2 BlueZ - Bluetooth protocol stack for Linux
4 Copyright (C) 2014 Intel Corporation
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License version 2 as
8 published by the Free Software Foundation;
10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
21 SOFTWARE IS DISCLAIMED.
24 #include <asm/unaligned.h>
26 #include <net/bluetooth/bluetooth.h>
27 #include <net/bluetooth/hci_core.h>
28 #include <net/bluetooth/mgmt.h>
31 #include "hci_request.h"
33 #define HCI_REQ_DONE 0
34 #define HCI_REQ_PEND 1
35 #define HCI_REQ_CANCELED 2
37 void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
39 skb_queue_head_init(&req->cmd_q);
44 static int req_run(struct hci_request *req, hci_req_complete_t complete,
45 hci_req_complete_skb_t complete_skb)
47 struct hci_dev *hdev = req->hdev;
51 BT_DBG("length %u", skb_queue_len(&req->cmd_q));
53 /* If an error occurred during request building, remove all HCI
54 * commands queued on the HCI request queue.
57 skb_queue_purge(&req->cmd_q);
61 /* Do not allow empty requests */
62 if (skb_queue_empty(&req->cmd_q))
65 skb = skb_peek_tail(&req->cmd_q);
67 bt_cb(skb)->hci.req_complete = complete;
68 } else if (complete_skb) {
69 bt_cb(skb)->hci.req_complete_skb = complete_skb;
70 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
73 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
74 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
75 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
77 queue_work(hdev->workqueue, &hdev->cmd_work);
82 int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
84 return req_run(req, complete, NULL);
87 int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
89 return req_run(req, NULL, complete);
92 static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
95 BT_DBG("%s result 0x%2.2x", hdev->name, result);
97 if (hdev->req_status == HCI_REQ_PEND) {
98 hdev->req_result = result;
99 hdev->req_status = HCI_REQ_DONE;
101 hdev->req_skb = skb_get(skb);
102 wake_up_interruptible(&hdev->req_wait_q);
106 void hci_req_sync_cancel(struct hci_dev *hdev, int err)
108 BT_DBG("%s err 0x%2.2x", hdev->name, err);
110 if (hdev->req_status == HCI_REQ_PEND) {
111 hdev->req_result = err;
112 hdev->req_status = HCI_REQ_CANCELED;
113 wake_up_interruptible(&hdev->req_wait_q);
117 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
118 const void *param, u8 event, u32 timeout)
120 DECLARE_WAITQUEUE(wait, current);
121 struct hci_request req;
125 BT_DBG("%s", hdev->name);
127 hci_req_init(&req, hdev);
129 hci_req_add_ev(&req, opcode, plen, param, event);
131 hdev->req_status = HCI_REQ_PEND;
133 add_wait_queue(&hdev->req_wait_q, &wait);
134 set_current_state(TASK_INTERRUPTIBLE);
136 err = hci_req_run_skb(&req, hci_req_sync_complete);
138 remove_wait_queue(&hdev->req_wait_q, &wait);
139 set_current_state(TASK_RUNNING);
143 schedule_timeout(timeout);
145 remove_wait_queue(&hdev->req_wait_q, &wait);
147 if (signal_pending(current))
148 return ERR_PTR(-EINTR);
150 switch (hdev->req_status) {
152 err = -bt_to_errno(hdev->req_result);
155 case HCI_REQ_CANCELED:
156 err = -hdev->req_result;
164 hdev->req_status = hdev->req_result = 0;
166 hdev->req_skb = NULL;
168 BT_DBG("%s end: err %d", hdev->name, err);
176 return ERR_PTR(-ENODATA);
180 EXPORT_SYMBOL(__hci_cmd_sync_ev);
182 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
183 const void *param, u32 timeout)
185 return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
187 EXPORT_SYMBOL(__hci_cmd_sync);
189 /* Execute request and wait for completion. */
190 int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
192 unsigned long opt, u32 timeout, u8 *hci_status)
194 struct hci_request req;
195 DECLARE_WAITQUEUE(wait, current);
198 BT_DBG("%s start", hdev->name);
200 hci_req_init(&req, hdev);
202 hdev->req_status = HCI_REQ_PEND;
204 err = func(&req, opt);
207 *hci_status = HCI_ERROR_UNSPECIFIED;
211 add_wait_queue(&hdev->req_wait_q, &wait);
212 set_current_state(TASK_INTERRUPTIBLE);
214 err = hci_req_run_skb(&req, hci_req_sync_complete);
216 hdev->req_status = 0;
218 remove_wait_queue(&hdev->req_wait_q, &wait);
219 set_current_state(TASK_RUNNING);
221 /* ENODATA means the HCI request command queue is empty.
222 * This can happen when a request with conditionals doesn't
223 * trigger any commands to be sent. This is normal behavior
224 * and should not trigger an error return.
226 if (err == -ENODATA) {
233 *hci_status = HCI_ERROR_UNSPECIFIED;
238 schedule_timeout(timeout);
240 remove_wait_queue(&hdev->req_wait_q, &wait);
242 if (signal_pending(current))
245 switch (hdev->req_status) {
247 err = -bt_to_errno(hdev->req_result);
249 *hci_status = hdev->req_result;
252 case HCI_REQ_CANCELED:
253 err = -hdev->req_result;
255 *hci_status = HCI_ERROR_UNSPECIFIED;
261 *hci_status = HCI_ERROR_UNSPECIFIED;
265 kfree_skb(hdev->req_skb);
266 hdev->req_skb = NULL;
267 hdev->req_status = hdev->req_result = 0;
269 BT_DBG("%s end: err %d", hdev->name, err);
274 int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
276 unsigned long opt, u32 timeout, u8 *hci_status)
280 if (!test_bit(HCI_UP, &hdev->flags))
283 /* Serialize all requests */
284 hci_req_sync_lock(hdev);
285 ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
286 hci_req_sync_unlock(hdev);
291 struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
294 int len = HCI_COMMAND_HDR_SIZE + plen;
295 struct hci_command_hdr *hdr;
298 skb = bt_skb_alloc(len, GFP_ATOMIC);
302 hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
303 hdr->opcode = cpu_to_le16(opcode);
307 memcpy(skb_put(skb, plen), param, plen);
309 BT_DBG("skb len %d", skb->len);
311 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
312 hci_skb_opcode(skb) = opcode;
317 /* Queue a command to an asynchronous HCI request */
318 void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
319 const void *param, u8 event)
321 struct hci_dev *hdev = req->hdev;
324 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
326 /* If an error occurred during request building, there is no point in
327 * queueing the HCI command. We can simply return.
