Merge tag 'block-6.6-2023-10-06' of git://git.kernel.dk/linux
[platform/kernel/linux-starfive.git] / net / bluetooth / hci_core.c
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4    Copyright (C) 2011 ProFUSION Embedded Systems
5
6    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License version 2 as
10    published by the Free Software Foundation;
11
12    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23    SOFTWARE IS DISCLAIMED.
24 */
25
26 /* Bluetooth HCI core. */
27
28 #include <linux/export.h>
29 #include <linux/rfkill.h>
30 #include <linux/debugfs.h>
31 #include <linux/crypto.h>
32 #include <linux/kcov.h>
33 #include <linux/property.h>
34 #include <linux/suspend.h>
35 #include <linux/wait.h>
36 #include <asm/unaligned.h>
37
38 #include <net/bluetooth/bluetooth.h>
39 #include <net/bluetooth/hci_core.h>
40 #include <net/bluetooth/l2cap.h>
41 #include <net/bluetooth/mgmt.h>
42
43 #include "hci_request.h"
44 #include "hci_debugfs.h"
45 #include "smp.h"
46 #include "leds.h"
47 #include "msft.h"
48 #include "aosp.h"
49 #include "hci_codec.h"
50
51 static void hci_rx_work(struct work_struct *work);
52 static void hci_cmd_work(struct work_struct *work);
53 static void hci_tx_work(struct work_struct *work);
54
55 /* HCI device list */
56 LIST_HEAD(hci_dev_list);
57 DEFINE_RWLOCK(hci_dev_list_lock);
58
59 /* HCI callback list */
60 LIST_HEAD(hci_cb_list);
61 DEFINE_MUTEX(hci_cb_list_lock);
62
63 /* HCI ID Numbering */
64 static DEFINE_IDA(hci_index_ida);
65
66 static int hci_scan_req(struct hci_request *req, unsigned long opt)
67 {
68         __u8 scan = opt;
69
70         BT_DBG("%s %x", req->hdev->name, scan);
71
72         /* Inquiry and Page scans */
73         hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
74         return 0;
75 }
76
77 static int hci_auth_req(struct hci_request *req, unsigned long opt)
78 {
79         __u8 auth = opt;
80
81         BT_DBG("%s %x", req->hdev->name, auth);
82
83         /* Authentication */
84         hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
85         return 0;
86 }
87
88 static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
89 {
90         __u8 encrypt = opt;
91
92         BT_DBG("%s %x", req->hdev->name, encrypt);
93
94         /* Encryption */
95         hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
96         return 0;
97 }
98
99 static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
100 {
101         __le16 policy = cpu_to_le16(opt);
102
103         BT_DBG("%s %x", req->hdev->name, policy);
104
105         /* Default link policy */
106         hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
107         return 0;
108 }
109
110 /* Get HCI device by index.
111  * Device is held on return. */
112 struct hci_dev *hci_dev_get(int index)
113 {
114         struct hci_dev *hdev = NULL, *d;
115
116         BT_DBG("%d", index);
117
118         if (index < 0)
119                 return NULL;
120
121         read_lock(&hci_dev_list_lock);
122         list_for_each_entry(d, &hci_dev_list, list) {
123                 if (d->id == index) {
124                         hdev = hci_dev_hold(d);
125                         break;
126                 }
127         }
128         read_unlock(&hci_dev_list_lock);
129         return hdev;
130 }
131
132 /* ---- Inquiry support ---- */
133
134 bool hci_discovery_active(struct hci_dev *hdev)
135 {
136         struct discovery_state *discov = &hdev->discovery;
137
138         switch (discov->state) {
139         case DISCOVERY_FINDING:
140         case DISCOVERY_RESOLVING:
141                 return true;
142
143         default:
144                 return false;
145         }
146 }
147
148 void hci_discovery_set_state(struct hci_dev *hdev, int state)
149 {
150         int old_state = hdev->discovery.state;
151
152         BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
153
154         if (old_state == state)
155                 return;
156
157         hdev->discovery.state = state;
158
159         switch (state) {
160         case DISCOVERY_STOPPED:
161                 hci_update_passive_scan(hdev);
162
163                 if (old_state != DISCOVERY_STARTING)
164                         mgmt_discovering(hdev, 0);
165                 break;
166         case DISCOVERY_STARTING:
167                 break;
168         case DISCOVERY_FINDING:
169                 mgmt_discovering(hdev, 1);
170                 break;
171         case DISCOVERY_RESOLVING:
172                 break;
173         case DISCOVERY_STOPPING:
174                 break;
175         }
176 }
177
178 void hci_inquiry_cache_flush(struct hci_dev *hdev)
179 {
180         struct discovery_state *cache = &hdev->discovery;
181         struct inquiry_entry *p, *n;
182
183         list_for_each_entry_safe(p, n, &cache->all, all) {
184                 list_del(&p->all);
185                 kfree(p);
186         }
187
188         INIT_LIST_HEAD(&cache->unknown);
189         INIT_LIST_HEAD(&cache->resolve);
190 }
191
192 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
193                                                bdaddr_t *bdaddr)
194 {
195         struct discovery_state *cache = &hdev->discovery;
196         struct inquiry_entry *e;
197
198         BT_DBG("cache %p, %pMR", cache, bdaddr);
199
200         list_for_each_entry(e, &cache->all, all) {
201                 if (!bacmp(&e->data.bdaddr, bdaddr))
202                         return e;
203         }
204
205         return NULL;
206 }
207
208 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
209                                                        bdaddr_t *bdaddr)
210 {
211         struct discovery_state *cache = &hdev->discovery;
212         struct inquiry_entry *e;
213
214         BT_DBG("cache %p, %pMR", cache, bdaddr);
215
216         list_for_each_entry(e, &cache->unknown, list) {
217                 if (!bacmp(&e->data.bdaddr, bdaddr))
218                         return e;
219         }
220
221         return NULL;
222 }
223
224 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
225                                                        bdaddr_t *bdaddr,
226                                                        int state)
227 {
228         struct discovery_state *cache = &hdev->discovery;
229         struct inquiry_entry *e;
230
231         BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
232
233         list_for_each_entry(e, &cache->resolve, list) {
234                 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
235                         return e;
236                 if (!bacmp(&e->data.bdaddr, bdaddr))
237                         return e;
238         }
239
240         return NULL;
241 }
242
243 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
244                                       struct inquiry_entry *ie)
245 {
246         struct discovery_state *cache = &hdev->discovery;
247         struct list_head *pos = &cache->resolve;
248         struct inquiry_entry *p;
249
250         list_del(&ie->list);
251
252         list_for_each_entry(p, &cache->resolve, list) {
253                 if (p->name_state != NAME_PENDING &&
254                     abs(p->data.rssi) >= abs(ie->data.rssi))
255                         break;
256                 pos = &p->list;
257         }
258
259         list_add(&ie->list, pos);
260 }
261
262 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
263                              bool name_known)
264 {
265         struct discovery_state *cache = &hdev->discovery;
266         struct inquiry_entry *ie;
267         u32 flags = 0;
268
269         BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
270
271         hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
272
273         if (!data->ssp_mode)
274                 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
275
276         ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
277         if (ie) {
278                 if (!ie->data.ssp_mode)
279                         flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
280
281                 if (ie->name_state == NAME_NEEDED &&
282                     data->rssi != ie->data.rssi) {
283                         ie->data.rssi = data->rssi;
284                         hci_inquiry_cache_update_resolve(hdev, ie);
285                 }
286
287                 goto update;
288         }
289
290         /* Entry not in the cache. Add new one. */
291         ie = kzalloc(sizeof(*ie), GFP_KERNEL);
292         if (!ie) {
293                 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
294                 goto done;
295         }
296
297         list_add(&ie->all, &cache->all);
298
299         if (name_known) {
300                 ie->name_state = NAME_KNOWN;
301         } else {
302                 ie->name_state = NAME_NOT_KNOWN;
303                 list_add(&ie->list, &cache->unknown);
304         }
305
306 update:
307         if (name_known && ie->name_state != NAME_KNOWN &&
308             ie->name_state != NAME_PENDING) {
309                 ie->name_state = NAME_KNOWN;
310                 list_del(&ie->list);
311         }
312
313         memcpy(&ie->data, data, sizeof(*data));
314         ie->timestamp = jiffies;
315         cache->timestamp = jiffies;
316
317         if (ie->name_state == NAME_NOT_KNOWN)
318                 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
319
320 done:
321         return flags;
322 }
323
324 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
325 {
326         struct discovery_state *cache = &hdev->discovery;
327         struct inquiry_info *info = (struct inquiry_info *) buf;
328         struct inquiry_entry *e;
329         int copied = 0;
330
331         list_for_each_entry(e, &cache->all, all) {
332                 struct inquiry_data *data = &e->data;
333
334                 if (copied >= num)
335                         break;
336
337                 bacpy(&info->bdaddr, &data->bdaddr);
338                 info->pscan_rep_mode    = data->pscan_rep_mode;
339                 info->pscan_period_mode = data->pscan_period_mode;
340                 info->pscan_mode        = data->pscan_mode;
341                 memcpy(info->dev_class, data->dev_class, 3);
342                 info->clock_offset      = data->clock_offset;
343
344                 info++;
345                 copied++;
346         }
347
348         BT_DBG("cache %p, copied %d", cache, copied);
349         return copied;
350 }
351
352 static int hci_inq_req(struct hci_request *req, unsigned long opt)
353 {
354         struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
355         struct hci_dev *hdev = req->hdev;
356         struct hci_cp_inquiry cp;
357
358         BT_DBG("%s", hdev->name);
359
360         if (test_bit(HCI_INQUIRY, &hdev->flags))
361                 return 0;
362
363         /* Start Inquiry */
364         memcpy(&cp.lap, &ir->lap, 3);
365         cp.length  = ir->length;
366         cp.num_rsp = ir->num_rsp;
367         hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
368
369         return 0;
370 }
371
372 int hci_inquiry(void __user *arg)
373 {
374         __u8 __user *ptr = arg;
375         struct hci_inquiry_req ir;
376         struct hci_dev *hdev;
377         int err = 0, do_inquiry = 0, max_rsp;
378         long timeo;
379         __u8 *buf;
380
381         if (copy_from_user(&ir, ptr, sizeof(ir)))
382                 return -EFAULT;
383
384         hdev = hci_dev_get(ir.dev_id);
385         if (!hdev)
386                 return -ENODEV;
387
388         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
389                 err = -EBUSY;
390                 goto done;
391         }
392
393         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
394                 err = -EOPNOTSUPP;
395                 goto done;
396         }
397
398         if (hdev->dev_type != HCI_PRIMARY) {
399                 err = -EOPNOTSUPP;
400                 goto done;
401         }
402
403         if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
404                 err = -EOPNOTSUPP;
405                 goto done;
406         }
407
408         /* Restrict maximum inquiry length to 60 seconds */
409         if (ir.length > 60) {
410                 err = -EINVAL;
411                 goto done;
412         }
413
414         hci_dev_lock(hdev);
415         if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
416             inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
417                 hci_inquiry_cache_flush(hdev);
418                 do_inquiry = 1;
419         }
420         hci_dev_unlock(hdev);
421
422         timeo = ir.length * msecs_to_jiffies(2000);
423
424         if (do_inquiry) {
425                 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
426                                    timeo, NULL);
427                 if (err < 0)
428                         goto done;
429
430                 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
431                  * cleared). If it is interrupted by a signal, return -EINTR.
432                  */
433                 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
434                                 TASK_INTERRUPTIBLE)) {
435                         err = -EINTR;
436                         goto done;
437                 }
438         }
439
440         /* for unlimited number of responses we will use buffer with
441          * 255 entries
442          */
443         max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
444
445         /* cache_dump can't sleep. Therefore we allocate temp buffer and then
446          * copy it to the user space.
447          */
448         buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
449         if (!buf) {
450                 err = -ENOMEM;
451                 goto done;
452         }
453
454         hci_dev_lock(hdev);
455         ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
456         hci_dev_unlock(hdev);
457
458         BT_DBG("num_rsp %d", ir.num_rsp);
459
460         if (!copy_to_user(ptr, &ir, sizeof(ir))) {
461                 ptr += sizeof(ir);
462                 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
463                                  ir.num_rsp))
464                         err = -EFAULT;
465         } else
466                 err = -EFAULT;
467
468         kfree(buf);
469
470 done:
471         hci_dev_put(hdev);
472         return err;
473 }
474
475 static int hci_dev_do_open(struct hci_dev *hdev)
476 {
477         int ret = 0;
478
479         BT_DBG("%s %p", hdev->name, hdev);
480
481         hci_req_sync_lock(hdev);
482
483         ret = hci_dev_open_sync(hdev);
484
485         hci_req_sync_unlock(hdev);
486         return ret;
487 }
488
489 /* ---- HCI ioctl helpers ---- */
490
491 int hci_dev_open(__u16 dev)
492 {
493         struct hci_dev *hdev;
494         int err;
495
496         hdev = hci_dev_get(dev);
497         if (!hdev)
498                 return -ENODEV;
499
500         /* Devices that are marked as unconfigured can only be powered
501          * up as user channel. Trying to bring them up as normal devices
502          * will result into a failure. Only user channel operation is
503          * possible.
504          *
505          * When this function is called for a user channel, the flag
506          * HCI_USER_CHANNEL will be set first before attempting to
507          * open the device.
508          */
509         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
510             !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
511                 err = -EOPNOTSUPP;
512                 goto done;
513         }
514
515         /* We need to ensure that no other power on/off work is pending
516          * before proceeding to call hci_dev_do_open. This is
517          * particularly important if the setup procedure has not yet
518          * completed.
519          */
520         if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
521                 cancel_delayed_work(&hdev->power_off);
522
523         /* After this call it is guaranteed that the setup procedure
524          * has finished. This means that error conditions like RFKILL
525          * or no valid public or static random address apply.
526          */
527         flush_workqueue(hdev->req_workqueue);
528
529         /* For controllers not using the management interface and that
530          * are brought up using legacy ioctl, set the HCI_BONDABLE bit
531          * so that pairing works for them. Once the management interface
532          * is in use this bit will be cleared again and userspace has
533          * to explicitly enable it.
534          */
535         if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
536             !hci_dev_test_flag(hdev, HCI_MGMT))
537                 hci_dev_set_flag(hdev, HCI_BONDABLE);
538
539         err = hci_dev_do_open(hdev);
540
541 done:
542         hci_dev_put(hdev);
543         return err;
544 }
545
546 int hci_dev_do_close(struct hci_dev *hdev)
547 {
548         int err;
549
550         BT_DBG("%s %p", hdev->name, hdev);
551
552         hci_req_sync_lock(hdev);
553
554         err = hci_dev_close_sync(hdev);
555
556         hci_req_sync_unlock(hdev);
557
558         return err;
559 }
560
561 int hci_dev_close(__u16 dev)
562 {
563         struct hci_dev *hdev;
564         int err;
565
566         hdev = hci_dev_get(dev);
567         if (!hdev)
568                 return -ENODEV;
569
570         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
571                 err = -EBUSY;
572                 goto done;
573         }
574
575         cancel_work_sync(&hdev->power_on);
576         if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
577                 cancel_delayed_work(&hdev->power_off);
578
579         err = hci_dev_do_close(hdev);
580
581 done:
582         hci_dev_put(hdev);
583         return err;
584 }
585
586 static int hci_dev_do_reset(struct hci_dev *hdev)
587 {
588         int ret;
589
590         BT_DBG("%s %p", hdev->name, hdev);
591
592         hci_req_sync_lock(hdev);
593
594         /* Drop queues */
595         skb_queue_purge(&hdev->rx_q);
596         skb_queue_purge(&hdev->cmd_q);
597
598         /* Cancel these to avoid queueing non-chained pending work */
599         hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
600         /* Wait for
601          *
602          *    if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
603          *        queue_delayed_work(&hdev->{cmd,ncmd}_timer)
604          *
605          * inside RCU section to see the flag or complete scheduling.
