2 BlueZ - Bluetooth protocol stack for Linux
4 Copyright (C) 2014 Intel Corporation
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License version 2 as
8 published by the Free Software Foundation;
10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
21 SOFTWARE IS DISCLAIMED.
24 #include <linux/sched/signal.h>
26 #include <net/bluetooth/bluetooth.h>
27 #include <net/bluetooth/hci_core.h>
28 #include <net/bluetooth/mgmt.h>
31 #include "hci_request.h"
33 #define HCI_REQ_DONE 0
34 #define HCI_REQ_PEND 1
35 #define HCI_REQ_CANCELED 2
37 void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
39 skb_queue_head_init(&req->cmd_q);
44 void hci_req_purge(struct hci_request *req)
46 skb_queue_purge(&req->cmd_q);
49 bool hci_req_status_pend(struct hci_dev *hdev)
51 return hdev->req_status == HCI_REQ_PEND;
54 static int req_run(struct hci_request *req, hci_req_complete_t complete,
55 hci_req_complete_skb_t complete_skb)
57 struct hci_dev *hdev = req->hdev;
61 BT_DBG("length %u", skb_queue_len(&req->cmd_q));
63 /* If an error occurred during request building, remove all HCI
64 * commands queued on the HCI request queue.
67 skb_queue_purge(&req->cmd_q);
71 /* Do not allow empty requests */
72 if (skb_queue_empty(&req->cmd_q))
75 skb = skb_peek_tail(&req->cmd_q);
77 bt_cb(skb)->hci.req_complete = complete;
78 } else if (complete_skb) {
79 bt_cb(skb)->hci.req_complete_skb = complete_skb;
80 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
83 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
84 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
85 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
87 queue_work(hdev->workqueue, &hdev->cmd_work);
92 int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
94 return req_run(req, complete, NULL);
97 int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
99 return req_run(req, NULL, complete);
102 static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
105 BT_DBG("%s result 0x%2.2x", hdev->name, result);
107 if (hdev->req_status == HCI_REQ_PEND) {
108 hdev->req_result = result;
109 hdev->req_status = HCI_REQ_DONE;
111 hdev->req_skb = skb_get(skb);
112 wake_up_interruptible(&hdev->req_wait_q);
116 void hci_req_sync_cancel(struct hci_dev *hdev, int err)
118 BT_DBG("%s err 0x%2.2x", hdev->name, err);
120 if (hdev->req_status == HCI_REQ_PEND) {
121 hdev->req_result = err;
122 hdev->req_status = HCI_REQ_CANCELED;
123 wake_up_interruptible(&hdev->req_wait_q);
127 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
128 const void *param, u8 event, u32 timeout)
130 struct hci_request req;
134 BT_DBG("%s", hdev->name);
136 hci_req_init(&req, hdev);
138 hci_req_add_ev(&req, opcode, plen, param, event);
140 hdev->req_status = HCI_REQ_PEND;
142 err = hci_req_run_skb(&req, hci_req_sync_complete);
146 err = wait_event_interruptible_timeout(hdev->req_wait_q,
147 hdev->req_status != HCI_REQ_PEND, timeout);
149 if (err == -ERESTARTSYS)
150 return ERR_PTR(-EINTR);
152 switch (hdev->req_status) {
154 err = -bt_to_errno(hdev->req_result);
157 case HCI_REQ_CANCELED:
158 err = -hdev->req_result;
166 hdev->req_status = hdev->req_result = 0;
168 hdev->req_skb = NULL;
170 BT_DBG("%s end: err %d", hdev->name, err);
178 return ERR_PTR(-ENODATA);
182 EXPORT_SYMBOL(__hci_cmd_sync_ev);
184 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
185 const void *param, u32 timeout)
187 return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
189 EXPORT_SYMBOL(__hci_cmd_sync);
191 /* Execute request and wait for completion. */
192 int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
194 unsigned long opt, u32 timeout, u8 *hci_status)
196 struct hci_request req;
199 BT_DBG("%s start", hdev->name);
201 hci_req_init(&req, hdev);
203 hdev->req_status = HCI_REQ_PEND;
205 err = func(&req, opt);
208 *hci_status = HCI_ERROR_UNSPECIFIED;
212 err = hci_req_run_skb(&req, hci_req_sync_complete);
214 hdev->req_status = 0;
216 /* ENODATA means the HCI request command queue is empty.
217 * This can happen when a request with conditionals doesn't
218 * trigger any commands to be sent. This is normal behavior
219 * and should not trigger an error return.
221 if (err == -ENODATA) {
228 *hci_status = HCI_ERROR_UNSPECIFIED;
233 err = wait_event_interruptible_timeout(hdev->req_wait_q,
234 hdev->req_status != HCI_REQ_PEND, timeout);
236 if (err == -ERESTARTSYS)
239 switch (hdev->req_status) {
241 err = -bt_to_errno(hdev->req_result);
243 *hci_status = hdev->req_result;
246 case HCI_REQ_CANCELED:
247 err = -hdev->req_result;
249 *hci_status = HCI_ERROR_UNSPECIFIED;
255 *hci_status = HCI_ERROR_UNSPECIFIED;
259 kfree_skb(hdev->req_skb);
260 hdev->req_skb = NULL;
261 hdev->req_status = hdev->req_result = 0;
263 BT_DBG("%s end: err %d", hdev->name, err);
268 int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
270 unsigned long opt, u32 timeout, u8 *hci_status)
274 if (!test_bit(HCI_UP, &hdev->flags))
277 /* Serialize all requests */
278 hci_req_sync_lock(hdev);
279 ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
280 hci_req_sync_unlock(hdev);
285 struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
288 int len = HCI_COMMAND_HDR_SIZE + plen;
289 struct hci_command_hdr *hdr;
292 skb = bt_skb_alloc(len, GFP_ATOMIC);
296 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
297 hdr->opcode = cpu_to_le16(opcode);
301 skb_put_data(skb, param, plen);
303 BT_DBG("skb len %d", skb->len);
305 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
306 hci_skb_opcode(skb) = opcode;
311 /* Queue a command to an asynchronous HCI request */
312 void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
313 const void *param, u8 event)
315 struct hci_dev *hdev = req->hdev;
318 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
320 /* If an error occurred during request building, there is no point in
321 * queueing the HCI command. We can simply return.
326 skb = hci_prepare_cmd(hdev, opcode, plen, param);
328 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
334 if (skb_queue_empty(&req->cmd_q))
335 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
337 bt_cb(skb)->hci.req_event = event;
339 skb_queue_tail(&req->cmd_q, skb);
342 void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
345 hci_req_add_ev(req, opcode, plen, param, 0);
348 void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
350 struct hci_dev *hdev = req->hdev;
351 struct hci_cp_write_page_scan_activity acp;
354 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
357 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
361 type = PAGE_SCAN_TYPE_INTERLACED;
363 /* 160 msec page scan interval */
364 acp.interval = cpu_to_le16(0x0100);
366 type = PAGE_SCAN_TYPE_STANDARD; /* default */
368 /* default 1.28 sec page scan */
369 acp.interval = cpu_to_le16(0x0800);
372 acp.window = cpu_to_le16(0x0012);
374 if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
375 __cpu_to_le16(hdev->page_scan_window) != acp.window)
376 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
379 if (hdev->page_scan_type != type)
380 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
383 /* This function controls the background scanning based on hdev->pend_le_conns
384 * list. If there are pending LE connection we start the background scanning,
385 * otherwise we stop it.
387 * This function requires the caller holds hdev->lock.
389 static void __hci_update_background_scan(struct hci_request *req)
391 struct hci_dev *hdev = req->hdev;
393 if (!test_bit(HCI_UP, &hdev->flags) ||
394 test_bit(HCI_INIT, &hdev->flags) ||
395 hci_dev_test_flag(hdev, HCI_SETUP) ||
396 hci_dev_test_flag(hdev, HCI_CONFIG) ||
397 hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
398 hci_dev_test_flag(hdev, HCI_UNREGISTER))
401 /* No point in doing scanning if LE support hasn't been enabled */
402 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
405 /* If discovery is active don't interfere with it */
406 if (hdev->discovery.state != DISCOVERY_STOPPED)
409 /* Reset RSSI and UUID filters when starting background scanning
410 * since these filters are meant for service discovery only.
