Bluetooth: Fix use-after-free in hci_remove_ltk/hci_remove_irk
[platform/kernel/linux-starfive.git] / net / bluetooth / hci_core.c
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4    Copyright (C) 2011 ProFUSION Embedded Systems
5
6    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License version 2 as
10    published by the Free Software Foundation;
11
12    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23    SOFTWARE IS DISCLAIMED.
24 */
25
26 /* Bluetooth HCI core. */
27
28 #include <linux/export.h>
29 #include <linux/rfkill.h>
30 #include <linux/debugfs.h>
31 #include <linux/crypto.h>
32 #include <linux/kcov.h>
33 #include <linux/property.h>
34 #include <linux/suspend.h>
35 #include <linux/wait.h>
36 #include <asm/unaligned.h>
37
38 #include <net/bluetooth/bluetooth.h>
39 #include <net/bluetooth/hci_core.h>
40 #include <net/bluetooth/l2cap.h>
41 #include <net/bluetooth/mgmt.h>
42
43 #include "hci_request.h"
44 #include "hci_debugfs.h"
45 #include "smp.h"
46 #include "leds.h"
47 #include "msft.h"
48 #include "aosp.h"
49 #include "hci_codec.h"
50
51 static void hci_rx_work(struct work_struct *work);
52 static void hci_cmd_work(struct work_struct *work);
53 static void hci_tx_work(struct work_struct *work);
54
55 /* HCI device list */
56 LIST_HEAD(hci_dev_list);
57 DEFINE_RWLOCK(hci_dev_list_lock);
58
59 /* HCI callback list */
60 LIST_HEAD(hci_cb_list);
61 DEFINE_MUTEX(hci_cb_list_lock);
62
63 /* HCI ID Numbering */
64 static DEFINE_IDA(hci_index_ida);
65
66 static int hci_scan_req(struct hci_request *req, unsigned long opt)
67 {
68         __u8 scan = opt;
69
70         BT_DBG("%s %x", req->hdev->name, scan);
71
72         /* Inquiry and Page scans */
73         hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
74         return 0;
75 }
76
77 static int hci_auth_req(struct hci_request *req, unsigned long opt)
78 {
79         __u8 auth = opt;
80
81         BT_DBG("%s %x", req->hdev->name, auth);
82
83         /* Authentication */
84         hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
85         return 0;
86 }
87
88 static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
89 {
90         __u8 encrypt = opt;
91
92         BT_DBG("%s %x", req->hdev->name, encrypt);
93
94         /* Encryption */
95         hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
96         return 0;
97 }
98
99 static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
100 {
101         __le16 policy = cpu_to_le16(opt);
102
103         BT_DBG("%s %x", req->hdev->name, policy);
104
105         /* Default link policy */
106         hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
107         return 0;
108 }
109
110 /* Get HCI device by index.
111  * Device is held on return. */
112 struct hci_dev *hci_dev_get(int index)
113 {
114         struct hci_dev *hdev = NULL, *d;
115
116         BT_DBG("%d", index);
117
118         if (index < 0)
119                 return NULL;
120
121         read_lock(&hci_dev_list_lock);
122         list_for_each_entry(d, &hci_dev_list, list) {
123                 if (d->id == index) {
124                         hdev = hci_dev_hold(d);
125                         break;
126                 }
127         }
128         read_unlock(&hci_dev_list_lock);
129         return hdev;
130 }
131
132 /* ---- Inquiry support ---- */
133
134 bool hci_discovery_active(struct hci_dev *hdev)
135 {
136         struct discovery_state *discov = &hdev->discovery;
137
138         switch (discov->state) {
139         case DISCOVERY_FINDING:
140         case DISCOVERY_RESOLVING:
141                 return true;
142
143         default:
144                 return false;
145         }
146 }
147
148 void hci_discovery_set_state(struct hci_dev *hdev, int state)
149 {
150         int old_state = hdev->discovery.state;
151
152         BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
153
154         if (old_state == state)
155                 return;
156
157         hdev->discovery.state = state;
158
159         switch (state) {
160         case DISCOVERY_STOPPED:
161                 hci_update_passive_scan(hdev);
162
163                 if (old_state != DISCOVERY_STARTING)
164                         mgmt_discovering(hdev, 0);
165                 break;
166         case DISCOVERY_STARTING:
167                 break;
168         case DISCOVERY_FINDING:
169                 mgmt_discovering(hdev, 1);
170                 break;
171         case DISCOVERY_RESOLVING:
172                 break;
173         case DISCOVERY_STOPPING:
174                 break;
175         }
176 }
177
178 void hci_inquiry_cache_flush(struct hci_dev *hdev)
179 {
180         struct discovery_state *cache = &hdev->discovery;
181         struct inquiry_entry *p, *n;
182
183         list_for_each_entry_safe(p, n, &cache->all, all) {
184                 list_del(&p->all);
185                 kfree(p);
186         }
187
188         INIT_LIST_HEAD(&cache->unknown);
189         INIT_LIST_HEAD(&cache->resolve);
190 }
191
192 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
193                                                bdaddr_t *bdaddr)
194 {
195         struct discovery_state *cache = &hdev->discovery;
196         struct inquiry_entry *e;
197
198         BT_DBG("cache %p, %pMR", cache, bdaddr);
199
200         list_for_each_entry(e, &cache->all, all) {
201                 if (!bacmp(&e->data.bdaddr, bdaddr))
202                         return e;
203         }
204
205         return NULL;
206 }
207
208 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
209                                                        bdaddr_t *bdaddr)
210 {
211         struct discovery_state *cache = &hdev->discovery;
212         struct inquiry_entry *e;
213
214         BT_DBG("cache %p, %pMR", cache, bdaddr);
215
216         list_for_each_entry(e, &cache->unknown, list) {
217                 if (!bacmp(&e->data.bdaddr, bdaddr))
218                         return e;
219         }
220
221         return NULL;
222 }
223
224 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
225                                                        bdaddr_t *bdaddr,
226                                                        int state)
227 {
228         struct discovery_state *cache = &hdev->discovery;
229         struct inquiry_entry *e;
230
231         BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
232
233         list_for_each_entry(e, &cache->resolve, list) {
234                 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
235                         return e;
236                 if (!bacmp(&e->data.bdaddr, bdaddr))
237                         return e;
238         }
239
240         return NULL;
241 }
242
243 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
244                                       struct inquiry_entry *ie)
245 {
246         struct discovery_state *cache = &hdev->discovery;
247         struct list_head *pos = &cache->resolve;
248         struct inquiry_entry *p;
249
250         list_del(&ie->list);
251
252         list_for_each_entry(p, &cache->resolve, list) {
253                 if (p->name_state != NAME_PENDING &&
254                     abs(p->data.rssi) >= abs(ie->data.rssi))
255                         break;
256                 pos = &p->list;
257         }
258
259         list_add(&ie->list, pos);
260 }
261
262 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
263                              bool name_known)
264 {
265         struct discovery_state *cache = &hdev->discovery;
266         struct inquiry_entry *ie;
267         u32 flags = 0;
268
269         BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
270
271         hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
272
273         if (!data->ssp_mode)
274                 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
275
276         ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
277         if (ie) {
278                 if (!ie->data.ssp_mode)
279                         flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
280
281                 if (ie->name_state == NAME_NEEDED &&
282                     data->rssi != ie->data.rssi) {
283                         ie->data.rssi = data->rssi;
284                         hci_inquiry_cache_update_resolve(hdev, ie);
285                 }
286
287                 goto update;
288         }
289
290         /* Entry not in the cache. Add new one. */
291         ie = kzalloc(sizeof(*ie), GFP_KERNEL);
292         if (!ie) {
293                 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
294                 goto done;
295         }
296
297         list_add(&ie->all, &cache->all);
298
299         if (name_known) {
300                 ie->name_state = NAME_KNOWN;
301         } else {
302                 ie->name_state = NAME_NOT_KNOWN;
303                 list_add(&ie->list, &cache->unknown);
304         }
305
306 update:
307         if (name_known && ie->name_state != NAME_KNOWN &&
308             ie->name_state != NAME_PENDING) {
309                 ie->name_state = NAME_KNOWN;
310                 list_del(&ie->list);
311         }
312
313         memcpy(&ie->data, data, sizeof(*data));
314         ie->timestamp = jiffies;
315         cache->timestamp = jiffies;
316
317         if (ie->name_state == NAME_NOT_KNOWN)
318                 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
319
320 done:
321         return flags;
322 }
323
324 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
325 {
326         struct discovery_state *cache = &hdev->discovery;
327         struct inquiry_info *info = (struct inquiry_info *) buf;
328         struct inquiry_entry *e;
329         int copied = 0;
330
331         list_for_each_entry(e, &cache->all, all) {
332                 struct inquiry_data *data = &e->data;
333
334                 if (copied >= num)
335                         break;
336
337                 bacpy(&info->bdaddr, &data->bdaddr);
338                 info->pscan_rep_mode    = data->pscan_rep_mode;
339                 info->pscan_period_mode = data->pscan_period_mode;
340                 info->pscan_mode        = data->pscan_mode;
341                 memcpy(info->dev_class, data->dev_class, 3);
342                 info->clock_offset      = data->clock_offset;
343
344                 info++;
345                 copied++;
346         }
347
348         BT_DBG("cache %p, copied %d", cache, copied);
349         return copied;
350 }
351
352 static int hci_inq_req(struct hci_request *req, unsigned long opt)
353 {
354         struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
355         struct hci_dev *hdev = req->hdev;
356         struct hci_cp_inquiry cp;
357
358         BT_DBG("%s", hdev->name);
359
360         if (test_bit(HCI_INQUIRY, &hdev->flags))
361                 return 0;
362
363         /* Start Inquiry */
364         memcpy(&cp.lap, &ir->lap, 3);
365         cp.length  = ir->length;
366         cp.num_rsp = ir->num_rsp;
367         hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
368
369         return 0;
370 }
371
372 int hci_inquiry(void __user *arg)
373 {
374         __u8 __user *ptr = arg;
375         struct hci_inquiry_req ir;
376         struct hci_dev *hdev;
377         int err = 0, do_inquiry = 0, max_rsp;
378         long timeo;
379         __u8 *buf;
380
381         if (copy_from_user(&ir, ptr, sizeof(ir)))
382                 return -EFAULT;
383
384         hdev = hci_dev_get(ir.dev_id);
385         if (!hdev)
386                 return -ENODEV;
387
388         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
389                 err = -EBUSY;
390                 goto done;
391         }
392
393         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
394                 err = -EOPNOTSUPP;
395                 goto done;
396         }
397
398         if (hdev->dev_type != HCI_PRIMARY) {
399                 err = -EOPNOTSUPP;
400                 goto done;
401         }
402
403         if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
404                 err = -EOPNOTSUPP;
405                 goto done;
406         }
407
408         /* Restrict maximum inquiry length to 60 seconds */
409         if (ir.length > 60) {
410                 err = -EINVAL;
411                 goto done;
412         }
413
414         hci_dev_lock(hdev);
415         if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
416             inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
417                 hci_inquiry_cache_flush(hdev);
418                 do_inquiry = 1;
419         }
420         hci_dev_unlock(hdev);
421
422         timeo = ir.length * msecs_to_jiffies(2000);
423
424         if (do_inquiry) {
425                 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
426                                    timeo, NULL);
427                 if (err < 0)
428                         goto done;
429
430                 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
431                  * cleared). If it is interrupted by a signal, return -EINTR.
432                  */
433                 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
434                                 TASK_INTERRUPTIBLE)) {
435                         err = -EINTR;
436                         goto done;
437                 }
438         }
439
440         /* for unlimited number of responses we will use buffer with
441          * 255 entries
442          */
443         max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
444
445         /* cache_dump can't sleep. Therefore we allocate temp buffer and then
446          * copy it to the user space.
447          */
448         buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
449         if (!buf) {
450                 err = -ENOMEM;
451                 goto done;
452         }
453
454         hci_dev_lock(hdev);
455         ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
456         hci_dev_unlock(hdev);
457
458         BT_DBG("num_rsp %d", ir.num_rsp);
459
460         if (!copy_to_user(ptr, &ir, sizeof(ir))) {
461                 ptr += sizeof(ir);
462                 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
463                                  ir.num_rsp))
464                         err = -EFAULT;
465         } else
466                 err = -EFAULT;
467
468         kfree(buf);
469
470 done:
471         hci_dev_put(hdev);
472         return err;
473 }
474
475 static int hci_dev_do_open(struct hci_dev *hdev)
476 {
477         int ret = 0;
478
479         BT_DBG("%s %p", hdev->name, hdev);
480
481         hci_req_sync_lock(hdev);
482
483         ret = hci_dev_open_sync(hdev);
484
485         hci_req_sync_unlock(hdev);
486         return ret;
487 }
488
489 /* ---- HCI ioctl helpers ---- */
490
491 int hci_dev_open(__u16 dev)
492 {
493         struct hci_dev *hdev;
494         int err;
495
496         hdev = hci_dev_get(dev);
497         if (!hdev)
498                 return -ENODEV;
499
500         /* Devices that are marked as unconfigured can only be powered
501          * up as user channel. Trying to bring them up as normal devices
502          * will result into a failure. Only user channel operation is
503          * possible.
504          *
505          * When this function is called for a user channel, the flag
506          * HCI_USER_CHANNEL will be set first before attempting to
507          * open the device.
508          */
509         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
510             !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
511                 err = -EOPNOTSUPP;
512                 goto done;
513         }
514
515         /* We need to ensure that no other power on/off work is pending
516          * before proceeding to call hci_dev_do_open. This is
517          * particularly important if the setup procedure has not yet
518          * completed.
519          */
520         if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
521                 cancel_delayed_work(&hdev->power_off);
522
523         /* After this call it is guaranteed that the setup procedure
524          * has finished. This means that error conditions like RFKILL
525          * or no valid public or static random address apply.
526          */
527         flush_workqueue(hdev->req_workqueue);
528
529         /* For controllers not using the management interface and that
530          * are brought up using legacy ioctl, set the HCI_BONDABLE bit
531          * so that pairing works for them. Once the management interface
532          * is in use this bit will be cleared again and userspace has
533          * to explicitly enable it.