332 skb = hci_prepare_cmd(hdev, opcode, plen, param);
334 BT_ERR("%s no memory for command (opcode 0x%4.4x)",
340 if (skb_queue_empty(&req->cmd_q))
341 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
343 bt_cb(skb)->hci.req_event = event;
345 skb_queue_tail(&req->cmd_q, skb);
348 void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
351 hci_req_add_ev(req, opcode, plen, param, 0);
354 void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
356 struct hci_dev *hdev = req->hdev;
357 struct hci_cp_write_page_scan_activity acp;
360 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
363 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
367 type = PAGE_SCAN_TYPE_INTERLACED;
369 /* 160 msec page scan interval */
370 acp.interval = cpu_to_le16(0x0100);
372 type = PAGE_SCAN_TYPE_STANDARD; /* default */
374 /* default 1.28 sec page scan */
375 acp.interval = cpu_to_le16(0x0800);
378 acp.window = cpu_to_le16(0x0012);
380 if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
381 __cpu_to_le16(hdev->page_scan_window) != acp.window)
382 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
385 if (hdev->page_scan_type != type)
386 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
389 /* This function controls the background scanning based on hdev->pend_le_conns
390 * list. If there are pending LE connection we start the background scanning,
391 * otherwise we stop it.
393 * This function requires the caller holds hdev->lock.
395 static void __hci_update_background_scan(struct hci_request *req)
397 struct hci_dev *hdev = req->hdev;
399 if (!test_bit(HCI_UP, &hdev->flags) ||
400 test_bit(HCI_INIT, &hdev->flags) ||
401 hci_dev_test_flag(hdev, HCI_SETUP) ||
402 hci_dev_test_flag(hdev, HCI_CONFIG) ||
403 hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
404 hci_dev_test_flag(hdev, HCI_UNREGISTER))
407 /* No point in doing scanning if LE support hasn't been enabled */
408 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
411 /* If discovery is active don't interfere with it */
412 if (hdev->discovery.state != DISCOVERY_STOPPED)
415 /* Reset RSSI and UUID filters when starting background scanning
416 * since these filters are meant for service discovery only.
418 * The Start Discovery and Start Service Discovery operations
419 * ensure to set proper values for RSSI threshold and UUID
420 * filter list. So it is safe to just reset them here.
422 hci_discovery_filter_clear(hdev);
424 if (list_empty(&hdev->pend_le_conns) &&
425 list_empty(&hdev->pend_le_reports)) {
426 /* If there is no pending LE connections or devices
427 * to be scanned for, we should stop the background
431 /* If controller is not scanning we are done. */
432 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
435 hci_req_add_le_scan_disable(req);
437 BT_DBG("%s stopping background scanning", hdev->name);
439 /* If there is at least one pending LE connection, we should
440 * keep the background scan running.
443 /* If controller is connecting, we should not start scanning
444 * since some controllers are not able to scan and connect at
447 if (hci_lookup_le_connect(hdev))
450 /* If controller is currently scanning, we stop it to ensure we
451 * don't miss any advertising (due to duplicates filter).
453 if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
454 hci_req_add_le_scan_disable(req);
456 hci_req_add_le_passive_scan(req);
458 BT_DBG("%s starting background scanning", hdev->name);
462 void __hci_req_update_name(struct hci_request *req)
464 struct hci_dev *hdev = req->hdev;
465 struct hci_cp_write_local_name cp;
467 memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
469 hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
472 #define PNP_INFO_SVCLASS_ID 0x1200
474 static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
476 u8 *ptr = data, *uuids_start = NULL;
477 struct bt_uuid *uuid;
482 list_for_each_entry(uuid, &hdev->uuids, list) {
485 if (uuid->size != 16)
488 uuid16 = get_unaligned_le16(&uuid->uuid[12]);
492 if (uuid16 == PNP_INFO_SVCLASS_ID)
498 uuids_start[1] = EIR_UUID16_ALL;
502 /* Stop if not enough space to put next UUID */
503 if ((ptr - data) + sizeof(u16) > len) {
504 uuids_start[1] = EIR_UUID16_SOME;
508 *ptr++ = (uuid16 & 0x00ff);
509 *ptr++ = (uuid16 & 0xff00) >> 8;
510 uuids_start[0] += sizeof(uuid16);
516 static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
518 u8 *ptr = data, *uuids_start = NULL;
519 struct bt_uuid *uuid;
524 list_for_each_entry(uuid, &hdev->uuids, list) {
525 if (uuid->size != 32)
531 uuids_start[1] = EIR_UUID32_ALL;
535 /* Stop if not enough space to put next UUID */
536 if ((ptr - data) + sizeof(u32) > len) {
537 uuids_start[1] = EIR_UUID32_SOME;
541 memcpy(ptr, &uuid->uuid[12], sizeof(u32));
543 uuids_start[0] += sizeof(u32);
549 static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
551 u8 *ptr = data, *uuids_start = NULL;
552 struct bt_uuid *uuid;
557 list_for_each_entry(uuid, &hdev->uuids, list) {
558 if (uuid->size != 128)
564 uuids_start[1] = EIR_UUID128_ALL;
568 /* Stop if not enough space to put next UUID */
569 if ((ptr - data) + 16 > len) {
570 uuids_start[1] = EIR_UUID128_SOME;
574 memcpy(ptr, uuid->uuid, 16);
576 uuids_start[0] += 16;
582 static void create_eir(struct hci_dev *hdev, u8 *data)
587 name_len = strlen(hdev->dev_name);
593 ptr[1] = EIR_NAME_SHORT;
595 ptr[1] = EIR_NAME_COMPLETE;
597 /* EIR Data length */
598 ptr[0] = name_len + 1;
600 memcpy(ptr + 2, hdev->dev_name, name_len);
602 ptr += (name_len + 2);
605 if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) {
607 ptr[1] = EIR_TX_POWER;
608 ptr[2] = (u8) hdev->inq_tx_power;
613 if (hdev->devid_source > 0) {
615 ptr[1] = EIR_DEVICE_ID;
617 put_unaligned_le16(hdev->devid_source, ptr + 2);
618 put_unaligned_le16(hdev->devid_vendor, ptr + 4);
619 put_unaligned_le16(hdev->devid_product, ptr + 6);
620 put_unaligned_le16(hdev->devid_version, ptr + 8);
625 ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
626 ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
627 ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
630 void __hci_req_update_eir(struct hci_request *req)
632 struct hci_dev *hdev = req->hdev;
633 struct hci_cp_write_eir cp;
635 if (!hdev_is_powered(hdev))
638 if (!lmp_ext_inq_capable(hdev))
641 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
644 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
647 memset(&cp, 0, sizeof(cp));
649 create_eir(hdev, cp.data);
651 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
654 memcpy(hdev->eir, cp.data, sizeof(cp.data));
656 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
659 void hci_req_add_le_scan_disable(struct hci_request *req)
661 struct hci_cp_le_set_scan_enable cp;
663 memset(&cp, 0, sizeof(cp));
664 cp.enable = LE_SCAN_DISABLE;
665 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
668 static void add_to_white_list(struct hci_request *req,
669 struct hci_conn_params *params)
671 struct hci_cp_le_add_to_white_list cp;
673 cp.bdaddr_type = params->addr_type;
674 bacpy(&cp.bdaddr, ¶ms->addr);
676 hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
679 static u8 update_white_list(struct hci_request *req)
681 struct hci_dev *hdev = req->hdev;
682 struct hci_conn_params *params;
683 struct bdaddr_list *b;
684 uint8_t white_list_entries = 0;
686 /* Go through the current white list programmed into the
687 * controller one by one and check if that address is still
688 * in the list of pending connections or list of devices to
689 * report. If not present in either list, then queue the
690 * command to remove it from the controller.