606          */
607         synchronize_rcu();
608         /* Explicitly cancel works in case scheduled after setting the flag. */
609         cancel_delayed_work(&hdev->cmd_timer);
610         cancel_delayed_work(&hdev->ncmd_timer);
611
612         /* Avoid potential lockdep warnings from the *_flush() calls by
613          * ensuring the workqueue is empty up front.
614          */
615         drain_workqueue(hdev->workqueue);
616
617         hci_dev_lock(hdev);
618         hci_inquiry_cache_flush(hdev);
619         hci_conn_hash_flush(hdev);
620         hci_dev_unlock(hdev);
621
622         if (hdev->flush)
623                 hdev->flush(hdev);
624
625         hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
626
627         atomic_set(&hdev->cmd_cnt, 1);
628         hdev->acl_cnt = 0;
629         hdev->sco_cnt = 0;
630         hdev->le_cnt = 0;
631         hdev->iso_cnt = 0;
632
633         ret = hci_reset_sync(hdev);
634
635         hci_req_sync_unlock(hdev);
636         return ret;
637 }
638
639 int hci_dev_reset(__u16 dev)
640 {
641         struct hci_dev *hdev;
642         int err;
643
644         hdev = hci_dev_get(dev);
645         if (!hdev)
646                 return -ENODEV;
647
648         if (!test_bit(HCI_UP, &hdev->flags)) {
649                 err = -ENETDOWN;
650                 goto done;
651         }
652
653         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
654                 err = -EBUSY;
655                 goto done;
656         }
657
658         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
659                 err = -EOPNOTSUPP;
660                 goto done;
661         }
662
663         err = hci_dev_do_reset(hdev);
664
665 done:
666         hci_dev_put(hdev);
667         return err;
668 }
669
670 int hci_dev_reset_stat(__u16 dev)
671 {
672         struct hci_dev *hdev;
673         int ret = 0;
674
675         hdev = hci_dev_get(dev);
676         if (!hdev)
677                 return -ENODEV;
678
679         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
680                 ret = -EBUSY;
681                 goto done;
682         }
683
684         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
685                 ret = -EOPNOTSUPP;
686                 goto done;
687         }
688
689         memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
690
691 done:
692         hci_dev_put(hdev);
693         return ret;
694 }
695
696 static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan)
697 {
698         bool conn_changed, discov_changed;
699
700         BT_DBG("%s scan 0x%02x", hdev->name, scan);
701
702         if ((scan & SCAN_PAGE))
703                 conn_changed = !hci_dev_test_and_set_flag(hdev,
704                                                           HCI_CONNECTABLE);
705         else
706                 conn_changed = hci_dev_test_and_clear_flag(hdev,
707                                                            HCI_CONNECTABLE);
708
709         if ((scan & SCAN_INQUIRY)) {
710                 discov_changed = !hci_dev_test_and_set_flag(hdev,
711                                                             HCI_DISCOVERABLE);
712         } else {
713                 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
714                 discov_changed = hci_dev_test_and_clear_flag(hdev,
715                                                              HCI_DISCOVERABLE);
716         }
717
718         if (!hci_dev_test_flag(hdev, HCI_MGMT))
719                 return;
720
721         if (conn_changed || discov_changed) {
722                 /* In case this was disabled through mgmt */
723                 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
724
725                 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
726                         hci_update_adv_data(hdev, hdev->cur_adv_instance);
727
728                 mgmt_new_settings(hdev);
729         }
730 }
731
732 int hci_dev_cmd(unsigned int cmd, void __user *arg)
733 {
734         struct hci_dev *hdev;
735         struct hci_dev_req dr;
736         int err = 0;
737
738         if (copy_from_user(&dr, arg, sizeof(dr)))
739                 return -EFAULT;
740
741         hdev = hci_dev_get(dr.dev_id);
742         if (!hdev)
743                 return -ENODEV;
744
745         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
746                 err = -EBUSY;
747                 goto done;
748         }
749
750         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
751                 err = -EOPNOTSUPP;
752                 goto done;
753         }
754
755         if (hdev->dev_type != HCI_PRIMARY) {
756                 err = -EOPNOTSUPP;
757                 goto done;
758         }
759
760         if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
761                 err = -EOPNOTSUPP;
762                 goto done;
763         }
764
765         switch (cmd) {
766         case HCISETAUTH:
767                 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
768                                    HCI_INIT_TIMEOUT, NULL);
769                 break;
770
771         case HCISETENCRYPT:
772                 if (!lmp_encrypt_capable(hdev)) {
773                         err = -EOPNOTSUPP;
774                         break;
775                 }
776
777                 if (!test_bit(HCI_AUTH, &hdev->flags)) {
778                         /* Auth must be enabled first */
779                         err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
780                                            HCI_INIT_TIMEOUT, NULL);
781                         if (err)
782                                 break;
783                 }
784
785                 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
786                                    HCI_INIT_TIMEOUT, NULL);
787                 break;
788
789         case HCISETSCAN:
790                 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
791                                    HCI_INIT_TIMEOUT, NULL);
792
793                 /* Ensure that the connectable and discoverable states
794                  * get correctly modified as this was a non-mgmt change.
795                  */
796                 if (!err)
797                         hci_update_passive_scan_state(hdev, dr.dev_opt);
798                 break;
799
800         case HCISETLINKPOL:
801                 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
802                                    HCI_INIT_TIMEOUT, NULL);
803                 break;
804
805         case HCISETLINKMODE:
806                 hdev->link_mode = ((__u16) dr.dev_opt) &
807                                         (HCI_LM_MASTER | HCI_LM_ACCEPT);
808                 break;
809
810         case HCISETPTYPE:
811                 if (hdev->pkt_type == (__u16) dr.dev_opt)
812                         break;
813
814                 hdev->pkt_type = (__u16) dr.dev_opt;
815                 mgmt_phy_configuration_changed(hdev, NULL);
816                 break;
817
818         case HCISETACLMTU:
819                 hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
820                 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
821                 break;
822
823         case HCISETSCOMTU:
824                 hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
825                 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
826                 break;
827
828         default:
829                 err = -EINVAL;
830                 break;
831         }
832
833 done:
834         hci_dev_put(hdev);
835         return err;
836 }
837
838 int hci_get_dev_list(void __user *arg)
839 {
840         struct hci_dev *hdev;
841         struct hci_dev_list_req *dl;
842         struct hci_dev_req *dr;
843         int n = 0, size, err;
844         __u16 dev_num;
845
846         if (get_user(dev_num, (__u16 __user *) arg))
847                 return -EFAULT;
848
849         if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
850                 return -EINVAL;
851
852         size = sizeof(*dl) + dev_num * sizeof(*dr);
853
854         dl = kzalloc(size, GFP_KERNEL);
855         if (!dl)
856                 return -ENOMEM;
857
858         dr = dl->dev_req;
859
860         read_lock(&hci_dev_list_lock);
861         list_for_each_entry(hdev, &hci_dev_list, list) {
862                 unsigned long flags = hdev->flags;
863
864                 /* When the auto-off is configured it means the transport
865                  * is running, but in that case still indicate that the
866                  * device is actually down.
867                  */
868                 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
869                         flags &= ~BIT(HCI_UP);
870
871                 (dr + n)->dev_id  = hdev->id;
872                 (dr + n)->dev_opt = flags;
873
874                 if (++n >= dev_num)
875                         break;
876         }
877         read_unlock(&hci_dev_list_lock);
878
879         dl->dev_num = n;
880         size = sizeof(*dl) + n * sizeof(*dr);
881
882         err = copy_to_user(arg, dl, size);
883         kfree(dl);
884
885         return err ? -EFAULT : 0;
886 }
887
888 int hci_get_dev_info(void __user *arg)
889 {
890         struct hci_dev *hdev;
891         struct hci_dev_info di;
892         unsigned long flags;
893         int err = 0;
894
895         if (copy_from_user(&di, arg, sizeof(di)))
896                 return -EFAULT;
897
898         hdev = hci_dev_get(di.dev_id);
899         if (!hdev)
900                 return -ENODEV;
901
902         /* When the auto-off is configured it means the transport
903          * is running, but in that case still indicate that the
904          * device is actually down.
905          */
906         if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
907                 flags = hdev->flags & ~BIT(HCI_UP);
908         else
909                 flags = hdev->flags;
910
911         strcpy(di.name, hdev->name);
912         di.bdaddr   = hdev->bdaddr;
913         di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
914         di.flags    = flags;
915         di.pkt_type = hdev->pkt_type;
916         if (lmp_bredr_capable(hdev)) {
917                 di.acl_mtu  = hdev->acl_mtu;
918                 di.acl_pkts = hdev->acl_pkts;
919                 di.sco_mtu  = hdev->sco_mtu;
920                 di.sco_pkts = hdev->sco_pkts;
921         } else {
922                 di.acl_mtu  = hdev->le_mtu;
923                 di.acl_pkts = hdev->le_pkts;
924                 di.sco_mtu  = 0;
925                 di.sco_pkts = 0;
926         }
927         di.link_policy = hdev->link_policy;
928         di.link_mode   = hdev->link_mode;
929
930         memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
931         memcpy(&di.features, &hdev->features, sizeof(di.features));
932
933         if (copy_to_user(arg, &di, sizeof(di)))
934                 err = -EFAULT;
935
936         hci_dev_put(hdev);
937
938         return err;
939 }
940
941 /* ---- Interface to HCI drivers ---- */
942
943 static int hci_rfkill_set_block(void *data, bool blocked)
944 {
945         struct hci_dev *hdev = data;
946
947         BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
948
949         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
950                 return -EBUSY;
951
952         if (blocked) {
953                 hci_dev_set_flag(hdev, HCI_RFKILLED);
954                 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
955                     !hci_dev_test_flag(hdev, HCI_CONFIG))
956                         hci_dev_do_close(hdev);
957         } else {
958                 hci_dev_clear_flag(hdev, HCI_RFKILLED);
959         }
960
961         return 0;
962 }
963
964 static const struct rfkill_ops hci_rfkill_ops = {
965         .set_block = hci_rfkill_set_block,
966 };
967
968 static void hci_power_on(struct work_struct *work)
969 {
970         struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
971         int err;
972
973         BT_DBG("%s", hdev->name);
974
975         if (test_bit(HCI_UP, &hdev->flags) &&
976             hci_dev_test_flag(hdev, HCI_MGMT) &&
977             hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
978                 cancel_delayed_work(&hdev->power_off);
979                 err = hci_powered_update_sync(hdev);
980                 mgmt_power_on(hdev, err);
981                 return;
982         }
983
984         err = hci_dev_do_open(hdev);
985         if (err < 0) {
986                 hci_dev_lock(hdev);
987                 mgmt_set_powered_failed(hdev, err);
988                 hci_dev_unlock(hdev);
989                 return;
990         }
991
992         /* During the HCI setup phase, a few error conditions are
993          * ignored and they need to be checked now. If they are still
994          * valid, it is important to turn the device back off.
995          */
996         if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
997             hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
998             (hdev->dev_type == HCI_PRIMARY &&
999              !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1000              !bacmp(&hdev->static_addr, BDADDR_ANY))) {
1001                 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
1002                 hci_dev_do_close(hdev);
1003         } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
1004                 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
1005                                    HCI_AUTO_OFF_TIMEOUT);
1006         }
1007
1008         if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
1009                 /* For unconfigured devices, set the HCI_RAW flag
1010                  * so that userspace can easily identify them.
1011                  */
1012                 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1013                         set_bit(HCI_RAW, &hdev->flags);
1014
1015                 /* For fully configured devices, this will send
1016                  * the Index Added event. For unconfigured devices,
1017                  * it will send Unconfigued Index Added event.
1018                  *
1019                  * Devices with HCI_QUIRK_RAW_DEVICE are ignored
1020                  * and no event will be send.
1021                  */
1022                 mgmt_index_added(hdev);
1023         } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
1024                 /* When the controller is now configured, then it
1025                  * is important to clear the HCI_RAW flag.
1026                  */
1027                 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1028                         clear_bit(HCI_RAW, &hdev->flags);
1029
1030                 /* Powering on the controller with HCI_CONFIG set only
1031                  * happens with the transition from unconfigured to
1032                  * configured. This will send the Index Added event.