534          */
535         if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
536             !hci_dev_test_flag(hdev, HCI_MGMT))
537                 hci_dev_set_flag(hdev, HCI_BONDABLE);
538
539         err = hci_dev_do_open(hdev);
540
541 done:
542         hci_dev_put(hdev);
543         return err;
544 }
545
546 int hci_dev_do_close(struct hci_dev *hdev)
547 {
548         int err;
549
550         BT_DBG("%s %p", hdev->name, hdev);
551
552         hci_req_sync_lock(hdev);
553
554         err = hci_dev_close_sync(hdev);
555
556         hci_req_sync_unlock(hdev);
557
558         return err;
559 }
560
561 int hci_dev_close(__u16 dev)
562 {
563         struct hci_dev *hdev;
564         int err;
565
566         hdev = hci_dev_get(dev);
567         if (!hdev)
568                 return -ENODEV;
569
570         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
571                 err = -EBUSY;
572                 goto done;
573         }
574
575         cancel_work_sync(&hdev->power_on);
576         if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
577                 cancel_delayed_work(&hdev->power_off);
578
579         err = hci_dev_do_close(hdev);
580
581 done:
582         hci_dev_put(hdev);
583         return err;
584 }
585
586 static int hci_dev_do_reset(struct hci_dev *hdev)
587 {
588         int ret;
589
590         BT_DBG("%s %p", hdev->name, hdev);
591
592         hci_req_sync_lock(hdev);
593
594         /* Drop queues */
595         skb_queue_purge(&hdev->rx_q);
596         skb_queue_purge(&hdev->cmd_q);
597
598         /* Cancel these to avoid queueing non-chained pending work */
599         hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
600         /* Wait for
601          *
602          *    if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
603          *        queue_delayed_work(&hdev->{cmd,ncmd}_timer)
604          *
605          * inside RCU section to see the flag or complete scheduling.
606          */
607         synchronize_rcu();
608         /* Explicitly cancel works in case scheduled after setting the flag. */
609         cancel_delayed_work(&hdev->cmd_timer);
610         cancel_delayed_work(&hdev->ncmd_timer);
611
612         /* Avoid potential lockdep warnings from the *_flush() calls by
613          * ensuring the workqueue is empty up front.
614          */
615         drain_workqueue(hdev->workqueue);
616
617         hci_dev_lock(hdev);
618         hci_inquiry_cache_flush(hdev);
619         hci_conn_hash_flush(hdev);
620         hci_dev_unlock(hdev);
621
622         if (hdev->flush)
623                 hdev->flush(hdev);
624
625         hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
626
627         atomic_set(&hdev->cmd_cnt, 1);
628         hdev->acl_cnt = 0;
629         hdev->sco_cnt = 0;
630         hdev->le_cnt = 0;
631         hdev->iso_cnt = 0;
632
633         ret = hci_reset_sync(hdev);
634
635         hci_req_sync_unlock(hdev);
636         return ret;
637 }
638
639 int hci_dev_reset(__u16 dev)
640 {
641         struct hci_dev *hdev;
642         int err;
643
644         hdev = hci_dev_get(dev);
645         if (!hdev)
646                 return -ENODEV;
647
648         if (!test_bit(HCI_UP, &hdev->flags)) {
649                 err = -ENETDOWN;
650                 goto done;
651         }
652
653         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
654                 err = -EBUSY;
655                 goto done;
656         }
657
658         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
659                 err = -EOPNOTSUPP;
660                 goto done;
661         }
662
663         err = hci_dev_do_reset(hdev);
664
665 done:
666         hci_dev_put(hdev);
667         return err;
668 }
669
670 int hci_dev_reset_stat(__u16 dev)
671 {
672         struct hci_dev *hdev;
673         int ret = 0;
674
675         hdev = hci_dev_get(dev);
676         if (!hdev)
677                 return -ENODEV;
678
679         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
680                 ret = -EBUSY;
681                 goto done;
682         }
683
684         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
685                 ret = -EOPNOTSUPP;
686                 goto done;
687         }
688
689         memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
690
691 done:
692         hci_dev_put(hdev);
693         return ret;
694 }
695
696 static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan)
697 {
698         bool conn_changed, discov_changed;
699
700         BT_DBG("%s scan 0x%02x", hdev->name, scan);
701
702         if ((scan & SCAN_PAGE))
703                 conn_changed = !hci_dev_test_and_set_flag(hdev,
704                                                           HCI_CONNECTABLE);
705         else
706                 conn_changed = hci_dev_test_and_clear_flag(hdev,
707                                                            HCI_CONNECTABLE);
708
709         if ((scan & SCAN_INQUIRY)) {
710                 discov_changed = !hci_dev_test_and_set_flag(hdev,
711                                                             HCI_DISCOVERABLE);
712         } else {
713                 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
714                 discov_changed = hci_dev_test_and_clear_flag(hdev,
715                                                              HCI_DISCOVERABLE);
716         }
717
718         if (!hci_dev_test_flag(hdev, HCI_MGMT))
719                 return;
720
721         if (conn_changed || discov_changed) {
722                 /* In case this was disabled through mgmt */
723                 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
724
725                 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
726                         hci_update_adv_data(hdev, hdev->cur_adv_instance);
727
728                 mgmt_new_settings(hdev);
729         }
730 }
731
732 int hci_dev_cmd(unsigned int cmd, void __user *arg)
733 {
734         struct hci_dev *hdev;
735         struct hci_dev_req dr;
736         int err = 0;
737
738         if (copy_from_user(&dr, arg, sizeof(dr)))
739                 return -EFAULT;
740
741         hdev = hci_dev_get(dr.dev_id);
742         if (!hdev)
743                 return -ENODEV;
744
745         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
746                 err = -EBUSY;
747                 goto done;
748         }
749
750         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
751                 err = -EOPNOTSUPP;
752                 goto done;
753         }
754
755         if (hdev->dev_type != HCI_PRIMARY) {
756                 err = -EOPNOTSUPP;
757                 goto done;
758         }
759
760         if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
761                 err = -EOPNOTSUPP;
762                 goto done;
763         }
764
765         switch (cmd) {
766         case HCISETAUTH:
767                 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
768                                    HCI_INIT_TIMEOUT, NULL);
769                 break;
770
771         case HCISETENCRYPT:
772                 if (!lmp_encrypt_capable(hdev)) {
773                         err = -EOPNOTSUPP;
774                         break;
775                 }
776
777                 if (!test_bit(HCI_AUTH, &hdev->flags)) {
778                         /* Auth must be enabled first */
779                         err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
780                                            HCI_INIT_TIMEOUT, NULL);
781                         if (err)
782                                 break;
783                 }
784
785                 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
786                                    HCI_INIT_TIMEOUT, NULL);
787                 break;
788
789         case HCISETSCAN:
790                 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
791                                    HCI_INIT_TIMEOUT, NULL);
792
793                 /* Ensure that the connectable and discoverable states
794                  * get correctly modified as this was a non-mgmt change.
795                  */
796                 if (!err)
797                         hci_update_passive_scan_state(hdev, dr.dev_opt);
798                 break;
799
800         case HCISETLINKPOL:
801                 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
802                                    HCI_INIT_TIMEOUT, NULL);
803                 break;
804
805         case HCISETLINKMODE:
806                 hdev->link_mode = ((__u16) dr.dev_opt) &
807                                         (HCI_LM_MASTER | HCI_LM_ACCEPT);
808                 break;
809
810         case HCISETPTYPE:
811                 if (hdev->pkt_type == (__u16) dr.dev_opt)
812                         break;
813
814                 hdev->pkt_type = (__u16) dr.dev_opt;
815                 mgmt_phy_configuration_changed(hdev, NULL);
816                 break;
817
818         case HCISETACLMTU:
819                 hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
820                 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
821                 break;
822
823         case HCISETSCOMTU:
824                 hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
825                 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
826                 break;
827
828         default:
829                 err = -EINVAL;
830                 break;
831         }
832
833 done:
834         hci_dev_put(hdev);
835         return err;
836 }
837
838 int hci_get_dev_list(void __user *arg)
839 {
840         struct hci_dev *hdev;
841         struct hci_dev_list_req *dl;
842         struct hci_dev_req *dr;
843         int n = 0, size, err;
844         __u16 dev_num;
845
846         if (get_user(dev_num, (__u16 __user *) arg))
847                 return -EFAULT;
848
849         if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
850                 return -EINVAL;
851
852         size = sizeof(*dl) + dev_num * sizeof(*dr);
853
854         dl = kzalloc(size, GFP_KERNEL);
855         if (!dl)
856                 return -ENOMEM;
857
858         dr = dl->dev_req;
859
860         read_lock(&hci_dev_list_lock);
861         list_for_each_entry(hdev, &hci_dev_list, list) {
862                 unsigned long flags = hdev->flags;
863
864                 /* When the auto-off is configured it means the transport
865                  * is running, but in that case still indicate that the
866                  * device is actually down.
867                  */
868                 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
869                         flags &= ~BIT(HCI_UP);
870
871                 (dr + n)->dev_id  = hdev->id;
872                 (dr + n)->dev_opt = flags;
873
874                 if (++n >= dev_num)
875                         break;
876         }
877         read_unlock(&hci_dev_list_lock);
878
879         dl->dev_num = n;
880         size = sizeof(*dl) + n * sizeof(*dr);
881
882         err = copy_to_user(arg, dl, size);
883         kfree(dl);
884
885         return err ? -EFAULT : 0;
886 }
887
888 int hci_get_dev_info(void __user *arg)
889 {
890         struct hci_dev *hdev;
891         struct hci_dev_info di;
892         unsigned long flags;
893         int err = 0;
894
895         if (copy_from_user(&di, arg, sizeof(di)))
896                 return -EFAULT;
897
898         hdev = hci_dev_get(di.dev_id);
899         if (!hdev)
900                 return -ENODEV;
901
902         /* When the auto-off is configured it means the transport
903          * is running, but in that case still indicate that the
904          * device is actually down.
905          */
906         if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
907                 flags = hdev->flags & ~BIT(HCI_UP);
908         else
909                 flags = hdev->flags;
910
911         strcpy(di.name, hdev->name);
912         di.bdaddr   = hdev->bdaddr;
913         di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
914         di.flags    = flags;
915         di.pkt_type = hdev->pkt_type;
916         if (lmp_bredr_capable(hdev)) {
917                 di.acl_mtu  = hdev->acl_mtu;
918                 di.acl_pkts = hdev->acl_pkts;
919                 di.sco_mtu  = hdev->sco_mtu;
920                 di.sco_pkts = hdev->sco_pkts;
921         } else {
922                 di.acl_mtu  = hdev->le_mtu;
923                 di.acl_pkts = hdev->le_pkts;
924                 di.sco_mtu  = 0;
925                 di.sco_pkts = 0;
926         }
927         di.link_policy = hdev->link_policy;
928         di.link_mode   = hdev->link_mode;
929
930         memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
931         memcpy(&di.features, &hdev->features, sizeof(di.features));
932
933         if (copy_to_user(arg, &di, sizeof(di)))
934                 err = -EFAULT;
935
936         hci_dev_put(hdev);
937
938         return err;
939 }
940
941 /* ---- Interface to HCI drivers ---- */
942
943 static int hci_rfkill_set_block(void *data, bool blocked)
944 {
945         struct hci_dev *hdev = data;
946
947         BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
948
949         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
950                 return -EBUSY;
951
952         if (blocked) {
953                 hci_dev_set_flag(hdev, HCI_RFKILLED);
954                 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
955                     !hci_dev_test_flag(hdev, HCI_CONFIG))
956                         hci_dev_do_close(hdev);
957         } else {
958                 hci_dev_clear_flag(hdev, HCI_RFKILLED);
959         }
960
961         return 0;
962 }
963
964 static const struct rfkill_ops hci_rfkill_ops = {
965         .set_block = hci_rfkill_set_block,
966 };
967
968 static void hci_power_on(struct work_struct *work)
969 {
970         struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
971         int err;
972
973         BT_DBG("%s", hdev->name);
974
975         if (test_bit(HCI_UP, &hdev->flags) &&
976             hci_dev_test_flag(hdev, HCI_MGMT) &&
977             hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
978                 cancel_delayed_work(&hdev->power_off);
979                 err = hci_powered_update_sync(hdev);
980                 mgmt_power_on(hdev, err);
981                 return;
982         }
983
984         err = hci_dev_do_open(hdev);
985         if (err < 0) {
986                 hci_dev_lock(hdev);
987                 mgmt_set_powered_failed(hdev, err);
988                 hci_dev_unlock(hdev);
989                 return;
990         }
991
992         /* During the HCI setup phase, a few error conditions are
993          * ignored and they need to be checked now. If they are still
994          * valid, it is important to turn the device back off.
995          */
996         if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
997             hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
998             (hdev->dev_type == HCI_PRIMARY &&
999              !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1000              !bacmp(&hdev->static_addr, BDADDR_ANY))) {
1001                 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
1002                 hci_dev_do_close(hdev);
1003         } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
1004                 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
1005                                    HCI_AUTO_OFF_TIMEOUT);
1006         }
1007
1008         if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
1009                 /* For unconfigured devices, set the HCI_RAW flag
1010                  * so that userspace can easily identify them.
1011                  */
1012                 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1013                         set_bit(HCI_RAW, &hdev->flags);
1014
1015                 /* For fully configured devices, this will send
1016                  * the Index Added event. For unconfigured devices,
1017                  * it will send Unconfigued Index Added event.
1018                  *
1019                  * Devices with HCI_QUIRK_RAW_DEVICE are ignored
1020                  * and no event will be send.
1021                  */
1022                 mgmt_index_added(hdev);
1023         } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
1024                 /* When the controller is now configured, then it
1025                  * is important to clear the HCI_RAW flag.
1026                  */
1027                 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1028                         clear_bit(HCI_RAW, &hdev->flags);
1029
1030                 /* Powering on the controller with HCI_CONFIG set only
1031                  * happens with the transition from unconfigured to
1032                  * configured. This will send the Index Added event.