692 list_for_each_entry(b, &hdev->le_white_list, list) {
693 /* If the device is neither in pend_le_conns nor
694 * pend_le_reports then remove it from the whitelist.
696 if (!hci_pend_le_action_lookup(&hdev->pend_le_conns,
697 &b->bdaddr, b->bdaddr_type) &&
698 !hci_pend_le_action_lookup(&hdev->pend_le_reports,
699 &b->bdaddr, b->bdaddr_type)) {
700 struct hci_cp_le_del_from_white_list cp;
702 cp.bdaddr_type = b->bdaddr_type;
703 bacpy(&cp.bdaddr, &b->bdaddr);
705 hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST,
710 if (hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
711 /* White list can not be used with RPAs */
715 white_list_entries++;
718 /* Since all no longer valid white list entries have been
719 * removed, walk through the list of pending connections
720 * and ensure that any new device gets programmed into
723 * If the list of the devices is larger than the list of
724 * available white list entries in the controller, then
725 * just abort and return filer policy value to not use the
728 list_for_each_entry(params, &hdev->pend_le_conns, action) {
729 if (hci_bdaddr_list_lookup(&hdev->le_white_list,
730 ¶ms->addr, params->addr_type))
733 if (white_list_entries >= hdev->le_white_list_size) {
734 /* Select filter policy to accept all advertising */
738 if (hci_find_irk_by_addr(hdev, ¶ms->addr,
739 params->addr_type)) {
740 /* White list can not be used with RPAs */
744 white_list_entries++;
745 add_to_white_list(req, params);
748 /* After adding all new pending connections, walk through
749 * the list of pending reports and also add these to the
750 * white list if there is still space.
752 list_for_each_entry(params, &hdev->pend_le_reports, action) {
753 if (hci_bdaddr_list_lookup(&hdev->le_white_list,
754 ¶ms->addr, params->addr_type))
757 if (white_list_entries >= hdev->le_white_list_size) {
758 /* Select filter policy to accept all advertising */
762 if (hci_find_irk_by_addr(hdev, ¶ms->addr,
763 params->addr_type)) {
764 /* White list can not be used with RPAs */
768 white_list_entries++;
769 add_to_white_list(req, params);
772 /* Select filter policy to use white list */
776 static bool scan_use_rpa(struct hci_dev *hdev)
778 return hci_dev_test_flag(hdev, HCI_PRIVACY);
781 void hci_req_add_le_passive_scan(struct hci_request *req)
783 struct hci_cp_le_set_scan_param param_cp;
784 struct hci_cp_le_set_scan_enable enable_cp;
785 struct hci_dev *hdev = req->hdev;
789 /* Set require_privacy to false since no SCAN_REQ are send
790 * during passive scanning. Not using an non-resolvable address
791 * here is important so that peer devices using direct
792 * advertising with our address will be correctly reported
795 if (hci_update_random_address(req, false, scan_use_rpa(hdev),
799 /* Adding or removing entries from the white list must
800 * happen before enabling scanning. The controller does
801 * not allow white list modification while scanning.
803 filter_policy = update_white_list(req);
805 /* When the controller is using random resolvable addresses and
806 * with that having LE privacy enabled, then controllers with
807 * Extended Scanner Filter Policies support can now enable support
808 * for handling directed advertising.
810 * So instead of using filter polices 0x00 (no whitelist)
811 * and 0x01 (whitelist enabled) use the new filter policies
812 * 0x02 (no whitelist) and 0x03 (whitelist enabled).
814 if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
815 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
816 filter_policy |= 0x02;
818 memset(¶m_cp, 0, sizeof(param_cp));
819 param_cp.type = LE_SCAN_PASSIVE;
820 param_cp.interval = cpu_to_le16(hdev->le_scan_interval);
821 param_cp.window = cpu_to_le16(hdev->le_scan_window);
822 param_cp.own_address_type = own_addr_type;
823 param_cp.filter_policy = filter_policy;
824 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
827 memset(&enable_cp, 0, sizeof(enable_cp));
828 enable_cp.enable = LE_SCAN_ENABLE;
829 enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
830 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
834 static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev)
836 u8 instance = hdev->cur_adv_instance;
837 struct adv_info *adv_instance;
839 /* Ignore instance 0 */
840 if (instance == 0x00)
843 adv_instance = hci_find_adv_instance(hdev, instance);
847 /* TODO: Take into account the "appearance" and "local-name" flags here.
848 * These are currently being ignored as they are not supported.
850 return adv_instance->scan_rsp_len;
853 void __hci_req_disable_advertising(struct hci_request *req)
857 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
860 static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance)
863 struct adv_info *adv_instance;
865 if (instance == 0x00) {
866 /* Instance 0 always manages the "Tx Power" and "Flags"
869 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
871 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
872 * corresponds to the "connectable" instance flag.
874 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
875 flags |= MGMT_ADV_FLAG_CONNECTABLE;
877 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
878 flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
879 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
880 flags |= MGMT_ADV_FLAG_DISCOV;
885 adv_instance = hci_find_adv_instance(hdev, instance);
887 /* Return 0 when we got an invalid instance identifier. */
891 return adv_instance->flags;
894 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
896 /* If privacy is not enabled don't use RPA */
897 if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
900 /* If basic privacy mode is enabled use RPA */
901 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
904 /* If limited privacy mode is enabled don't use RPA if we're
905 * both discoverable and bondable.
907 if ((flags & MGMT_ADV_FLAG_DISCOV) &&
908 hci_dev_test_flag(hdev, HCI_BONDABLE))
911 /* We're neither bondable nor discoverable in the limited
912 * privacy mode, therefore use RPA.