1033                  */
1034                 mgmt_index_added(hdev);
1035         }
1036 }
1037
1038 static void hci_power_off(struct work_struct *work)
1039 {
1040         struct hci_dev *hdev = container_of(work, struct hci_dev,
1041                                             power_off.work);
1042
1043         BT_DBG("%s", hdev->name);
1044
1045         hci_dev_do_close(hdev);
1046 }
1047
1048 static void hci_error_reset(struct work_struct *work)
1049 {
1050         struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
1051
1052         BT_DBG("%s", hdev->name);
1053
1054         if (hdev->hw_error)
1055                 hdev->hw_error(hdev, hdev->hw_error_code);
1056         else
1057                 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
1058
1059         if (hci_dev_do_close(hdev))
1060                 return;
1061
1062         hci_dev_do_open(hdev);
1063 }
1064
1065 void hci_uuids_clear(struct hci_dev *hdev)
1066 {
1067         struct bt_uuid *uuid, *tmp;
1068
1069         list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1070                 list_del(&uuid->list);
1071                 kfree(uuid);
1072         }
1073 }
1074
1075 void hci_link_keys_clear(struct hci_dev *hdev)
1076 {
1077         struct link_key *key, *tmp;
1078
1079         list_for_each_entry_safe(key, tmp, &hdev->link_keys, list) {
1080                 list_del_rcu(&key->list);
1081                 kfree_rcu(key, rcu);
1082         }
1083 }
1084
1085 void hci_smp_ltks_clear(struct hci_dev *hdev)
1086 {
1087         struct smp_ltk *k, *tmp;
1088
1089         list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1090                 list_del_rcu(&k->list);
1091                 kfree_rcu(k, rcu);
1092         }
1093 }
1094
1095 void hci_smp_irks_clear(struct hci_dev *hdev)
1096 {
1097         struct smp_irk *k, *tmp;
1098
1099         list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1100                 list_del_rcu(&k->list);
1101                 kfree_rcu(k, rcu);
1102         }
1103 }
1104
1105 void hci_blocked_keys_clear(struct hci_dev *hdev)
1106 {
1107         struct blocked_key *b, *tmp;
1108
1109         list_for_each_entry_safe(b, tmp, &hdev->blocked_keys, list) {
1110                 list_del_rcu(&b->list);
1111                 kfree_rcu(b, rcu);
1112         }
1113 }
1114
1115 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
1116 {
1117         bool blocked = false;
1118         struct blocked_key *b;
1119
1120         rcu_read_lock();
1121         list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
1122                 if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
1123                         blocked = true;
1124                         break;
1125                 }
1126         }
1127
1128         rcu_read_unlock();
1129         return blocked;
1130 }
1131
1132 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1133 {
1134         struct link_key *k;
1135
1136         rcu_read_lock();
1137         list_for_each_entry_rcu(k, &hdev->link_keys, list) {
1138                 if (bacmp(bdaddr, &k->bdaddr) == 0) {
1139                         rcu_read_unlock();
1140
1141                         if (hci_is_blocked_key(hdev,
1142                                                HCI_BLOCKED_KEY_TYPE_LINKKEY,
1143                                                k->val)) {
1144                                 bt_dev_warn_ratelimited(hdev,
1145                                                         "Link key blocked for %pMR",
1146                                                         &k->bdaddr);
1147                                 return NULL;
1148                         }
1149
1150                         return k;
1151                 }
1152         }
1153         rcu_read_unlock();
1154
1155         return NULL;
1156 }
1157
1158 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1159                                u8 key_type, u8 old_key_type)
1160 {
1161         /* Legacy key */
1162         if (key_type < 0x03)
1163                 return true;
1164
1165         /* Debug keys are insecure so don't store them persistently */
1166         if (key_type == HCI_LK_DEBUG_COMBINATION)
1167                 return false;
1168
1169         /* Changed combination key and there's no previous one */
1170         if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1171                 return false;
1172
1173         /* Security mode 3 case */
1174         if (!conn)
1175                 return true;
1176
1177         /* BR/EDR key derived using SC from an LE link */
1178         if (conn->type == LE_LINK)
1179                 return true;
1180
1181         /* Neither local nor remote side had no-bonding as requirement */
1182         if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1183                 return true;
1184
1185         /* Local side had dedicated bonding as requirement */
1186         if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1187                 return true;
1188
1189         /* Remote side had dedicated bonding as requirement */
1190         if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1191                 return true;
1192
1193         /* If none of the above criteria match, then don't store the key
1194          * persistently */
1195         return false;
1196 }
1197
1198 static u8 ltk_role(u8 type)
1199 {
1200         if (type == SMP_LTK)
1201                 return HCI_ROLE_MASTER;
1202
1203         return HCI_ROLE_SLAVE;
1204 }
1205
1206 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1207                              u8 addr_type, u8 role)
1208 {
1209         struct smp_ltk *k;
1210
1211         rcu_read_lock();
1212         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1213                 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
1214                         continue;
1215
1216                 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
1217                         rcu_read_unlock();
1218
1219                         if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
1220                                                k->val)) {
1221                                 bt_dev_warn_ratelimited(hdev,
1222                                                         "LTK blocked for %pMR",
1223                                                         &k->bdaddr);
1224                                 return NULL;
1225                         }
1226
1227                         return k;
1228                 }
1229         }
1230         rcu_read_unlock();
1231
1232         return NULL;
1233 }
1234
1235 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
1236 {
1237         struct smp_irk *irk_to_return = NULL;
1238         struct smp_irk *irk;
1239
1240         rcu_read_lock();
1241         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1242                 if (!bacmp(&irk->rpa, rpa)) {
1243                         irk_to_return = irk;
1244                         goto done;
1245                 }
1246         }
1247
1248         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1249                 if (smp_irk_matches(hdev, irk->val, rpa)) {
1250                         bacpy(&irk->rpa, rpa);
1251                         irk_to_return = irk;
1252                         goto done;
1253                 }
1254         }
1255
1256 done:
1257         if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1258                                                 irk_to_return->val)) {
1259                 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1260                                         &irk_to_return->bdaddr);
1261                 irk_to_return = NULL;
1262         }
1263
1264         rcu_read_unlock();
1265
1266         return irk_to_return;
1267 }
1268
1269 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1270                                      u8 addr_type)
1271 {
1272         struct smp_irk *irk_to_return = NULL;
1273         struct smp_irk *irk;
1274
1275         /* Identity Address must be public or static random */
1276         if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
1277                 return NULL;
1278
1279         rcu_read_lock();
1280         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1281                 if (addr_type == irk->addr_type &&
1282                     bacmp(bdaddr, &irk->bdaddr) == 0) {
1283                         irk_to_return = irk;
1284                         goto done;
1285                 }
1286         }
1287
1288 done:
1289
1290         if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1291                                                 irk_to_return->val)) {
1292                 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1293                                         &irk_to_return->bdaddr);
1294                 irk_to_return = NULL;
1295         }
1296
1297         rcu_read_unlock();
1298
1299         return irk_to_return;
1300 }
1301
1302 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1303                                   bdaddr_t *bdaddr, u8 *val, u8 type,
1304                                   u8 pin_len, bool *persistent)
1305 {
1306         struct link_key *key, *old_key;
1307         u8 old_key_type;
1308
1309         old_key = hci_find_link_key(hdev, bdaddr);
1310         if (old_key) {
1311                 old_key_type = old_key->type;
1312                 key = old_key;
1313         } else {
1314                 old_key_type = conn ? conn->key_type : 0xff;
1315                 key = kzalloc(sizeof(*key), GFP_KERNEL);
1316                 if (!key)
1317                         return NULL;
1318                 list_add_rcu(&key->list, &hdev->link_keys);
1319         }
1320
1321         BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1322
1323         /* Some buggy controller combinations generate a changed
1324          * combination key for legacy pairing even when there's no
1325          * previous key */
1326         if (type == HCI_LK_CHANGED_COMBINATION &&
1327             (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1328                 type = HCI_LK_COMBINATION;
1329                 if (conn)
1330                         conn->key_type = type;
1331         }
1332
1333         bacpy(&key->bdaddr, bdaddr);
1334         memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1335         key->pin_len = pin_len;
1336
1337         if (type == HCI_LK_CHANGED_COMBINATION)
1338                 key->type = old_key_type;
1339         else
1340                 key->type = type;
1341
1342         if (persistent)
1343                 *persistent = hci_persistent_key(hdev, conn, type,
1344                                                  old_key_type);
1345
1346         return key;
1347 }
1348
1349 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1350                             u8 addr_type, u8 type, u8 authenticated,
1351                             u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
1352 {
1353         struct smp_ltk *key, *old_key;
1354         u8 role = ltk_role(type);
1355
1356         old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
1357         if (old_key)
1358                 key = old_key;
1359         else {
1360                 key = kzalloc(sizeof(*key), GFP_KERNEL);
1361                 if (!key)
1362                         return NULL;
1363                 list_add_rcu(&key->list, &hdev->long_term_keys);
1364         }
1365
1366         bacpy(&key->bdaddr, bdaddr);
1367         key->bdaddr_type = addr_type;
1368         memcpy(key->val, tk, sizeof(key->val));
1369         key->authenticated = authenticated;
1370         key->ediv = ediv;
1371         key->rand = rand;
1372         key->enc_size = enc_size;
1373         key->type = type;
1374
1375         return key;
1376 }
1377
1378 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1379                             u8 addr_type, u8 val[16], bdaddr_t *rpa)
1380 {
1381         struct smp_irk *irk;
1382
1383         irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
1384         if (!irk) {
1385                 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
1386                 if (!irk)
1387                         return NULL;
1388
1389                 bacpy(&irk->bdaddr, bdaddr);
1390                 irk->addr_type = addr_type;
1391
1392                 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
1393         }
1394
1395         memcpy(irk->val, val, 16);
1396         bacpy(&irk->rpa, rpa);
1397
1398         return irk;
1399 }
1400
1401 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1402 {
1403         struct link_key *key;
1404
1405         key = hci_find_link_key(hdev, bdaddr);
1406         if (!key)
1407                 return -ENOENT;
1408
1409         BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1410
1411         list_del_rcu(&key->list);
1412         kfree_rcu(key, rcu);
1413
1414         return 0;
1415 }
1416
1417 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
1418 {
1419         struct smp_ltk *k, *tmp;
1420         int removed = 0;
1421
1422         list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1423                 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
1424                         continue;
1425
1426                 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1427
1428                 list_del_rcu(&k->list);
1429                 kfree_rcu(k, rcu);
1430                 removed++;
1431         }
1432
1433         return removed ? 0 : -ENOENT;
1434 }
1435
1436 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
1437 {
1438         struct smp_irk *k, *tmp;
1439
1440         list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1441                 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
1442                         continue;
1443
1444                 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1445
1446                 list_del_rcu(&k->list);
1447                 kfree_rcu(k, rcu);
1448         }
1449 }
1450
1451 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1452 {
1453         struct smp_ltk *k;
1454         struct smp_irk *irk;
1455         u8 addr_type;
1456
1457         if (type == BDADDR_BREDR) {
1458                 if (hci_find_link_key(hdev, bdaddr))
1459                         return true;
1460                 return false;
1461         }
1462
1463         /* Convert to HCI addr type which struct smp_ltk uses */
1464         if (type == BDADDR_LE_PUBLIC)
1465                 addr_type = ADDR_LE_DEV_PUBLIC;
1466         else
1467                 addr_type = ADDR_LE_DEV_RANDOM;
1468
1469         irk = hci_get_irk(hdev, bdaddr, addr_type);
1470         if (irk) {
1471                 bdaddr = &irk->bdaddr;
1472                 addr_type = irk->addr_type;
1473         }
1474
1475         rcu_read_lock();
1476         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1477                 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
1478                         rcu_read_unlock();
1479                         return true;
1480                 }
1481         }
1482         rcu_read_unlock();
1483
1484         return false;
1485 }
1486
1487 /* HCI command timer function */
1488 static void hci_cmd_timeout(struct work_struct *work)
1489 {
1490         struct hci_dev *hdev = container_of(work, struct hci_dev,
1491                                             cmd_timer.work);
1492
1493         if (hdev->sent_cmd) {
1494                 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
1495                 u16 opcode = __le16_to_cpu(sent->opcode);
1496
1497                 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
1498         } else {
1499                 bt_dev_err(hdev, "command tx timeout");
1500         }
1501
1502         if (hdev->cmd_timeout)
1503                 hdev->cmd_timeout(hdev);
1504
1505         atomic_set(&hdev->cmd_cnt, 1);
1506         queue_work(hdev->workqueue, &hdev->cmd_work);
1507 }
1508
1509 /* HCI ncmd timer function */
1510 static void hci_ncmd_timeout(struct work_struct *work)
1511 {
1512         struct hci_dev *hdev = container_of(work, struct hci_dev,
1513                                             ncmd_timer.work);
1514
1515         bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
1516
1517         /* During HCI_INIT phase no events can be injected if the ncmd timer
1518          * triggers since the procedure has its own timeout handling.
1519          */
1520         if (test_bit(HCI_INIT, &hdev->flags))
1521                 return;
1522
1523         /* This is an irrecoverable state, inject hardware error event */
1524         hci_reset_dev(hdev);
1525 }
1526
1527 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1528                                           bdaddr_t *bdaddr, u8 bdaddr_type)
1529 {
1530         struct oob_data *data;
1531
1532         list_for_each_entry(data, &hdev->remote_oob_data, list) {
1533                 if (bacmp(bdaddr, &data->bdaddr) != 0)
1534                         continue;
1535                 if (data->bdaddr_type != bdaddr_type)
1536                         continue;
1537                 return data;
1538         }
1539
1540         return NULL;
1541 }
1542
1543 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1544                                u8 bdaddr_type)
1545 {
1546         struct oob_data *data;
1547
1548         data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1549         if (!data)
1550                 return -ENOENT;
1551
1552         BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
1553
1554         list_del(&data->list);
1555         kfree(data);
1556
1557         return 0;
1558 }
1559
1560 void hci_remote_oob_data_clear(struct hci_dev *hdev)
1561 {
1562         struct oob_data *data, *n;
1563
1564         list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1565                 list_del(&data->list);
1566                 kfree(data);
1567         }
1568 }
1569
1570 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1571                             u8 bdaddr_type, u8 *hash192, u8 *rand192,
1572                             u8 *hash256, u8 *rand256)
1573 {
1574         struct oob_data *data;
1575
1576         data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1577         if (!data) {
1578                 data = kmalloc(sizeof(*data), GFP_KERNEL);
1579                 if (!data)
1580                         return -ENOMEM;
1581
1582                 bacpy(&data->bdaddr, bdaddr);
1583                 data->bdaddr_type = bdaddr_type;
1584                 list_add(&data->list, &hdev->remote_oob_data);
1585         }
1586
1587         if (hash192 && rand192) {
1588                 memcpy(data->hash192, hash192, sizeof(data->hash192));
1589                 memcpy(data->rand192, rand192, sizeof(data->rand192));
1590                 if (hash256 && rand256)
1591                         data->present = 0x03;
1592         } else {
1593                 memset(data->hash192, 0, sizeof(data->hash192));
1594                 memset(data->rand192, 0, sizeof(data->rand192));
1595                 if (hash256 && rand256)
1596                         data->present = 0x02;
1597                 else
1598                         data->present = 0x00;
1599         }
1600
1601         if (hash256 && rand256) {
1602                 memcpy(data->hash256, hash256, sizeof(data->hash256));
1603                 memcpy(data->rand256, rand256, sizeof(data->rand256));
1604         } else {
1605                 memset(data->hash256, 0, sizeof(data->hash256));
1606                 memset(data->rand256, 0, sizeof(data->rand256));
1607                 if (hash192 && rand192)
1608                         data->present = 0x01;
1609         }
1610
1611         BT_DBG("%s for %pMR", hdev->name, bdaddr);
1612
1613         return 0;
1614 }
1615
1616 /* This function requires the caller holds hdev->lock */
1617 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
1618 {
1619         struct adv_info *adv_instance;
1620
1621         list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
1622                 if (adv_instance->instance == instance)
1623                         return adv_instance;
1624         }
1625
1626         return NULL;
1627 }
1628
1629 /* This function requires the caller holds hdev->lock */
1630 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
1631 {
1632         struct adv_info *cur_instance;
1633
1634         cur_instance = hci_find_adv_instance(hdev, instance);
1635         if (!cur_instance)
1636                 return NULL;
1637
1638         if (cur_instance == list_last_entry(&hdev->adv_instances,
1639                                             struct adv_info, list))
1640                 return list_first_entry(&hdev->adv_instances,
1641                                                  struct adv_info, list);
1642         else
1643                 return list_next_entry(cur_instance, list);
1644 }
1645
1646 /* This function requires the caller holds hdev->lock */
1647 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
1648 {
1649         struct adv_info *adv_instance;
1650
1651         adv_instance = hci_find_adv_instance(hdev, instance);
1652         if (!adv_instance)
1653                 return -ENOENT;
1654
1655         BT_DBG("%s removing %dMR", hdev->name, instance);
1656
1657         if (hdev->cur_adv_instance == instance) {
1658                 if (hdev->adv_instance_timeout) {
1659                         cancel_delayed_work(&hdev->adv_instance_expire);
1660                         hdev->adv_instance_timeout = 0;
1661                 }
1662                 hdev->cur_adv_instance = 0x00;
1663         }
1664
1665         cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1666
1667         list_del(&adv_instance->list);
1668         kfree(adv_instance);
1669
1670         hdev->adv_instance_cnt--;
1671
1672         return 0;
1673 }
1674
1675 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
1676 {
1677         struct adv_info *adv_instance, *n;
1678
1679         list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
1680                 adv_instance->rpa_expired = rpa_expired;
1681 }
1682
1683 /* This function requires the caller holds hdev->lock */
1684 void hci_adv_instances_clear(struct hci_dev *hdev)
1685 {
1686         struct adv_info *adv_instance, *n;
1687
1688         if (hdev->adv_instance_timeout) {
1689                 cancel_delayed_work(&hdev->adv_instance_expire);
1690                 hdev->adv_instance_timeout = 0;
1691         }
1692
1693         list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
1694                 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1695                 list_del(&adv_instance->list);
1696                 kfree(adv_instance);
1697         }
1698
1699         hdev->adv_instance_cnt = 0;
1700         hdev->cur_adv_instance = 0x00;
1701 }
1702
1703 static void adv_instance_rpa_expired(struct work_struct *work)
1704 {
1705         struct adv_info *adv_instance = container_of(work, struct adv_info,
1706                                                      rpa_expired_cb.work);
1707
1708         BT_DBG("");
1709
1710         adv_instance->rpa_expired = true;
1711 }
1712
1713 /* This function requires the caller holds hdev->lock */
1714 struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance,
1715                                       u32 flags, u16 adv_data_len, u8 *adv_data,
1716                                       u16 scan_rsp_len, u8 *scan_rsp_data,
1717                                       u16 timeout, u16 duration, s8 tx_power,
1718                                       u32 min_interval, u32 max_interval,
1719                                       u8 mesh_handle)
1720 {
1721         struct adv_info *adv;
1722
1723         adv = hci_find_adv_instance(hdev, instance);
1724         if (adv) {
1725                 memset(adv->adv_data, 0, sizeof(adv->adv_data));
1726                 memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1727                 memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data));
1728         } else {
1729                 if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
1730                     instance < 1 || instance > hdev->le_num_of_adv_sets + 1)
1731                         return ERR_PTR(-EOVERFLOW);
1732
1733                 adv = kzalloc(sizeof(*adv), GFP_KERNEL);
1734                 if (!adv)
1735                         return ERR_PTR(-ENOMEM);
1736
1737                 adv->pending = true;
1738                 adv->instance = instance;
1739                 list_add(&adv->list, &hdev->adv_instances);
1740                 hdev->adv_instance_cnt++;
1741         }
1742
1743         adv->flags = flags;
1744         adv->min_interval = min_interval;
1745         adv->max_interval = max_interval;
1746         adv->tx_power = tx_power;
1747         /* Defining a mesh_handle changes the timing units to ms,
1748          * rather than seconds, and ties the instance to the requested
1749          * mesh_tx queue.