1033                  */
1034                 mgmt_index_added(hdev);
1035         }
1036 }
1037
1038 static void hci_power_off(struct work_struct *work)
1039 {
1040         struct hci_dev *hdev = container_of(work, struct hci_dev,
1041                                             power_off.work);
1042
1043         BT_DBG("%s", hdev->name);
1044
1045         hci_dev_do_close(hdev);
1046 }
1047
1048 static void hci_error_reset(struct work_struct *work)
1049 {
1050         struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
1051
1052         BT_DBG("%s", hdev->name);
1053
1054         if (hdev->hw_error)
1055                 hdev->hw_error(hdev, hdev->hw_error_code);
1056         else
1057                 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
1058
1059         if (hci_dev_do_close(hdev))
1060                 return;
1061
1062         hci_dev_do_open(hdev);
1063 }
1064
1065 void hci_uuids_clear(struct hci_dev *hdev)
1066 {
1067         struct bt_uuid *uuid, *tmp;
1068
1069         list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1070                 list_del(&uuid->list);
1071                 kfree(uuid);
1072         }
1073 }
1074
1075 void hci_link_keys_clear(struct hci_dev *hdev)
1076 {
1077         struct link_key *key;
1078
1079         list_for_each_entry(key, &hdev->link_keys, list) {
1080                 list_del_rcu(&key->list);
1081                 kfree_rcu(key, rcu);
1082         }
1083 }
1084
1085 void hci_smp_ltks_clear(struct hci_dev *hdev)
1086 {
1087         struct smp_ltk *k;
1088
1089         list_for_each_entry(k, &hdev->long_term_keys, list) {
1090                 list_del_rcu(&k->list);
1091                 kfree_rcu(k, rcu);
1092         }
1093 }
1094
1095 void hci_smp_irks_clear(struct hci_dev *hdev)
1096 {
1097         struct smp_irk *k;
1098
1099         list_for_each_entry(k, &hdev->identity_resolving_keys, list) {
1100                 list_del_rcu(&k->list);
1101                 kfree_rcu(k, rcu);
1102         }
1103 }
1104
1105 void hci_blocked_keys_clear(struct hci_dev *hdev)
1106 {
1107         struct blocked_key *b;
1108
1109         list_for_each_entry(b, &hdev->blocked_keys, list) {
1110                 list_del_rcu(&b->list);
1111                 kfree_rcu(b, rcu);
1112         }
1113 }
1114
1115 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
1116 {
1117         bool blocked = false;
1118         struct blocked_key *b;
1119
1120         rcu_read_lock();
1121         list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
1122                 if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
1123                         blocked = true;
1124                         break;
1125                 }
1126         }
1127
1128         rcu_read_unlock();
1129         return blocked;
1130 }
1131
1132 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1133 {
1134         struct link_key *k;
1135
1136         rcu_read_lock();
1137         list_for_each_entry_rcu(k, &hdev->link_keys, list) {
1138                 if (bacmp(bdaddr, &k->bdaddr) == 0) {
1139                         rcu_read_unlock();
1140
1141                         if (hci_is_blocked_key(hdev,
1142                                                HCI_BLOCKED_KEY_TYPE_LINKKEY,
1143                                                k->val)) {
1144                                 bt_dev_warn_ratelimited(hdev,
1145                                                         "Link key blocked for %pMR",
1146                                                         &k->bdaddr);
1147                                 return NULL;
1148                         }
1149
1150                         return k;
1151                 }
1152         }
1153         rcu_read_unlock();
1154
1155         return NULL;
1156 }
1157
1158 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1159                                u8 key_type, u8 old_key_type)
1160 {
1161         /* Legacy key */
1162         if (key_type < 0x03)
1163                 return true;
1164
1165         /* Debug keys are insecure so don't store them persistently */
1166         if (key_type == HCI_LK_DEBUG_COMBINATION)
1167                 return false;
1168
1169         /* Changed combination key and there's no previous one */
1170         if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1171                 return false;
1172
1173         /* Security mode 3 case */
1174         if (!conn)
1175                 return true;
1176
1177         /* BR/EDR key derived using SC from an LE link */
1178         if (conn->type == LE_LINK)
1179                 return true;
1180
1181         /* Neither local nor remote side had no-bonding as requirement */
1182         if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1183                 return true;
1184
1185         /* Local side had dedicated bonding as requirement */
1186         if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1187                 return true;
1188
1189         /* Remote side had dedicated bonding as requirement */
1190         if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1191                 return true;
1192
1193         /* If none of the above criteria match, then don't store the key
1194          * persistently */
1195         return false;
1196 }
1197
1198 static u8 ltk_role(u8 type)
1199 {
1200         if (type == SMP_LTK)
1201                 return HCI_ROLE_MASTER;
1202
1203         return HCI_ROLE_SLAVE;
1204 }
1205
1206 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1207                              u8 addr_type, u8 role)
1208 {
1209         struct smp_ltk *k;
1210
1211         rcu_read_lock();
1212         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1213                 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
1214                         continue;
1215
1216                 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
1217                         rcu_read_unlock();
1218
1219                         if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
1220                                                k->val)) {
1221                                 bt_dev_warn_ratelimited(hdev,
1222                                                         "LTK blocked for %pMR",
1223                                                         &k->bdaddr);
1224                                 return NULL;
1225                         }
1226
1227                         return k;
1228                 }
1229         }
1230         rcu_read_unlock();
1231
1232         return NULL;
1233 }
1234
1235 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
1236 {
1237         struct smp_irk *irk_to_return = NULL;
1238         struct smp_irk *irk;
1239
1240         rcu_read_lock();
1241         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1242                 if (!bacmp(&irk->rpa, rpa)) {
1243                         irk_to_return = irk;
1244                         goto done;
1245                 }
1246         }
1247
1248         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1249                 if (smp_irk_matches(hdev, irk->val, rpa)) {
1250                         bacpy(&irk->rpa, rpa);
1251                         irk_to_return = irk;
1252                         goto done;
1253                 }
1254         }
1255
1256 done:
1257         if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1258                                                 irk_to_return->val)) {
1259                 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1260                                         &irk_to_return->bdaddr);
1261                 irk_to_return = NULL;
1262         }
1263
1264         rcu_read_unlock();
1265
1266         return irk_to_return;
1267 }
1268
1269 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1270                                      u8 addr_type)
1271 {
1272         struct smp_irk *irk_to_return = NULL;
1273         struct smp_irk *irk;
1274
1275         /* Identity Address must be public or static random */
1276         if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
1277                 return NULL;
1278
1279         rcu_read_lock();
1280         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1281                 if (addr_type == irk->addr_type &&
1282                     bacmp(bdaddr, &irk->bdaddr) == 0) {
1283                         irk_to_return = irk;
1284                         goto done;
1285                 }
1286         }
1287
1288 done:
1289
1290         if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1291                                                 irk_to_return->val)) {
1292                 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1293                                         &irk_to_return->bdaddr);
1294                 irk_to_return = NULL;
1295         }
1296
1297         rcu_read_unlock();
1298
1299         return irk_to_return;
1300 }
1301
1302 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1303                                   bdaddr_t *bdaddr, u8 *val, u8 type,
1304                                   u8 pin_len, bool *persistent)
1305 {
1306         struct link_key *key, *old_key;
1307         u8 old_key_type;
1308
1309         old_key = hci_find_link_key(hdev, bdaddr);
1310         if (old_key) {
1311                 old_key_type = old_key->type;
1312                 key = old_key;
1313         } else {
1314                 old_key_type = conn ? conn->key_type : 0xff;
1315                 key = kzalloc(sizeof(*key), GFP_KERNEL);
1316                 if (!key)
1317                         return NULL;
1318                 list_add_rcu(&key->list, &hdev->link_keys);
1319         }
1320
1321         BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1322
1323         /* Some buggy controller combinations generate a changed
1324          * combination key for legacy pairing even when there's no
1325          * previous key */
1326         if (type == HCI_LK_CHANGED_COMBINATION &&
1327             (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1328                 type = HCI_LK_COMBINATION;
1329                 if (conn)
1330                         conn->key_type = type;
1331         }
1332
1333         bacpy(&key->bdaddr, bdaddr);
1334         memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1335         key->pin_len = pin_len;
1336
1337         if (type == HCI_LK_CHANGED_COMBINATION)
1338                 key->type = old_key_type;
1339         else
1340                 key->type = type;
1341
1342         if (persistent)
1343                 *persistent = hci_persistent_key(hdev, conn, type,
1344                                                  old_key_type);
1345
1346         return key;
1347 }
1348
1349 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1350                             u8 addr_type, u8 type, u8 authenticated,
1351                             u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
1352 {
1353         struct smp_ltk *key, *old_key;
1354         u8 role = ltk_role(type);
1355
1356         old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
1357         if (old_key)
1358                 key = old_key;
1359         else {
1360                 key = kzalloc(sizeof(*key), GFP_KERNEL);
1361                 if (!key)
1362                         return NULL;
1363                 list_add_rcu(&key->list, &hdev->long_term_keys);
1364         }
1365
1366         bacpy(&key->bdaddr, bdaddr);
1367         key->bdaddr_type = addr_type;
1368         memcpy(key->val, tk, sizeof(key->val));
1369         key->authenticated = authenticated;
1370         key->ediv = ediv;
1371         key->rand = rand;
1372         key->enc_size = enc_size;
1373         key->type = type;
1374
1375         return key;
1376 }
1377
1378 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1379                             u8 addr_type, u8 val[16], bdaddr_t *rpa)
1380 {
1381         struct smp_irk *irk;
1382
1383         irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
1384         if (!irk) {
1385                 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
1386                 if (!irk)
1387                         return NULL;
1388
1389                 bacpy(&irk->bdaddr, bdaddr);
1390                 irk->addr_type = addr_type;
1391
1392                 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
1393         }
1394
1395         memcpy(irk->val, val, 16);
1396         bacpy(&irk->rpa, rpa);
1397
1398         return irk;
1399 }
1400
1401 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1402 {
1403         struct link_key *key;
1404
1405         key = hci_find_link_key(hdev, bdaddr);
1406         if (!key)
1407                 return -ENOENT;
1408
1409         BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1410
1411         list_del_rcu(&key->list);
1412         kfree_rcu(key, rcu);
1413
1414         return 0;
1415 }
1416
1417 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
1418 {
1419         struct smp_ltk *k, *tmp;
1420         int removed = 0;
1421
1422         list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1423                 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
1424                         continue;
1425
1426                 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1427
1428                 list_del_rcu(&k->list);
1429                 kfree_rcu(k, rcu);
1430                 removed++;
1431         }
1432
1433         return removed ? 0 : -ENOENT;
1434 }
1435
1436 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
1437 {
1438         struct smp_irk *k, *tmp;
1439
1440         list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1441                 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
1442                         continue;
1443
1444                 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1445
1446                 list_del_rcu(&k->list);
1447                 kfree_rcu(k, rcu);
1448         }
1449 }
1450
1451 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1452 {
1453         struct smp_ltk *k;
1454         struct smp_irk *irk;
1455         u8 addr_type;
1456
1457         if (type == BDADDR_BREDR) {
1458                 if (hci_find_link_key(hdev, bdaddr))
1459                         return true;
1460                 return false;
1461         }
1462
1463         /* Convert to HCI addr type which struct smp_ltk uses */
1464         if (type == BDADDR_LE_PUBLIC)
1465                 addr_type = ADDR_LE_DEV_PUBLIC;
1466         else
1467                 addr_type = ADDR_LE_DEV_RANDOM;
1468
1469         irk = hci_get_irk(hdev, bdaddr, addr_type);
1470         if (irk) {
1471                 bdaddr = &irk->bdaddr;
1472                 addr_type = irk->addr_type;
1473         }
1474
1475         rcu_read_lock();
1476         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1477                 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
1478                         rcu_read_unlock();
1479                         return true;
1480                 }
1481         }
1482         rcu_read_unlock();
1483
1484         return false;
1485 }
1486
1487 /* HCI command timer function */
1488 static void hci_cmd_timeout(struct work_struct *work)
1489 {
1490         struct hci_dev *hdev = container_of(work, struct hci_dev,
1491                                             cmd_timer.work);
1492
1493         if (hdev->sent_cmd) {
1494                 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
1495                 u16 opcode = __le16_to_cpu(sent->opcode);
1496
1497                 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
1498         } else {
1499                 bt_dev_err(hdev, "command tx timeout");
1500         }
1501
1502         if (hdev->cmd_timeout)
1503                 hdev->cmd_timeout(hdev);
1504
1505         atomic_set(&hdev->cmd_cnt, 1);
1506         queue_work(hdev->workqueue, &hdev->cmd_work);
1507 }
1508
1509 /* HCI ncmd timer function */
1510 static void hci_ncmd_timeout(struct work_struct *work)
1511 {
1512         struct hci_dev *hdev = container_of(work, struct hci_dev,
1513                                             ncmd_timer.work);
1514
1515         bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
1516
1517         /* During HCI_INIT phase no events can be injected if the ncmd timer
1518          * triggers since the procedure has its own timeout handling.