412 * The Start Discovery and Start Service Discovery operations
413 * ensure to set proper values for RSSI threshold and UUID
414 * filter list. So it is safe to just reset them here.
416 hci_discovery_filter_clear(hdev);
418 if (list_empty(&hdev->pend_le_conns) &&
419 list_empty(&hdev->pend_le_reports)) {
420 /* If there is no pending LE connections or devices
421 * to be scanned for, we should stop the background
425 /* If controller is not scanning we are done. */
426 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
429 hci_req_add_le_scan_disable(req);
431 BT_DBG("%s stopping background scanning", hdev->name);
433 /* If there is at least one pending LE connection, we should
434 * keep the background scan running.
437 /* If controller is connecting, we should not start scanning
438 * since some controllers are not able to scan and connect at
441 if (hci_lookup_le_connect(hdev))
444 /* If controller is currently scanning, we stop it to ensure we
445 * don't miss any advertising (due to duplicates filter).
447 if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
448 hci_req_add_le_scan_disable(req);
450 hci_req_add_le_passive_scan(req);
452 BT_DBG("%s starting background scanning", hdev->name);
456 void __hci_req_update_name(struct hci_request *req)
458 struct hci_dev *hdev = req->hdev;
459 struct hci_cp_write_local_name cp;
461 memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
463 hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
466 #define PNP_INFO_SVCLASS_ID 0x1200
468 static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
470 u8 *ptr = data, *uuids_start = NULL;
471 struct bt_uuid *uuid;
476 list_for_each_entry(uuid, &hdev->uuids, list) {
479 if (uuid->size != 16)
482 uuid16 = get_unaligned_le16(&uuid->uuid[12]);
486 if (uuid16 == PNP_INFO_SVCLASS_ID)
492 uuids_start[1] = EIR_UUID16_ALL;
496 /* Stop if not enough space to put next UUID */
497 if ((ptr - data) + sizeof(u16) > len) {
498 uuids_start[1] = EIR_UUID16_SOME;
502 *ptr++ = (uuid16 & 0x00ff);
503 *ptr++ = (uuid16 & 0xff00) >> 8;
504 uuids_start[0] += sizeof(uuid16);
510 static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
512 u8 *ptr = data, *uuids_start = NULL;
513 struct bt_uuid *uuid;
518 list_for_each_entry(uuid, &hdev->uuids, list) {
519 if (uuid->size != 32)
525 uuids_start[1] = EIR_UUID32_ALL;
529 /* Stop if not enough space to put next UUID */
530 if ((ptr - data) + sizeof(u32) > len) {
531 uuids_start[1] = EIR_UUID32_SOME;
535 memcpy(ptr, &uuid->uuid[12], sizeof(u32));
537 uuids_start[0] += sizeof(u32);
543 static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
545 u8 *ptr = data, *uuids_start = NULL;
546 struct bt_uuid *uuid;
551 list_for_each_entry(uuid, &hdev->uuids, list) {
552 if (uuid->size != 128)
558 uuids_start[1] = EIR_UUID128_ALL;
562 /* Stop if not enough space to put next UUID */
563 if ((ptr - data) + 16 > len) {
564 uuids_start[1] = EIR_UUID128_SOME;
568 memcpy(ptr, uuid->uuid, 16);
570 uuids_start[0] += 16;
576 static void create_eir(struct hci_dev *hdev, u8 *data)
581 name_len = strlen(hdev->dev_name);
587 ptr[1] = EIR_NAME_SHORT;
589 ptr[1] = EIR_NAME_COMPLETE;
591 /* EIR Data length */
592 ptr[0] = name_len + 1;
594 memcpy(ptr + 2, hdev->dev_name, name_len);
596 ptr += (name_len + 2);
599 if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) {
601 ptr[1] = EIR_TX_POWER;
602 ptr[2] = (u8) hdev->inq_tx_power;
607 if (hdev->devid_source > 0) {
609 ptr[1] = EIR_DEVICE_ID;
611 put_unaligned_le16(hdev->devid_source, ptr + 2);
612 put_unaligned_le16(hdev->devid_vendor, ptr + 4);
613 put_unaligned_le16(hdev->devid_product, ptr + 6);
614 put_unaligned_le16(hdev->devid_version, ptr + 8);
619 ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
620 ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
621 ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
624 void __hci_req_update_eir(struct hci_request *req)
626 struct hci_dev *hdev = req->hdev;
627 struct hci_cp_write_eir cp;
629 if (!hdev_is_powered(hdev))
632 if (!lmp_ext_inq_capable(hdev))
635 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
638 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
641 memset(&cp, 0, sizeof(cp));
643 create_eir(hdev, cp.data);
645 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
648 memcpy(hdev->eir, cp.data, sizeof(cp.data));
650 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
653 void hci_req_add_le_scan_disable(struct hci_request *req)
655 struct hci_dev *hdev = req->hdev;
657 if (use_ext_scan(hdev)) {
658 struct hci_cp_le_set_ext_scan_enable cp;
660 memset(&cp, 0, sizeof(cp));
661 cp.enable = LE_SCAN_DISABLE;
662 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp),
665 struct hci_cp_le_set_scan_enable cp;
667 memset(&cp, 0, sizeof(cp));
668 cp.enable = LE_SCAN_DISABLE;
669 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
673 static void add_to_white_list(struct hci_request *req,
674 struct hci_conn_params *params)
676 struct hci_cp_le_add_to_white_list cp;
678 cp.bdaddr_type = params->addr_type;
679 bacpy(&cp.bdaddr, ¶ms->addr);
681 hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
684 static u8 update_white_list(struct hci_request *req)
686 struct hci_dev *hdev = req->hdev;
687 struct hci_conn_params *params;
688 struct bdaddr_list *b;
689 uint8_t white_list_entries = 0;
691 /* Go through the current white list programmed into the
692 * controller one by one and check if that address is still
693 * in the list of pending connections or list of devices to
694 * report. If not present in either list, then queue the
695 * command to remove it from the controller.
697 list_for_each_entry(b, &hdev->le_white_list, list) {
698 /* If the device is neither in pend_le_conns nor
699 * pend_le_reports then remove it from the whitelist.
701 if (!hci_pend_le_action_lookup(&hdev->pend_le_conns,
702 &b->bdaddr, b->bdaddr_type) &&
703 !hci_pend_le_action_lookup(&hdev->pend_le_reports,
704 &b->bdaddr, b->bdaddr_type)) {
705 struct hci_cp_le_del_from_white_list cp;
707 cp.bdaddr_type = b->bdaddr_type;
708 bacpy(&cp.bdaddr, &b->bdaddr);
710 hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST,
715 if (hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
716 /* White list can not be used with RPAs */
720 white_list_entries++;
723 /* Since all no longer valid white list entries have been
724 * removed, walk through the list of pending connections
725 * and ensure that any new device gets programmed into
728 * If the list of the devices is larger than the list of
729 * available white list entries in the controller, then
730 * just abort and return filer policy value to not use the
733 list_for_each_entry(params, &hdev->pend_le_conns, action) {
734 if (hci_bdaddr_list_lookup(&hdev->le_white_list,
735 ¶ms->addr, params->addr_type))
738 if (white_list_entries >= hdev->le_white_list_size) {
739 /* Select filter policy to accept all advertising */
743 if (hci_find_irk_by_addr(hdev, ¶ms->addr,
744 params->addr_type)) {
745 /* White list can not be used with RPAs */
749 white_list_entries++;
750 add_to_white_list(req, params);
753 /* After adding all new pending connections, walk through
754 * the list of pending reports and also add these to the
755 * white list if there is still space.