1750          */
1751         adv->mesh = mesh_handle;
1752
1753         hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data,
1754                                   scan_rsp_len, scan_rsp_data);
1755
1756         adv->timeout = timeout;
1757         adv->remaining_time = timeout;
1758
1759         if (duration == 0)
1760                 adv->duration = hdev->def_multi_adv_rotation_duration;
1761         else
1762                 adv->duration = duration;
1763
1764         INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired);
1765
1766         BT_DBG("%s for %dMR", hdev->name, instance);
1767
1768         return adv;
1769 }
1770
1771 /* This function requires the caller holds hdev->lock */
1772 struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance,
1773                                       u32 flags, u8 data_len, u8 *data,
1774                                       u32 min_interval, u32 max_interval)
1775 {
1776         struct adv_info *adv;
1777
1778         adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL,
1779                                    0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE,
1780                                    min_interval, max_interval, 0);
1781         if (IS_ERR(adv))
1782                 return adv;
1783
1784         adv->periodic = true;
1785         adv->per_adv_data_len = data_len;
1786
1787         if (data)
1788                 memcpy(adv->per_adv_data, data, data_len);
1789
1790         return adv;
1791 }
1792
1793 /* This function requires the caller holds hdev->lock */
1794 int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
1795                               u16 adv_data_len, u8 *adv_data,
1796                               u16 scan_rsp_len, u8 *scan_rsp_data)
1797 {
1798         struct adv_info *adv;
1799
1800         adv = hci_find_adv_instance(hdev, instance);
1801
1802         /* If advertisement doesn't exist, we can't modify its data */
1803         if (!adv)
1804                 return -ENOENT;
1805
1806         if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) {
1807                 memset(adv->adv_data, 0, sizeof(adv->adv_data));
1808                 memcpy(adv->adv_data, adv_data, adv_data_len);
1809                 adv->adv_data_len = adv_data_len;
1810                 adv->adv_data_changed = true;
1811         }
1812
1813         if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) {
1814                 memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1815                 memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len);
1816                 adv->scan_rsp_len = scan_rsp_len;
1817                 adv->scan_rsp_changed = true;
1818         }
1819
1820         /* Mark as changed if there are flags which would affect it */
1821         if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) ||
1822             adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1823                 adv->scan_rsp_changed = true;
1824
1825         return 0;
1826 }
1827
1828 /* This function requires the caller holds hdev->lock */
1829 u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1830 {
1831         u32 flags;
1832         struct adv_info *adv;
1833
1834         if (instance == 0x00) {
1835                 /* Instance 0 always manages the "Tx Power" and "Flags"
1836                  * fields
1837                  */
1838                 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1839
1840                 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1841                  * corresponds to the "connectable" instance flag.
1842                  */
1843                 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1844                         flags |= MGMT_ADV_FLAG_CONNECTABLE;
1845
1846                 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1847                         flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1848                 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1849                         flags |= MGMT_ADV_FLAG_DISCOV;
1850
1851                 return flags;
1852         }
1853
1854         adv = hci_find_adv_instance(hdev, instance);
1855
1856         /* Return 0 when we got an invalid instance identifier. */
1857         if (!adv)
1858                 return 0;
1859
1860         return adv->flags;
1861 }
1862
1863 bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1864 {
1865         struct adv_info *adv;
1866
1867         /* Instance 0x00 always set local name */
1868         if (instance == 0x00)
1869                 return true;
1870
1871         adv = hci_find_adv_instance(hdev, instance);
1872         if (!adv)
1873                 return false;
1874
1875         if (adv->flags & MGMT_ADV_FLAG_APPEARANCE ||
1876             adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1877                 return true;
1878
1879         return adv->scan_rsp_len ? true : false;
1880 }
1881
1882 /* This function requires the caller holds hdev->lock */
1883 void hci_adv_monitors_clear(struct hci_dev *hdev)
1884 {
1885         struct adv_monitor *monitor;
1886         int handle;
1887
1888         idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
1889                 hci_free_adv_monitor(hdev, monitor);
1890
1891         idr_destroy(&hdev->adv_monitors_idr);
1892 }
1893
1894 /* Frees the monitor structure and do some bookkeepings.
1895  * This function requires the caller holds hdev->lock.
1896  */
1897 void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1898 {
1899         struct adv_pattern *pattern;
1900         struct adv_pattern *tmp;
1901
1902         if (!monitor)
1903                 return;
1904
1905         list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
1906                 list_del(&pattern->list);
1907                 kfree(pattern);
1908         }
1909
1910         if (monitor->handle)
1911                 idr_remove(&hdev->adv_monitors_idr, monitor->handle);
1912
1913         if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
1914                 hdev->adv_monitors_cnt--;
1915                 mgmt_adv_monitor_removed(hdev, monitor->handle);
1916         }
1917
1918         kfree(monitor);
1919 }
1920
1921 /* Assigns handle to a monitor, and if offloading is supported and power is on,
1922  * also attempts to forward the request to the controller.
1923  * This function requires the caller holds hci_req_sync_lock.
1924  */
1925 int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1926 {
1927         int min, max, handle;
1928         int status = 0;
1929
1930         if (!monitor)
1931                 return -EINVAL;
1932
1933         hci_dev_lock(hdev);
1934
1935         min = HCI_MIN_ADV_MONITOR_HANDLE;
1936         max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
1937         handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
1938                            GFP_KERNEL);
1939
1940         hci_dev_unlock(hdev);
1941
1942         if (handle < 0)
1943                 return handle;
1944
1945         monitor->handle = handle;
1946
1947         if (!hdev_is_powered(hdev))
1948                 return status;
1949
1950         switch (hci_get_adv_monitor_offload_ext(hdev)) {
1951         case HCI_ADV_MONITOR_EXT_NONE:
1952                 bt_dev_dbg(hdev, "add monitor %d status %d",
1953                            monitor->handle, status);
1954                 /* Message was not forwarded to controller - not an error */
1955                 break;
1956
1957         case HCI_ADV_MONITOR_EXT_MSFT:
1958                 status = msft_add_monitor_pattern(hdev, monitor);
1959                 bt_dev_dbg(hdev, "add monitor %d msft status %d",
1960                            handle, status);
1961                 break;
1962         }
1963
1964         return status;
1965 }
1966
1967 /* Attempts to tell the controller and free the monitor. If somehow the
1968  * controller doesn't have a corresponding handle, remove anyway.
1969  * This function requires the caller holds hci_req_sync_lock.
1970  */
1971 static int hci_remove_adv_monitor(struct hci_dev *hdev,
1972                                   struct adv_monitor *monitor)
1973 {
1974         int status = 0;
1975         int handle;
1976
1977         switch (hci_get_adv_monitor_offload_ext(hdev)) {
1978         case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
1979                 bt_dev_dbg(hdev, "remove monitor %d status %d",
1980                            monitor->handle, status);
1981                 goto free_monitor;
1982
1983         case HCI_ADV_MONITOR_EXT_MSFT:
1984                 handle = monitor->handle;
1985                 status = msft_remove_monitor(hdev, monitor);
1986                 bt_dev_dbg(hdev, "remove monitor %d msft status %d",
1987                            handle, status);
1988                 break;
1989         }
1990
1991         /* In case no matching handle registered, just free the monitor */
1992         if (status == -ENOENT)
1993                 goto free_monitor;
1994
1995         return status;
1996
1997 free_monitor:
1998         if (status == -ENOENT)
1999                 bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
2000                             monitor->handle);
2001         hci_free_adv_monitor(hdev, monitor);
2002
2003         return status;
2004 }
2005
2006 /* This function requires the caller holds hci_req_sync_lock */
2007 int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle)
2008 {
2009         struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
2010
2011         if (!monitor)
2012                 return -EINVAL;
2013
2014         return hci_remove_adv_monitor(hdev, monitor);
2015 }
2016
2017 /* This function requires the caller holds hci_req_sync_lock */
2018 int hci_remove_all_adv_monitor(struct hci_dev *hdev)
2019 {
2020         struct adv_monitor *monitor;
2021         int idr_next_id = 0;
2022         int status = 0;
2023
2024         while (1) {
2025                 monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
2026                 if (!monitor)
2027                         break;
2028
2029                 status = hci_remove_adv_monitor(hdev, monitor);
2030                 if (status)
2031                         return status;
2032
2033                 idr_next_id++;
2034         }
2035
2036         return status;
2037 }
2038
2039 /* This function requires the caller holds hdev->lock */
2040 bool hci_is_adv_monitoring(struct hci_dev *hdev)
2041 {
2042         return !idr_is_empty(&hdev->adv_monitors_idr);
2043 }
2044
2045 int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
2046 {
2047         if (msft_monitor_supported(hdev))
2048                 return HCI_ADV_MONITOR_EXT_MSFT;
2049
2050         return HCI_ADV_MONITOR_EXT_NONE;
2051 }
2052
2053 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2054                                          bdaddr_t *bdaddr, u8 type)
2055 {
2056         struct bdaddr_list *b;
2057
2058         list_for_each_entry(b, bdaddr_list, list) {
2059                 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2060                         return b;
2061         }
2062
2063         return NULL;
2064 }
2065
2066 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2067                                 struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2068                                 u8 type)
2069 {
2070         struct bdaddr_list_with_irk *b;
2071
2072         list_for_each_entry(b, bdaddr_list, list) {
2073                 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2074                         return b;
2075         }
2076
2077         return NULL;
2078 }
2079
2080 struct bdaddr_list_with_flags *
2081 hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
2082                                   bdaddr_t *bdaddr, u8 type)
2083 {
2084         struct bdaddr_list_with_flags *b;
2085
2086         list_for_each_entry(b, bdaddr_list, list) {
2087                 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2088                         return b;
2089         }
2090
2091         return NULL;
2092 }
2093
2094 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2095 {
2096         struct bdaddr_list *b, *n;
2097
2098         list_for_each_entry_safe(b, n, bdaddr_list, list) {
2099                 list_del(&b->list);
2100                 kfree(b);
2101         }
2102 }
2103
2104 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2105 {
2106         struct bdaddr_list *entry;
2107
2108         if (!bacmp(bdaddr, BDADDR_ANY))
2109                 return -EBADF;
2110
2111         if (hci_bdaddr_list_lookup(list, bdaddr, type))
2112                 return -EEXIST;
2113
2114         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2115         if (!entry)
2116                 return -ENOMEM;
2117
2118         bacpy(&entry->bdaddr, bdaddr);
2119         entry->bdaddr_type = type;
2120
2121         list_add(&entry->list, list);
2122
2123         return 0;
2124 }
2125
2126 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2127                                         u8 type, u8 *peer_irk, u8 *local_irk)
2128 {
2129         struct bdaddr_list_with_irk *entry;
2130
2131         if (!bacmp(bdaddr, BDADDR_ANY))
2132                 return -EBADF;
2133
2134         if (hci_bdaddr_list_lookup(list, bdaddr, type))
2135                 return -EEXIST;
2136
2137         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2138         if (!entry)
2139                 return -ENOMEM;
2140
2141         bacpy(&entry->bdaddr, bdaddr);
2142         entry->bdaddr_type = type;
2143
2144         if (peer_irk)
2145                 memcpy(entry->peer_irk, peer_irk, 16);
2146
2147         if (local_irk)
2148                 memcpy(entry->local_irk, local_irk, 16);
2149
2150         list_add(&entry->list, list);
2151
2152         return 0;
2153 }
2154
2155 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2156                                    u8 type, u32 flags)
2157 {
2158         struct bdaddr_list_with_flags *entry;
2159
2160         if (!bacmp(bdaddr, BDADDR_ANY))
2161                 return -EBADF;
2162
2163         if (hci_bdaddr_list_lookup(list, bdaddr, type))
2164                 return -EEXIST;
2165
2166         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2167         if (!entry)
2168                 return -ENOMEM;
2169
2170         bacpy(&entry->bdaddr, bdaddr);
2171         entry->bdaddr_type = type;
2172         entry->flags = flags;
2173
2174         list_add(&entry->list, list);
2175
2176         return 0;
2177 }
2178
2179 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2180 {
2181         struct bdaddr_list *entry;
2182
2183         if (!bacmp(bdaddr, BDADDR_ANY)) {
2184                 hci_bdaddr_list_clear(list);
2185                 return 0;
2186         }
2187
2188         entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2189         if (!entry)
2190                 return -ENOENT;
2191
2192         list_del(&entry->list);
2193         kfree(entry);
2194
2195         return 0;
2196 }
2197
2198 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2199                                                         u8 type)
2200 {
2201         struct bdaddr_list_with_irk *entry;
2202
2203         if (!bacmp(bdaddr, BDADDR_ANY)) {
2204                 hci_bdaddr_list_clear(list);
2205                 return 0;
2206         }
2207
2208         entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2209         if (!entry)
2210                 return -ENOENT;
2211
2212         list_del(&entry->list);
2213         kfree(entry);
2214
2215         return 0;
2216 }
2217
2218 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2219                                    u8 type)
2220 {
2221         struct bdaddr_list_with_flags *entry;
2222
2223         if (!bacmp(bdaddr, BDADDR_ANY)) {
2224                 hci_bdaddr_list_clear(list);
2225                 return 0;
2226         }
2227
2228         entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
2229         if (!entry)
2230                 return -ENOENT;
2231
2232         list_del(&entry->list);
2233         kfree(entry);
2234
2235         return 0;
2236 }
2237
2238 /* This function requires the caller holds hdev->lock */
2239 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2240                                                bdaddr_t *addr, u8 addr_type)
2241 {