917 void __hci_req_enable_advertising(struct hci_request *req)
919 struct hci_dev *hdev = req->hdev;
920 struct hci_cp_le_set_adv_param cp;
921 u8 own_addr_type, enable = 0x01;
925 if (hci_conn_num(hdev, LE_LINK) > 0)
928 if (hci_dev_test_flag(hdev, HCI_LE_ADV))
929 __hci_req_disable_advertising(req);
931 /* Clear the HCI_LE_ADV bit temporarily so that the
932 * hci_update_random_address knows that it's safe to go ahead
933 * and write a new random address. The flag will be set back on
934 * as soon as the SET_ADV_ENABLE HCI command completes.
936 hci_dev_clear_flag(hdev, HCI_LE_ADV);
938 flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance);
940 /* If the "connectable" instance flag was not set, then choose between
941 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
943 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
944 mgmt_get_connectable(hdev);
946 /* Set require_privacy to true only when non-connectable
947 * advertising is used. In that case it is fine to use a
948 * non-resolvable private address.
950 if (hci_update_random_address(req, !connectable,
951 adv_use_rpa(hdev, flags),
955 memset(&cp, 0, sizeof(cp));
956 cp.min_interval = cpu_to_le16(hdev->le_adv_min_interval);
957 cp.max_interval = cpu_to_le16(hdev->le_adv_max_interval);
960 cp.type = LE_ADV_IND;
961 else if (get_cur_adv_instance_scan_rsp_len(hdev))
962 cp.type = LE_ADV_SCAN_IND;
964 cp.type = LE_ADV_NONCONN_IND;
966 cp.own_address_type = own_addr_type;
967 cp.channel_map = hdev->le_adv_channel_map;
969 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
971 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
974 static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr)
979 name_len = strlen(hdev->dev_name);
981 size_t max_len = HCI_MAX_AD_LENGTH - ad_len - 2;
983 if (name_len > max_len) {
985 ptr[1] = EIR_NAME_SHORT;
987 ptr[1] = EIR_NAME_COMPLETE;
989 ptr[0] = name_len + 1;
991 memcpy(ptr + 2, hdev->dev_name, name_len);
993 ad_len += (name_len + 2);
994 ptr += (name_len + 2);
1000 static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance,
1003 struct adv_info *adv_instance;
1005 adv_instance = hci_find_adv_instance(hdev, instance);
1009 /* TODO: Set the appropriate entries based on advertising instance flags
1010 * here once flags other than 0 are supported.
1012 memcpy(ptr, adv_instance->scan_rsp_data,
1013 adv_instance->scan_rsp_len);
1015 return adv_instance->scan_rsp_len;
1018 void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1020 struct hci_dev *hdev = req->hdev;
1021 struct hci_cp_le_set_scan_rsp_data cp;
1024 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1027 memset(&cp, 0, sizeof(cp));
1030 len = create_instance_scan_rsp_data(hdev, instance, cp.data);
1032 len = create_default_scan_rsp_data(hdev, cp.data);
1034 if (hdev->scan_rsp_data_len == len &&
1035 !memcmp(cp.data, hdev->scan_rsp_data, len))
1038 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1039 hdev->scan_rsp_data_len = len;
1043 hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
1046 static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr)
1048 struct adv_info *adv_instance = NULL;
1049 u8 ad_len = 0, flags = 0;
1052 /* Return 0 when the current instance identifier is invalid. */
1054 adv_instance = hci_find_adv_instance(hdev, instance);
1059 instance_flags = get_adv_instance_flags(hdev, instance);
1061 /* The Add Advertising command allows userspace to set both the general
1062 * and limited discoverable flags.
1064 if (instance_flags & MGMT_ADV_FLAG_DISCOV)
1065 flags |= LE_AD_GENERAL;
1067 if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV)
1068 flags |= LE_AD_LIMITED;
1070 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1071 flags |= LE_AD_NO_BREDR;
1073 if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) {
1074 /* If a discovery flag wasn't provided, simply use the global
1078 flags |= mgmt_get_adv_discov_flags(hdev);
1080 /* If flags would still be empty, then there is no need to
1081 * include the "Flags" AD field".
1094 memcpy(ptr, adv_instance->adv_data,
1095 adv_instance->adv_data_len);
1096 ad_len += adv_instance->adv_data_len;
1097 ptr += adv_instance->adv_data_len;
1100 /* Provide Tx Power only if we can provide a valid value for it */
1101 if (hdev->adv_tx_power != HCI_TX_POWER_INVALID &&
1102 (instance_flags & MGMT_ADV_FLAG_TX_POWER)) {
1104 ptr[1] = EIR_TX_POWER;
1105 ptr[2] = (u8)hdev->adv_tx_power;
1114 void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1116 struct hci_dev *hdev = req->hdev;
1117 struct hci_cp_le_set_adv_data cp;
1120 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1123 memset(&cp, 0, sizeof(cp));
1125 len = create_instance_adv_data(hdev, instance, cp.data);
1127 /* There's nothing to do if the data hasn't changed */
1128 if (hdev->adv_data_len == len &&
1129 memcmp(cp.data, hdev->adv_data, len) == 0)
1132 memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1133 hdev->adv_data_len = len;
1137 hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
1140 int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1142 struct hci_request req;
1144 hci_req_init(&req, hdev);
1145 __hci_req_update_adv_data(&req, instance);
1147 return hci_req_run(&req, NULL);
1150 static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1152 BT_DBG("%s status %u", hdev->name, status);
1155 void hci_req_reenable_advertising(struct hci_dev *hdev)
1157 struct hci_request req;
1159 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1160 list_empty(&hdev->adv_instances))
1163 hci_req_init(&req, hdev);
1165 if (hdev->cur_adv_instance) {
1166 __hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
1169 __hci_req_update_adv_data(&req, 0x00);
1170 __hci_req_update_scan_rsp_data(&req, 0x00);
1171 __hci_req_enable_advertising(&req);
1174 hci_req_run(&req, adv_enable_complete);
1177 static void adv_timeout_expire(struct work_struct *work)
1179 struct hci_dev *hdev = container_of(work, struct hci_dev,
1180 adv_instance_expire.work);
1182 struct hci_request req;
1185 BT_DBG("%s", hdev->name);
1189 hdev->adv_instance_timeout = 0;
1191 instance = hdev->cur_adv_instance;
1192 if (instance == 0x00)
1195 hci_req_init(&req, hdev);
1197 hci_req_clear_adv_instance(hdev, &req, instance, false);
1199 if (list_empty(&hdev->adv_instances))
1200 __hci_req_disable_advertising(&req);
1202 hci_req_run(&req, NULL);
1205 hci_dev_unlock(hdev);
1208 int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
1211 struct hci_dev *hdev = req->hdev;
1212 struct adv_info *adv_instance = NULL;
1215 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1216 list_empty(&hdev->adv_instances))
1219 if (hdev->adv_instance_timeout)
1222 adv_instance = hci_find_adv_instance(hdev, instance);
1226 /* A zero timeout means unlimited advertising. As long as there is
1227 * only one instance, duration should be ignored. We still set a timeout
1228 * in case further instances are being added later on.
