->hdev);
1838 hci_inquiry_cache_flush(req->hdev);
1839 hci_dev_unlock(req->hdev);
1841 memset(&cp, 0, sizeof(cp));
1843 if (req->hdev->discovery.limited)
1844 memcpy(&cp.lap, liac, sizeof(cp.lap));
1846 memcpy(&cp.lap, giac, sizeof(cp.lap));
1850 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1855 static void le_scan_disable_work(struct work_struct *work)
1857 struct hci_dev *hdev = container_of(work, struct hci_dev,
1858 le_scan_disable.work);
1861 BT_DBG("%s", hdev->name);
1863 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1866 cancel_delayed_work(&hdev->le_scan_restart);
1868 hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
1870 BT_ERR("Failed to disable LE scan: status 0x%02x", status);
1874 hdev->discovery.scan_start = 0;
1876 /* If we were running LE only scan, change discovery state. If
1877 * we were running both LE and BR/EDR inquiry simultaneously,
1878 * and BR/EDR inquiry is already finished, stop discovery,
1879 * otherwise BR/EDR inquiry will stop discovery when finished.
1880 * If we will resolve remote device name, do not change
1884 if (hdev->discovery.type == DISCOV_TYPE_LE)
1885 goto discov_stopped;
1887 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
1890 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
1891 if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
1892 hdev->discovery.state != DISCOVERY_RESOLVING)
1893 goto discov_stopped;
1898 hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
1899 HCI_CMD_TIMEOUT, &status);
1901 BT_ERR("Inquiry failed: status 0x%02x", status);
1902 goto discov_stopped;
1909 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1910 hci_dev_unlock(hdev);
1913 static int le_scan_restart(struct hci_request *req, unsigned long opt)
1915 struct hci_dev *hdev = req->hdev;
1916 struct hci_cp_le_set_scan_enable cp;
1918 /* If controller is not scanning we are done. */
1919 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1922 hci_req_add_le_scan_disable(req);
1924 memset(&cp, 0, sizeof(cp));
1925 cp.enable = LE_SCAN_ENABLE;
1926 cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
1927 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
1932 static void le_scan_restart_work(struct work_struct *work)
1934 struct hci_dev *hdev = container_of(work, struct hci_dev,
1935 le_scan_restart.work);
1936 unsigned long timeout, duration, scan_start, now;
1939 BT_DBG("%s", hdev->name);
1941 hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
1943 BT_ERR("Failed to restart LE scan: status %d", status);
1949 if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
1950 !hdev->discovery.scan_start)
1953 /* When the scan was started, hdev->le_scan_disable has been queued
1954 * after duration from scan_start. During scan restart this job
1955 * has been canceled, and we need to queue it again after proper
1956 * timeout, to make sure that scan does not run indefinitely.
1958 duration = hdev->discovery.scan_duration;
1959 scan_start = hdev->discovery.scan_start;
1961 if (now - scan_start <= duration) {
1964 if (now >= scan_start)
1965 elapsed = now - scan_start;
1967 elapsed = ULONG_MAX - scan_start + now;
1969 timeout = duration - elapsed;
1974 queue_delayed_work(hdev->req_workqueue,
1975 &hdev->le_scan_disable, timeout);
1978 hci_dev_unlock(hdev);
1981 static void disable_advertising(struct hci_request *req)
1985 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1988 static int active_scan(struct hci_request *req, unsigned long opt)
1990 uint16_t interval = opt;
1991 struct hci_dev *hdev = req->hdev;
1992 struct hci_cp_le_set_scan_param param_cp;
1993 struct hci_cp_le_set_scan_enable enable_cp;
1997 BT_DBG("%s", hdev->name);
1999 if (hci_dev_test_flag(hdev, HCI_LE_ADV)) {
2002 /* Don't let discovery abort an outgoing connection attempt
2003 * that's using directed advertising.
2005 if (hci_lookup_le_connect(hdev)) {
2006 hci_dev_unlock(hdev);
2010 cancel_adv_timeout(hdev);
2011 hci_dev_unlock(hdev);
2013 disable_advertising(req);
2016 /* If controller is scanning, it means the background scanning is
2017 * running. Thus, we should temporarily stop it in order to set the
2018 * discovery scanning parameters.