1519          */
1520         if (test_bit(HCI_INIT, &hdev->flags))
1521                 return;
1522
1523         /* This is an irrecoverable state, inject hardware error event */
1524         hci_reset_dev(hdev);
1525 }
1526
1527 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1528                                           bdaddr_t *bdaddr, u8 bdaddr_type)
1529 {
1530         struct oob_data *data;
1531
1532         list_for_each_entry(data, &hdev->remote_oob_data, list) {
1533                 if (bacmp(bdaddr, &data->bdaddr) != 0)
1534                         continue;
1535                 if (data->bdaddr_type != bdaddr_type)
1536                         continue;
1537                 return data;
1538         }
1539
1540         return NULL;
1541 }
1542
1543 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1544                                u8 bdaddr_type)
1545 {
1546         struct oob_data *data;
1547
1548         data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1549         if (!data)
1550                 return -ENOENT;
1551
1552         BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
1553
1554         list_del(&data->list);
1555         kfree(data);
1556
1557         return 0;
1558 }
1559
1560 void hci_remote_oob_data_clear(struct hci_dev *hdev)
1561 {
1562         struct oob_data *data, *n;
1563
1564         list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1565                 list_del(&data->list);
1566                 kfree(data);
1567         }
1568 }
1569
1570 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1571                             u8 bdaddr_type, u8 *hash192, u8 *rand192,
1572                             u8 *hash256, u8 *rand256)
1573 {
1574         struct oob_data *data;
1575
1576         data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1577         if (!data) {
1578                 data = kmalloc(sizeof(*data), GFP_KERNEL);
1579                 if (!data)
1580                         return -ENOMEM;
1581
1582                 bacpy(&data->bdaddr, bdaddr);
1583                 data->bdaddr_type = bdaddr_type;
1584                 list_add(&data->list, &hdev->remote_oob_data);
1585         }
1586
1587         if (hash192 && rand192) {
1588                 memcpy(data->hash192, hash192, sizeof(data->hash192));
1589                 memcpy(data->rand192, rand192, sizeof(data->rand192));
1590                 if (hash256 && rand256)
1591                         data->present = 0x03;
1592         } else {
1593                 memset(data->hash192, 0, sizeof(data->hash192));
1594                 memset(data->rand192, 0, sizeof(data->rand192));
1595                 if (hash256 && rand256)
1596                         data->present = 0x02;
1597                 else
1598                         data->present = 0x00;
1599         }
1600
1601         if (hash256 && rand256) {
1602                 memcpy(data->hash256, hash256, sizeof(data->hash256));
1603                 memcpy(data->rand256, rand256, sizeof(data->rand256));
1604         } else {
1605                 memset(data->hash256, 0, sizeof(data->hash256));
1606                 memset(data->rand256, 0, sizeof(data->rand256));
1607                 if (hash192 && rand192)
1608                         data->present = 0x01;
1609         }
1610
1611         BT_DBG("%s for %pMR", hdev->name, bdaddr);
1612
1613         return 0;
1614 }
1615
1616 /* This function requires the caller holds hdev->lock */
1617 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
1618 {
1619         struct adv_info *adv_instance;
1620
1621         list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
1622                 if (adv_instance->instance == instance)
1623                         return adv_instance;
1624         }
1625
1626         return NULL;
1627 }
1628
1629 /* This function requires the caller holds hdev->lock */
1630 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
1631 {
1632         struct adv_info *cur_instance;
1633
1634         cur_instance = hci_find_adv_instance(hdev, instance);
1635         if (!cur_instance)
1636                 return NULL;
1637
1638         if (cur_instance == list_last_entry(&hdev->adv_instances,
1639                                             struct adv_info, list))
1640                 return list_first_entry(&hdev->adv_instances,
1641                                                  struct adv_info, list);
1642         else
1643                 return list_next_entry(cur_instance, list);
1644 }
1645
1646 /* This function requires the caller holds hdev->lock */
1647 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
1648 {
1649         struct adv_info *adv_instance;
1650
1651         adv_instance = hci_find_adv_instance(hdev, instance);
1652         if (!adv_instance)
1653                 return -ENOENT;
1654
1655         BT_DBG("%s removing %dMR", hdev->name, instance);
1656
1657         if (hdev->cur_adv_instance == instance) {
1658                 if (hdev->adv_instance_timeout) {
1659                         cancel_delayed_work(&hdev->adv_instance_expire);
1660                         hdev->adv_instance_timeout = 0;
1661                 }
1662                 hdev->cur_adv_instance = 0x00;
1663         }
1664
1665         cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1666
1667         list_del(&adv_instance->list);
1668         kfree(adv_instance);
1669
1670         hdev->adv_instance_cnt--;
1671
1672         return 0;
1673 }
1674
1675 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
1676 {
1677         struct adv_info *adv_instance, *n;
1678
1679         list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
1680                 adv_instance->rpa_expired = rpa_expired;
1681 }
1682
1683 /* This function requires the caller holds hdev->lock */
1684 void hci_adv_instances_clear(struct hci_dev *hdev)
1685 {
1686         struct adv_info *adv_instance, *n;
1687
1688         if (hdev->adv_instance_timeout) {
1689                 cancel_delayed_work(&hdev->adv_instance_expire);
1690                 hdev->adv_instance_timeout = 0;
1691         }
1692
1693         list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
1694                 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1695                 list_del(&adv_instance->list);
1696                 kfree(adv_instance);
1697         }
1698
1699         hdev->adv_instance_cnt = 0;
1700         hdev->cur_adv_instance = 0x00;
1701 }
1702
1703 static void adv_instance_rpa_expired(struct work_struct *work)
1704 {
1705         struct adv_info *adv_instance = container_of(work, struct adv_info,
1706                                                      rpa_expired_cb.work);
1707
1708         BT_DBG("");
1709
1710         adv_instance->rpa_expired = true;
1711 }
1712
1713 /* This function requires the caller holds hdev->lock */
1714 struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance,
1715                                       u32 flags, u16 adv_data_len, u8 *adv_data,
1716                                       u16 scan_rsp_len, u8 *scan_rsp_data,
1717                                       u16 timeout, u16 duration, s8 tx_power,
1718                                       u32 min_interval, u32 max_interval,
1719                                       u8 mesh_handle)
1720 {
1721         struct adv_info *adv;
1722
1723         adv = hci_find_adv_instance(hdev, instance);
1724         if (adv) {
1725                 memset(adv->adv_data, 0, sizeof(adv->adv_data));
1726                 memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1727                 memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data));
1728         } else {
1729                 if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
1730                     instance < 1 || instance > hdev->le_num_of_adv_sets + 1)
1731                         return ERR_PTR(-EOVERFLOW);
1732
1733                 adv = kzalloc(sizeof(*adv), GFP_KERNEL);
1734                 if (!adv)
1735                         return ERR_PTR(-ENOMEM);
1736
1737                 adv->pending = true;
1738                 adv->instance = instance;
1739                 list_add(&adv->list, &hdev->adv_instances);
1740                 hdev->adv_instance_cnt++;
1741         }
1742
1743         adv->flags = flags;
1744         adv->min_interval = min_interval;
1745         adv->max_interval = max_interval;
1746         adv->tx_power = tx_power;
1747         /* Defining a mesh_handle changes the timing units to ms,
1748          * rather than seconds, and ties the instance to the requested
1749          * mesh_tx queue.
1750          */
1751         adv->mesh = mesh_handle;
1752
1753         hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data,
1754                                   scan_rsp_len, scan_rsp_data);
1755
1756         adv->timeout = timeout;
1757         adv->remaining_time = timeout;
1758
1759         if (duration == 0)
1760                 adv->duration = hdev->def_multi_adv_rotation_duration;
1761         else
1762                 adv->duration = duration;
1763
1764         INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired);
1765
1766         BT_DBG("%s for %dMR", hdev->name, instance);
1767
1768         return adv;
1769 }
1770
1771 /* This function requires the caller holds hdev->lock */
1772 struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance,
1773                                       u32 flags, u8 data_len, u8 *data,
1774                                       u32 min_interval, u32 max_interval)
1775 {
1776         struct adv_info *adv;
1777
1778         adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL,
1779                                    0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE,
1780                                    min_interval, max_interval, 0);
1781         if (IS_ERR(adv))
1782                 return adv;
1783
1784         adv->periodic = true;
1785         adv->per_adv_data_len = data_len;
1786
1787         if (data)
1788                 memcpy(adv->per_adv_data, data, data_len);
1789
1790         return adv;
1791 }
1792
1793 /* This function requires the caller holds hdev->lock */
1794 int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
1795                               u16 adv_data_len, u8 *adv_data,
1796                               u16 scan_rsp_len, u8 *scan_rsp_data)
1797 {
1798         struct adv_info *adv;
1799
1800         adv = hci_find_adv_instance(hdev, instance);
1801
1802         /* If advertisement doesn't exist, we can't modify its data */
1803         if (!adv)
1804                 return -ENOENT;
1805
1806         if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) {
1807                 memset(adv->adv_data, 0, sizeof(adv->adv_data));
1808                 memcpy(adv->adv_data, adv_data, adv_data_len);
1809                 adv->adv_data_len = adv_data_len;
1810                 adv->adv_data_changed = true;
1811         }
1812
1813         if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) {
1814                 memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1815                 memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len);
1816                 adv->scan_rsp_len = scan_rsp_len;
1817                 adv->scan_rsp_changed = true;
1818         }
1819
1820         /* Mark as changed if there are flags which would affect it */
1821         if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) ||
1822             adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1823                 adv->scan_rsp_changed = true;
1824
1825         return 0;
1826 }
1827
1828 /* This function requires the caller holds hdev->lock */
1829 u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1830 {
1831         u32 flags;
1832         struct adv_info *adv;
1833
1834         if (instance == 0x00) {
1835                 /* Instance 0 always manages the "Tx Power" and "Flags"
1836                  * fields
1837                  */
1838                 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1839
1840                 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1841                  * corresponds to the "connectable" instance flag.
1842                  */
1843                 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1844                         flags |= MGMT_ADV_FLAG_CONNECTABLE;
1845
1846                 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1847                         flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1848                 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1849                         flags |= MGMT_ADV_FLAG_DISCOV;
1850
1851                 return flags;
1852         }
1853
1854         adv = hci_find_adv_instance(hdev, instance);
1855
1856         /* Return 0 when we got an invalid instance identifier. */
1857         if (!adv)
1858                 return 0;
1859
1860         return adv->flags;
1861 }
1862
1863 bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1864 {
1865         struct adv_info *adv;
1866
1867         /* Instance 0x00 always set local name */
1868         if (instance == 0x00)
1869                 return true;
1870
1871         adv = hci_find_adv_instance(hdev, instance);
1872         if (!adv)
1873                 return false;
1874
1875         if (adv->flags & MGMT_ADV_FLAG_APPEARANCE ||
1876             adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1877                 return true;
1878
1879         return adv->scan_rsp_len ? true : false;
1880 }
1881
1882 /* This function requires the caller holds hdev->lock */
1883 void hci_adv_monitors_clear(struct hci_dev *hdev)
1884 {
1885         struct adv_monitor *monitor;
1886         int handle;
1887
1888         idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
1889                 hci_free_adv_monitor(hdev, monitor);
1890
1891         idr_destroy(&hdev->adv_monitors_idr);
1892 }
1893
1894 /* Frees the monitor structure and do some bookkeepings.
1895  * This function requires the caller holds hdev->lock.
1896  */
1897 void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1898 {
1899         struct adv_pattern *pattern;
1900         struct adv_pattern *tmp;
1901
1902         if (!monitor)
1903                 return;
1904
1905         list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
1906                 list_del(&pattern->list);
1907                 kfree(pattern);
1908         }
1909
1910         if (monitor->handle)
1911                 idr_remove(&hdev->adv_monitors_idr, monitor->handle);
1912
1913         if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
1914                 hdev->adv_monitors_cnt--;
1915                 mgmt_adv_monitor_removed(hdev, monitor->handle);
1916         }
1917
1918         kfree(monitor);
1919 }
1920
1921 /* Assigns handle to a monitor, and if offloading is supported and power is on,
1922  * also attempts to forward the request to the controller.
1923  * This function requires the caller holds hci_req_sync_lock.
1924  */
1925 int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1926 {
1927         int min, max, handle;
1928         int status = 0;
1929
1930         if (!monitor)
1931                 return -EINVAL;
1932
1933         hci_dev_lock(hdev);
1934
1935         min = HCI_MIN_ADV_MONITOR_HANDLE;
1936         max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
1937         handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
1938                            GFP_KERNEL);
1939
1940         hci_dev_unlock(hdev);
1941
1942         if (handle < 0)
1943                 return handle;
1944
1945         monitor->handle = handle;
1946
1947         if (!hdev_is_powered(hdev))
1948                 return status;
1949
1950         switch (hci_get_adv_monitor_offload_ext(hdev)) {
1951         case HCI_ADV_MONITOR_EXT_NONE:
1952                 bt_dev_dbg(hdev, "%s add monitor %d status %d", hdev->name,
1953                            monitor->handle, status);
1954                 /* Message was not forwarded to controller - not an error */
1955                 break;
1956
1957         case HCI_ADV_MONITOR_EXT_MSFT:
1958                 status = msft_add_monitor_pattern(hdev, monitor);
1959                 bt_dev_dbg(hdev, "%s add monitor %d msft status %d", hdev->name,
1960                            monitor->handle, status);
1961                 break;
1962         }
1963
1964         return status;
1965 }
1966
1967 /* Attempts to tell the controller and free the monitor. If somehow the
1968  * controller doesn't have a corresponding handle, remove anyway.
1969  * This function requires the caller holds hci_req_sync_lock.