1230 * If the remaining lifetime of the instance is more than the duration
1231 * then the timeout corresponds to the duration, otherwise it will be
1232 * reduced to the remaining instance lifetime.
1234 if (adv_instance->timeout == 0 ||
1235 adv_instance->duration <= adv_instance->remaining_time)
1236 timeout = adv_instance->duration;
1238 timeout = adv_instance->remaining_time;
1240 /* The remaining time is being reduced unless the instance is being
1241 * advertised without time limit.
1243 if (adv_instance->timeout)
1244 adv_instance->remaining_time =
1245 adv_instance->remaining_time - timeout;
1247 hdev->adv_instance_timeout = timeout;
1248 queue_delayed_work(hdev->req_workqueue,
1249 &hdev->adv_instance_expire,
1250 msecs_to_jiffies(timeout * 1000));
1252 /* If we're just re-scheduling the same instance again then do not
1253 * execute any HCI commands. This happens when a single instance is
1256 if (!force && hdev->cur_adv_instance == instance &&
1257 hci_dev_test_flag(hdev, HCI_LE_ADV))
1260 hdev->cur_adv_instance = instance;
1261 __hci_req_update_adv_data(req, instance);
1262 __hci_req_update_scan_rsp_data(req, instance);
1263 __hci_req_enable_advertising(req);
1268 static void cancel_adv_timeout(struct hci_dev *hdev)
1270 if (hdev->adv_instance_timeout) {
1271 hdev->adv_instance_timeout = 0;
1272 cancel_delayed_work(&hdev->adv_instance_expire);
1276 /* For a single instance:
1277 * - force == true: The instance will be removed even when its remaining
1278 * lifetime is not zero.
1279 * - force == false: the instance will be deactivated but kept stored unless
1280 * the remaining lifetime is zero.
1282 * For instance == 0x00:
1283 * - force == true: All instances will be removed regardless of their timeout
1285 * - force == false: Only instances that have a timeout will be removed.
1287 void hci_req_clear_adv_instance(struct hci_dev *hdev, struct hci_request *req,
1288 u8 instance, bool force)
1290 struct adv_info *adv_instance, *n, *next_instance = NULL;
1294 /* Cancel any timeout concerning the removed instance(s). */
1295 if (!instance || hdev->cur_adv_instance == instance)
1296 cancel_adv_timeout(hdev);
1298 /* Get the next instance to advertise BEFORE we remove
1299 * the current one. This can be the same instance again
1300 * if there is only one instance.
1302 if (instance && hdev->cur_adv_instance == instance)
1303 next_instance = hci_get_next_instance(hdev, instance);
1305 if (instance == 0x00) {
1306 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
1308 if (!(force || adv_instance->timeout))
1311 rem_inst = adv_instance->instance;
1312 err = hci_remove_adv_instance(hdev, rem_inst);
1314 mgmt_advertising_removed(NULL, hdev, rem_inst);
1317 adv_instance = hci_find_adv_instance(hdev, instance);
1319 if (force || (adv_instance && adv_instance->timeout &&
1320 !adv_instance->remaining_time)) {
1321 /* Don't advertise a removed instance. */
1322 if (next_instance &&
1323 next_instance->instance == instance)
1324 next_instance = NULL;
1326 err = hci_remove_adv_instance(hdev, instance);
1328 mgmt_advertising_removed(NULL, hdev, instance);
1332 if (!req || !hdev_is_powered(hdev) ||
1333 hci_dev_test_flag(hdev, HCI_ADVERTISING))
1337 __hci_req_schedule_adv_instance(req, next_instance->instance,
1341 static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
1343 struct hci_dev *hdev = req->hdev;
1345 /* If we're advertising or initiating an LE connection we can't
1346 * go ahead and change the random address at this time. This is
1347 * because the eventual initiator address used for the
1348 * subsequently created connection will be undefined (some
1349 * controllers use the new address and others the one we had
1350 * when the operation started).
1352 * In this kind of scenario skip the update and let the random
1353 * address be updated at the next cycle.
1355 if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
1356 hci_lookup_le_connect(hdev)) {
1357 BT_DBG("Deferring random address update");
1358 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1362 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
1365 int hci_update_random_address(struct hci_request *req, bool require_privacy,
1366 bool use_rpa, u8 *own_addr_type)
1368 struct hci_dev *hdev = req->hdev;
1371 /* If privacy is enabled use a resolvable private address. If
1372 * current RPA has expired or there is something else than
1373 * the current RPA in use, then generate a new one.
1378 *own_addr_type = ADDR_LE_DEV_RANDOM;
1380 if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1381 !bacmp(&hdev->random_addr, &hdev->rpa))
1384 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1386 BT_ERR("%s failed to generate new RPA", hdev->name);
1390 set_random_addr(req, &hdev->rpa);
1392 to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1393 queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);
1398 /* In case of required privacy without resolvable private address,
1399 * use an non-resolvable private address. This is useful for active
1400 * scanning and non-connectable advertising.
1402 if (require_privacy) {
1406 /* The non-resolvable private address is generated
1407 * from random six bytes with the two most significant
1410 get_random_bytes(&nrpa, 6);
1413 /* The non-resolvable private address shall not be
1414 * equal to the public address.
1416 if (bacmp(&hdev->bdaddr, &nrpa))
1420 *own_addr_type = ADDR_LE_DEV_RANDOM;
1421 set_random_addr(req, &nrpa);
1425 /* If forcing static address is in use or there is no public
1426 * address use the static address as random address (but skip
1427 * the HCI command if the current random address is already the
1430 * In case BR/EDR has been disabled on a dual-mode controller
1431 * and a static address has been configured, then use that
1432 * address instead of the public BR/EDR address.