757 list_for_each_entry(params, &hdev->pend_le_reports, action) {
758 if (hci_bdaddr_list_lookup(&hdev->le_white_list,
759 ¶ms->addr, params->addr_type))
762 if (white_list_entries >= hdev->le_white_list_size) {
763 /* Select filter policy to accept all advertising */
767 if (hci_find_irk_by_addr(hdev, ¶ms->addr,
768 params->addr_type)) {
769 /* White list can not be used with RPAs */
773 white_list_entries++;
774 add_to_white_list(req, params);
777 /* Select filter policy to use white list */
781 static bool scan_use_rpa(struct hci_dev *hdev)
783 return hci_dev_test_flag(hdev, HCI_PRIVACY);
786 static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval,
787 u16 window, u8 own_addr_type, u8 filter_policy)
789 struct hci_dev *hdev = req->hdev;
791 /* Use ext scanning if set ext scan param and ext scan enable is
794 if (use_ext_scan(hdev)) {
795 struct hci_cp_le_set_ext_scan_params *ext_param_cp;
796 struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
797 struct hci_cp_le_scan_phy_params *phy_params;
798 u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2];
801 ext_param_cp = (void *)data;
802 phy_params = (void *)ext_param_cp->data;
804 memset(ext_param_cp, 0, sizeof(*ext_param_cp));
805 ext_param_cp->own_addr_type = own_addr_type;
806 ext_param_cp->filter_policy = filter_policy;
808 plen = sizeof(*ext_param_cp);
810 if (scan_1m(hdev) || scan_2m(hdev)) {
811 ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M;
813 memset(phy_params, 0, sizeof(*phy_params));
814 phy_params->type = type;
815 phy_params->interval = cpu_to_le16(interval);
816 phy_params->window = cpu_to_le16(window);
818 plen += sizeof(*phy_params);
822 if (scan_coded(hdev)) {
823 ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED;
825 memset(phy_params, 0, sizeof(*phy_params));
826 phy_params->type = type;
827 phy_params->interval = cpu_to_le16(interval);
828 phy_params->window = cpu_to_le16(window);
830 plen += sizeof(*phy_params);
834 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
837 memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
838 ext_enable_cp.enable = LE_SCAN_ENABLE;
839 ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
841 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
842 sizeof(ext_enable_cp), &ext_enable_cp);
844 struct hci_cp_le_set_scan_param param_cp;
845 struct hci_cp_le_set_scan_enable enable_cp;
847 memset(¶m_cp, 0, sizeof(param_cp));
848 param_cp.type = type;
849 param_cp.interval = cpu_to_le16(interval);
850 param_cp.window = cpu_to_le16(window);
851 param_cp.own_address_type = own_addr_type;
852 param_cp.filter_policy = filter_policy;
853 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
856 memset(&enable_cp, 0, sizeof(enable_cp));
857 enable_cp.enable = LE_SCAN_ENABLE;
858 enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
859 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
864 void hci_req_add_le_passive_scan(struct hci_request *req)
866 struct hci_dev *hdev = req->hdev;
870 /* Set require_privacy to false since no SCAN_REQ are send
871 * during passive scanning. Not using an non-resolvable address
872 * here is important so that peer devices using direct
873 * advertising with our address will be correctly reported
876 if (hci_update_random_address(req, false, scan_use_rpa(hdev),
880 /* Adding or removing entries from the white list must
881 * happen before enabling scanning. The controller does
882 * not allow white list modification while scanning.
884 filter_policy = update_white_list(req);
886 /* When the controller is using random resolvable addresses and
887 * with that having LE privacy enabled, then controllers with
888 * Extended Scanner Filter Policies support can now enable support
889 * for handling directed advertising.
891 * So instead of using filter polices 0x00 (no whitelist)
892 * and 0x01 (whitelist enabled) use the new filter policies
893 * 0x02 (no whitelist) and 0x03 (whitelist enabled).
895 if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
896 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
897 filter_policy |= 0x02;
899 hci_req_start_scan(req, LE_SCAN_PASSIVE, hdev->le_scan_interval,
900 hdev->le_scan_window, own_addr_type, filter_policy);
903 static u8 get_adv_instance_scan_rsp_len(struct hci_dev *hdev, u8 instance)
905 struct adv_info *adv_instance;
907 /* Ignore instance 0 */
908 if (instance == 0x00)
911 adv_instance = hci_find_adv_instance(hdev, instance);
915 /* TODO: Take into account the "appearance" and "local-name" flags here.
916 * These are currently being ignored as they are not supported.
918 return adv_instance->scan_rsp_len;
921 static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev)
923 u8 instance = hdev->cur_adv_instance;
924 struct adv_info *adv_instance;
926 /* Ignore instance 0 */
927 if (instance == 0x00)
930 adv_instance = hci_find_adv_instance(hdev, instance);
934 /* TODO: Take into account the "appearance" and "local-name" flags here.
935 * These are currently being ignored as they are not supported.
937 return adv_instance->scan_rsp_len;
940 void __hci_req_disable_advertising(struct hci_request *req)
942 if (ext_adv_capable(req->hdev)) {
943 struct hci_cp_le_set_ext_adv_enable cp;
946 /* Disable all sets since we only support one set at the moment */
947 cp.num_of_sets = 0x00;
949 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp), &cp);
953 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
957 static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance)
960 struct adv_info *adv_instance;
962 if (instance == 0x00) {
963 /* Instance 0 always manages the "Tx Power" and "Flags"
966 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
968 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
969 * corresponds to the "connectable" instance flag.
971 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
972 flags |= MGMT_ADV_FLAG_CONNECTABLE;
974 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
975 flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
976 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
977 flags |= MGMT_ADV_FLAG_DISCOV;
982 adv_instance = hci_find_adv_instance(hdev, instance);
984 /* Return 0 when we got an invalid instance identifier. */
988 return adv_instance->flags;
991 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
993 /* If privacy is not enabled don't use RPA */
994 if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
997 /* If basic privacy mode is enabled use RPA */
998 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
1001 /* If limited privacy mode is enabled don't use RPA if we're
1002 * both discoverable and bondable.
1004 if ((flags & MGMT_ADV_FLAG_DISCOV) &&
1005 hci_dev_test_flag(hdev, HCI_BONDABLE))
1008 /* We're neither bondable nor discoverable in the limited
1009 * privacy mode, therefore use RPA.
1014 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
1016 /* If there is no connection we are OK to advertise. */
1017 if (hci_conn_num(hdev, LE_LINK) == 0)
1020 /* Check le_states if there is any connection in slave role. */
1021 if (hdev->conn_hash.le_num_slave > 0) {
1022 /* Slave connection state and non connectable mode bit 20. */
1023 if (!connectable && !(hdev->le_states[2] & 0x10))
1026 /* Slave connection state and connectable mode bit 38
1027 * and scannable bit 21.
1029 if (connectable && (!(hdev->le_states[4] & 0x40) ||
1030 !(hdev->le_states[2] & 0x20)))
1034 /* Check le_states if there is any connection in master role. */
1035 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_slave) {
1036 /* Master connection state and non connectable mode bit 18. */
1037 if (!connectable && !(hdev->le_states[2] & 0x02))
1040 /* Master connection state and connectable mode bit 35 and
1043 if (connectable && (!(hdev->le_states[4] & 0x08) ||
1044 !(hdev->le_states[2] & 0x08)))
1051 void __hci_req_enable_advertising(struct hci_request *req)
1053 struct hci_dev *hdev = req->hdev;
1054 struct hci_cp_le_set_adv_param cp;
1055 u8 own_addr_type, enable = 0x01;
1057 u16 adv_min_interval, adv_max_interval;
1060 flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance);
1062 /* If the "connectable" instance flag was not set, then choose between
1063 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1065 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1066 mgmt_get_connectable(hdev);
1068 if (!is_advertising_allowed(hdev, connectable))
1071 if (hci_dev_test_flag(hdev, HCI_LE_ADV))
1072 __hci_req_disable_advertising(req);
1074 /* Clear the HCI_LE_ADV bit temporarily so that the
1075 * hci_update_random_address knows that it's safe to go ahead
1076 * and write a new random address. The flag will be set back on
1077 * as soon as the SET_ADV_ENABLE HCI command completes.
1079 hci_dev_clear_flag(hdev, HCI_LE_ADV);
1081 /* Set require_privacy to true only when non-connectable
1082 * advertising is used. In that case it is fine to use a
1083 * non-resolvable private address.