1970  */
1971 static int hci_remove_adv_monitor(struct hci_dev *hdev,
1972                                   struct adv_monitor *monitor)
1973 {
1974         int status = 0;
1975
1976         switch (hci_get_adv_monitor_offload_ext(hdev)) {
1977         case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
1978                 bt_dev_dbg(hdev, "%s remove monitor %d status %d", hdev->name,
1979                            monitor->handle, status);
1980                 goto free_monitor;
1981
1982         case HCI_ADV_MONITOR_EXT_MSFT:
1983                 status = msft_remove_monitor(hdev, monitor);
1984                 bt_dev_dbg(hdev, "%s remove monitor %d msft status %d",
1985                            hdev->name, monitor->handle, status);
1986                 break;
1987         }
1988
1989         /* In case no matching handle registered, just free the monitor */
1990         if (status == -ENOENT)
1991                 goto free_monitor;
1992
1993         return status;
1994
1995 free_monitor:
1996         if (status == -ENOENT)
1997                 bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
1998                             monitor->handle);
1999         hci_free_adv_monitor(hdev, monitor);
2000
2001         return status;
2002 }
2003
2004 /* This function requires the caller holds hci_req_sync_lock */
2005 int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle)
2006 {
2007         struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
2008
2009         if (!monitor)
2010                 return -EINVAL;
2011
2012         return hci_remove_adv_monitor(hdev, monitor);
2013 }
2014
2015 /* This function requires the caller holds hci_req_sync_lock */
2016 int hci_remove_all_adv_monitor(struct hci_dev *hdev)
2017 {
2018         struct adv_monitor *monitor;
2019         int idr_next_id = 0;
2020         int status = 0;
2021
2022         while (1) {
2023                 monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
2024                 if (!monitor)
2025                         break;
2026
2027                 status = hci_remove_adv_monitor(hdev, monitor);
2028                 if (status)
2029                         return status;
2030
2031                 idr_next_id++;
2032         }
2033
2034         return status;
2035 }
2036
2037 /* This function requires the caller holds hdev->lock */
2038 bool hci_is_adv_monitoring(struct hci_dev *hdev)
2039 {
2040         return !idr_is_empty(&hdev->adv_monitors_idr);
2041 }
2042
2043 int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
2044 {
2045         if (msft_monitor_supported(hdev))
2046                 return HCI_ADV_MONITOR_EXT_MSFT;
2047
2048         return HCI_ADV_MONITOR_EXT_NONE;
2049 }
2050
2051 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2052                                          bdaddr_t *bdaddr, u8 type)
2053 {
2054         struct bdaddr_list *b;
2055
2056         list_for_each_entry(b, bdaddr_list, list) {
2057                 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2058                         return b;
2059         }
2060
2061         return NULL;
2062 }
2063
2064 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2065                                 struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2066                                 u8 type)
2067 {
2068         struct bdaddr_list_with_irk *b;
2069
2070         list_for_each_entry(b, bdaddr_list, list) {
2071                 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2072                         return b;
2073         }
2074
2075         return NULL;
2076 }
2077
2078 struct bdaddr_list_with_flags *
2079 hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
2080                                   bdaddr_t *bdaddr, u8 type)
2081 {
2082         struct bdaddr_list_with_flags *b;
2083
2084         list_for_each_entry(b, bdaddr_list, list) {
2085                 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2086                         return b;
2087         }
2088
2089         return NULL;
2090 }
2091
2092 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2093 {
2094         struct bdaddr_list *b, *n;
2095
2096         list_for_each_entry_safe(b, n, bdaddr_list, list) {
2097                 list_del(&b->list);
2098                 kfree(b);
2099         }
2100 }
2101
2102 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2103 {
2104         struct bdaddr_list *entry;
2105
2106         if (!bacmp(bdaddr, BDADDR_ANY))
2107                 return -EBADF;
2108
2109         if (hci_bdaddr_list_lookup(list, bdaddr, type))
2110                 return -EEXIST;
2111
2112         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2113         if (!entry)
2114                 return -ENOMEM;
2115
2116         bacpy(&entry->bdaddr, bdaddr);
2117         entry->bdaddr_type = type;
2118
2119         list_add(&entry->list, list);
2120
2121         return 0;
2122 }
2123
2124 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2125                                         u8 type, u8 *peer_irk, u8 *local_irk)
2126 {
2127         struct bdaddr_list_with_irk *entry;
2128
2129         if (!bacmp(bdaddr, BDADDR_ANY))
2130                 return -EBADF;
2131
2132         if (hci_bdaddr_list_lookup(list, bdaddr, type))
2133                 return -EEXIST;
2134
2135         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2136         if (!entry)
2137                 return -ENOMEM;
2138
2139         bacpy(&entry->bdaddr, bdaddr);
2140         entry->bdaddr_type = type;
2141
2142         if (peer_irk)
2143                 memcpy(entry->peer_irk, peer_irk, 16);
2144
2145         if (local_irk)
2146                 memcpy(entry->local_irk, local_irk, 16);
2147
2148         list_add(&entry->list, list);
2149
2150         return 0;
2151 }
2152
2153 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2154                                    u8 type, u32 flags)
2155 {
2156         struct bdaddr_list_with_flags *entry;
2157
2158         if (!bacmp(bdaddr, BDADDR_ANY))
2159                 return -EBADF;
2160
2161         if (hci_bdaddr_list_lookup(list, bdaddr, type))
2162                 return -EEXIST;
2163
2164         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2165         if (!entry)
2166                 return -ENOMEM;
2167
2168         bacpy(&entry->bdaddr, bdaddr);
2169         entry->bdaddr_type = type;
2170         entry->flags = flags;
2171
2172         list_add(&entry->list, list);
2173
2174         return 0;
2175 }
2176
2177 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2178 {
2179         struct bdaddr_list *entry;
2180
2181         if (!bacmp(bdaddr, BDADDR_ANY)) {
2182                 hci_bdaddr_list_clear(list);
2183                 return 0;
2184         }
2185
2186         entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2187         if (!entry)
2188                 return -ENOENT;
2189
2190         list_del(&entry->list);
2191         kfree(entry);
2192
2193         return 0;
2194 }
2195
2196 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2197                                                         u8 type)
2198 {
2199         struct bdaddr_list_with_irk *entry;
2200
2201         if (!bacmp(bdaddr, BDADDR_ANY)) {
2202                 hci_bdaddr_list_clear(list);
2203                 return 0;
2204         }
2205
2206         entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2207         if (!entry)
2208                 return -ENOENT;
2209
2210         list_del(&entry->list);
2211         kfree(entry);
2212
2213         return 0;
2214 }
2215
2216 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2217                                    u8 type)
2218 {
2219         struct bdaddr_list_with_flags *entry;
2220
2221         if (!bacmp(bdaddr, BDADDR_ANY)) {
2222                 hci_bdaddr_list_clear(list);
2223                 return 0;
2224         }
2225
2226         entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
2227         if (!entry)
2228                 return -ENOENT;
2229
2230         list_del(&entry->list);
2231         kfree(entry);
2232
2233         return 0;
2234 }
2235
2236 /* This function requires the caller holds hdev->lock */
2237 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2238                                                bdaddr_t *addr, u8 addr_type)
2239 {
2240         struct hci_conn_params *params;
2241
2242         list_for_each_entry(params, &hdev->le_conn_params, list) {
2243                 if (bacmp(&params->addr, addr) == 0 &&
2244                     params->addr_type == addr_type) {
2245                         return params;
2246                 }
2247         }
2248
2249         return NULL;
2250 }
2251
2252 /* This function requires the caller holds hdev->lock */
2253 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2254                                                   bdaddr_t *addr, u8 addr_type)
2255 {
2256         struct hci_conn_params *param;
2257
2258         list_for_each_entry(param, list, action) {
2259                 if (bacmp(&param->addr, addr) == 0 &&
2260                     param->addr_type == addr_type)
2261                         return param;
2262         }
2263
2264         return NULL;
2265 }
2266
2267 /* This function requires the caller holds hdev->lock */
2268 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2269                                             bdaddr_t *addr, u8 addr_type)
2270 {
2271         struct hci_conn_params *params;
2272
2273         params = hci_conn_params_lookup(hdev, addr, addr_type);
2274         if (params)
2275                 return params;
2276
2277         params = kzalloc(sizeof(*params), GFP_KERNEL);
2278         if (!params) {
2279                 bt_dev_err(hdev, "out of memory");
2280                 return NULL;
2281         }
2282
2283         bacpy(&params->addr, addr);
2284         params->addr_type = addr_type;
2285
2286         list_add(&params->list, &hdev->le_conn_params);
2287         INIT_LIST_HEAD(&params->action);
2288
2289         params->conn_min_interval = hdev->le_conn_min_interval;
2290         params->conn_max_interval = hdev->le_conn_max_interval;
2291         params->conn_latency = hdev->le_conn_latency;
2292         params->supervision_timeout = hdev->le_supv_timeout;
2293         params->auto_connect = HCI_AUTO_CONN_DISABLED;
2294
2295         BT_DBG("addr %pMR (type %u)", addr, addr_type);
2296
2297         return params;
2298 }
2299
2300 static void hci_conn_params_free(struct hci_conn_params *params)
2301 {
2302         if (params->conn) {
2303                 hci_conn_drop(params->conn);
2304                 hci_conn_put(params->conn);
2305         }
2306
2307         list_del(&params->action);
2308         list_del(&params->list);
2309         kfree(params);
2310 }
2311
2312 /* This function requires the caller holds hdev->lock */
2313 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2314 {
2315         struct hci_conn_params *params;
2316
2317         params = hci_conn_params_lookup(hdev, addr, addr_type);
2318         if (!params)
2319                 return;
2320
2321         hci_conn_params_free(params);
2322
2323         hci_update_passive_scan(hdev);
2324
2325         BT_DBG("addr %pMR (type %u)", addr, addr_type);
2326 }
2327
2328 /* This function requires the caller holds hdev->lock */
2329 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2330 {
2331         struct hci_conn_params *params, *tmp;
2332
2333         list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2334                 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2335                         continue;
2336
2337                 /* If trying to establish one time connection to disabled
2338                  * device, leave the params, but mark them as just once.
2339                  */
2340                 if (params->explicit_connect) {
2341                         params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2342                         continue;
2343                 }
2344
2345                 list_del(&params->list);
2346                 kfree(params);
2347         }
2348
2349         BT_DBG("All LE disabled connection parameters were removed");
2350 }
2351
2352 /* This function requires the caller holds hdev->lock */
2353 static void hci_conn_params_clear_all(struct hci_dev *hdev)
2354 {
2355         struct hci_conn_params *params, *tmp;
2356
2357         list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2358                 hci_conn_params_free(params);
2359
2360         BT_DBG("All LE connection parameters were removed");
2361 }
2362
2363 /* Copy the Identity Address of the controller.
2364  *
2365  * If the controller has a public BD_ADDR, then by default use that one.
2366  * If this is a LE only controller without a public address, default to
2367  * the static random address.
2368  *
2369  * For debugging purposes it is possible to force controllers with a
2370  * public address to use the static random address instead.
2371  *
2372  * In case BR/EDR has been disabled on a dual-mode controller and
2373  * userspace has configured a static address, then that address
2374  * becomes the identity address instead of the public BR/EDR address.
2375  */
2376 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2377                                u8 *bdaddr_type)
2378 {
2379         if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2380             !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2381             (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2382              bacmp(&hdev->static_addr, BDADDR_ANY))) {
2383                 bacpy(bdaddr, &hdev->static_addr);
2384                 *bdaddr_type = ADDR_LE_DEV_RANDOM;
2385         } else {
2386                 bacpy(bdaddr, &hdev->bdaddr);
2387                 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
2388         }
2389 }
2390
2391 static void hci_clear_wake_reason(struct hci_dev *hdev)
2392 {
2393         hci_dev_lock(hdev);
2394
2395         hdev->wake_reason = 0;
2396         bacpy(&hdev->wake_addr, BDADDR_ANY);
2397         hdev->wake_addr_type = 0;
2398
2399         hci_dev_unlock(hdev);
2400 }
2401
2402 static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
2403                                 void *data)
2404 {
2405         struct hci_dev *hdev =
2406                 container_of(nb, struct hci_dev, suspend_notifier);
2407         int ret = 0;
2408
2409         /* Userspace has full control of this device. Do nothing. */
2410         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2411                 return NOTIFY_DONE;
2412
2413         if (action == PM_SUSPEND_PREPARE)
2414                 ret = hci_suspend_dev(hdev);
2415         else if (action == PM_POST_SUSPEND)
2416                 ret = hci_resume_dev(hdev);
2417
2418         if (ret)
2419                 bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
2420                            action, ret);
2421
2422         return NOTIFY_DONE;
2423 }
2424
2425 /* Alloc HCI device */
2426 struct hci_dev *hci_alloc_dev_priv(int sizeof_priv)
2427 {
2428         struct hci_dev *hdev;
2429         unsigned int alloc_size;
2430
2431         alloc_size = sizeof(*hdev);
2432         if (sizeof_priv) {
2433                 /* Fixme: May need ALIGN-ment? */
2434                 alloc_size += sizeof_priv;
2435         }
2436
2437         hdev = kzalloc(alloc_size, GFP_KERNEL);
2438         if (!hdev)
2439                 return NULL;
2440
2441         hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2442         hdev->esco_type = (ESCO_HV1);
2443         hdev->link_mode = (HCI_LM_ACCEPT);
2444         hdev->num_iac = 0x01;           /* One IAC support is mandatory */
2445         hdev->io_capability = 0x03;     /* No Input No Output */
2446         hdev->manufacturer = 0xffff;    /* Default to internal use */
2447         hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2448         hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2449         hdev->adv_instance_cnt = 0;
2450         hdev->cur_adv_instance = 0x00;
2451         hdev->adv_instance_timeout = 0;
2452
2453         hdev->advmon_allowlist_duration = 300;
2454         hdev->advmon_no_filter_duration = 500;
2455         hdev->enable_advmon_interleave_scan = 0x00;     /* Default to disable */
2456
2457         hdev->sniff_max_interval = 800;
2458         hdev->sniff_min_interval = 80;
2459
2460         hdev->le_adv_channel_map = 0x07;
2461         hdev->le_adv_min_interval = 0x0800;
2462         hdev->le_adv_max_interval = 0x0800;
2463         hdev->le_scan_interval = 0x0060;
2464         hdev->le_scan_window = 0x0030;
2465         hdev->le_scan_int_suspend = 0x0400;
2466         hdev->le_scan_window_suspend = 0x0012;
2467         hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
2468         hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
2469         hdev->le_scan_int_adv_monitor = 0x0060;
2470         hdev->le_scan_window_adv_monitor = 0x0030;
2471         hdev->le_scan_int_connect = 0x0060;
2472         hdev->le_scan_window_connect = 0x0060;
2473         hdev->le_conn_min_interval = 0x0018;
2474         hdev->le_conn_max_interval = 0x0028;
2475         hdev->le_conn_latency = 0x0000;
2476         hdev->le_supv_timeout = 0x002a;
2477         hdev->le_def_tx_len = 0x001b;
2478         hdev->le_def_tx_time = 0x0148;
2479         hdev->le_max_tx_len = 0x001b;
2480         hdev->le_max_tx_time = 0x0148;
2481         hdev->le_max_rx_len = 0x001b;
2482         hdev->le_max_rx_time = 0x0148;
2483         hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
2484         hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
2485         hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
2486         hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
2487         hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
2488         hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
2489         hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
2490         hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
2491         hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
2492
2493         hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2494         hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2495         hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2496         hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2497         hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
2498         hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
2499
2500         /* default 1.28 sec page scan */
2501         hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
2502         hdev->def_page_scan_int = 0x0800;
2503         hdev->def_page_scan_window = 0x0012;
2504
2505         mutex_init(&hdev->lock);
2506         mutex_init(&hdev->req_lock);
2507
2508         INIT_LIST_HEAD(&hdev->mesh_pending);
2509         INIT_LIST_HEAD(&hdev->mgmt_pending);
2510         INIT_LIST_HEAD(&hdev->reject_list);
2511         INIT_LIST_HEAD(&hdev->accept_list);
2512         INIT_LIST_HEAD(&hdev->uuids);
2513         INIT_LIST_HEAD(&hdev->link_keys);
2514         INIT_LIST_HEAD(&hdev->long_term_keys);
2515         INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2516         INIT_LIST_HEAD(&hdev->remote_oob_data);
2517         INIT_LIST_HEAD(&hdev->le_accept_list);
2518         INIT_LIST_HEAD(&hdev->le_resolv_list);
2519         INIT_LIST_HEAD(&hdev->le_conn_params);
2520         INIT_LIST_HEAD(&hdev->pend_le_conns);
2521         INIT_LIST_HEAD(&hdev->pend_le_reports);
2522         INIT_LIST_HEAD(&hdev->conn_hash.list);
2523         INIT_LIST_HEAD(&hdev->adv_instances);
2524         INIT_LIST_HEAD(&hdev->blocked_keys);
2525         INIT_LIST_HEAD(&hdev->monitored_devices);
2526
2527         INIT_LIST_HEAD(&hdev->local_codecs);
2528         INIT_WORK(&hdev->rx_work, hci_rx_work);
2529         INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2530         INIT_WORK(&hdev->tx_work, hci_tx_work);
2531         INIT_WORK(&hdev->power_on, hci_power_on);
2532         INIT_WORK(&hdev->error_reset, hci_error_reset);
2533
2534         hci_cmd_sync_init(hdev);
2535
2536         INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2537
2538         skb_queue_head_init(&hdev->rx_q);
2539         skb_queue_head_init(&hdev->cmd_q);
2540         skb_queue_head_init(&hdev->raw_q);
2541
2542         init_waitqueue_head(&hdev->req_wait_q);
2543
2544         INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
2545         INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
2546
2547         hci_request_setup(hdev);
2548
2549         hci_init_sysfs(hdev);
2550         discovery_init(hdev);
2551
2552         return hdev;
2553 }
2554 EXPORT_SYMBOL(hci_alloc_dev_priv);
2555
2556 /* Free HCI device */
2557 void hci_free_dev(struct hci_dev *hdev)
2558 {
2559         /* will free via device release */
2560         put_device(&hdev->dev);
2561 }
2562 EXPORT_SYMBOL(hci_free_dev);
2563
2564 /* Register HCI device */
2565 int hci_register_dev(struct hci_dev *hdev)
2566 {
2567         int id, error;
2568
2569         if (!hdev->open || !hdev->close || !hdev->send)
2570                 return -EINVAL;
2571
2572         /* Do not allow HCI_AMP devices to register at index 0,
2573          * so the index can be used as the AMP controller ID.