2020 if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
2021 hci_req_add_le_scan_disable(req);
2023 /* All active scans will be done with either a resolvable private
2024 * address (when privacy feature has been enabled) or non-resolvable
2027 err = hci_update_random_address(req, true, scan_use_rpa(hdev),
2030 own_addr_type = ADDR_LE_DEV_PUBLIC;
2032 memset(¶m_cp, 0, sizeof(param_cp));
2033 param_cp.type = LE_SCAN_ACTIVE;
2034 param_cp.interval = cpu_to_le16(interval);
2035 param_cp.window = cpu_to_le16(DISCOV_LE_SCAN_WIN);
2036 param_cp.own_address_type = own_addr_type;
2038 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
2041 memset(&enable_cp, 0, sizeof(enable_cp));
2042 enable_cp.enable = LE_SCAN_ENABLE;
2043 enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2045 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
2051 static int interleaved_discov(struct hci_request *req, unsigned long opt)
2055 BT_DBG("%s", req->hdev->name);
2057 err = active_scan(req, opt);
2061 return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
2064 static void start_discovery(struct hci_dev *hdev, u8 *status)
2066 unsigned long timeout;
2068 BT_DBG("%s type %u", hdev->name, hdev->discovery.type);
2070 switch (hdev->discovery.type) {
2071 case DISCOV_TYPE_BREDR:
2072 if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
2073 hci_req_sync(hdev, bredr_inquiry,
2074 DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
2077 case DISCOV_TYPE_INTERLEAVED:
2078 /* When running simultaneous discovery, the LE scanning time
2079 * should occupy the whole discovery time sine BR/EDR inquiry
2080 * and LE scanning are scheduled by the controller.
2082 * For interleaving discovery in comparison, BR/EDR inquiry
2083 * and LE scanning are done sequentially with separate
2086 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
2088 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2089 /* During simultaneous discovery, we double LE scan
2090 * interval. We must leave some time for the controller
2091 * to do BR/EDR inquiry.
2093 hci_req_sync(hdev, interleaved_discov,
2094 DISCOV_LE_SCAN_INT * 2, HCI_CMD_TIMEOUT,
2099 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
2100 hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2101 HCI_CMD_TIMEOUT, status);
2103 case DISCOV_TYPE_LE:
2104 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2105 hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2106 HCI_CMD_TIMEOUT, status);
2109 *status = HCI_ERROR_UNSPECIFIED;
2116 BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout));
2118 /* When service discovery is used and the controller has a
2119 * strict duplicate filter, it is important to remember the
2120 * start and duration of the scan. This is required for
2121 * restarting scanning during the discovery phase.
2123 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
2124 hdev->discovery.result_filtering) {
2125 hdev->discovery.scan_start = jiffies;
2126 hdev->discovery.scan_duration = timeout;
2129 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
2133 bool hci_req_stop_discovery(struct hci_request *req)
2135 struct hci_dev *hdev = req->hdev;
2136 struct discovery_state *d = &hdev->discovery;
2137 struct hci_cp_remote_name_req_cancel cp;
2138 struct inquiry_entry *e;
2141 BT_DBG("%s state %u", hdev->name, hdev->discovery.state);
2143 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
2144 if (test_bit(HCI_INQUIRY, &hdev->flags))
2145 hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);
2147 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2148 cancel_delayed_work(&hdev->le_scan_disable);
2149 hci_req_add_le_scan_disable(req);
2154 /* Passive scanning */
2155 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2156 hci_req_add_le_scan_disable(req);
2161 /* No further actions needed for LE-only discovery */
2162 if (d->type == DISCOV_TYPE_LE)
2165 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
2166 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
2171 bacpy(&cp.bdaddr, &e->data.bdaddr);
2172 hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
2180 static int stop_discovery(struct hci_request *req, unsigned long opt)
2182 hci_dev_lock(req->hdev);
2183 hci_req_stop_discovery(req);
2184 hci_dev_unlock(req->hdev);
2189 static void discov_update(struct work_struct *work)
2191 struct hci_dev *hdev = container_of(work, struct hci_dev,
2195 switch (hdev->discovery.state) {
2196 case DISCOVERY_STARTING:
2197 start_discovery(hdev, &status);
2198 mgmt_start_discovery_complete(hdev, status);
2200 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2202 hci_discovery_set_state(hdev, DISCOVERY_FINDING);
2204 case DISCOVERY_STOPPING:
2205 hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
2206 mgmt_stop_discovery_complete(hdev, status);
2208 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2210 case DISCOVERY_STOPPED:
2216 static void discov_off(struct work_struct *work)
2218 struct hci_dev *hdev = container_of(work, struct hci_dev,
2221 BT_DBG("%s", hdev->name);
2225 /* When discoverable timeout triggers, then just make sure
2226 * the limited discoverable flag is cleared. Even in the case
2227 * of a timeout triggered from general discoverable, it is
2228 * safe to unconditionally clear the flag.