1085 if (hci_update_random_address(req, !connectable,
1086 adv_use_rpa(hdev, flags),
1087 &own_addr_type) < 0)
1090 memset(&cp, 0, sizeof(cp));
1093 cp.type = LE_ADV_IND;
1095 adv_min_interval = hdev->le_adv_min_interval;
1096 adv_max_interval = hdev->le_adv_max_interval;
1098 if (get_cur_adv_instance_scan_rsp_len(hdev))
1099 cp.type = LE_ADV_SCAN_IND;
1101 cp.type = LE_ADV_NONCONN_IND;
1103 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
1104 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1105 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
1106 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
1108 adv_min_interval = hdev->le_adv_min_interval;
1109 adv_max_interval = hdev->le_adv_max_interval;
1113 cp.min_interval = cpu_to_le16(adv_min_interval);
1114 cp.max_interval = cpu_to_le16(adv_max_interval);
1115 cp.own_address_type = own_addr_type;
1116 cp.channel_map = hdev->le_adv_channel_map;
1118 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
1120 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1123 u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1126 size_t complete_len;
1128 /* no space left for name (+ NULL + type + len) */
1129 if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3)
1132 /* use complete name if present and fits */
1133 complete_len = strlen(hdev->dev_name);
1134 if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH)
1135 return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE,
1136 hdev->dev_name, complete_len + 1);
1138 /* use short name if present */
1139 short_len = strlen(hdev->short_name);
1141 return eir_append_data(ptr, ad_len, EIR_NAME_SHORT,
1142 hdev->short_name, short_len + 1);
1144 /* use shortened full name if present, we already know that name
1145 * is longer then HCI_MAX_SHORT_NAME_LENGTH
1148 u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1];
1150 memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH);
1151 name[HCI_MAX_SHORT_NAME_LENGTH] = '\0';
1153 return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name,
1160 static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1162 return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance);
1165 static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr)
1167 u8 scan_rsp_len = 0;
1169 if (hdev->appearance) {
1170 scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1173 return append_local_name(hdev, ptr, scan_rsp_len);
1176 static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance,
1179 struct adv_info *adv_instance;
1181 u8 scan_rsp_len = 0;
1183 adv_instance = hci_find_adv_instance(hdev, instance);
1187 instance_flags = adv_instance->flags;
1189 if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) {
1190 scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1193 memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data,
1194 adv_instance->scan_rsp_len);
1196 scan_rsp_len += adv_instance->scan_rsp_len;
1198 if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME)
1199 scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len);
1201 return scan_rsp_len;
1204 void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1206 struct hci_dev *hdev = req->hdev;
1209 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1212 if (ext_adv_capable(hdev)) {
1213 struct hci_cp_le_set_ext_scan_rsp_data cp;
1215 memset(&cp, 0, sizeof(cp));
1218 len = create_instance_scan_rsp_data(hdev, instance,
1221 len = create_default_scan_rsp_data(hdev, cp.data);
1223 if (hdev->scan_rsp_data_len == len &&
1224 !memcmp(cp.data, hdev->scan_rsp_data, len))
1227 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1228 hdev->scan_rsp_data_len = len;
1232 cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1233 cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1235 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, sizeof(cp),
1238 struct hci_cp_le_set_scan_rsp_data cp;
1240 memset(&cp, 0, sizeof(cp));
1243 len = create_instance_scan_rsp_data(hdev, instance,
1246 len = create_default_scan_rsp_data(hdev, cp.data);
1248 if (hdev->scan_rsp_data_len == len &&
1249 !memcmp(cp.data, hdev->scan_rsp_data, len))
1252 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1253 hdev->scan_rsp_data_len = len;
1257 hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
1261 static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr)
1263 struct adv_info *adv_instance = NULL;
1264 u8 ad_len = 0, flags = 0;
1267 /* Return 0 when the current instance identifier is invalid. */
1269 adv_instance = hci_find_adv_instance(hdev, instance);
1274 instance_flags = get_adv_instance_flags(hdev, instance);
1276 /* The Add Advertising command allows userspace to set both the general
1277 * and limited discoverable flags.
1279 if (instance_flags & MGMT_ADV_FLAG_DISCOV)
1280 flags |= LE_AD_GENERAL;
1282 if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV)
1283 flags |= LE_AD_LIMITED;
1285 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1286 flags |= LE_AD_NO_BREDR;
1288 if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) {
1289 /* If a discovery flag wasn't provided, simply use the global
1293 flags |= mgmt_get_adv_discov_flags(hdev);
1295 /* If flags would still be empty, then there is no need to
1296 * include the "Flags" AD field".
1309 memcpy(ptr, adv_instance->adv_data,
1310 adv_instance->adv_data_len);
1311 ad_len += adv_instance->adv_data_len;
1312 ptr += adv_instance->adv_data_len;
1315 if (instance_flags & MGMT_ADV_FLAG_TX_POWER) {
1318 if (ext_adv_capable(hdev)) {
1320 adv_tx_power = adv_instance->tx_power;
1322 adv_tx_power = hdev->adv_tx_power;
1324 adv_tx_power = hdev->adv_tx_power;
1327 /* Provide Tx Power only if we can provide a valid value for it */
1328 if (adv_tx_power != HCI_TX_POWER_INVALID) {
1330 ptr[1] = EIR_TX_POWER;
1331 ptr[2] = (u8)adv_tx_power;
1341 void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1343 struct hci_dev *hdev = req->hdev;
1346 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1349 if (ext_adv_capable(hdev)) {
1350 struct hci_cp_le_set_ext_adv_data cp;
1352 memset(&cp, 0, sizeof(cp));
1354 len = create_instance_adv_data(hdev, instance, cp.data);
1356 /* There's nothing to do if the data hasn't changed */
1357 if (hdev->adv_data_len == len &&
1358 memcmp(cp.data, hdev->adv_data, len) == 0)
1361 memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1362 hdev->adv_data_len = len;
1366 cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1367 cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1369 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_DATA, sizeof(cp), &cp);
1371 struct hci_cp_le_set_adv_data cp;
1373 memset(&cp, 0, sizeof(cp));
1375 len = create_instance_adv_data(hdev, instance, cp.data);
1377 /* There's nothing to do if the data hasn't changed */
1378 if (hdev->adv_data_len == len &&
1379 memcmp(cp.data, hdev->adv_data, len) == 0)
1382 memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1383 hdev->adv_data_len = len;
1387 hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
1391 int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1393 struct hci_request req;
1395 hci_req_init(&req, hdev);
1396 __hci_req_update_adv_data(&req, instance);
1398 return hci_req_run(&req, NULL);
1401 static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1403 BT_DBG("%s status %u", hdev->name, status);
1406 void hci_req_reenable_advertising(struct hci_dev *hdev)
1408 struct hci_request req;
1410 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1411 list_empty(&hdev->adv_instances))
1414 hci_req_init(&req, hdev);
1416 if (hdev->cur_adv_instance) {
1417 __hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
1420 if (ext_adv_capable(hdev)) {
1421 __hci_req_start_ext_adv(&req, 0x00);
1423 __hci_req_update_adv_data(&req, 0x00);
1424 __hci_req_update_scan_rsp_data(&req, 0x00);
1425 __hci_req_enable_advertising(&req);
1429 hci_req_run(&req, adv_enable_complete);
1432 static void adv_timeout_expire(struct work_struct *work)
1434 struct hci_dev *hdev = container_of(work, struct hci_dev,
1435 adv_instance_expire.work);
1437 struct hci_request req;
1440 BT_DBG("%s", hdev->name);
1444 hdev->adv_instance_timeout = 0;
1446 instance = hdev->cur_adv_instance;
1447 if (instance == 0x00)
1450 hci_req_init(&req, hdev);
1452 hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
1454 if (list_empty(&hdev->adv_instances))
1455 __hci_req_disable_advertising(&req);
1457 hci_req_run(&req, NULL);
1460 hci_dev_unlock(hdev);
1463 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
1464 bool use_rpa, struct adv_info *adv_instance,
1465 u8 *own_addr_type, bdaddr_t *rand_addr)
1469 bacpy(rand_addr, BDADDR_ANY);
1471 /* If privacy is enabled use a resolvable private address. If
1472 * current RPA has expired then generate a new one.