2574          */
2575         switch (hdev->dev_type) {
2576         case HCI_PRIMARY:
2577                 id = ida_simple_get(&hci_index_ida, 0, HCI_MAX_ID, GFP_KERNEL);
2578                 break;
2579         case HCI_AMP:
2580                 id = ida_simple_get(&hci_index_ida, 1, HCI_MAX_ID, GFP_KERNEL);
2581                 break;
2582         default:
2583                 return -EINVAL;
2584         }
2585
2586         if (id < 0)
2587                 return id;
2588
2589         snprintf(hdev->name, sizeof(hdev->name), "hci%d", id);
2590         hdev->id = id;
2591
2592         BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2593
2594         hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
2595         if (!hdev->workqueue) {
2596                 error = -ENOMEM;
2597                 goto err;
2598         }
2599
2600         hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
2601                                                       hdev->name);
2602         if (!hdev->req_workqueue) {
2603                 destroy_workqueue(hdev->workqueue);
2604                 error = -ENOMEM;
2605                 goto err;
2606         }
2607
2608         if (!IS_ERR_OR_NULL(bt_debugfs))
2609                 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
2610
2611         dev_set_name(&hdev->dev, "%s", hdev->name);
2612
2613         error = device_add(&hdev->dev);
2614         if (error < 0)
2615                 goto err_wqueue;
2616
2617         hci_leds_init(hdev);
2618
2619         hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2620                                     RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2621                                     hdev);
2622         if (hdev->rfkill) {
2623                 if (rfkill_register(hdev->rfkill) < 0) {
2624                         rfkill_destroy(hdev->rfkill);
2625                         hdev->rfkill = NULL;
2626                 }
2627         }
2628
2629         if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
2630                 hci_dev_set_flag(hdev, HCI_RFKILLED);
2631
2632         hci_dev_set_flag(hdev, HCI_SETUP);
2633         hci_dev_set_flag(hdev, HCI_AUTO_OFF);
2634
2635         if (hdev->dev_type == HCI_PRIMARY) {
2636                 /* Assume BR/EDR support until proven otherwise (such as
2637                  * through reading supported features during init.
2638                  */
2639                 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
2640         }
2641
2642         write_lock(&hci_dev_list_lock);
2643         list_add(&hdev->list, &hci_dev_list);
2644         write_unlock(&hci_dev_list_lock);
2645
2646         /* Devices that are marked for raw-only usage are unconfigured
2647          * and should not be included in normal operation.
2648          */
2649         if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2650                 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
2651
2652         /* Mark Remote Wakeup connection flag as supported if driver has wakeup
2653          * callback.
2654          */
2655         if (hdev->wakeup)
2656                 hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP;
2657
2658         hci_sock_dev_event(hdev, HCI_DEV_REG);
2659         hci_dev_hold(hdev);
2660
2661         error = hci_register_suspend_notifier(hdev);
2662         if (error)
2663                 BT_WARN("register suspend notifier failed error:%d\n", error);
2664
2665         queue_work(hdev->req_workqueue, &hdev->power_on);
2666
2667         idr_init(&hdev->adv_monitors_idr);
2668         msft_register(hdev);
2669
2670         return id;
2671
2672 err_wqueue:
2673         debugfs_remove_recursive(hdev->debugfs);
2674         destroy_workqueue(hdev->workqueue);
2675         destroy_workqueue(hdev->req_workqueue);
2676 err:
2677         ida_simple_remove(&hci_index_ida, hdev->id);
2678
2679         return error;
2680 }
2681 EXPORT_SYMBOL(hci_register_dev);
2682
2683 /* Unregister HCI device */
2684 void hci_unregister_dev(struct hci_dev *hdev)
2685 {
2686         BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2687
2688         mutex_lock(&hdev->unregister_lock);
2689         hci_dev_set_flag(hdev, HCI_UNREGISTER);
2690         mutex_unlock(&hdev->unregister_lock);
2691
2692         write_lock(&hci_dev_list_lock);
2693         list_del(&hdev->list);
2694         write_unlock(&hci_dev_list_lock);
2695
2696         cancel_work_sync(&hdev->power_on);
2697
2698         hci_cmd_sync_clear(hdev);
2699
2700         hci_unregister_suspend_notifier(hdev);
2701
2702         msft_unregister(hdev);
2703
2704         hci_dev_do_close(hdev);
2705
2706         if (!test_bit(HCI_INIT, &hdev->flags) &&
2707             !hci_dev_test_flag(hdev, HCI_SETUP) &&
2708             !hci_dev_test_flag(hdev, HCI_CONFIG)) {
2709                 hci_dev_lock(hdev);
2710                 mgmt_index_removed(hdev);
2711                 hci_dev_unlock(hdev);
2712         }
2713
2714         /* mgmt_index_removed should take care of emptying the
2715          * pending list */
2716         BUG_ON(!list_empty(&hdev->mgmt_pending));
2717
2718         hci_sock_dev_event(hdev, HCI_DEV_UNREG);
2719
2720         if (hdev->rfkill) {
2721                 rfkill_unregister(hdev->rfkill);
2722                 rfkill_destroy(hdev->rfkill);
2723         }
2724
2725         device_del(&hdev->dev);
2726         /* Actual cleanup is deferred until hci_release_dev(). */
2727         hci_dev_put(hdev);
2728 }
2729 EXPORT_SYMBOL(hci_unregister_dev);
2730
2731 /* Release HCI device */
2732 void hci_release_dev(struct hci_dev *hdev)
2733 {
2734         debugfs_remove_recursive(hdev->debugfs);
2735         kfree_const(hdev->hw_info);
2736         kfree_const(hdev->fw_info);
2737
2738         destroy_workqueue(hdev->workqueue);
2739         destroy_workqueue(hdev->req_workqueue);
2740
2741         hci_dev_lock(hdev);
2742         hci_bdaddr_list_clear(&hdev->reject_list);
2743         hci_bdaddr_list_clear(&hdev->accept_list);
2744         hci_uuids_clear(hdev);
2745         hci_link_keys_clear(hdev);
2746         hci_smp_ltks_clear(hdev);
2747         hci_smp_irks_clear(hdev);
2748         hci_remote_oob_data_clear(hdev);
2749         hci_adv_instances_clear(hdev);
2750         hci_adv_monitors_clear(hdev);
2751         hci_bdaddr_list_clear(&hdev->le_accept_list);
2752         hci_bdaddr_list_clear(&hdev->le_resolv_list);
2753         hci_conn_params_clear_all(hdev);
2754         hci_discovery_filter_clear(hdev);
2755         hci_blocked_keys_clear(hdev);
2756         hci_dev_unlock(hdev);
2757
2758         ida_simple_remove(&hci_index_ida, hdev->id);
2759         kfree_skb(hdev->sent_cmd);
2760         kfree_skb(hdev->recv_event);
2761         kfree(hdev);
2762 }
2763 EXPORT_SYMBOL(hci_release_dev);
2764
2765 int hci_register_suspend_notifier(struct hci_dev *hdev)
2766 {
2767         int ret = 0;
2768
2769         if (!hdev->suspend_notifier.notifier_call &&
2770             !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
2771                 hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
2772                 ret = register_pm_notifier(&hdev->suspend_notifier);
2773         }
2774
2775         return ret;
2776 }
2777
2778 int hci_unregister_suspend_notifier(struct hci_dev *hdev)
2779 {
2780         int ret = 0;
2781
2782         if (hdev->suspend_notifier.notifier_call) {
2783                 ret = unregister_pm_notifier(&hdev->suspend_notifier);
2784                 if (!ret)
2785                         hdev->suspend_notifier.notifier_call = NULL;
2786         }
2787
2788         return ret;
2789 }
2790
2791 /* Suspend HCI device */
2792 int hci_suspend_dev(struct hci_dev *hdev)
2793 {
2794         int ret;
2795
2796         bt_dev_dbg(hdev, "");
2797
2798         /* Suspend should only act on when powered. */
2799         if (!hdev_is_powered(hdev) ||
2800             hci_dev_test_flag(hdev, HCI_UNREGISTER))
2801                 return 0;
2802
2803         /* If powering down don't attempt to suspend */
2804         if (mgmt_powering_down(hdev))
2805                 return 0;
2806
2807         hci_req_sync_lock(hdev);
2808         ret = hci_suspend_sync(hdev);
2809         hci_req_sync_unlock(hdev);
2810
2811         hci_clear_wake_reason(hdev);
2812         mgmt_suspending(hdev, hdev->suspend_state);
2813
2814         hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
2815         return ret;
2816 }
2817 EXPORT_SYMBOL(hci_suspend_dev);
2818
2819 /* Resume HCI device */
2820 int hci_resume_dev(struct hci_dev *hdev)
2821 {
2822         int ret;
2823
2824         bt_dev_dbg(hdev, "");
2825
2826         /* Resume should only act on when powered. */
2827         if (!hdev_is_powered(hdev) ||
2828             hci_dev_test_flag(hdev, HCI_UNREGISTER))
2829                 return 0;
2830
2831         /* If powering down don't attempt to resume */
2832         if (mgmt_powering_down(hdev))
2833                 return 0;
2834
2835         hci_req_sync_lock(hdev);
2836         ret = hci_resume_sync(hdev);
2837         hci_req_sync_unlock(hdev);
2838
2839         mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
2840                       hdev->wake_addr_type);
2841
2842         hci_sock_dev_event(hdev, HCI_DEV_RESUME);
2843         return ret;
2844 }
2845 EXPORT_SYMBOL(hci_resume_dev);
2846
2847 /* Reset HCI device */
2848 int hci_reset_dev(struct hci_dev *hdev)
2849 {
2850         static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
2851         struct sk_buff *skb;
2852
2853         skb = bt_skb_alloc(3, GFP_ATOMIC);
2854         if (!skb)
2855                 return -ENOMEM;
2856
2857         hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
2858         skb_put_data(skb, hw_err, 3);
2859
2860         bt_dev_err(hdev, "Injecting HCI hardware error event");
2861
2862         /* Send Hardware Error to upper stack */
2863         return hci_recv_frame(hdev, skb);
2864 }
2865 EXPORT_SYMBOL(hci_reset_dev);
2866
2867 /* Receive frame from HCI drivers */
2868 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
2869 {
2870         if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2871                       && !test_bit(HCI_INIT, &hdev->flags))) {
2872                 kfree_skb(skb);
2873                 return -ENXIO;
2874         }
2875
2876         switch (hci_skb_pkt_type(skb)) {
2877         case HCI_EVENT_PKT:
2878                 break;
2879         case HCI_ACLDATA_PKT:
2880                 /* Detect if ISO packet has been sent as ACL */
2881                 if (hci_conn_num(hdev, ISO_LINK)) {
2882                         __u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2883                         __u8 type;
2884
2885                         type = hci_conn_lookup_type(hdev, hci_handle(handle));
2886                         if (type == ISO_LINK)
2887                                 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
2888                 }
2889                 break;
2890         case HCI_SCODATA_PKT:
2891                 break;
2892         case HCI_ISODATA_PKT:
2893                 break;
2894         default:
2895                 kfree_skb(skb);
2896                 return -EINVAL;
2897         }
2898
2899         /* Incoming skb */
2900         bt_cb(skb)->incoming = 1;
2901
2902         /* Time stamp */
2903         __net_timestamp(skb);
2904
2905         skb_queue_tail(&hdev->rx_q, skb);
2906         queue_work(hdev->workqueue, &hdev->rx_work);
2907
2908         return 0;
2909 }
2910 EXPORT_SYMBOL(hci_recv_frame);
2911
2912 /* Receive diagnostic message from HCI drivers */
2913 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
2914 {
2915         /* Mark as diagnostic packet */
2916         hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
2917
2918         /* Time stamp */
2919         __net_timestamp(skb);
2920
2921         skb_queue_tail(&hdev->rx_q, skb);
2922         queue_work(hdev->workqueue, &hdev->rx_work);
2923
2924         return 0;
2925 }
2926 EXPORT_SYMBOL(hci_recv_diag);
2927
2928 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
2929 {
2930         va_list vargs;
2931
2932         va_start(vargs, fmt);
2933         kfree_const(hdev->hw_info);
2934         hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2935         va_end(vargs);
2936 }
2937 EXPORT_SYMBOL(hci_set_hw_info);
2938
2939 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
2940 {
2941         va_list vargs;
2942
2943         va_start(vargs, fmt);
2944         kfree_const(hdev->fw_info);
2945         hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2946         va_end(vargs);
2947 }
2948 EXPORT_SYMBOL(hci_set_fw_info);
2949
2950 /* ---- Interface to upper protocols ---- */
2951
2952 int hci_register_cb(struct hci_cb *cb)
2953 {
2954         BT_DBG("%p name %s", cb, cb->name);
2955
2956         mutex_lock(&hci_cb_list_lock);
2957         list_add_tail(&cb->list, &hci_cb_list);
2958         mutex_unlock(&hci_cb_list_lock);
2959
2960         return 0;
2961 }
2962 EXPORT_SYMBOL(hci_register_cb);
2963
2964 int hci_unregister_cb(struct hci_cb *cb)
2965 {
2966         BT_DBG("%p name %s", cb, cb->name);
2967
2968         mutex_lock(&hci_cb_list_lock);
2969         list_del(&cb->list);
2970         mutex_unlock(&hci_cb_list_lock);
2971
2972         return 0;
2973 }
2974 EXPORT_SYMBOL(hci_unregister_cb);
2975
2976 static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
2977 {
2978         int err;
2979
2980         BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
2981                skb->len);
2982
2983         /* Time stamp */
2984         __net_timestamp(skb);
2985
2986         /* Send copy to monitor */
2987         hci_send_to_monitor(hdev, skb);
2988
2989         if (atomic_read(&hdev->promisc)) {
2990                 /* Send copy to the sockets */
2991                 hci_send_to_sock(hdev, skb);
2992         }
2993
2994         /* Get rid of skb owner, prior to sending to the driver. */
2995         skb_orphan(skb);
2996
2997         if (!test_bit(HCI_RUNNING, &hdev->flags)) {
2998                 kfree_skb(skb);
2999                 return -EINVAL;
3000         }
3001
3002         err = hdev->send(hdev, skb);
3003         if (err < 0) {
3004                 bt_dev_err(hdev, "sending frame failed (%d)", err);
3005                 kfree_skb(skb);
3006                 return err;
3007         }
3008
3009         return 0;
3010 }
3011
3012 /* Send HCI command */
3013 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3014                  const void *param)
3015 {
3016         struct sk_buff *skb;
3017
3018         BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3019
3020         skb = hci_prepare_cmd(hdev, opcode, plen, param);
3021         if (!skb) {
3022                 bt_dev_err(hdev, "no memory for command");
3023                 return -ENOMEM;
3024         }
3025
3026         /* Stand-alone HCI commands must be flagged as
3027          * single-command requests.