2242         struct hci_conn_params *params;
2243
2244         list_for_each_entry(params, &hdev->le_conn_params, list) {
2245                 if (bacmp(&params->addr, addr) == 0 &&
2246                     params->addr_type == addr_type) {
2247                         return params;
2248                 }
2249         }
2250
2251         return NULL;
2252 }
2253
2254 /* This function requires the caller holds hdev->lock or rcu_read_lock */
2255 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2256                                                   bdaddr_t *addr, u8 addr_type)
2257 {
2258         struct hci_conn_params *param;
2259
2260         rcu_read_lock();
2261
2262         list_for_each_entry_rcu(param, list, action) {
2263                 if (bacmp(&param->addr, addr) == 0 &&
2264                     param->addr_type == addr_type) {
2265                         rcu_read_unlock();
2266                         return param;
2267                 }
2268         }
2269
2270         rcu_read_unlock();
2271
2272         return NULL;
2273 }
2274
2275 /* This function requires the caller holds hdev->lock */
2276 void hci_pend_le_list_del_init(struct hci_conn_params *param)
2277 {
2278         if (list_empty(&param->action))
2279                 return;
2280
2281         list_del_rcu(&param->action);
2282         synchronize_rcu();
2283         INIT_LIST_HEAD(&param->action);
2284 }
2285
2286 /* This function requires the caller holds hdev->lock */
2287 void hci_pend_le_list_add(struct hci_conn_params *param,
2288                           struct list_head *list)
2289 {
2290         list_add_rcu(&param->action, list);
2291 }
2292
2293 /* This function requires the caller holds hdev->lock */
2294 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2295                                             bdaddr_t *addr, u8 addr_type)
2296 {
2297         struct hci_conn_params *params;
2298
2299         params = hci_conn_params_lookup(hdev, addr, addr_type);
2300         if (params)
2301                 return params;
2302
2303         params = kzalloc(sizeof(*params), GFP_KERNEL);
2304         if (!params) {
2305                 bt_dev_err(hdev, "out of memory");
2306                 return NULL;
2307         }
2308
2309         bacpy(&params->addr, addr);
2310         params->addr_type = addr_type;
2311
2312         list_add(&params->list, &hdev->le_conn_params);
2313         INIT_LIST_HEAD(&params->action);
2314
2315         params->conn_min_interval = hdev->le_conn_min_interval;
2316         params->conn_max_interval = hdev->le_conn_max_interval;
2317         params->conn_latency = hdev->le_conn_latency;
2318         params->supervision_timeout = hdev->le_supv_timeout;
2319         params->auto_connect = HCI_AUTO_CONN_DISABLED;
2320
2321         BT_DBG("addr %pMR (type %u)", addr, addr_type);
2322
2323         return params;
2324 }
2325
2326 void hci_conn_params_free(struct hci_conn_params *params)
2327 {
2328         hci_pend_le_list_del_init(params);
2329
2330         if (params->conn) {
2331                 hci_conn_drop(params->conn);
2332                 hci_conn_put(params->conn);
2333         }
2334
2335         list_del(&params->list);
2336         kfree(params);
2337 }
2338
2339 /* This function requires the caller holds hdev->lock */
2340 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2341 {
2342         struct hci_conn_params *params;
2343
2344         params = hci_conn_params_lookup(hdev, addr, addr_type);
2345         if (!params)
2346                 return;
2347
2348         hci_conn_params_free(params);
2349
2350         hci_update_passive_scan(hdev);
2351
2352         BT_DBG("addr %pMR (type %u)", addr, addr_type);
2353 }
2354
2355 /* This function requires the caller holds hdev->lock */
2356 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2357 {
2358         struct hci_conn_params *params, *tmp;
2359
2360         list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2361                 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2362                         continue;
2363
2364                 /* If trying to establish one time connection to disabled
2365                  * device, leave the params, but mark them as just once.
2366                  */
2367                 if (params->explicit_connect) {
2368                         params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2369                         continue;
2370                 }
2371
2372                 hci_conn_params_free(params);
2373         }
2374
2375         BT_DBG("All LE disabled connection parameters were removed");
2376 }
2377
2378 /* This function requires the caller holds hdev->lock */
2379 static void hci_conn_params_clear_all(struct hci_dev *hdev)
2380 {
2381         struct hci_conn_params *params, *tmp;
2382
2383         list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2384                 hci_conn_params_free(params);
2385
2386         BT_DBG("All LE connection parameters were removed");
2387 }
2388
2389 /* Copy the Identity Address of the controller.
2390  *
2391  * If the controller has a public BD_ADDR, then by default use that one.
2392  * If this is a LE only controller without a public address, default to
2393  * the static random address.
2394  *
2395  * For debugging purposes it is possible to force controllers with a
2396  * public address to use the static random address instead.
2397  *
2398  * In case BR/EDR has been disabled on a dual-mode controller and
2399  * userspace has configured a static address, then that address
2400  * becomes the identity address instead of the public BR/EDR address.
2401  */
2402 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2403                                u8 *bdaddr_type)
2404 {
2405         if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2406             !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2407             (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2408              bacmp(&hdev->static_addr, BDADDR_ANY))) {
2409                 bacpy(bdaddr, &hdev->static_addr);
2410                 *bdaddr_type = ADDR_LE_DEV_RANDOM;
2411         } else {
2412                 bacpy(bdaddr, &hdev->bdaddr);
2413                 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
2414         }
2415 }
2416
2417 static void hci_clear_wake_reason(struct hci_dev *hdev)
2418 {
2419         hci_dev_lock(hdev);
2420
2421         hdev->wake_reason = 0;
2422         bacpy(&hdev->wake_addr, BDADDR_ANY);
2423         hdev->wake_addr_type = 0;
2424
2425         hci_dev_unlock(hdev);
2426 }
2427
2428 static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
2429                                 void *data)
2430 {
2431         struct hci_dev *hdev =
2432                 container_of(nb, struct hci_dev, suspend_notifier);
2433         int ret = 0;
2434
2435         /* Userspace has full control of this device. Do nothing. */
2436         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2437                 return NOTIFY_DONE;
2438
2439         /* To avoid a potential race with hci_unregister_dev. */
2440         hci_dev_hold(hdev);
2441
2442         if (action == PM_SUSPEND_PREPARE)
2443                 ret = hci_suspend_dev(hdev);
2444         else if (action == PM_POST_SUSPEND)
2445                 ret = hci_resume_dev(hdev);
2446
2447         if (ret)
2448                 bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
2449                            action, ret);
2450
2451         hci_dev_put(hdev);
2452         return NOTIFY_DONE;
2453 }
2454
2455 /* Alloc HCI device */
2456 struct hci_dev *hci_alloc_dev_priv(int sizeof_priv)
2457 {
2458         struct hci_dev *hdev;
2459         unsigned int alloc_size;
2460
2461         alloc_size = sizeof(*hdev);
2462         if (sizeof_priv) {
2463                 /* Fixme: May need ALIGN-ment? */
2464                 alloc_size += sizeof_priv;
2465         }
2466
2467         hdev = kzalloc(alloc_size, GFP_KERNEL);
2468         if (!hdev)
2469                 return NULL;
2470
2471         hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2472         hdev->esco_type = (ESCO_HV1);
2473         hdev->link_mode = (HCI_LM_ACCEPT);
2474         hdev->num_iac = 0x01;           /* One IAC support is mandatory */
2475         hdev->io_capability = 0x03;     /* No Input No Output */
2476         hdev->manufacturer = 0xffff;    /* Default to internal use */
2477         hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2478         hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2479         hdev->adv_instance_cnt = 0;
2480         hdev->cur_adv_instance = 0x00;
2481         hdev->adv_instance_timeout = 0;
2482
2483         hdev->advmon_allowlist_duration = 300;
2484         hdev->advmon_no_filter_duration = 500;
2485         hdev->enable_advmon_interleave_scan = 0x00;     /* Default to disable */
2486
2487         hdev->sniff_max_interval = 800;
2488         hdev->sniff_min_interval = 80;
2489
2490         hdev->le_adv_channel_map = 0x07;
2491         hdev->le_adv_min_interval = 0x0800;
2492         hdev->le_adv_max_interval = 0x0800;
2493         hdev->le_scan_interval = 0x0060;
2494         hdev->le_scan_window = 0x0030;
2495         hdev->le_scan_int_suspend = 0x0400;
2496         hdev->le_scan_window_suspend = 0x0012;
2497         hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
2498         hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
2499         hdev->le_scan_int_adv_monitor = 0x0060;
2500         hdev->le_scan_window_adv_monitor = 0x0030;
2501         hdev->le_scan_int_connect = 0x0060;
2502         hdev->le_scan_window_connect = 0x0060;
2503         hdev->le_conn_min_interval = 0x0018;
2504         hdev->le_conn_max_interval = 0x0028;
2505         hdev->le_conn_latency = 0x0000;
2506         hdev->le_supv_timeout = 0x002a;
2507         hdev->le_def_tx_len = 0x001b;
2508         hdev->le_def_tx_time = 0x0148;
2509         hdev->le_max_tx_len = 0x001b;
2510         hdev->le_max_tx_time = 0x0148;
2511         hdev->le_max_rx_len = 0x001b;
2512         hdev->le_max_rx_time = 0x0148;
2513         hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
2514         hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
2515         hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
2516         hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
2517         hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
2518         hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
2519         hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
2520         hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
2521         hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
2522
2523         hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2524         hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2525         hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2526         hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2527         hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
2528         hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
2529
2530         /* default 1.28 sec page scan */
2531         hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
2532         hdev->def_page_scan_int = 0x0800;
2533         hdev->def_page_scan_window = 0x0012;
2534
2535         mutex_init(&hdev->lock);
2536         mutex_init(&hdev->req_lock);
2537
2538         INIT_LIST_HEAD(&hdev->mesh_pending);
2539         INIT_LIST_HEAD(&hdev->mgmt_pending);
2540         INIT_LIST_HEAD(&hdev->reject_list);
2541         INIT_LIST_HEAD(&hdev->accept_list);
2542         INIT_LIST_HEAD(&hdev->uuids);
2543         INIT_LIST_HEAD(&hdev->link_keys);
2544         INIT_LIST_HEAD(&hdev->long_term_keys);
2545         INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2546         INIT_LIST_HEAD(&hdev->remote_oob_data);
2547         INIT_LIST_HEAD(&hdev->le_accept_list);
2548         INIT_LIST_HEAD(&hdev->le_resolv_list);
2549         INIT_LIST_HEAD(&hdev->le_conn_params);
2550         INIT_LIST_HEAD(&hdev->pend_le_conns);
2551         INIT_LIST_HEAD(&hdev->pend_le_reports);
2552         INIT_LIST_HEAD(&hdev->conn_hash.list);
2553         INIT_LIST_HEAD(&hdev->adv_instances);
2554         INIT_LIST_HEAD(&hdev->blocked_keys);
2555         INIT_LIST_HEAD(&hdev->monitored_devices);
2556
2557         INIT_LIST_HEAD(&hdev->local_codecs);
2558         INIT_WORK(&hdev->rx_work, hci_rx_work);
2559         INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2560         INIT_WORK(&hdev->tx_work, hci_tx_work);
2561         INIT_WORK(&hdev->power_on, hci_power_on);
2562         INIT_WORK(&hdev->error_reset, hci_error_reset);
2563
2564         hci_cmd_sync_init(hdev);
2565
2566         INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2567
2568         skb_queue_head_init(&hdev->rx_q);
2569         skb_queue_head_init(&hdev->cmd_q);
2570         skb_queue_head_init(&hdev->raw_q);
2571
2572         init_waitqueue_head(&hdev->req_wait_q);
2573
2574         INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
2575         INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
2576
2577         hci_devcd_setup(hdev);
2578         hci_request_setup(hdev);
2579
2580         hci_init_sysfs(hdev);
2581         discovery_init(hdev);
2582
2583         return hdev;
2584 }
2585 EXPORT_SYMBOL(hci_alloc_dev_priv);
2586
2587 /* Free HCI device */
2588 void hci_free_dev(struct hci_dev *hdev)
2589 {
2590         /* will free via device release */
2591         put_device(&hdev->dev);
2592 }
2593 EXPORT_SYMBOL(hci_free_dev);
2594
2595 /* Register HCI device */
2596 int hci_register_dev(struct hci_dev *hdev)
2597 {
2598         int id, error;
2599
2600         if (!hdev->open || !hdev->close || !hdev->send)
2601                 return -EINVAL;
2602
2603         /* Do not allow HCI_AMP devices to register at index 0,
2604          * so the index can be used as the AMP controller ID.
2605          */
2606         switch (hdev->dev_type) {
2607         case HCI_PRIMARY:
2608                 id = ida_simple_get(&hci_index_ida, 0, HCI_MAX_ID, GFP_KERNEL);
2609                 break;
2610         case HCI_AMP:
2611                 id = ida_simple_get(&hci_index_ida, 1, HCI_MAX_ID, GFP_KERNEL);
2612                 break;
2613         default:
2614                 return -EINVAL;
2615         }
2616
2617         if (id < 0)
2618                 return id;
2619
2620         error = dev_set_name(&hdev->dev, "hci%u", id);
2621         if (error)
2622                 return error;
2623
2624         hdev->name = dev_name(&hdev->dev);
2625         hdev->id = id;
2626
2627         BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2628
2629         hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
2630         if (!hdev->workqueue) {
2631                 error = -ENOMEM;
2632                 goto err;
2633         }
2634
2635         hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
2636                                                       hdev->name);
2637         if (!hdev->req_workqueue) {
2638                 destroy_workqueue(hdev->workqueue);
2639                 error = -ENOMEM;
2640                 goto err;
2641         }
2642
2643         if (!IS_ERR_OR_NULL(bt_debugfs))
2644                 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
2645
2646         error = device_add(&hdev->dev);
2647         if (error < 0)
2648                 goto err_wqueue;
2649
2650         hci_leds_init(hdev);
2651
2652         hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2653                                     RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2654                                     hdev);
2655         if (hdev->rfkill) {
2656                 if (rfkill_register(hdev->rfkill) < 0) {
2657                         rfkill_destroy(hdev->rfkill);
2658                         hdev->rfkill = NULL;
2659                 }
2660         }
2661
2662         if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
2663                 hci_dev_set_flag(hdev, HCI_RFKILLED);
2664
2665         hci_dev_set_flag(hdev, HCI_SETUP);
2666         hci_dev_set_flag(hdev, HCI_AUTO_OFF);
2667
2668         if (hdev->dev_type == HCI_PRIMARY) {
2669                 /* Assume BR/EDR support until proven otherwise (such as
2670                  * through reading supported features during init.