1477 *own_addr_type = ADDR_LE_DEV_RANDOM;
1480 if (!adv_instance->rpa_expired &&
1481 !bacmp(&adv_instance->random_addr, &hdev->rpa))
1484 adv_instance->rpa_expired = false;
1486 if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1487 !bacmp(&hdev->random_addr, &hdev->rpa))
1491 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1493 BT_ERR("%s failed to generate new RPA", hdev->name);
1497 bacpy(rand_addr, &hdev->rpa);
1499 to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1501 queue_delayed_work(hdev->workqueue,
1502 &adv_instance->rpa_expired_cb, to);
1504 queue_delayed_work(hdev->workqueue,
1505 &hdev->rpa_expired, to);
1510 /* In case of required privacy without resolvable private address,
1511 * use an non-resolvable private address. This is useful for
1512 * non-connectable advertising.
1514 if (require_privacy) {
1518 /* The non-resolvable private address is generated
1519 * from random six bytes with the two most significant
1522 get_random_bytes(&nrpa, 6);
1525 /* The non-resolvable private address shall not be
1526 * equal to the public address.
1528 if (bacmp(&hdev->bdaddr, &nrpa))
1532 *own_addr_type = ADDR_LE_DEV_RANDOM;
1533 bacpy(rand_addr, &nrpa);
1538 /* No privacy so use a public address. */
1539 *own_addr_type = ADDR_LE_DEV_PUBLIC;
1544 void __hci_req_clear_ext_adv_sets(struct hci_request *req)
1546 hci_req_add(req, HCI_OP_LE_CLEAR_ADV_SETS, 0, NULL);
1549 int __hci_req_setup_ext_adv_instance(struct hci_request *req, u8 instance)
1551 struct hci_cp_le_set_ext_adv_params cp;
1552 struct hci_dev *hdev = req->hdev;
1555 bdaddr_t random_addr;
1558 struct adv_info *adv_instance;
1560 /* In ext adv set param interval is 3 octets */
1561 const u8 adv_interval[3] = { 0x00, 0x08, 0x00 };
1564 adv_instance = hci_find_adv_instance(hdev, instance);
1568 adv_instance = NULL;
1571 flags = get_adv_instance_flags(hdev, instance);
1573 /* If the "connectable" instance flag was not set, then choose between
1574 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1576 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1577 mgmt_get_connectable(hdev);
1579 if (!is_advertising_allowed(hdev, connectable))
1582 /* Set require_privacy to true only when non-connectable
1583 * advertising is used. In that case it is fine to use a
1584 * non-resolvable private address.
1586 err = hci_get_random_address(hdev, !connectable,
1587 adv_use_rpa(hdev, flags), adv_instance,
1588 &own_addr_type, &random_addr);
1592 memset(&cp, 0, sizeof(cp));
1594 memcpy(cp.min_interval, adv_interval, sizeof(cp.min_interval));
1595 memcpy(cp.max_interval, adv_interval, sizeof(cp.max_interval));
1597 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
1601 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
1603 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
1604 } else if (get_adv_instance_scan_rsp_len(hdev, instance)) {
1606 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
1608 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
1611 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
1613 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
1616 cp.own_addr_type = own_addr_type;
1617 cp.channel_map = hdev->le_adv_channel_map;
1619 cp.handle = instance;
1621 if (flags & MGMT_ADV_FLAG_SEC_2M) {
1622 cp.primary_phy = HCI_ADV_PHY_1M;
1623 cp.secondary_phy = HCI_ADV_PHY_2M;
1624 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
1625 cp.primary_phy = HCI_ADV_PHY_CODED;
1626 cp.secondary_phy = HCI_ADV_PHY_CODED;
1628 /* In all other cases use 1M */
1629 cp.primary_phy = HCI_ADV_PHY_1M;
1630 cp.secondary_phy = HCI_ADV_PHY_1M;
1633 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);
1635 if (own_addr_type == ADDR_LE_DEV_RANDOM &&
1636 bacmp(&random_addr, BDADDR_ANY)) {
1637 struct hci_cp_le_set_adv_set_rand_addr cp;
1639 /* Check if random address need to be updated */
1641 if (!bacmp(&random_addr, &adv_instance->random_addr))
1644 if (!bacmp(&random_addr, &hdev->random_addr))
1648 memset(&cp, 0, sizeof(cp));
1651 bacpy(&cp.bdaddr, &random_addr);
1654 HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
1661 int __hci_req_enable_ext_advertising(struct hci_request *req, u8 instance)
1663 struct hci_dev *hdev = req->hdev;
1664 struct hci_cp_le_set_ext_adv_enable *cp;
1665 struct hci_cp_ext_adv_set *adv_set;
1666 u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
1667 struct adv_info *adv_instance;
1670 adv_instance = hci_find_adv_instance(hdev, instance);
1674 adv_instance = NULL;
1678 adv_set = (void *) cp->data;
1680 memset(cp, 0, sizeof(*cp));
1683 cp->num_of_sets = 0x01;
1685 memset(adv_set, 0, sizeof(*adv_set));
1687 adv_set->handle = instance;
1689 /* Set duration per instance since controller is responsible for
1692 if (adv_instance && adv_instance->duration) {
1693 u16 duration = adv_instance->duration * MSEC_PER_SEC;
1695 /* Time = N * 10 ms */
1696 adv_set->duration = cpu_to_le16(duration / 10);
1699 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE,
1700 sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets,
1706 int __hci_req_start_ext_adv(struct hci_request *req, u8 instance)
1708 struct hci_dev *hdev = req->hdev;
1711 if (hci_dev_test_flag(hdev, HCI_LE_ADV))
1712 __hci_req_disable_advertising(req);
1714 err = __hci_req_setup_ext_adv_instance(req, instance);
1718 __hci_req_update_scan_rsp_data(req, instance);
1719 __hci_req_enable_ext_advertising(req, instance);
1724 int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
1727 struct hci_dev *hdev = req->hdev;
1728 struct adv_info *adv_instance = NULL;
1731 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1732 list_empty(&hdev->adv_instances))
1735 if (hdev->adv_instance_timeout)
1738 adv_instance = hci_find_adv_instance(hdev, instance);
1742 /* A zero timeout means unlimited advertising. As long as there is
1743 * only one instance, duration should be ignored. We still set a timeout
1744 * in case further instances are being added later on.
1746 * If the remaining lifetime of the instance is more than the duration
1747 * then the timeout corresponds to the duration, otherwise it will be
1748 * reduced to the remaining instance lifetime.
1750 if (adv_instance->timeout == 0 ||
1751 adv_instance->duration <= adv_instance->remaining_time)
1752 timeout = adv_instance->duration;
1754 timeout = adv_instance->remaining_time;
1756 /* The remaining time is being reduced unless the instance is being
1757 * advertised without time limit.
1759 if (adv_instance->timeout)
1760 adv_instance->remaining_time =
1761 adv_instance->remaining_time - timeout;
1763 /* Only use work for scheduling instances with legacy advertising */
1764 if (!ext_adv_capable(hdev)) {
1765 hdev->adv_instance_timeout = timeout;
1766 queue_delayed_work(hdev->req_workqueue,
1767 &hdev->adv_instance_expire,
1768 msecs_to_jiffies(timeout * 1000));
1771 /* If we're just re-scheduling the same instance again then do not
1772 * execute any HCI commands. This happens when a single instance is
1775 if (!force && hdev->cur_adv_instance == instance &&
1776 hci_dev_test_flag(hdev, HCI_LE_ADV))
1779 hdev->cur_adv_instance = instance;
1780 if (ext_adv_capable(hdev)) {
1781 __hci_req_start_ext_adv(req, instance);
1783 __hci_req_update_adv_data(req, instance);
1784 __hci_req_update_scan_rsp_data(req, instance);
1785 __hci_req_enable_advertising(req);
1791 static void cancel_adv_timeout(struct hci_dev *hdev)
1793 if (hdev->adv_instance_timeout) {
1794 hdev->adv_instance_timeout = 0;
1795 cancel_delayed_work(&hdev->adv_instance_expire);
1799 /* For a single instance:
1800 * - force == true: The instance will be removed even when its remaining
1801 * lifetime is not zero.