3028          */
3029         bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3030
3031         skb_queue_tail(&hdev->cmd_q, skb);
3032         queue_work(hdev->workqueue, &hdev->cmd_work);
3033
3034         return 0;
3035 }
3036
3037 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3038                    const void *param)
3039 {
3040         struct sk_buff *skb;
3041
3042         if (hci_opcode_ogf(opcode) != 0x3f) {
3043                 /* A controller receiving a command shall respond with either
3044                  * a Command Status Event or a Command Complete Event.
3045                  * Therefore, all standard HCI commands must be sent via the
3046                  * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3047                  * Some vendors do not comply with this rule for vendor-specific
3048                  * commands and do not return any event. We want to support
3049                  * unresponded commands for such cases only.
3050                  */
3051                 bt_dev_err(hdev, "unresponded command not supported");
3052                 return -EINVAL;
3053         }
3054
3055         skb = hci_prepare_cmd(hdev, opcode, plen, param);
3056         if (!skb) {
3057                 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3058                            opcode);
3059                 return -ENOMEM;
3060         }
3061
3062         hci_send_frame(hdev, skb);
3063
3064         return 0;
3065 }
3066 EXPORT_SYMBOL(__hci_cmd_send);
3067
3068 /* Get data from the previously sent command */
3069 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3070 {
3071         struct hci_command_hdr *hdr;
3072
3073         if (!hdev->sent_cmd)
3074                 return NULL;
3075
3076         hdr = (void *) hdev->sent_cmd->data;
3077
3078         if (hdr->opcode != cpu_to_le16(opcode))
3079                 return NULL;
3080
3081         BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3082
3083         return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3084 }
3085
3086 /* Get data from last received event */
3087 void *hci_recv_event_data(struct hci_dev *hdev, __u8 event)
3088 {
3089         struct hci_event_hdr *hdr;
3090         int offset;
3091
3092         if (!hdev->recv_event)
3093                 return NULL;
3094
3095         hdr = (void *)hdev->recv_event->data;
3096         offset = sizeof(*hdr);
3097
3098         if (hdr->evt != event) {
3099                 /* In case of LE metaevent check the subevent match */
3100                 if (hdr->evt == HCI_EV_LE_META) {
3101                         struct hci_ev_le_meta *ev;
3102
3103                         ev = (void *)hdev->recv_event->data + offset;
3104                         offset += sizeof(*ev);
3105                         if (ev->subevent == event)
3106                                 goto found;
3107                 }
3108                 return NULL;
3109         }
3110
3111 found:
3112         bt_dev_dbg(hdev, "event 0x%2.2x", event);
3113
3114         return hdev->recv_event->data + offset;
3115 }
3116
3117 /* Send ACL data */
3118 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3119 {
3120         struct hci_acl_hdr *hdr;
3121         int len = skb->len;
3122
3123         skb_push(skb, HCI_ACL_HDR_SIZE);
3124         skb_reset_transport_header(skb);
3125         hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3126         hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3127         hdr->dlen   = cpu_to_le16(len);
3128 }
3129
3130 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3131                           struct sk_buff *skb, __u16 flags)
3132 {
3133         struct hci_conn *conn = chan->conn;
3134         struct hci_dev *hdev = conn->hdev;
3135         struct sk_buff *list;
3136
3137         skb->len = skb_headlen(skb);
3138         skb->data_len = 0;
3139
3140         hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3141
3142         switch (hdev->dev_type) {
3143         case HCI_PRIMARY:
3144                 hci_add_acl_hdr(skb, conn->handle, flags);
3145                 break;
3146         case HCI_AMP:
3147                 hci_add_acl_hdr(skb, chan->handle, flags);
3148                 break;
3149         default:
3150                 bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
3151                 return;
3152         }
3153
3154         list = skb_shinfo(skb)->frag_list;
3155         if (!list) {
3156                 /* Non fragmented */
3157                 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3158
3159                 skb_queue_tail(queue, skb);
3160         } else {
3161                 /* Fragmented */
3162                 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3163
3164                 skb_shinfo(skb)->frag_list = NULL;
3165
3166                 /* Queue all fragments atomically. We need to use spin_lock_bh
3167                  * here because of 6LoWPAN links, as there this function is
3168                  * called from softirq and using normal spin lock could cause
3169                  * deadlocks.
3170                  */
3171                 spin_lock_bh(&queue->lock);
3172
3173                 __skb_queue_tail(queue, skb);
3174
3175                 flags &= ~ACL_START;
3176                 flags |= ACL_CONT;
3177                 do {
3178                         skb = list; list = list->next;
3179
3180                         hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3181                         hci_add_acl_hdr(skb, conn->handle, flags);
3182
3183                         BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3184
3185                         __skb_queue_tail(queue, skb);
3186                 } while (list);
3187
3188                 spin_unlock_bh(&queue->lock);
3189         }
3190 }
3191
3192 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3193 {
3194         struct hci_dev *hdev = chan->conn->hdev;
3195
3196         BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3197
3198         hci_queue_acl(chan, &chan->data_q, skb, flags);
3199
3200         queue_work(hdev->workqueue, &hdev->tx_work);
3201 }
3202
3203 /* Send SCO data */
3204 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3205 {
3206         struct hci_dev *hdev = conn->hdev;
3207         struct hci_sco_hdr hdr;
3208
3209         BT_DBG("%s len %d", hdev->name, skb->len);
3210
3211         hdr.handle = cpu_to_le16(conn->handle);
3212         hdr.dlen   = skb->len;
3213
3214         skb_push(skb, HCI_SCO_HDR_SIZE);
3215         skb_reset_transport_header(skb);
3216         memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3217
3218         hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3219
3220         skb_queue_tail(&conn->data_q, skb);
3221         queue_work(hdev->workqueue, &hdev->tx_work);
3222 }
3223
3224 /* Send ISO data */
3225 static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags)
3226 {
3227         struct hci_iso_hdr *hdr;
3228         int len = skb->len;
3229
3230         skb_push(skb, HCI_ISO_HDR_SIZE);
3231         skb_reset_transport_header(skb);
3232         hdr = (struct hci_iso_hdr *)skb_transport_header(skb);
3233         hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3234         hdr->dlen   = cpu_to_le16(len);
3235 }
3236
3237 static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue,
3238                           struct sk_buff *skb)
3239 {
3240         struct hci_dev *hdev = conn->hdev;
3241         struct sk_buff *list;
3242         __u16 flags;
3243
3244         skb->len = skb_headlen(skb);
3245         skb->data_len = 0;
3246
3247         hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3248
3249         list = skb_shinfo(skb)->frag_list;
3250
3251         flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00);
3252         hci_add_iso_hdr(skb, conn->handle, flags);
3253
3254         if (!list) {
3255                 /* Non fragmented */
3256                 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3257
3258                 skb_queue_tail(queue, skb);
3259         } else {
3260                 /* Fragmented */
3261                 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3262
3263                 skb_shinfo(skb)->frag_list = NULL;
3264
3265                 __skb_queue_tail(queue, skb);
3266
3267                 do {
3268                         skb = list; list = list->next;
3269
3270                         hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3271                         flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END,
3272                                                    0x00);
3273                         hci_add_iso_hdr(skb, conn->handle, flags);
3274
3275                         BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3276
3277                         __skb_queue_tail(queue, skb);
3278                 } while (list);
3279         }
3280 }
3281
3282 void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb)
3283 {
3284         struct hci_dev *hdev = conn->hdev;
3285
3286         BT_DBG("%s len %d", hdev->name, skb->len);
3287
3288         hci_queue_iso(conn, &conn->data_q, skb);
3289
3290         queue_work(hdev->workqueue, &hdev->tx_work);
3291 }
3292
3293 /* ---- HCI TX task (outgoing data) ---- */
3294
3295 /* HCI Connection scheduler */
3296 static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote)
3297 {
3298         struct hci_dev *hdev;
3299         int cnt, q;
3300
3301         if (!conn) {
3302                 *quote = 0;
3303                 return;
3304         }
3305
3306         hdev = conn->hdev;
3307
3308         switch (conn->type) {
3309         case ACL_LINK:
3310                 cnt = hdev->acl_cnt;
3311                 break;
3312         case AMP_LINK:
3313                 cnt = hdev->block_cnt;
3314                 break;
3315         case SCO_LINK:
3316         case ESCO_LINK:
3317                 cnt = hdev->sco_cnt;
3318                 break;
3319         case LE_LINK:
3320                 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3321                 break;
3322         case ISO_LINK:
3323                 cnt = hdev->iso_mtu ? hdev->iso_cnt :
3324                         hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3325                 break;
3326         default:
3327                 cnt = 0;
3328                 bt_dev_err(hdev, "unknown link type %d", conn->type);
3329         }
3330
3331         q = cnt / num;
3332         *quote = q ? q : 1;
3333 }
3334
3335 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3336                                      int *quote)
3337 {
3338         struct hci_conn_hash *h = &hdev->conn_hash;
3339         struct hci_conn *conn = NULL, *c;
3340         unsigned int num = 0, min = ~0;
3341
3342         /* We don't have to lock device here. Connections are always
3343          * added and removed with TX task disabled. */
3344
3345         rcu_read_lock();
3346
3347         list_for_each_entry_rcu(c, &h->list, list) {
3348                 if (c->type != type || skb_queue_empty(&c->data_q))
3349                         continue;
3350
3351                 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3352                         continue;
3353
3354                 num++;
3355
3356                 if (c->sent < min) {
3357                         min  = c->sent;
3358                         conn = c;
3359                 }
3360
3361                 if (hci_conn_num(hdev, type) == num)
3362                         break;
3363         }
3364
3365         rcu_read_unlock();
3366
3367         hci_quote_sent(conn, num, quote);
3368
3369         BT_DBG("conn %p quote %d", conn, *quote);
3370         return conn;
3371 }
3372
3373 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3374 {
3375         struct hci_conn_hash *h = &hdev->conn_hash;
3376         struct hci_conn *c;
3377
3378         bt_dev_err(hdev, "link tx timeout");
3379
3380         rcu_read_lock();
3381
3382         /* Kill stalled connections */
3383         list_for_each_entry_rcu(c, &h->list, list) {
3384                 if (c->type == type && c->sent) {
3385                         bt_dev_err(hdev, "killing stalled connection %pMR",
3386                                    &c->dst);
3387                         hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3388                 }
3389         }
3390
3391         rcu_read_unlock();
3392 }
3393
3394 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3395                                       int *quote)
3396 {
3397         struct hci_conn_hash *h = &hdev->conn_hash;
3398         struct hci_chan *chan = NULL;
3399         unsigned int num = 0, min = ~0, cur_prio = 0;
3400         struct hci_conn *conn;
3401         int conn_num = 0;
3402
3403         BT_DBG("%s", hdev->name);
3404
3405         rcu_read_lock();
3406
3407         list_for_each_entry_rcu(conn, &h->list, list) {
3408                 struct hci_chan *tmp;
3409
3410                 if (conn->type != type)
3411                         continue;
3412
3413                 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3414                         continue;
3415
3416                 conn_num++;
3417
3418                 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3419                         struct sk_buff *skb;
3420
3421                         if (skb_queue_empty(&tmp->data_q))
3422                                 continue;
3423
3424                         skb = skb_peek(&tmp->data_q);
3425                         if (skb->priority < cur_prio)
3426                                 continue;
3427
3428                         if (skb->priority > cur_prio) {
3429                                 num = 0;
3430                                 min = ~0;
3431                                 cur_prio = skb->priority;
3432                         }
3433
3434                         num++;
3435
3436                         if (conn->sent < min) {
3437                                 min  = conn->sent;
3438                                 chan = tmp;
3439                         }
3440                 }
3441
3442                 if (hci_conn_num(hdev, type) == conn_num)
3443                         break;
3444         }
3445
3446         rcu_read_unlock();
3447
3448         if (!chan)
3449                 return NULL;
3450
3451         hci_quote_sent(chan->conn, num, quote);
3452
3453         BT_DBG("chan %p quote %d", chan, *quote);
3454         return chan;
3455 }
3456
3457 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3458 {
3459         struct hci_conn_hash *h = &hdev->conn_hash;
3460         struct hci_conn *conn;
3461         int num = 0;
3462
3463         BT_DBG("%s", hdev->name);
3464
3465         rcu_read_lock();
3466
3467         list_for_each_entry_rcu(conn, &h->list, list) {
3468                 struct hci_chan *chan;
3469
3470                 if (conn->type != type)
3471                         continue;
3472
3473                 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3474                         continue;