1434 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
1435 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
1436 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
1437 bacmp(&hdev->static_addr, BDADDR_ANY))) {
1438 *own_addr_type = ADDR_LE_DEV_RANDOM;
1439 if (bacmp(&hdev->static_addr, &hdev->random_addr))
1440 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
1441 &hdev->static_addr);
1445 /* Neither privacy nor static address is being used so use a
1448 *own_addr_type = ADDR_LE_DEV_PUBLIC;
1453 static bool disconnected_whitelist_entries(struct hci_dev *hdev)
1455 struct bdaddr_list *b;
1457 list_for_each_entry(b, &hdev->whitelist, list) {
1458 struct hci_conn *conn;
1460 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
1464 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
1471 void __hci_req_update_scan(struct hci_request *req)
1473 struct hci_dev *hdev = req->hdev;
1476 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1479 if (!hdev_is_powered(hdev))
1482 if (mgmt_powering_down(hdev))
1485 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
1486 disconnected_whitelist_entries(hdev))
1489 scan = SCAN_DISABLED;
1491 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1492 scan |= SCAN_INQUIRY;
1494 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
1495 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
1498 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1501 static int update_scan(struct hci_request *req, unsigned long opt)
1503 hci_dev_lock(req->hdev);
1504 __hci_req_update_scan(req);
1505 hci_dev_unlock(req->hdev);
1509 static void scan_update_work(struct work_struct *work)
1511 struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);
1513 hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
1516 static int connectable_update(struct hci_request *req, unsigned long opt)
1518 struct hci_dev *hdev = req->hdev;
1522 __hci_req_update_scan(req);
1524 /* If BR/EDR is not enabled and we disable advertising as a
1525 * by-product of disabling connectable, we need to update the
1526 * advertising flags.
1528 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1529 __hci_req_update_adv_data(req, hdev->cur_adv_instance);
1531 /* Update the advertising parameters if necessary */
1532 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1533 !list_empty(&hdev->adv_instances))
1534 __hci_req_enable_advertising(req);
1536 __hci_update_background_scan(req);
1538 hci_dev_unlock(hdev);
1543 static void connectable_update_work(struct work_struct *work)
1545 struct hci_dev *hdev = container_of(work, struct hci_dev,
1546 connectable_update);
1549 hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
1550 mgmt_set_connectable_complete(hdev, status);
1553 static u8 get_service_classes(struct hci_dev *hdev)
1555 struct bt_uuid *uuid;
1558 list_for_each_entry(uuid, &hdev->uuids, list)
1559 val |= uuid->svc_hint;
1564 void __hci_req_update_class(struct hci_request *req)
1566 struct hci_dev *hdev = req->hdev;
1569 BT_DBG("%s", hdev->name);
1571 if (!hdev_is_powered(hdev))
1574 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1577 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
1580 cod[0] = hdev->minor_class;
1581 cod[1] = hdev->major_class;
1582 cod[2] = get_service_classes(hdev);
1584 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1587 if (memcmp(cod, hdev->dev_class, 3) == 0)
1590 hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
1593 static void write_iac(struct hci_request *req)
1595 struct hci_dev *hdev = req->hdev;
1596 struct hci_cp_write_current_iac_lap cp;
1598 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1601 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1602 /* Limited discoverable mode */
1603 cp.num_iac = min_t(u8, hdev->num_iac, 2);
1604 cp.iac_lap[0] = 0x00; /* LIAC */
1605 cp.iac_lap[1] = 0x8b;
1606 cp.iac_lap[2] = 0x9e;
1607 cp.iac_lap[3] = 0x33; /* GIAC */
1608 cp.iac_lap[4] = 0x8b;
1609 cp.iac_lap[5] = 0x9e;
1611 /* General discoverable mode */
1613 cp.iac_lap[0] = 0x33; /* GIAC */
1614 cp.iac_lap[1] = 0x8b;
1615 cp.iac_lap[2] = 0x9e;
1618 hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
1619 (cp.num_iac * 3) + 1, &cp);
1622 static int discoverable_update(struct hci_request *req, unsigned long opt)
1624 struct hci_dev *hdev = req->hdev;
1628 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1630 __hci_req_update_scan(req);
1631 __hci_req_update_class(req);
1634 /* Advertising instances don't use the global discoverable setting, so
1635 * only update AD if advertising was enabled using Set Advertising.
1637 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
1638 __hci_req_update_adv_data(req, 0x00);
1640 /* Discoverable mode affects the local advertising
1641 * address in limited privacy mode.
1643 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
1644 __hci_req_enable_advertising(req);
1647 hci_dev_unlock(hdev);
1652 static void discoverable_update_work(struct work_struct *work)
1654 struct hci_dev *hdev = container_of(work, struct hci_dev,
1655 discoverable_update);
1658 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
1659 mgmt_set_discoverable_complete(hdev, status);
1662 void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
1665 switch (conn->state) {
1668 if (conn->type == AMP_LINK) {
1669 struct hci_cp_disconn_phy_link cp;
1671 cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
1673 hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
1676 struct hci_cp_disconnect dc;
1678 dc.handle = cpu_to_le16(conn->handle);
1680 hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
1683 conn->state = BT_DISCONN;
1687 if (conn->type == LE_LINK) {
1688 if (test_bit(HCI_CONN_SCANNING, &conn->flags))
1690 hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
1692 } else if (conn->type == ACL_LINK) {
1693 if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
1695 hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
1700 if (conn->type == ACL_LINK) {
1701 struct hci_cp_reject_conn_req rej;
1703 bacpy(&rej.bdaddr, &conn->dst);
1704 rej.reason = reason;
1706 hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
1708 } else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
1709 struct hci_cp_reject_sync_conn_req rej;
1711 bacpy(&rej.bdaddr, &conn->dst);
1713 /* SCO rejection has its own limited set of
1714 * allowed error values (0x0D-0x0F) which isn't
1715 * compatible with most values passed to this
1716 * function. To be safe hard-code one of the
1717 * values that's suitable for SCO.