1802 * - force == false: the instance will be deactivated but kept stored unless
1803 * the remaining lifetime is zero.
1805 * For instance == 0x00:
1806 * - force == true: All instances will be removed regardless of their timeout
1808 * - force == false: Only instances that have a timeout will be removed.
1810 void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
1811 struct hci_request *req, u8 instance,
1814 struct adv_info *adv_instance, *n, *next_instance = NULL;
1818 /* Cancel any timeout concerning the removed instance(s). */
1819 if (!instance || hdev->cur_adv_instance == instance)
1820 cancel_adv_timeout(hdev);
1822 /* Get the next instance to advertise BEFORE we remove
1823 * the current one. This can be the same instance again
1824 * if there is only one instance.
1826 if (instance && hdev->cur_adv_instance == instance)
1827 next_instance = hci_get_next_instance(hdev, instance);
1829 if (instance == 0x00) {
1830 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
1832 if (!(force || adv_instance->timeout))
1835 rem_inst = adv_instance->instance;
1836 err = hci_remove_adv_instance(hdev, rem_inst);
1838 mgmt_advertising_removed(sk, hdev, rem_inst);
1841 adv_instance = hci_find_adv_instance(hdev, instance);
1843 if (force || (adv_instance && adv_instance->timeout &&
1844 !adv_instance->remaining_time)) {
1845 /* Don't advertise a removed instance. */
1846 if (next_instance &&
1847 next_instance->instance == instance)
1848 next_instance = NULL;
1850 err = hci_remove_adv_instance(hdev, instance);
1852 mgmt_advertising_removed(sk, hdev, instance);
1856 if (!req || !hdev_is_powered(hdev) ||
1857 hci_dev_test_flag(hdev, HCI_ADVERTISING))
1861 __hci_req_schedule_adv_instance(req, next_instance->instance,
1865 static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
1867 struct hci_dev *hdev = req->hdev;
1869 /* If we're advertising or initiating an LE connection we can't
1870 * go ahead and change the random address at this time. This is
1871 * because the eventual initiator address used for the
1872 * subsequently created connection will be undefined (some
1873 * controllers use the new address and others the one we had
1874 * when the operation started).
1876 * In this kind of scenario skip the update and let the random
1877 * address be updated at the next cycle.
1879 if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
1880 hci_lookup_le_connect(hdev)) {
1881 BT_DBG("Deferring random address update");
1882 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1886 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
1889 int hci_update_random_address(struct hci_request *req, bool require_privacy,
1890 bool use_rpa, u8 *own_addr_type)
1892 struct hci_dev *hdev = req->hdev;
1895 /* If privacy is enabled use a resolvable private address. If
1896 * current RPA has expired or there is something else than
1897 * the current RPA in use, then generate a new one.
1902 *own_addr_type = ADDR_LE_DEV_RANDOM;
1904 if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1905 !bacmp(&hdev->random_addr, &hdev->rpa))
1908 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1910 bt_dev_err(hdev, "failed to generate new RPA");
1914 set_random_addr(req, &hdev->rpa);
1916 to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1917 queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);
1922 /* In case of required privacy without resolvable private address,
1923 * use an non-resolvable private address. This is useful for active
1924 * scanning and non-connectable advertising.
1926 if (require_privacy) {
1930 /* The non-resolvable private address is generated
1931 * from random six bytes with the two most significant
1934 get_random_bytes(&nrpa, 6);
1937 /* The non-resolvable private address shall not be
1938 * equal to the public address.
1940 if (bacmp(&hdev->bdaddr, &nrpa))
1944 *own_addr_type = ADDR_LE_DEV_RANDOM;
1945 set_random_addr(req, &nrpa);
1949 /* If forcing static address is in use or there is no public
1950 * address use the static address as random address (but skip
1951 * the HCI command if the current random address is already the
1954 * In case BR/EDR has been disabled on a dual-mode controller
1955 * and a static address has been configured, then use that
1956 * address instead of the public BR/EDR address.
1958 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
1959 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
1960 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
1961 bacmp(&hdev->static_addr, BDADDR_ANY))) {
1962 *own_addr_type = ADDR_LE_DEV_RANDOM;
1963 if (bacmp(&hdev->static_addr, &hdev->random_addr))
1964 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
1965 &hdev->static_addr);
1969 /* Neither privacy nor static address is being used so use a
1972 *own_addr_type = ADDR_LE_DEV_PUBLIC;
1977 static bool disconnected_whitelist_entries(struct hci_dev *hdev)
1979 struct bdaddr_list *b;
1981 list_for_each_entry(b, &hdev->whitelist, list) {
1982 struct hci_conn *conn;
1984 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
1988 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
1995 void __hci_req_update_scan(struct hci_request *req)
1997 struct hci_dev *hdev = req->hdev;
2000 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2003 if (!hdev_is_powered(hdev))
2006 if (mgmt_powering_down(hdev))
2009 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
2010 disconnected_whitelist_entries(hdev))
2013 scan = SCAN_DISABLED;
2015 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2016 scan |= SCAN_INQUIRY;
2018 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
2019 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
2022 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
2025 static int update_scan(struct hci_request *req, unsigned long opt)
2027 hci_dev_lock(req->hdev);
2028 __hci_req_update_scan(req);
2029 hci_dev_unlock(req->hdev);
2033 static void scan_update_work(struct work_struct *work)
2035 struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);
2037 hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
2040 static int connectable_update(struct hci_request *req, unsigned long opt)
2042 struct hci_dev *hdev = req->hdev;
2046 __hci_req_update_scan(req);
2048 /* If BR/EDR is not enabled and we disable advertising as a
2049 * by-product of disabling connectable, we need to update the
2050 * advertising flags.
2052 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2053 __hci_req_update_adv_data(req, hdev->cur_adv_instance);
2055 /* Update the advertising parameters if necessary */
2056 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2057 !list_empty(&hdev->adv_instances)) {
2058 if (ext_adv_capable(hdev))
2059 __hci_req_start_ext_adv(req, hdev->cur_adv_instance);
2061 __hci_req_enable_advertising(req);
2064 __hci_update_background_scan(req);
2066 hci_dev_unlock(hdev);
2071 static void connectable_update_work(struct work_struct *work)
2073 struct hci_dev *hdev = container_of(work, struct hci_dev,
2074 connectable_update);
2077 hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
2078 mgmt_set_connectable_complete(hdev, status);
2081 static u8 get_service_classes(struct hci_dev *hdev)
2083 struct bt_uuid *uuid;
2086 list_for_each_entry(uuid, &hdev->uuids, list)
2087 val |= uuid->svc_hint;
2092 void __hci_req_update_class(struct hci_request *req)
2094 struct hci_dev *hdev = req->hdev;
2097 BT_DBG("%s", hdev->name);
2099 if (!hdev_is_powered(hdev))
2102 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2105 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
2108 cod[0] = hdev->minor_class;
2109 cod[1] = hdev->major_class;
2110 cod[2] = get_service_classes(hdev);
2112 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
2115 if (memcmp(cod, hdev->dev_class, 3) == 0)
2118 hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
2121 static void write_iac(struct hci_request *req)
2123 struct hci_dev *hdev = req->hdev;
2124 struct hci_cp_write_current_iac_lap cp;
2126 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2129 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
2130 /* Limited discoverable mode */
2131 cp.num_iac = min_t(u8, hdev->num_iac, 2);
2132 cp.iac_lap[0] = 0x00; /* LIAC */
2133 cp.iac_lap[1] = 0x8b;
2134 cp.iac_lap[2] = 0x9e;
2135 cp.iac_lap[3] = 0x33; /* GIAC */
2136 cp.iac_lap[4] = 0x8b;
2137 cp.iac_lap[5] = 0x9e;
2139 /* General discoverable mode */
2141 cp.iac_lap[0] = 0x33; /* GIAC */
2142 cp.iac_lap[1] = 0x8b;
2143 cp.iac_lap[2] = 0x9e;
2146 hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
2147 (cp.num_iac * 3) + 1, &cp);
2150 static int discoverable_update(struct hci_request *req, unsigned long opt)
2152 struct hci_dev *hdev = req->hdev;
2156 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
2158 __hci_req_update_scan(req);
2159 __hci_req_update_class(req);
2162 /* Advertising instances don't use the global discoverable setting, so
2163 * only update AD if advertising was enabled using Set Advertising.