2671                  */
2672                 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
2673         }
2674
2675         write_lock(&hci_dev_list_lock);
2676         list_add(&hdev->list, &hci_dev_list);
2677         write_unlock(&hci_dev_list_lock);
2678
2679         /* Devices that are marked for raw-only usage are unconfigured
2680          * and should not be included in normal operation.
2681          */
2682         if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2683                 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
2684
2685         /* Mark Remote Wakeup connection flag as supported if driver has wakeup
2686          * callback.
2687          */
2688         if (hdev->wakeup)
2689                 hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP;
2690
2691         hci_sock_dev_event(hdev, HCI_DEV_REG);
2692         hci_dev_hold(hdev);
2693
2694         error = hci_register_suspend_notifier(hdev);
2695         if (error)
2696                 BT_WARN("register suspend notifier failed error:%d\n", error);
2697
2698         queue_work(hdev->req_workqueue, &hdev->power_on);
2699
2700         idr_init(&hdev->adv_monitors_idr);
2701         msft_register(hdev);
2702
2703         return id;
2704
2705 err_wqueue:
2706         debugfs_remove_recursive(hdev->debugfs);
2707         destroy_workqueue(hdev->workqueue);
2708         destroy_workqueue(hdev->req_workqueue);
2709 err:
2710         ida_simple_remove(&hci_index_ida, hdev->id);
2711
2712         return error;
2713 }
2714 EXPORT_SYMBOL(hci_register_dev);
2715
2716 /* Unregister HCI device */
2717 void hci_unregister_dev(struct hci_dev *hdev)
2718 {
2719         BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2720
2721         mutex_lock(&hdev->unregister_lock);
2722         hci_dev_set_flag(hdev, HCI_UNREGISTER);
2723         mutex_unlock(&hdev->unregister_lock);
2724
2725         write_lock(&hci_dev_list_lock);
2726         list_del(&hdev->list);
2727         write_unlock(&hci_dev_list_lock);
2728
2729         cancel_work_sync(&hdev->power_on);
2730
2731         hci_cmd_sync_clear(hdev);
2732
2733         hci_unregister_suspend_notifier(hdev);
2734
2735         msft_unregister(hdev);
2736
2737         hci_dev_do_close(hdev);
2738
2739         if (!test_bit(HCI_INIT, &hdev->flags) &&
2740             !hci_dev_test_flag(hdev, HCI_SETUP) &&
2741             !hci_dev_test_flag(hdev, HCI_CONFIG)) {
2742                 hci_dev_lock(hdev);
2743                 mgmt_index_removed(hdev);
2744                 hci_dev_unlock(hdev);
2745         }
2746
2747         /* mgmt_index_removed should take care of emptying the
2748          * pending list */
2749         BUG_ON(!list_empty(&hdev->mgmt_pending));
2750
2751         hci_sock_dev_event(hdev, HCI_DEV_UNREG);
2752
2753         if (hdev->rfkill) {
2754                 rfkill_unregister(hdev->rfkill);
2755                 rfkill_destroy(hdev->rfkill);
2756         }
2757
2758         device_del(&hdev->dev);
2759         /* Actual cleanup is deferred until hci_release_dev(). */
2760         hci_dev_put(hdev);
2761 }
2762 EXPORT_SYMBOL(hci_unregister_dev);
2763
2764 /* Release HCI device */
2765 void hci_release_dev(struct hci_dev *hdev)
2766 {
2767         debugfs_remove_recursive(hdev->debugfs);
2768         kfree_const(hdev->hw_info);
2769         kfree_const(hdev->fw_info);
2770
2771         destroy_workqueue(hdev->workqueue);
2772         destroy_workqueue(hdev->req_workqueue);
2773
2774         hci_dev_lock(hdev);
2775         hci_bdaddr_list_clear(&hdev->reject_list);
2776         hci_bdaddr_list_clear(&hdev->accept_list);
2777         hci_uuids_clear(hdev);
2778         hci_link_keys_clear(hdev);
2779         hci_smp_ltks_clear(hdev);
2780         hci_smp_irks_clear(hdev);
2781         hci_remote_oob_data_clear(hdev);
2782         hci_adv_instances_clear(hdev);
2783         hci_adv_monitors_clear(hdev);
2784         hci_bdaddr_list_clear(&hdev->le_accept_list);
2785         hci_bdaddr_list_clear(&hdev->le_resolv_list);
2786         hci_conn_params_clear_all(hdev);
2787         hci_discovery_filter_clear(hdev);
2788         hci_blocked_keys_clear(hdev);
2789         hci_codec_list_clear(&hdev->local_codecs);
2790         hci_dev_unlock(hdev);
2791
2792         ida_simple_remove(&hci_index_ida, hdev->id);
2793         kfree_skb(hdev->sent_cmd);
2794         kfree_skb(hdev->recv_event);
2795         kfree(hdev);
2796 }
2797 EXPORT_SYMBOL(hci_release_dev);
2798
2799 int hci_register_suspend_notifier(struct hci_dev *hdev)
2800 {
2801         int ret = 0;
2802
2803         if (!hdev->suspend_notifier.notifier_call &&
2804             !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
2805                 hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
2806                 ret = register_pm_notifier(&hdev->suspend_notifier);
2807         }
2808
2809         return ret;
2810 }
2811
2812 int hci_unregister_suspend_notifier(struct hci_dev *hdev)
2813 {
2814         int ret = 0;
2815
2816         if (hdev->suspend_notifier.notifier_call) {
2817                 ret = unregister_pm_notifier(&hdev->suspend_notifier);
2818                 if (!ret)
2819                         hdev->suspend_notifier.notifier_call = NULL;
2820         }
2821
2822         return ret;
2823 }
2824
2825 /* Suspend HCI device */
2826 int hci_suspend_dev(struct hci_dev *hdev)
2827 {
2828         int ret;
2829
2830         bt_dev_dbg(hdev, "");
2831
2832         /* Suspend should only act on when powered. */
2833         if (!hdev_is_powered(hdev) ||
2834             hci_dev_test_flag(hdev, HCI_UNREGISTER))
2835                 return 0;
2836
2837         /* If powering down don't attempt to suspend */
2838         if (mgmt_powering_down(hdev))
2839                 return 0;
2840
2841         /* Cancel potentially blocking sync operation before suspend */
2842         __hci_cmd_sync_cancel(hdev, -EHOSTDOWN);
2843
2844         hci_req_sync_lock(hdev);
2845         ret = hci_suspend_sync(hdev);
2846         hci_req_sync_unlock(hdev);
2847
2848         hci_clear_wake_reason(hdev);
2849         mgmt_suspending(hdev, hdev->suspend_state);
2850
2851         hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
2852         return ret;
2853 }
2854 EXPORT_SYMBOL(hci_suspend_dev);
2855
2856 /* Resume HCI device */
2857 int hci_resume_dev(struct hci_dev *hdev)
2858 {
2859         int ret;
2860
2861         bt_dev_dbg(hdev, "");
2862
2863         /* Resume should only act on when powered. */
2864         if (!hdev_is_powered(hdev) ||
2865             hci_dev_test_flag(hdev, HCI_UNREGISTER))
2866                 return 0;
2867
2868         /* If powering down don't attempt to resume */
2869         if (mgmt_powering_down(hdev))
2870                 return 0;
2871
2872         hci_req_sync_lock(hdev);
2873         ret = hci_resume_sync(hdev);
2874         hci_req_sync_unlock(hdev);
2875
2876         mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
2877                       hdev->wake_addr_type);
2878
2879         hci_sock_dev_event(hdev, HCI_DEV_RESUME);
2880         return ret;
2881 }
2882 EXPORT_SYMBOL(hci_resume_dev);
2883
2884 /* Reset HCI device */
2885 int hci_reset_dev(struct hci_dev *hdev)
2886 {
2887         static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
2888         struct sk_buff *skb;
2889
2890         skb = bt_skb_alloc(3, GFP_ATOMIC);
2891         if (!skb)
2892                 return -ENOMEM;
2893
2894         hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
2895         skb_put_data(skb, hw_err, 3);
2896
2897         bt_dev_err(hdev, "Injecting HCI hardware error event");
2898
2899         /* Send Hardware Error to upper stack */
2900         return hci_recv_frame(hdev, skb);
2901 }
2902 EXPORT_SYMBOL(hci_reset_dev);
2903
2904 /* Receive frame from HCI drivers */
2905 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
2906 {
2907         if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2908                       && !test_bit(HCI_INIT, &hdev->flags))) {
2909                 kfree_skb(skb);
2910                 return -ENXIO;
2911         }
2912
2913         switch (hci_skb_pkt_type(skb)) {
2914         case HCI_EVENT_PKT:
2915                 break;
2916         case HCI_ACLDATA_PKT:
2917                 /* Detect if ISO packet has been sent as ACL */
2918                 if (hci_conn_num(hdev, ISO_LINK)) {
2919                         __u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2920                         __u8 type;
2921
2922                         type = hci_conn_lookup_type(hdev, hci_handle(handle));
2923                         if (type == ISO_LINK)
2924                                 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
2925                 }
2926                 break;
2927         case HCI_SCODATA_PKT:
2928                 break;
2929         case HCI_ISODATA_PKT:
2930                 break;
2931         default:
2932                 kfree_skb(skb);
2933                 return -EINVAL;
2934         }
2935
2936         /* Incoming skb */
2937         bt_cb(skb)->incoming = 1;
2938
2939         /* Time stamp */
2940         __net_timestamp(skb);
2941
2942         skb_queue_tail(&hdev->rx_q, skb);
2943         queue_work(hdev->workqueue, &hdev->rx_work);
2944
2945         return 0;
2946 }
2947 EXPORT_SYMBOL(hci_recv_frame);
2948
2949 /* Receive diagnostic message from HCI drivers */
2950 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
2951 {
2952         /* Mark as diagnostic packet */
2953         hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
2954
2955         /* Time stamp */
2956         __net_timestamp(skb);
2957
2958         skb_queue_tail(&hdev->rx_q, skb);
2959         queue_work(hdev->workqueue, &hdev->rx_work);
2960
2961         return 0;
2962 }
2963 EXPORT_SYMBOL(hci_recv_diag);
2964
2965 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
2966 {
2967         va_list vargs;
2968
2969         va_start(vargs, fmt);
2970         kfree_const(hdev->hw_info);
2971         hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2972         va_end(vargs);
2973 }
2974 EXPORT_SYMBOL(hci_set_hw_info);
2975
2976 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
2977 {
2978         va_list vargs;
2979
2980         va_start(vargs, fmt);
2981         kfree_const(hdev->fw_info);
2982         hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2983         va_end(vargs);
2984 }
2985 EXPORT_SYMBOL(hci_set_fw_info);
2986
2987 /* ---- Interface to upper protocols ---- */
2988
2989 int hci_register_cb(struct hci_cb *cb)
2990 {
2991         BT_DBG("%p name %s", cb, cb->name);
2992
2993         mutex_lock(&hci_cb_list_lock);
2994         list_add_tail(&cb->list, &hci_cb_list);
2995         mutex_unlock(&hci_cb_list_lock);
2996
2997         return 0;
2998 }
2999 EXPORT_SYMBOL(hci_register_cb);
3000
3001 int hci_unregister_cb(struct hci_cb *cb)
3002 {
3003         BT_DBG("%p name %s", cb, cb->name);
3004
3005         mutex_lock(&hci_cb_list_lock);
3006         list_del(&cb->list);
3007         mutex_unlock(&hci_cb_list_lock);
3008
3009         return 0;
3010 }
3011 EXPORT_SYMBOL(hci_unregister_cb);
3012
3013 static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3014 {
3015         int err;
3016
3017         BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3018                skb->len);
3019
3020         /* Time stamp */
3021         __net_timestamp(skb);
3022
3023         /* Send copy to monitor */
3024         hci_send_to_monitor(hdev, skb);
3025
3026         if (atomic_read(&hdev->promisc)) {
3027                 /* Send copy to the sockets */
3028                 hci_send_to_sock(hdev, skb);
3029         }
3030
3031         /* Get rid of skb owner, prior to sending to the driver. */
3032         skb_orphan(skb);
3033
3034         if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3035                 kfree_skb(skb);
3036                 return -EINVAL;
3037         }
3038
3039         err = hdev->send(hdev, skb);
3040         if (err < 0) {
3041                 bt_dev_err(hdev, "sending frame failed (%d)", err);
3042                 kfree_skb(skb);
3043                 return err;
3044         }
3045
3046         return 0;
3047 }
3048
3049 /* Send HCI command */
3050 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3051                  const void *param)
3052 {
3053         struct sk_buff *skb;
3054
3055         BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3056
3057         skb = hci_prepare_cmd(hdev, opcode, plen, param);
3058         if (!skb) {
3059                 bt_dev_err(hdev, "no memory for command");
3060                 return -ENOMEM;
3061         }
3062
3063         /* Stand-alone HCI commands must be flagged as
3064          * single-command requests.
3065          */
3066         bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3067
3068         skb_queue_tail(&hdev->cmd_q, skb);
3069         queue_work(hdev->workqueue, &hdev->cmd_work);
3070
3071         return 0;
3072 }
3073
3074 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3075                    const void *param)
3076 {
3077         struct sk_buff *skb;
3078
3079         if (hci_opcode_ogf(opcode) != 0x3f) {
3080                 /* A controller receiving a command shall respond with either
3081                  * a Command Status Event or a Command Complete Event.
3082                  * Therefore, all standard HCI commands must be sent via the
3083                  * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3084                  * Some vendors do not comply with this rule for vendor-specific
3085                  * commands and do not return any event. We want to support
3086                  * unresponded commands for such cases only.