1719 rej.reason = HCI_ERROR_REMOTE_LOW_RESOURCES;
1721 hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
1726 conn->state = BT_CLOSED;
1731 static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1734 BT_DBG("Failed to abort connection: status 0x%2.2x", status);
1737 int hci_abort_conn(struct hci_conn *conn, u8 reason)
1739 struct hci_request req;
1742 hci_req_init(&req, conn->hdev);
1744 __hci_abort_conn(&req, conn, reason);
1746 err = hci_req_run(&req, abort_conn_complete);
1747 if (err && err != -ENODATA) {
1748 BT_ERR("Failed to run HCI request: err %d", err);
1755 static int update_bg_scan(struct hci_request *req, unsigned long opt)
1757 hci_dev_lock(req->hdev);
1758 __hci_update_background_scan(req);
1759 hci_dev_unlock(req->hdev);
1763 static void bg_scan_update(struct work_struct *work)
1765 struct hci_dev *hdev = container_of(work, struct hci_dev,
1767 struct hci_conn *conn;
1771 err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
1777 conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
1779 hci_le_conn_failed(conn, status);
1781 hci_dev_unlock(hdev);
1784 static int le_scan_disable(struct hci_request *req, unsigned long opt)
1786 hci_req_add_le_scan_disable(req);
1790 static int bredr_inquiry(struct hci_request *req, unsigned long opt)
1793 const u8 giac[3] = { 0x33, 0x8b, 0x9e };
1794 const u8 liac[3] = { 0x00, 0x8b, 0x9e };
1795 struct hci_cp_inquiry cp;
1797 BT_DBG("%s", req->hdev->name);
1799 hci_dev_lock(req->hdev);
1800 hci_inquiry_cache_flush(req->hdev);
1801 hci_dev_unlock(req->hdev);
1803 memset(&cp, 0, sizeof(cp));
1805 if (req->hdev->discovery.limited)
1806 memcpy(&cp.lap, liac, sizeof(cp.lap));
1808 memcpy(&cp.lap, giac, sizeof(cp.lap));
1812 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1817 static void le_scan_disable_work(struct work_struct *work)
1819 struct hci_dev *hdev = container_of(work, struct hci_dev,
1820 le_scan_disable.work);
1823 BT_DBG("%s", hdev->name);
1825 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1828 cancel_delayed_work(&hdev->le_scan_restart);
1830 hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
1832 BT_ERR("Failed to disable LE scan: status 0x%02x", status);
1836 hdev->discovery.scan_start = 0;
1838 /* If we were running LE only scan, change discovery state. If
1839 * we were running both LE and BR/EDR inquiry simultaneously,
1840 * and BR/EDR inquiry is already finished, stop discovery,
1841 * otherwise BR/EDR inquiry will stop discovery when finished.
1842 * If we will resolve remote device name, do not change
1846 if (hdev->discovery.type == DISCOV_TYPE_LE)
1847 goto discov_stopped;
1849 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
1852 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
1853 if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
1854 hdev->discovery.state != DISCOVERY_RESOLVING)
1855 goto discov_stopped;
1860 hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
1861 HCI_CMD_TIMEOUT, &status);
1863 BT_ERR("Inquiry failed: status 0x%02x", status);
1864 goto discov_stopped;
1871 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1872 hci_dev_unlock(hdev);
1875 static int le_scan_restart(struct hci_request *req, unsigned long opt)
1877 struct hci_dev *hdev = req->hdev;
1878 struct hci_cp_le_set_scan_enable cp;
1880 /* If controller is not scanning we are done. */
1881 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1884 hci_req_add_le_scan_disable(req);
1886 memset(&cp, 0, sizeof(cp));
1887 cp.enable = LE_SCAN_ENABLE;
1888 cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
1889 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
1894 static void le_scan_restart_work(struct work_struct *work)
1896 struct hci_dev *hdev = container_of(work, struct hci_dev,
1897 le_scan_restart.work);
1898 unsigned long timeout, duration, scan_start, now;
1901 BT_DBG("%s", hdev->name);
1903 hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
1905 BT_ERR("Failed to restart LE scan: status %d", status);
1911 if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
1912 !hdev->discovery.scan_start)
1915 /* When the scan was started, hdev->le_scan_disable has been queued
1916 * after duration from scan_start. During scan restart this job
1917 * has been canceled, and we need to queue it again after proper
1918 * timeout, to make sure that scan does not run indefinitely.
1920 duration = hdev->discovery.scan_duration;
1921 scan_start = hdev->discovery.scan_start;
1923 if (now - scan_start <= duration) {
1926 if (now >= scan_start)
1927 elapsed = now - scan_start;
1929 elapsed = ULONG_MAX - scan_start + now;
1931 timeout = duration - elapsed;
1936 queue_delayed_work(hdev->req_workqueue,
1937 &hdev->le_scan_disable, timeout);
1940 hci_dev_unlock(hdev);
1943 static void disable_advertising(struct hci_request *req)
1947 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1950 static int active_scan(struct hci_request *req, unsigned long opt)
1952 uint16_t interval = opt;
1953 struct hci_dev *hdev = req->hdev;
1954 struct hci_cp_le_set_scan_param param_cp;
1955 struct hci_cp_le_set_scan_enable enable_cp;
1959 BT_DBG("%s", hdev->name);
1961 if (hci_dev_test_flag(hdev, HCI_LE_ADV)) {
1964 /* Don't let discovery abort an outgoing connection attempt
1965 * that's using directed advertising.
1967 if (hci_lookup_le_connect(hdev)) {
1968 hci_dev_unlock(hdev);
1972 cancel_adv_timeout(hdev);
1973 hci_dev_unlock(hdev);
1975 disable_advertising(req);
1978 /* If controller is scanning, it means the background scanning is
1979 * running. Thus, we should temporarily stop it in order to set the
1980 * discovery scanning parameters.
1982 if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
1983 hci_req_add_le_scan_disable(req);
1985 /* All active scans will be done with either a resolvable private
1986 * address (when privacy feature has been enabled) or non-resolvable
1989 err = hci_update_random_address(req, true, scan_use_rpa(hdev),
1992 own_addr_type = ADDR_LE_DEV_PUBLIC;
1994 memset(¶m_cp, 0, sizeof(param_cp));
1995 param_cp.type = LE_SCAN_ACTIVE;
1996 param_cp.interval = cpu_to_le16(interval);
1997 param_cp.window = cpu_to_le16(DISCOV_LE_SCAN_WIN);
1998 param_cp.own_address_type = own_addr_type;
2000 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
2003 memset(&enable_cp, 0, sizeof(enable_cp));
2004 enable_cp.enable = LE_SCAN_ENABLE;
2005 enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2007 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
2013 static int interleaved_discov(struct hci_request *req, unsigned long opt)
2017 BT_DBG("%s", req->hdev->name);
2019 err = active_scan(req, opt);
2023 return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
2026 static void start_discovery(struct hci_dev *hdev, u8 *status)
2028 unsigned long timeout;
2030 BT_DBG("%s type %u", hdev->name, hdev->discovery.type);
2032 switch (hdev->discovery.type) {
2033 case DISCOV_TYPE_BREDR:
2034 if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
2035 hci_req_sync(hdev, bredr_inquiry,
2036 DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
2039 case DISCOV_TYPE_INTERLEAVED:
2040 /* When running simultaneous discovery, the LE scanning time
2041 * should occupy the whole discovery time sine BR/EDR inquiry
2042 * and LE scanning are scheduled by the controller.