2165 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2166 __hci_req_update_adv_data(req, 0x00);
2168 /* Discoverable mode affects the local advertising
2169 * address in limited privacy mode.
2171 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
2172 if (ext_adv_capable(hdev))
2173 __hci_req_start_ext_adv(req, 0x00);
2175 __hci_req_enable_advertising(req);
2179 hci_dev_unlock(hdev);
2184 static void discoverable_update_work(struct work_struct *work)
2186 struct hci_dev *hdev = container_of(work, struct hci_dev,
2187 discoverable_update);
2190 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
2191 mgmt_set_discoverable_complete(hdev, status);
2194 void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
2197 switch (conn->state) {
2200 if (conn->type == AMP_LINK) {
2201 struct hci_cp_disconn_phy_link cp;
2203 cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
2205 hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
2208 struct hci_cp_disconnect dc;
2210 dc.handle = cpu_to_le16(conn->handle);
2212 hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
2215 conn->state = BT_DISCONN;
2219 if (conn->type == LE_LINK) {
2220 if (test_bit(HCI_CONN_SCANNING, &conn->flags))
2222 hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
2224 } else if (conn->type == ACL_LINK) {
2225 if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
2227 hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
2232 if (conn->type == ACL_LINK) {
2233 struct hci_cp_reject_conn_req rej;
2235 bacpy(&rej.bdaddr, &conn->dst);
2236 rej.reason = reason;
2238 hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
2240 } else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
2241 struct hci_cp_reject_sync_conn_req rej;
2243 bacpy(&rej.bdaddr, &conn->dst);
2245 /* SCO rejection has its own limited set of
2246 * allowed error values (0x0D-0x0F) which isn't
2247 * compatible with most values passed to this
2248 * function. To be safe hard-code one of the
2249 * values that's suitable for SCO.
2251 rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
2253 hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
2258 conn->state = BT_CLOSED;
2263 static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
2266 BT_DBG("Failed to abort connection: status 0x%2.2x", status);
2269 int hci_abort_conn(struct hci_conn *conn, u8 reason)
2271 struct hci_request req;
2274 hci_req_init(&req, conn->hdev);
2276 __hci_abort_conn(&req, conn, reason);
2278 err = hci_req_run(&req, abort_conn_complete);
2279 if (err && err != -ENODATA) {
2280 bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err);
2287 static int update_bg_scan(struct hci_request *req, unsigned long opt)
2289 hci_dev_lock(req->hdev);
2290 __hci_update_background_scan(req);
2291 hci_dev_unlock(req->hdev);
2295 static void bg_scan_update(struct work_struct *work)
2297 struct hci_dev *hdev = container_of(work, struct hci_dev,
2299 struct hci_conn *conn;
2303 err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
2309 conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
2311 hci_le_conn_failed(conn, status);
2313 hci_dev_unlock(hdev);
2316 static int le_scan_disable(struct hci_request *req, unsigned long opt)
2318 hci_req_add_le_scan_disable(req);
2322 static int bredr_inquiry(struct hci_request *req, unsigned long opt)
2325 const u8 giac[3] = { 0x33, 0x8b, 0x9e };
2326 const u8 liac[3] = { 0x00, 0x8b, 0x9e };
2327 struct hci_cp_inquiry cp;
2329 BT_DBG("%s", req->hdev->name);
2331 hci_dev_lock(req->hdev);
2332 hci_inquiry_cache_flush(req->hdev);
2333 hci_dev_unlock(req->hdev);
2335 memset(&cp, 0, sizeof(cp));
2337 if (req->hdev->discovery.limited)
2338 memcpy(&cp.lap, liac, sizeof(cp.lap));
2340 memcpy(&cp.lap, giac, sizeof(cp.lap));
2344 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
2349 static void le_scan_disable_work(struct work_struct *work)
2351 struct hci_dev *hdev = container_of(work, struct hci_dev,
2352 le_scan_disable.work);
2355 BT_DBG("%s", hdev->name);
2357 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2360 cancel_delayed_work(&hdev->le_scan_restart);
2362 hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
2364 bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x",
2369 hdev->discovery.scan_start = 0;
2371 /* If we were running LE only scan, change discovery state. If
2372 * we were running both LE and BR/EDR inquiry simultaneously,
2373 * and BR/EDR inquiry is already finished, stop discovery,
2374 * otherwise BR/EDR inquiry will stop discovery when finished.
2375 * If we will resolve remote device name, do not change
2379 if (hdev->discovery.type == DISCOV_TYPE_LE)
2380 goto discov_stopped;
2382 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
2385 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
2386 if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
2387 hdev->discovery.state != DISCOVERY_RESOLVING)
2388 goto discov_stopped;
2393 hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
2394 HCI_CMD_TIMEOUT, &status);
2396 bt_dev_err(hdev, "inquiry failed: status 0x%02x", status);
2397 goto discov_stopped;
2404 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2405 hci_dev_unlock(hdev);
2408 static int le_scan_restart(struct hci_request *req, unsigned long opt)
2410 struct hci_dev *hdev = req->hdev;
2412 /* If controller is not scanning we are done. */
2413 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2416 hci_req_add_le_scan_disable(req);
2418 if (use_ext_scan(hdev)) {
2419 struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
2421 memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
2422 ext_enable_cp.enable = LE_SCAN_ENABLE;
2423 ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2425 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
2426 sizeof(ext_enable_cp), &ext_enable_cp);
2428 struct hci_cp_le_set_scan_enable cp;
2430 memset(&cp, 0, sizeof(cp));
2431 cp.enable = LE_SCAN_ENABLE;
2432 cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2433 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
2439 static void le_scan_restart_work(struct work_struct *work)
2441 struct hci_dev *hdev = container_of(work, struct hci_dev,
2442 le_scan_restart.work);
2443 unsigned long timeout, duration, scan_start, now;
2446 BT_DBG("%s", hdev->name);
2448 hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
2450 bt_dev_err(hdev, "failed to restart LE scan: status %d",
2457 if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
2458 !hdev->discovery.scan_start)
2461 /* When the scan was started, hdev->le_scan_disable has been queued
2462 * after duration from scan_start. During scan restart this job
2463 * has been canceled, and we need to queue it again after proper
2464 * timeout, to make sure that scan does not run indefinitely.
2466 duration = hdev->discovery.scan_duration;
2467 scan_start = hdev->discovery.scan_start;
2469 if (now - scan_start <= duration) {
2472 if (now >= scan_start)
2473 elapsed = now - scan_start;
2475 elapsed = ULONG_MAX - scan_start + now;
2477 timeout = duration - elapsed;
2482 queue_delayed_work(hdev->req_workqueue,
2483 &hdev->le_scan_disable, timeout);
2486 hci_dev_unlock(hdev);
2489 static int active_scan(struct hci_request *req, unsigned long opt)
2491 uint16_t interval = opt;
2492 struct hci_dev *hdev = req->hdev;
2496 BT_DBG("%s", hdev->name);
2498 if (hci_dev_test_flag(hdev, HCI_LE_ADV)) {
2501 /* Don't let discovery abort an outgoing connection attempt
2502 * that's using directed advertising.
2504 if (hci_lookup_le_connect(hdev)) {
2505 hci_dev_unlock(hdev);
2509 cancel_adv_timeout(hdev);
2510 hci_dev_unlock(hdev);
2512 __hci_req_disable_advertising(req);
2515 /* If controller is scanning, it means the background scanning is
2516 * running. Thus, we should temporarily stop it in order to set the
2517 * discovery scanning parameters.