2230 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2231 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2232 hdev->discov_timeout = 0;
2234 hci_dev_unlock(hdev);
2236 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
2237 mgmt_new_settings(hdev);
2240 static int powered_update_hci(struct hci_request *req, unsigned long opt)
2242 struct hci_dev *hdev = req->hdev;
2247 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
2248 !lmp_host_ssp_capable(hdev)) {
2251 hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);
2253 if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
2256 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
2257 sizeof(support), &support);
2261 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
2262 lmp_bredr_capable(hdev)) {
2263 struct hci_cp_write_le_host_supported cp;
2268 /* Check first if we already have the right
2269 * host state (host features set)
2271 if (cp.le != lmp_host_le_capable(hdev) ||
2272 cp.simul != lmp_host_le_br_capable(hdev))
2273 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2277 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
2278 /* Make sure the controller has a good default for
2279 * advertising data. This also applies to the case
2280 * where BR/EDR was toggled during the AUTO_OFF phase.
2282 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2283 list_empty(&hdev->adv_instances)) {
2284 __hci_req_update_adv_data(req, 0x00);
2285 __hci_req_update_scan_rsp_data(req, 0x00);
2287 if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
2288 __hci_req_enable_advertising(req);
2289 } else if (!list_empty(&hdev->adv_instances)) {
2290 struct adv_info *adv_instance;
2292 adv_instance = list_first_entry(&hdev->adv_instances,
2293 struct adv_info, list);
2294 __hci_req_schedule_adv_instance(req,
2295 adv_instance->instance,
2300 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
2301 if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
2302 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
2303 sizeof(link_sec), &link_sec);
2305 if (lmp_bredr_capable(hdev)) {
2306 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
2307 __hci_req_write_fast_connectable(req, true);
2309 __hci_req_write_fast_connectable(req, false);
2310 __hci_req_update_scan(req);
2311 __hci_req_update_class(req);
2312 __hci_req_update_name(req);
2313 __hci_req_update_eir(req);
2316 hci_dev_unlock(hdev);
2320 int __hci_req_hci_power_on(struct hci_dev *hdev)
2322 /* Register the available SMP channels (BR/EDR and LE) only when
2323 * successfully powering on the controller. This late
2324 * registration is required so that LE SMP can clearly decide if
2325 * the public address or static address is used.
2329 return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
2333 void hci_request_setup(struct hci_dev *hdev)
2335 INIT_WORK(&hdev->discov_update, discov_update);
2336 INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
2337 INIT_WORK(&hdev->scan_update, scan_update_work);
2338 INIT_WORK(&hdev->connectable_update, connectable_update_work);
2339 INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
2340 INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
2341 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
2342 INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
2343 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
2346 void hci_request_cancel_all(struct hci_dev *hdev)
2348 hci_req_sync_cancel(hdev, ENODEV);
2350 cancel_work_sync(&hdev->discov_update);
2351 cancel_work_sync(&hdev->bg_scan_update);
2352 cancel_work_sync(&hdev->scan_update);
2353 cancel_work_sync(&hdev->connectable_update);
2354 cancel_work_sync(&hdev->discoverable_update);
2355 cancel_delayed_work_sync(&hdev->discov_off);
2356 cancel_delayed_work_sync(&hdev->le_scan_disable);
2357 cancel_delayed_work_sync(&hdev->le_scan_restart);
2359 if (hdev->adv_instance_timeout) {
2360 cancel_delayed_work_sync(&hdev->adv_instance_expire);
2361 hdev->adv_instance_timeout = 0;