3087                  */
3088                 bt_dev_err(hdev, "unresponded command not supported");
3089                 return -EINVAL;
3090         }
3091
3092         skb = hci_prepare_cmd(hdev, opcode, plen, param);
3093         if (!skb) {
3094                 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3095                            opcode);
3096                 return -ENOMEM;
3097         }
3098
3099         hci_send_frame(hdev, skb);
3100
3101         return 0;
3102 }
3103 EXPORT_SYMBOL(__hci_cmd_send);
3104
3105 /* Get data from the previously sent command */
3106 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3107 {
3108         struct hci_command_hdr *hdr;
3109
3110         if (!hdev->sent_cmd)
3111                 return NULL;
3112
3113         hdr = (void *) hdev->sent_cmd->data;
3114
3115         if (hdr->opcode != cpu_to_le16(opcode))
3116                 return NULL;
3117
3118         BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3119
3120         return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3121 }
3122
3123 /* Get data from last received event */
3124 void *hci_recv_event_data(struct hci_dev *hdev, __u8 event)
3125 {
3126         struct hci_event_hdr *hdr;
3127         int offset;
3128
3129         if (!hdev->recv_event)
3130                 return NULL;
3131
3132         hdr = (void *)hdev->recv_event->data;
3133         offset = sizeof(*hdr);
3134
3135         if (hdr->evt != event) {
3136                 /* In case of LE metaevent check the subevent match */
3137                 if (hdr->evt == HCI_EV_LE_META) {
3138                         struct hci_ev_le_meta *ev;
3139
3140                         ev = (void *)hdev->recv_event->data + offset;
3141                         offset += sizeof(*ev);
3142                         if (ev->subevent == event)
3143                                 goto found;
3144                 }
3145                 return NULL;
3146         }
3147
3148 found:
3149         bt_dev_dbg(hdev, "event 0x%2.2x", event);
3150
3151         return hdev->recv_event->data + offset;
3152 }
3153
3154 /* Send ACL data */
3155 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3156 {
3157         struct hci_acl_hdr *hdr;
3158         int len = skb->len;
3159
3160         skb_push(skb, HCI_ACL_HDR_SIZE);
3161         skb_reset_transport_header(skb);
3162         hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3163         hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3164         hdr->dlen   = cpu_to_le16(len);
3165 }
3166
3167 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3168                           struct sk_buff *skb, __u16 flags)
3169 {
3170         struct hci_conn *conn = chan->conn;
3171         struct hci_dev *hdev = conn->hdev;
3172         struct sk_buff *list;
3173
3174         skb->len = skb_headlen(skb);
3175         skb->data_len = 0;
3176
3177         hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3178
3179         switch (hdev->dev_type) {
3180         case HCI_PRIMARY:
3181                 hci_add_acl_hdr(skb, conn->handle, flags);
3182                 break;
3183         case HCI_AMP:
3184                 hci_add_acl_hdr(skb, chan->handle, flags);
3185                 break;
3186         default:
3187                 bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
3188                 return;
3189         }
3190
3191         list = skb_shinfo(skb)->frag_list;
3192         if (!list) {
3193                 /* Non fragmented */
3194                 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3195
3196                 skb_queue_tail(queue, skb);
3197         } else {
3198                 /* Fragmented */
3199                 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3200
3201                 skb_shinfo(skb)->frag_list = NULL;
3202
3203                 /* Queue all fragments atomically. We need to use spin_lock_bh
3204                  * here because of 6LoWPAN links, as there this function is
3205                  * called from softirq and using normal spin lock could cause
3206                  * deadlocks.
3207                  */
3208                 spin_lock_bh(&queue->lock);
3209
3210                 __skb_queue_tail(queue, skb);
3211
3212                 flags &= ~ACL_START;
3213                 flags |= ACL_CONT;
3214                 do {
3215                         skb = list; list = list->next;
3216
3217                         hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3218                         hci_add_acl_hdr(skb, conn->handle, flags);
3219
3220                         BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3221
3222                         __skb_queue_tail(queue, skb);
3223                 } while (list);
3224
3225                 spin_unlock_bh(&queue->lock);
3226         }
3227 }
3228
3229 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3230 {
3231         struct hci_dev *hdev = chan->conn->hdev;
3232
3233         BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3234
3235         hci_queue_acl(chan, &chan->data_q, skb, flags);
3236
3237         queue_work(hdev->workqueue, &hdev->tx_work);
3238 }
3239
3240 /* Send SCO data */
3241 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3242 {
3243         struct hci_dev *hdev = conn->hdev;
3244         struct hci_sco_hdr hdr;
3245
3246         BT_DBG("%s len %d", hdev->name, skb->len);
3247
3248         hdr.handle = cpu_to_le16(conn->handle);
3249         hdr.dlen   = skb->len;
3250
3251         skb_push(skb, HCI_SCO_HDR_SIZE);
3252         skb_reset_transport_header(skb);
3253         memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3254
3255         hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3256
3257         skb_queue_tail(&conn->data_q, skb);
3258         queue_work(hdev->workqueue, &hdev->tx_work);
3259 }
3260
3261 /* Send ISO data */
3262 static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags)
3263 {
3264         struct hci_iso_hdr *hdr;
3265         int len = skb->len;
3266
3267         skb_push(skb, HCI_ISO_HDR_SIZE);
3268         skb_reset_transport_header(skb);
3269         hdr = (struct hci_iso_hdr *)skb_transport_header(skb);
3270         hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3271         hdr->dlen   = cpu_to_le16(len);
3272 }
3273
3274 static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue,
3275                           struct sk_buff *skb)
3276 {
3277         struct hci_dev *hdev = conn->hdev;
3278         struct sk_buff *list;
3279         __u16 flags;
3280
3281         skb->len = skb_headlen(skb);
3282         skb->data_len = 0;
3283
3284         hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3285
3286         list = skb_shinfo(skb)->frag_list;
3287
3288         flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00);
3289         hci_add_iso_hdr(skb, conn->handle, flags);
3290
3291         if (!list) {
3292                 /* Non fragmented */
3293                 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3294
3295                 skb_queue_tail(queue, skb);
3296         } else {
3297                 /* Fragmented */
3298                 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3299
3300                 skb_shinfo(skb)->frag_list = NULL;
3301
3302                 __skb_queue_tail(queue, skb);
3303
3304                 do {
3305                         skb = list; list = list->next;
3306
3307                         hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3308                         flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END,
3309                                                    0x00);
3310                         hci_add_iso_hdr(skb, conn->handle, flags);
3311
3312                         BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3313
3314                         __skb_queue_tail(queue, skb);
3315                 } while (list);
3316         }
3317 }
3318
3319 void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb)
3320 {
3321         struct hci_dev *hdev = conn->hdev;
3322
3323         BT_DBG("%s len %d", hdev->name, skb->len);
3324
3325         hci_queue_iso(conn, &conn->data_q, skb);
3326
3327         queue_work(hdev->workqueue, &hdev->tx_work);
3328 }
3329
3330 /* ---- HCI TX task (outgoing data) ---- */
3331
3332 /* HCI Connection scheduler */
3333 static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote)
3334 {
3335         struct hci_dev *hdev;
3336         int cnt, q;
3337
3338         if (!conn) {
3339                 *quote = 0;
3340                 return;
3341         }
3342
3343         hdev = conn->hdev;
3344
3345         switch (conn->type) {
3346         case ACL_LINK:
3347                 cnt = hdev->acl_cnt;
3348                 break;
3349         case AMP_LINK:
3350                 cnt = hdev->block_cnt;
3351                 break;
3352         case SCO_LINK:
3353         case ESCO_LINK:
3354                 cnt = hdev->sco_cnt;
3355                 break;
3356         case LE_LINK:
3357                 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3358                 break;
3359         case ISO_LINK:
3360                 cnt = hdev->iso_mtu ? hdev->iso_cnt :
3361                         hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3362                 break;
3363         default:
3364                 cnt = 0;
3365                 bt_dev_err(hdev, "unknown link type %d", conn->type);
3366         }
3367
3368         q = cnt / num;
3369         *quote = q ? q : 1;
3370 }
3371
3372 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3373                                      int *quote)
3374 {
3375         struct hci_conn_hash *h = &hdev->conn_hash;
3376         struct hci_conn *conn = NULL, *c;
3377         unsigned int num = 0, min = ~0;
3378
3379         /* We don't have to lock device here. Connections are always
3380          * added and removed with TX task disabled. */
3381
3382         rcu_read_lock();
3383
3384         list_for_each_entry_rcu(c, &h->list, list) {
3385                 if (c->type != type || skb_queue_empty(&c->data_q))
3386                         continue;
3387
3388                 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3389                         continue;
3390
3391                 num++;
3392
3393                 if (c->sent < min) {
3394                         min  = c->sent;
3395                         conn = c;
3396                 }
3397
3398                 if (hci_conn_num(hdev, type) == num)
3399                         break;
3400         }
3401
3402         rcu_read_unlock();
3403
3404         hci_quote_sent(conn, num, quote);
3405
3406         BT_DBG("conn %p quote %d", conn, *quote);
3407         return conn;
3408 }
3409
3410 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3411 {
3412         struct hci_conn_hash *h = &hdev->conn_hash;
3413         struct hci_conn *c;
3414
3415         bt_dev_err(hdev, "link tx timeout");
3416
3417         rcu_read_lock();
3418
3419         /* Kill stalled connections */
3420         list_for_each_entry_rcu(c, &h->list, list) {
3421                 if (c->type == type && c->sent) {
3422                         bt_dev_err(hdev, "killing stalled connection %pMR",
3423                                    &c->dst);
3424                         /* hci_disconnect might sleep, so, we have to release
3425                          * the RCU read lock before calling it.
3426                          */
3427                         rcu_read_unlock();
3428                         hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3429                         rcu_read_lock();
3430                 }
3431         }
3432
3433         rcu_read_unlock();
3434 }
3435
3436 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3437                                       int *quote)
3438 {
3439         struct hci_conn_hash *h = &hdev->conn_hash;
3440         struct hci_chan *chan = NULL;
3441         unsigned int num = 0, min = ~0, cur_prio = 0;
3442         struct hci_conn *conn;
3443         int conn_num = 0;
3444
3445         BT_DBG("%s", hdev->name);
3446
3447         rcu_read_lock();
3448
3449         list_for_each_entry_rcu(conn, &h->list, list) {
3450                 struct hci_chan *tmp;
3451
3452                 if (conn->type != type)
3453                         continue;
3454
3455                 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3456                         continue;
3457
3458                 conn_num++;
3459
3460                 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3461                         struct sk_buff *skb;
3462
3463                         if (skb_queue_empty(&tmp->data_q))
3464                                 continue;
3465
3466                         skb = skb_peek(&tmp->data_q);
3467                         if (skb->priority < cur_prio)
3468                                 continue;
3469
3470                         if (skb->priority > cur_prio) {
3471                                 num = 0;
3472                                 min = ~0;
3473                                 cur_prio = skb->priority;
3474                         }
3475
3476                         num++;
3477
3478                         if (conn->sent < min) {
3479                                 min  = conn->sent;
3480                                 chan = tmp;
3481                         }
3482                 }
3483
3484                 if (hci_conn_num(hdev, type) == conn_num)
3485                         break;
3486         }
3487
3488         rcu_read_unlock();
3489
3490         if (!chan)
3491                 return NULL;
3492
3493         hci_quote_sent(chan->conn, num, quote);
3494
3495         BT_DBG("chan %p quote %d", chan, *quote);
3496         return chan;
3497 }
3498
3499 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3500 {
3501         struct hci_conn_hash *h = &hdev->conn_hash;
3502         struct hci_conn *conn;
3503         int num = 0;
3504
3505         BT_DBG("%s", hdev->name);
3506
3507         rcu_read_lock();
3508
3509         list_for_each_entry_rcu(conn, &h->list, list) {
3510                 struct hci_chan *chan;
3511
3512                 if (conn->type != type)
3513                         continue;
3514
3515                 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3516                         continue;
3517
3518                 num++;
3519
3520                 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3521                         struct sk_buff *skb;
3522
3523                         if (chan->sent) {
3524                                 chan->sent = 0;
3525                                 continue;
3526                         }
3527
3528                         if (skb_queue_empty(&chan->data_q))
3529                                 continue;
3530
3531                         skb = skb_peek(&chan->data_q);
3532                         if (skb->priority >= HCI_PRIO_MAX - 1)
3533                                 continue;
3534
3535                         skb->priority = HCI_PRIO_MAX - 1;
3536
3537                         BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3538                                skb->priority);
3539                 }
3540
3541                 if (hci_conn_num(hdev, type) == num)
3542                         break;
3543         }
3544
3545         rcu_read_unlock();
3546
3547 }
3548
3549 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3550 {
3551         /* Calculate count of blocks used by this packet */
3552         return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3553 }
3554
3555 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
3556 {
3557         unsigned long last_tx;
3558
3559         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3560                 return;
3561
3562         switch (type) {
3563         case LE_LINK:
3564                 last_tx = hdev->le_last_tx;
3565                 break;
3566         default:
3567                 last_tx = hdev->acl_last_tx;
3568                 break;
3569         }
3570
3571         /* tx timeout must be longer than maximum link supervision timeout
3572          * (40.9 seconds)
3573          */
3574         if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
3575                 hci_link_tx_to(hdev, type);
3576 }
3577
3578 /* Schedule SCO */
3579 static void hci_sched_sco(struct hci_dev *hdev)
3580 {
3581         struct hci_conn *conn;
3582         struct sk_buff *skb;
3583         int quote;
3584
3585         BT_DBG("%s", hdev->name);
3586
3587         if (!hci_conn_num(hdev, SCO_LINK))
3588                 return;
3589
3590         while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3591                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3592                         BT_DBG("skb %p len %d", skb, skb->len);
3593                         hci_send_frame(hdev, skb);
3594
3595                         conn->sent++;
3596                         if (conn->sent == ~0)
3597                                 conn->sent = 0;
3598                 }
3599         }
3600 }
3601
3602 static void hci_sched_esco(struct hci_dev *hdev)
3603 {
3604         struct hci_conn *conn;
3605         struct sk_buff *skb;
3606         int quote;
3607
3608         BT_DBG("%s", hdev->name);
3609
3610         if (!hci_conn_num(hdev, ESCO_LINK))
3611                 return;
3612
3613         while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3614                                                      &quote))) {
3615                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3616                         BT_DBG("skb %p len %d", skb, skb->len);
3617                         hci_send_frame(hdev, skb);
3618
3619                         conn->sent++;
3620                         if (conn->sent == ~0)
3621                                 conn->sent = 0;
3622                 }
3623         }
3624 }
3625
3626 static void hci_sched_acl_pkt(struct hci_dev *hdev)
3627 {
3628         unsigned int cnt = hdev->acl_cnt;
3629         struct hci_chan *chan;
3630         struct sk_buff *skb;
3631         int quote;
3632
3633         __check_timeout(hdev, cnt, ACL_LINK);
3634
3635         while (hdev->acl_cnt &&
3636                (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3637                 u32 priority = (skb_peek(&chan->data_q))->priority;
3638                 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3639                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3640                                skb->len, skb->priority);
3641
3642                         /* Stop if priority has changed */
3643                         if (skb->priority < priority)
3644                                 break;
3645
3646                         skb = skb_dequeue(&chan->data_q);
3647
3648                         hci_conn_enter_active_mode(chan->conn,
3649                                                    bt_cb(skb)->force_active);
3650
3651                         hci_send_frame(hdev, skb);
3652                         hdev->acl_last_tx = jiffies;