2519 if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
2520 hci_req_add_le_scan_disable(req);
2522 /* All active scans will be done with either a resolvable private
2523 * address (when privacy feature has been enabled) or non-resolvable
2526 err = hci_update_random_address(req, true, scan_use_rpa(hdev),
2529 own_addr_type = ADDR_LE_DEV_PUBLIC;
2531 hci_req_start_scan(req, LE_SCAN_ACTIVE, interval, DISCOV_LE_SCAN_WIN,
2536 static int interleaved_discov(struct hci_request *req, unsigned long opt)
2540 BT_DBG("%s", req->hdev->name);
2542 err = active_scan(req, opt);
2546 return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
2549 static void start_discovery(struct hci_dev *hdev, u8 *status)
2551 unsigned long timeout;
2553 BT_DBG("%s type %u", hdev->name, hdev->discovery.type);
2555 switch (hdev->discovery.type) {
2556 case DISCOV_TYPE_BREDR:
2557 if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
2558 hci_req_sync(hdev, bredr_inquiry,
2559 DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
2562 case DISCOV_TYPE_INTERLEAVED:
2563 /* When running simultaneous discovery, the LE scanning time
2564 * should occupy the whole discovery time sine BR/EDR inquiry
2565 * and LE scanning are scheduled by the controller.
2567 * For interleaving discovery in comparison, BR/EDR inquiry
2568 * and LE scanning are done sequentially with separate
2571 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
2573 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2574 /* During simultaneous discovery, we double LE scan
2575 * interval. We must leave some time for the controller
2576 * to do BR/EDR inquiry.
2578 hci_req_sync(hdev, interleaved_discov,
2579 DISCOV_LE_SCAN_INT * 2, HCI_CMD_TIMEOUT,
2584 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
2585 hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2586 HCI_CMD_TIMEOUT, status);
2588 case DISCOV_TYPE_LE:
2589 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2590 hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2591 HCI_CMD_TIMEOUT, status);
2594 *status = HCI_ERROR_UNSPECIFIED;
2601 BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout));
2603 /* When service discovery is used and the controller has a
2604 * strict duplicate filter, it is important to remember the
2605 * start and duration of the scan. This is required for
2606 * restarting scanning during the discovery phase.
2608 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
2609 hdev->discovery.result_filtering) {
2610 hdev->discovery.scan_start = jiffies;
2611 hdev->discovery.scan_duration = timeout;
2614 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
2618 bool hci_req_stop_discovery(struct hci_request *req)
2620 struct hci_dev *hdev = req->hdev;
2621 struct discovery_state *d = &hdev->discovery;
2622 struct hci_cp_remote_name_req_cancel cp;
2623 struct inquiry_entry *e;
2626 BT_DBG("%s state %u", hdev->name, hdev->discovery.state);
2628 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
2629 if (test_bit(HCI_INQUIRY, &hdev->flags))
2630 hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);
2632 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2633 cancel_delayed_work(&hdev->le_scan_disable);
2634 hci_req_add_le_scan_disable(req);
2639 /* Passive scanning */
2640 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2641 hci_req_add_le_scan_disable(req);
2646 /* No further actions needed for LE-only discovery */
2647 if (d->type == DISCOV_TYPE_LE)
2650 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
2651 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
2656 bacpy(&cp.bdaddr, &e->data.bdaddr);
2657 hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
2665 static int stop_discovery(struct hci_request *req, unsigned long opt)
2667 hci_dev_lock(req->hdev);
2668 hci_req_stop_discovery(req);
2669 hci_dev_unlock(req->hdev);
2674 static void discov_update(struct work_struct *work)
2676 struct hci_dev *hdev = container_of(work, struct hci_dev,
2680 switch (hdev->discovery.state) {
2681 case DISCOVERY_STARTING:
2682 start_discovery(hdev, &status);
2683 mgmt_start_discovery_complete(hdev, status);
2685 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2687 hci_discovery_set_state(hdev, DISCOVERY_FINDING);
2689 case DISCOVERY_STOPPING:
2690 hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
2691 mgmt_stop_discovery_complete(hdev, status);
2693 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2695 case DISCOVERY_STOPPED:
2701 static void discov_off(struct work_struct *work)
2703 struct hci_dev *hdev = container_of(work, struct hci_dev,
2706 BT_DBG("%s", hdev->name);
2710 /* When discoverable timeout triggers, then just make sure
2711 * the limited discoverable flag is cleared. Even in the case
2712 * of a timeout triggered from general discoverable, it is
2713 * safe to unconditionally clear the flag.
2715 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2716 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2717 hdev->discov_timeout = 0;
2719 hci_dev_unlock(hdev);
2721 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
2722 mgmt_new_settings(hdev);
2725 static int powered_update_hci(struct hci_request *req, unsigned long opt)
2727 struct hci_dev *hdev = req->hdev;
2732 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
2733 !lmp_host_ssp_capable(hdev)) {
2736 hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);
2738 if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
2741 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
2742 sizeof(support), &support);
2746 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
2747 lmp_bredr_capable(hdev)) {
2748 struct hci_cp_write_le_host_supported cp;
2753 /* Check first if we already have the right
2754 * host state (host features set)
2756 if (cp.le != lmp_host_le_capable(hdev) ||
2757 cp.simul != lmp_host_le_br_capable(hdev))
2758 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2762 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
2763 /* Make sure the controller has a good default for
2764 * advertising data. This also applies to the case
2765 * where BR/EDR was toggled during the AUTO_OFF phase.
2767 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2768 list_empty(&hdev->adv_instances)) {
2771 if (ext_adv_capable(hdev)) {
2772 err = __hci_req_setup_ext_adv_instance(req,
2775 __hci_req_update_scan_rsp_data(req,
2779 __hci_req_update_adv_data(req, 0x00);
2780 __hci_req_update_scan_rsp_data(req, 0x00);
2783 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2784 if (!ext_adv_capable(hdev))
2785 __hci_req_enable_advertising(req);
2787 __hci_req_enable_ext_advertising(req,
2790 } else if (!list_empty(&hdev->adv_instances)) {
2791 struct adv_info *adv_instance;
2793 adv_instance = list_first_entry(&hdev->adv_instances,
2794 struct adv_info, list);
2795 __hci_req_schedule_adv_instance(req,
2796 adv_instance->instance,
2801 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
2802 if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
2803 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
2804 sizeof(link_sec), &link_sec);
2806 if (lmp_bredr_capable(hdev)) {
2807 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
2808 __hci_req_write_fast_connectable(req, true);
2810 __hci_req_write_fast_connectable(req, false);
2811 __hci_req_update_scan(req);
2812 __hci_req_update_class(req);
2813 __hci_req_update_name(req);
2814 __hci_req_update_eir(req);
2817 hci_dev_unlock(hdev);
2821 int __hci_req_hci_power_on(struct hci_dev *hdev)
2823 /* Register the available SMP channels (BR/EDR and LE) only when
2824 * successfully powering on the controller. This late
2825 * registration is required so that LE SMP can clearly decide if
2826 * the public address or static address is used.
2830 return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
2834 void hci_request_setup(struct hci_dev *hdev)
2836 INIT_WORK(&hdev->discov_update, discov_update);
2837 INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
2838 INIT_WORK(&hdev->scan_update, scan_update_work);
2839 INIT_WORK(&hdev->connectable_update, connectable_update_work);
2840 INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
2841 INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
2842 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
2843 INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
2844 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
2847 void hci_request_cancel_all(struct hci_dev *hdev)
2849 hci_req_sync_cancel(hdev, ENODEV);
2851 cancel_work_sync(&hdev->discov_update);
2852 cancel_work_sync(&hdev->bg_scan_update);
2853 cancel_work_sync(&hdev->scan_update);
2854 cancel_work_sync(&hdev->connectable_update);
2855 cancel_work_sync(&hdev->discoverable_update);
2856 cancel_delayed_work_sync(&hdev->discov_off);
2857 cancel_delayed_work_sync(&hdev->le_scan_disable);
2858 cancel_delayed_work_sync(&hdev->le_scan_restart);
2860 if (hdev->adv_instance_timeout) {
2861 cancel_delayed_work_sync(&hdev->adv_instance_expire);
2862 hdev->adv_instance_timeout = 0;