2044 * For interleaving discovery in comparison, BR/EDR inquiry
2045 * and LE scanning are done sequentially with separate
2048 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
2050 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2051 /* During simultaneous discovery, we double LE scan
2052 * interval. We must leave some time for the controller
2053 * to do BR/EDR inquiry.
2055 hci_req_sync(hdev, interleaved_discov,
2056 DISCOV_LE_SCAN_INT * 2, HCI_CMD_TIMEOUT,
2061 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
2062 hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2063 HCI_CMD_TIMEOUT, status);
2065 case DISCOV_TYPE_LE:
2066 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2067 hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2068 HCI_CMD_TIMEOUT, status);
2071 *status = HCI_ERROR_UNSPECIFIED;
2078 BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout));
2080 /* When service discovery is used and the controller has a
2081 * strict duplicate filter, it is important to remember the
2082 * start and duration of the scan. This is required for
2083 * restarting scanning during the discovery phase.
2085 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
2086 hdev->discovery.result_filtering) {
2087 hdev->discovery.scan_start = jiffies;
2088 hdev->discovery.scan_duration = timeout;
2091 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
2095 bool hci_req_stop_discovery(struct hci_request *req)
2097 struct hci_dev *hdev = req->hdev;
2098 struct discovery_state *d = &hdev->discovery;
2099 struct hci_cp_remote_name_req_cancel cp;
2100 struct inquiry_entry *e;
2103 BT_DBG("%s state %u", hdev->name, hdev->discovery.state);
2105 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
2106 if (test_bit(HCI_INQUIRY, &hdev->flags))
2107 hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);
2109 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2110 cancel_delayed_work(&hdev->le_scan_disable);
2111 hci_req_add_le_scan_disable(req);
2116 /* Passive scanning */
2117 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2118 hci_req_add_le_scan_disable(req);
2123 /* No further actions needed for LE-only discovery */
2124 if (d->type == DISCOV_TYPE_LE)
2127 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
2128 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
2133 bacpy(&cp.bdaddr, &e->data.bdaddr);
2134 hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
2142 static int stop_discovery(struct hci_request *req, unsigned long opt)
2144 hci_dev_lock(req->hdev);
2145 hci_req_stop_discovery(req);
2146 hci_dev_unlock(req->hdev);
2151 static void discov_update(struct work_struct *work)
2153 struct hci_dev *hdev = container_of(work, struct hci_dev,
2157 switch (hdev->discovery.state) {
2158 case DISCOVERY_STARTING:
2159 start_discovery(hdev, &status);
2160 mgmt_start_discovery_complete(hdev, status);
2162 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2164 hci_discovery_set_state(hdev, DISCOVERY_FINDING);
2166 case DISCOVERY_STOPPING:
2167 hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
2168 mgmt_stop_discovery_complete(hdev, status);
2170 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2172 case DISCOVERY_STOPPED:
2178 static void discov_off(struct work_struct *work)
2180 struct hci_dev *hdev = container_of(work, struct hci_dev,
2183 BT_DBG("%s", hdev->name);
2187 /* When discoverable timeout triggers, then just make sure
2188 * the limited discoverable flag is cleared. Even in the case
2189 * of a timeout triggered from general discoverable, it is
2190 * safe to unconditionally clear the flag.
2192 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2193 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2194 hdev->discov_timeout = 0;
2196 hci_dev_unlock(hdev);
2198 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
2199 mgmt_new_settings(hdev);
2202 static int powered_update_hci(struct hci_request *req, unsigned long opt)
2204 struct hci_dev *hdev = req->hdev;
2209 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
2210 !lmp_host_ssp_capable(hdev)) {
2213 hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);
2215 if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
2218 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
2219 sizeof(support), &support);
2223 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
2224 lmp_bredr_capable(hdev)) {
2225 struct hci_cp_write_le_host_supported cp;
2230 /* Check first if we already have the right
2231 * host state (host features set)
2233 if (cp.le != lmp_host_le_capable(hdev) ||
2234 cp.simul != lmp_host_le_br_capable(hdev))
2235 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2239 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
2240 /* Make sure the controller has a good default for
2241 * advertising data. This also applies to the case
2242 * where BR/EDR was toggled during the AUTO_OFF phase.
2244 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2245 list_empty(&hdev->adv_instances)) {
2246 __hci_req_update_adv_data(req, 0x00);
2247 __hci_req_update_scan_rsp_data(req, 0x00);
2249 if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
2250 __hci_req_enable_advertising(req);
2251 } else if (!list_empty(&hdev->adv_instances)) {
2252 struct adv_info *adv_instance;
2254 adv_instance = list_first_entry(&hdev->adv_instances,
2255 struct adv_info, list);
2256 __hci_req_schedule_adv_instance(req,
2257 adv_instance->instance,
2262 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
2263 if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
2264 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
2265 sizeof(link_sec), &link_sec);
2267 if (lmp_bredr_capable(hdev)) {
2268 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
2269 __hci_req_write_fast_connectable(req, true);
2271 __hci_req_write_fast_connectable(req, false);
2272 __hci_req_update_scan(req);
2273 __hci_req_update_class(req);
2274 __hci_req_update_name(req);
2275 __hci_req_update_eir(req);
2278 hci_dev_unlock(hdev);
2282 int __hci_req_hci_power_on(struct hci_dev *hdev)
2284 /* Register the available SMP channels (BR/EDR and LE) only when
2285 * successfully powering on the controller. This late
2286 * registration is required so that LE SMP can clearly decide if
2287 * the public address or static address is used.
2291 return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
2295 void hci_request_setup(struct hci_dev *hdev)
2297 INIT_WORK(&hdev->discov_update, discov_update);
2298 INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
2299 INIT_WORK(&hdev->scan_update, scan_update_work);
2300 INIT_WORK(&hdev->connectable_update, connectable_update_work);
2301 INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
2302 INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
2303 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
2304 INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
2305 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
2308 void hci_request_cancel_all(struct hci_dev *hdev)
2310 hci_req_sync_cancel(hdev, ENODEV);
2312 cancel_work_sync(&hdev->discov_update);
2313 cancel_work_sync(&hdev->bg_scan_update);
2314 cancel_work_sync(&hdev->scan_update);
2315 cancel_work_sync(&hdev->connectable_update);
2316 cancel_work_sync(&hdev->discoverable_update);
2317 cancel_delayed_work_sync(&hdev->discov_off);
2318 cancel_delayed_work_sync(&hdev->le_scan_disable);
2319 cancel_delayed_work_sync(&hdev->le_scan_restart);
2321 if (hdev->adv_instance_timeout) {
2322 cancel_delayed_work_sync(&hdev->adv_instance_expire);
2323 hdev->adv_instance_timeout = 0;