3653
3654                         hdev->acl_cnt--;
3655                         chan->sent++;
3656                         chan->conn->sent++;
3657
3658                         /* Send pending SCO packets right away */
3659                         hci_sched_sco(hdev);
3660                         hci_sched_esco(hdev);
3661                 }
3662         }
3663
3664         if (cnt != hdev->acl_cnt)
3665                 hci_prio_recalculate(hdev, ACL_LINK);
3666 }
3667
3668 static void hci_sched_acl_blk(struct hci_dev *hdev)
3669 {
3670         unsigned int cnt = hdev->block_cnt;
3671         struct hci_chan *chan;
3672         struct sk_buff *skb;
3673         int quote;
3674         u8 type;
3675
3676         BT_DBG("%s", hdev->name);
3677
3678         if (hdev->dev_type == HCI_AMP)
3679                 type = AMP_LINK;
3680         else
3681                 type = ACL_LINK;
3682
3683         __check_timeout(hdev, cnt, type);
3684
3685         while (hdev->block_cnt > 0 &&
3686                (chan = hci_chan_sent(hdev, type, &quote))) {
3687                 u32 priority = (skb_peek(&chan->data_q))->priority;
3688                 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3689                         int blocks;
3690
3691                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3692                                skb->len, skb->priority);
3693
3694                         /* Stop if priority has changed */
3695                         if (skb->priority < priority)
3696                                 break;
3697
3698                         skb = skb_dequeue(&chan->data_q);
3699
3700                         blocks = __get_blocks(hdev, skb);
3701                         if (blocks > hdev->block_cnt)
3702                                 return;
3703
3704                         hci_conn_enter_active_mode(chan->conn,
3705                                                    bt_cb(skb)->force_active);
3706
3707                         hci_send_frame(hdev, skb);
3708                         hdev->acl_last_tx = jiffies;
3709
3710                         hdev->block_cnt -= blocks;
3711                         quote -= blocks;
3712
3713                         chan->sent += blocks;
3714                         chan->conn->sent += blocks;
3715                 }
3716         }
3717
3718         if (cnt != hdev->block_cnt)
3719                 hci_prio_recalculate(hdev, type);
3720 }
3721
3722 static void hci_sched_acl(struct hci_dev *hdev)
3723 {
3724         BT_DBG("%s", hdev->name);
3725
3726         /* No ACL link over BR/EDR controller */
3727         if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
3728                 return;
3729
3730         /* No AMP link over AMP controller */
3731         if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3732                 return;
3733
3734         switch (hdev->flow_ctl_mode) {
3735         case HCI_FLOW_CTL_MODE_PACKET_BASED:
3736                 hci_sched_acl_pkt(hdev);
3737                 break;
3738
3739         case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3740                 hci_sched_acl_blk(hdev);
3741                 break;
3742         }
3743 }
3744
3745 static void hci_sched_le(struct hci_dev *hdev)
3746 {
3747         struct hci_chan *chan;
3748         struct sk_buff *skb;
3749         int quote, cnt, tmp;
3750
3751         BT_DBG("%s", hdev->name);
3752
3753         if (!hci_conn_num(hdev, LE_LINK))
3754                 return;
3755
3756         cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3757
3758         __check_timeout(hdev, cnt, LE_LINK);
3759
3760         tmp = cnt;
3761         while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3762                 u32 priority = (skb_peek(&chan->data_q))->priority;
3763                 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3764                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3765                                skb->len, skb->priority);
3766
3767                         /* Stop if priority has changed */
3768                         if (skb->priority < priority)
3769                                 break;
3770
3771                         skb = skb_dequeue(&chan->data_q);
3772
3773                         hci_send_frame(hdev, skb);
3774                         hdev->le_last_tx = jiffies;
3775
3776                         cnt--;
3777                         chan->sent++;
3778                         chan->conn->sent++;
3779
3780                         /* Send pending SCO packets right away */
3781                         hci_sched_sco(hdev);
3782                         hci_sched_esco(hdev);
3783                 }
3784         }
3785
3786         if (hdev->le_pkts)
3787                 hdev->le_cnt = cnt;
3788         else
3789                 hdev->acl_cnt = cnt;
3790
3791         if (cnt != tmp)
3792                 hci_prio_recalculate(hdev, LE_LINK);
3793 }
3794
3795 /* Schedule CIS */
3796 static void hci_sched_iso(struct hci_dev *hdev)
3797 {
3798         struct hci_conn *conn;
3799         struct sk_buff *skb;
3800         int quote, *cnt;
3801
3802         BT_DBG("%s", hdev->name);
3803
3804         if (!hci_conn_num(hdev, ISO_LINK))
3805                 return;
3806
3807         cnt = hdev->iso_pkts ? &hdev->iso_cnt :
3808                 hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3809         while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, &quote))) {
3810                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3811                         BT_DBG("skb %p len %d", skb, skb->len);
3812                         hci_send_frame(hdev, skb);
3813
3814                         conn->sent++;
3815                         if (conn->sent == ~0)
3816                                 conn->sent = 0;
3817                         (*cnt)--;
3818                 }
3819         }
3820 }
3821
3822 static void hci_tx_work(struct work_struct *work)
3823 {
3824         struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3825         struct sk_buff *skb;
3826
3827         BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt,
3828                hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt);
3829
3830         if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3831                 /* Schedule queues and send stuff to HCI driver */
3832                 hci_sched_sco(hdev);
3833                 hci_sched_esco(hdev);
3834                 hci_sched_iso(hdev);
3835                 hci_sched_acl(hdev);
3836                 hci_sched_le(hdev);
3837         }
3838
3839         /* Send next queued raw (unknown type) packet */
3840         while ((skb = skb_dequeue(&hdev->raw_q)))
3841                 hci_send_frame(hdev, skb);
3842 }
3843
3844 /* ----- HCI RX task (incoming data processing) ----- */
3845
3846 /* ACL data packet */
3847 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3848 {
3849         struct hci_acl_hdr *hdr = (void *) skb->data;
3850         struct hci_conn *conn;
3851         __u16 handle, flags;
3852
3853         skb_pull(skb, HCI_ACL_HDR_SIZE);
3854
3855         handle = __le16_to_cpu(hdr->handle);
3856         flags  = hci_flags(handle);
3857         handle = hci_handle(handle);
3858
3859         BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3860                handle, flags);
3861
3862         hdev->stat.acl_rx++;
3863
3864         hci_dev_lock(hdev);
3865         conn = hci_conn_hash_lookup_handle(hdev, handle);
3866         hci_dev_unlock(hdev);
3867
3868         if (conn) {
3869                 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3870
3871                 /* Send to upper protocol */
3872                 l2cap_recv_acldata(conn, skb, flags);
3873                 return;
3874         } else {
3875                 bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
3876                            handle);
3877         }
3878
3879         kfree_skb(skb);
3880 }
3881
3882 /* SCO data packet */
3883 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3884 {
3885         struct hci_sco_hdr *hdr = (void *) skb->data;
3886         struct hci_conn *conn;
3887         __u16 handle, flags;
3888
3889         skb_pull(skb, HCI_SCO_HDR_SIZE);
3890
3891         handle = __le16_to_cpu(hdr->handle);
3892         flags  = hci_flags(handle);
3893         handle = hci_handle(handle);
3894
3895         BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3896                handle, flags);
3897
3898         hdev->stat.sco_rx++;
3899
3900         hci_dev_lock(hdev);
3901         conn = hci_conn_hash_lookup_handle(hdev, handle);
3902         hci_dev_unlock(hdev);
3903
3904         if (conn) {
3905                 /* Send to upper protocol */
3906                 hci_skb_pkt_status(skb) = flags & 0x03;
3907                 sco_recv_scodata(conn, skb);
3908                 return;
3909         } else {
3910                 bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d",
3911                                        handle);
3912         }
3913
3914         kfree_skb(skb);
3915 }
3916
3917 static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3918 {
3919         struct hci_iso_hdr *hdr;
3920         struct hci_conn *conn;
3921         __u16 handle, flags;
3922
3923         hdr = skb_pull_data(skb, sizeof(*hdr));
3924         if (!hdr) {
3925                 bt_dev_err(hdev, "ISO packet too small");
3926                 goto drop;
3927         }
3928
3929         handle = __le16_to_cpu(hdr->handle);
3930         flags  = hci_flags(handle);
3931         handle = hci_handle(handle);
3932
3933         bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3934                    handle, flags);
3935
3936         hci_dev_lock(hdev);
3937         conn = hci_conn_hash_lookup_handle(hdev, handle);
3938         hci_dev_unlock(hdev);
3939
3940         if (!conn) {
3941                 bt_dev_err(hdev, "ISO packet for unknown connection handle %d",
3942                            handle);
3943                 goto drop;
3944         }
3945
3946         /* Send to upper protocol */
3947         iso_recv(conn, skb, flags);
3948         return;
3949
3950 drop:
3951         kfree_skb(skb);
3952 }
3953
3954 static bool hci_req_is_complete(struct hci_dev *hdev)
3955 {
3956         struct sk_buff *skb;
3957
3958         skb = skb_peek(&hdev->cmd_q);
3959         if (!skb)
3960                 return true;
3961
3962         return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
3963 }
3964
3965 static void hci_resend_last(struct hci_dev *hdev)
3966 {
3967         struct hci_command_hdr *sent;
3968         struct sk_buff *skb;
3969         u16 opcode;
3970
3971         if (!hdev->sent_cmd)
3972                 return;
3973
3974         sent = (void *) hdev->sent_cmd->data;
3975         opcode = __le16_to_cpu(sent->opcode);
3976         if (opcode == HCI_OP_RESET)
3977                 return;
3978
3979         skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3980         if (!skb)
3981                 return;
3982
3983         skb_queue_head(&hdev->cmd_q, skb);
3984         queue_work(hdev->workqueue, &hdev->cmd_work);
3985 }
3986
3987 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
3988                           hci_req_complete_t *req_complete,
3989                           hci_req_complete_skb_t *req_complete_skb)
3990 {
3991         struct sk_buff *skb;
3992         unsigned long flags;
3993
3994         BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3995
3996         /* If the completed command doesn't match the last one that was
3997          * sent we need to do special handling of it.
3998          */
3999         if (!hci_sent_cmd_data(hdev, opcode)) {
4000                 /* Some CSR based controllers generate a spontaneous
4001                  * reset complete event during init and any pending
4002                  * command will never be completed. In such a case we
4003                  * need to resend whatever was the last sent
4004                  * command.
4005                  */
4006                 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4007                         hci_resend_last(hdev);
4008
4009                 return;
4010         }
4011
4012         /* If we reach this point this event matches the last command sent */
4013         hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4014
4015         /* If the command succeeded and there's still more commands in
4016          * this request the request is not yet complete.
4017          */
4018         if (!status && !hci_req_is_complete(hdev))
4019                 return;
4020
4021         /* If this was the last command in a request the complete
4022          * callback would be found in hdev->sent_cmd instead of the
4023          * command queue (hdev->cmd_q).
4024          */
4025         if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4026                 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4027                 return;
4028         }
4029
4030         if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4031                 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4032                 return;
4033         }
4034
4035         /* Remove all pending commands belonging to this request */
4036         spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4037         while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4038                 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4039                         __skb_queue_head(&hdev->cmd_q, skb);
4040                         break;
4041                 }
4042
4043                 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4044                         *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4045                 else
4046                         *req_complete = bt_cb(skb)->hci.req_complete;
4047                 dev_kfree_skb_irq(skb);
4048         }
4049         spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4050 }
4051
4052 static void hci_rx_work(struct work_struct *work)
4053 {
4054         struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4055         struct sk_buff *skb;
4056
4057         BT_DBG("%s", hdev->name);
4058
4059         /* The kcov_remote functions used for collecting packet parsing
4060          * coverage information from this background thread and associate
4061          * the coverage with the syscall's thread which originally injected
4062          * the packet. This helps fuzzing the kernel.
4063          */
4064         for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) {
4065                 kcov_remote_start_common(skb_get_kcov_handle(skb));
4066
4067                 /* Send copy to monitor */
4068                 hci_send_to_monitor(hdev, skb);
4069
4070                 if (atomic_read(&hdev->promisc)) {
4071                         /* Send copy to the sockets */
4072                         hci_send_to_sock(hdev, skb);
4073                 }
4074
4075                 /* If the device has been opened in HCI_USER_CHANNEL,
4076                  * the userspace has exclusive access to device.
4077                  * When device is HCI_INIT, we still need to process
4078                  * the data packets to the driver in order
4079                  * to complete its setup().
4080                  */
4081                 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4082                     !test_bit(HCI_INIT, &hdev->flags)) {
4083                         kfree_skb(skb);
4084                         continue;
4085                 }
4086
4087                 if (test_bit(HCI_INIT, &hdev->flags)) {
4088                         /* Don't process data packets in this states. */
4089                         switch (hci_skb_pkt_type(skb)) {
4090                         case HCI_ACLDATA_PKT:
4091                         case HCI_SCODATA_PKT:
4092                         case HCI_ISODATA_PKT:
4093                                 kfree_skb(skb);
4094                                 continue;
4095                         }
4096                 }
4097
4098                 /* Process frame */
4099                 switch (hci_skb_pkt_type(skb)) {
4100                 case HCI_EVENT_PKT:
4101                         BT_DBG("%s Event packet", hdev->name);
4102                         hci_event_packet(hdev, skb);
4103                         break;
4104
4105                 case HCI_ACLDATA_PKT:
4106                         BT_DBG("%s ACL data packet", hdev->name);
4107                         hci_acldata_packet(hdev, skb);
4108                         break;
4109
4110                 case HCI_SCODATA_PKT:
4111                         BT_DBG("%s SCO data packet", hdev->name);
4112                         hci_scodata_packet(hdev, skb);
4113                         break;
4114
4115                 case HCI_ISODATA_PKT:
4116                         BT_DBG("%s ISO data packet", hdev->name);
4117                         hci_isodata_packet(hdev, skb);
4118                         break;
4119
4120                 default:
4121                         kfree_skb(skb);
4122                         break;
4123                 }
4124         }
4125 }
4126
4127 static void hci_cmd_work(struct work_struct *work)
4128 {
4129         struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4130         struct sk_buff *skb;
4131
4132         BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4133                atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4134
4135         /* Send queued commands */
4136         if (atomic_read(&hdev->cmd_cnt)) {
4137                 skb = skb_dequeue(&hdev->cmd_q);
4138                 if (!skb)
4139                         return;
4140
4141                 kfree_skb(hdev->sent_cmd);
4142
4143                 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4144                 if (hdev->sent_cmd) {
4145                         int res;
4146                         if (hci_req_status_pend(hdev))
4147                                 hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4148                         atomic_dec(&hdev->cmd_cnt);
4149
4150                         res = hci_send_frame(hdev, skb);
4151                         if (res < 0)
4152                                 __hci_cmd_sync_cancel(hdev, -res);
4153
4154                         rcu_read_lock();
4155                         if (test_bit(HCI_RESET, &hdev->flags) ||
4156                             hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
4157                                 cancel_delayed_work(&hdev->cmd_timer);
4158                         else
4159                                 queue_delayed_work(hdev->workqueue, &hdev->cmd_timer,
4160                                                    HCI_CMD_TIMEOUT);
4161                         rcu_read_unlock();
4162                 } else {
4163                         skb_queue_head(&hdev->cmd_q, skb);
4164                         queue_work(hdev->workqueue, &hdev->cmd_work);
4165                 }
4166         }
4167 }