3475
3476                 num++;
3477
3478                 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3479                         struct sk_buff *skb;
3480
3481                         if (chan->sent) {
3482                                 chan->sent = 0;
3483                                 continue;
3484                         }
3485
3486                         if (skb_queue_empty(&chan->data_q))
3487                                 continue;
3488
3489                         skb = skb_peek(&chan->data_q);
3490                         if (skb->priority >= HCI_PRIO_MAX - 1)
3491                                 continue;
3492
3493                         skb->priority = HCI_PRIO_MAX - 1;
3494
3495                         BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3496                                skb->priority);
3497                 }
3498
3499                 if (hci_conn_num(hdev, type) == num)
3500                         break;
3501         }
3502
3503         rcu_read_unlock();
3504
3505 }
3506
3507 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3508 {
3509         /* Calculate count of blocks used by this packet */
3510         return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3511 }
3512
3513 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
3514 {
3515         unsigned long last_tx;
3516
3517         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3518                 return;
3519
3520         switch (type) {
3521         case LE_LINK:
3522                 last_tx = hdev->le_last_tx;
3523                 break;
3524         default:
3525                 last_tx = hdev->acl_last_tx;
3526                 break;
3527         }
3528
3529         /* tx timeout must be longer than maximum link supervision timeout
3530          * (40.9 seconds)
3531          */
3532         if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
3533                 hci_link_tx_to(hdev, type);
3534 }
3535
3536 /* Schedule SCO */
3537 static void hci_sched_sco(struct hci_dev *hdev)
3538 {
3539         struct hci_conn *conn;
3540         struct sk_buff *skb;
3541         int quote;
3542
3543         BT_DBG("%s", hdev->name);
3544
3545         if (!hci_conn_num(hdev, SCO_LINK))
3546                 return;
3547
3548         while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3549                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3550                         BT_DBG("skb %p len %d", skb, skb->len);
3551                         hci_send_frame(hdev, skb);
3552
3553                         conn->sent++;
3554                         if (conn->sent == ~0)
3555                                 conn->sent = 0;
3556                 }
3557         }
3558 }
3559
3560 static void hci_sched_esco(struct hci_dev *hdev)
3561 {
3562         struct hci_conn *conn;
3563         struct sk_buff *skb;
3564         int quote;
3565
3566         BT_DBG("%s", hdev->name);
3567
3568         if (!hci_conn_num(hdev, ESCO_LINK))
3569                 return;
3570
3571         while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3572                                                      &quote))) {
3573                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3574                         BT_DBG("skb %p len %d", skb, skb->len);
3575                         hci_send_frame(hdev, skb);
3576
3577                         conn->sent++;
3578                         if (conn->sent == ~0)
3579                                 conn->sent = 0;
3580                 }
3581         }
3582 }
3583
3584 static void hci_sched_acl_pkt(struct hci_dev *hdev)
3585 {
3586         unsigned int cnt = hdev->acl_cnt;
3587         struct hci_chan *chan;
3588         struct sk_buff *skb;
3589         int quote;
3590
3591         __check_timeout(hdev, cnt, ACL_LINK);
3592
3593         while (hdev->acl_cnt &&
3594                (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3595                 u32 priority = (skb_peek(&chan->data_q))->priority;
3596                 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3597                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3598                                skb->len, skb->priority);
3599
3600                         /* Stop if priority has changed */
3601                         if (skb->priority < priority)
3602                                 break;
3603
3604                         skb = skb_dequeue(&chan->data_q);
3605
3606                         hci_conn_enter_active_mode(chan->conn,
3607                                                    bt_cb(skb)->force_active);
3608
3609                         hci_send_frame(hdev, skb);
3610                         hdev->acl_last_tx = jiffies;
3611
3612                         hdev->acl_cnt--;
3613                         chan->sent++;
3614                         chan->conn->sent++;
3615
3616                         /* Send pending SCO packets right away */
3617                         hci_sched_sco(hdev);
3618                         hci_sched_esco(hdev);
3619                 }
3620         }
3621
3622         if (cnt != hdev->acl_cnt)
3623                 hci_prio_recalculate(hdev, ACL_LINK);
3624 }
3625
3626 static void hci_sched_acl_blk(struct hci_dev *hdev)
3627 {
3628         unsigned int cnt = hdev->block_cnt;
3629         struct hci_chan *chan;
3630         struct sk_buff *skb;
3631         int quote;
3632         u8 type;
3633
3634         BT_DBG("%s", hdev->name);
3635
3636         if (hdev->dev_type == HCI_AMP)
3637                 type = AMP_LINK;
3638         else
3639                 type = ACL_LINK;
3640
3641         __check_timeout(hdev, cnt, type);
3642
3643         while (hdev->block_cnt > 0 &&
3644                (chan = hci_chan_sent(hdev, type, &quote))) {
3645                 u32 priority = (skb_peek(&chan->data_q))->priority;
3646                 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3647                         int blocks;
3648
3649                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3650                                skb->len, skb->priority);
3651
3652                         /* Stop if priority has changed */
3653                         if (skb->priority < priority)
3654                                 break;
3655
3656                         skb = skb_dequeue(&chan->data_q);
3657
3658                         blocks = __get_blocks(hdev, skb);
3659                         if (blocks > hdev->block_cnt)
3660                                 return;
3661
3662                         hci_conn_enter_active_mode(chan->conn,
3663                                                    bt_cb(skb)->force_active);
3664
3665                         hci_send_frame(hdev, skb);
3666                         hdev->acl_last_tx = jiffies;
3667
3668                         hdev->block_cnt -= blocks;
3669                         quote -= blocks;
3670
3671                         chan->sent += blocks;
3672                         chan->conn->sent += blocks;
3673                 }
3674         }
3675
3676         if (cnt != hdev->block_cnt)
3677                 hci_prio_recalculate(hdev, type);
3678 }
3679
3680 static void hci_sched_acl(struct hci_dev *hdev)
3681 {
3682         BT_DBG("%s", hdev->name);
3683
3684         /* No ACL link over BR/EDR controller */
3685         if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
3686                 return;
3687
3688         /* No AMP link over AMP controller */
3689         if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3690                 return;
3691
3692         switch (hdev->flow_ctl_mode) {
3693         case HCI_FLOW_CTL_MODE_PACKET_BASED:
3694                 hci_sched_acl_pkt(hdev);
3695                 break;
3696
3697         case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3698                 hci_sched_acl_blk(hdev);
3699                 break;
3700         }
3701 }
3702
3703 static void hci_sched_le(struct hci_dev *hdev)
3704 {
3705         struct hci_chan *chan;
3706         struct sk_buff *skb;
3707         int quote, cnt, tmp;
3708
3709         BT_DBG("%s", hdev->name);
3710
3711         if (!hci_conn_num(hdev, LE_LINK))
3712                 return;
3713
3714         cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3715
3716         __check_timeout(hdev, cnt, LE_LINK);
3717
3718         tmp = cnt;
3719         while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3720                 u32 priority = (skb_peek(&chan->data_q))->priority;
3721                 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3722                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3723                                skb->len, skb->priority);
3724
3725                         /* Stop if priority has changed */
3726                         if (skb->priority < priority)
3727                                 break;
3728
3729                         skb = skb_dequeue(&chan->data_q);
3730
3731                         hci_send_frame(hdev, skb);
3732                         hdev->le_last_tx = jiffies;
3733
3734                         cnt--;
3735                         chan->sent++;
3736                         chan->conn->sent++;
3737
3738                         /* Send pending SCO packets right away */
3739                         hci_sched_sco(hdev);
3740                         hci_sched_esco(hdev);
3741                 }
3742         }
3743
3744         if (hdev->le_pkts)
3745                 hdev->le_cnt = cnt;
3746         else
3747                 hdev->acl_cnt = cnt;
3748
3749         if (cnt != tmp)
3750                 hci_prio_recalculate(hdev, LE_LINK);
3751 }
3752
3753 /* Schedule CIS */
3754 static void hci_sched_iso(struct hci_dev *hdev)
3755 {
3756         struct hci_conn *conn;
3757         struct sk_buff *skb;
3758         int quote, *cnt;
3759
3760         BT_DBG("%s", hdev->name);
3761
3762         if (!hci_conn_num(hdev, ISO_LINK))
3763                 return;
3764
3765         cnt = hdev->iso_pkts ? &hdev->iso_cnt :
3766                 hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3767         while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, &quote))) {
3768                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3769                         BT_DBG("skb %p len %d", skb, skb->len);
3770                         hci_send_frame(hdev, skb);
3771
3772                         conn->sent++;
3773                         if (conn->sent == ~0)
3774                                 conn->sent = 0;
3775                         (*cnt)--;
3776                 }
3777         }
3778 }
3779
3780 static void hci_tx_work(struct work_struct *work)
3781 {
3782         struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3783         struct sk_buff *skb;
3784
3785         BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt,
3786                hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt);
3787
3788         if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3789                 /* Schedule queues and send stuff to HCI driver */
3790                 hci_sched_sco(hdev);
3791                 hci_sched_esco(hdev);
3792                 hci_sched_iso(hdev);
3793                 hci_sched_acl(hdev);
3794                 hci_sched_le(hdev);
3795         }
3796
3797         /* Send next queued raw (unknown type) packet */
3798         while ((skb = skb_dequeue(&hdev->raw_q)))
3799                 hci_send_frame(hdev, skb);
3800 }
3801
3802 /* ----- HCI RX task (incoming data processing) ----- */
3803
3804 /* ACL data packet */
3805 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3806 {
3807         struct hci_acl_hdr *hdr = (void *) skb->data;
3808         struct hci_conn *conn;
3809         __u16 handle, flags;
3810
3811         skb_pull(skb, HCI_ACL_HDR_SIZE);
3812
3813         handle = __le16_to_cpu(hdr->handle);
3814         flags  = hci_flags(handle);
3815         handle = hci_handle(handle);
3816
3817         BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3818                handle, flags);
3819
3820         hdev->stat.acl_rx++;
3821
3822         hci_dev_lock(hdev);
3823         conn = hci_conn_hash_lookup_handle(hdev, handle);
3824         hci_dev_unlock(hdev);
3825
3826         if (conn) {
3827                 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3828
3829                 /* Send to upper protocol */
3830                 l2cap_recv_acldata(conn, skb, flags);
3831                 return;
3832         } else {
3833                 bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
3834                            handle);
3835         }
3836
3837         kfree_skb(skb);
3838 }
3839
3840 /* SCO data packet */
3841 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3842 {
3843         struct hci_sco_hdr *hdr = (void *) skb->data;
3844         struct hci_conn *conn;
3845         __u16 handle, flags;
3846
3847         skb_pull(skb, HCI_SCO_HDR_SIZE);
3848
3849         handle = __le16_to_cpu(hdr->handle);
3850         flags  = hci_flags(handle);
3851         handle = hci_handle(handle);
3852
3853         BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3854                handle, flags);
3855
3856         hdev->stat.sco_rx++;
3857
3858         hci_dev_lock(hdev);
3859         conn = hci_conn_hash_lookup_handle(hdev, handle);
3860         hci_dev_unlock(hdev);
3861
3862         if (conn) {
3863                 /* Send to upper protocol */
3864                 bt_cb(skb)->sco.pkt_status = flags & 0x03;
3865                 sco_recv_scodata(conn, skb);
3866                 return;
3867         } else {
3868                 bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d",
3869                                        handle);
3870         }
3871
3872         kfree_skb(skb);
3873 }
3874
3875 static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3876 {
3877         struct hci_iso_hdr *hdr;
3878         struct hci_conn *conn;
3879         __u16 handle, flags;
3880
3881         hdr = skb_pull_data(skb, sizeof(*hdr));
3882         if (!hdr) {
3883                 bt_dev_err(hdev, "ISO packet too small");
3884                 goto drop;
3885         }
3886
3887         handle = __le16_to_cpu(hdr->handle);
3888         flags  = hci_flags(handle);
3889         handle = hci_handle(handle);
3890
3891         bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3892                    handle, flags);
3893
3894         hci_dev_lock(hdev);
3895         conn = hci_conn_hash_lookup_handle(hdev, handle);
3896         hci_dev_unlock(hdev);
3897
3898         if (!conn) {
3899                 bt_dev_err(hdev, "ISO packet for unknown connection handle %d",
3900                            handle);
3901                 goto drop;
3902         }
3903
3904         /* Send to upper protocol */
3905         iso_recv(conn, skb, flags);
3906         return;
3907
3908 drop:
3909         kfree_skb(skb);
3910 }
3911
3912 static bool hci_req_is_complete(struct hci_dev *hdev)
3913 {
3914         struct sk_buff *skb;
3915
3916         skb = skb_peek(&hdev->cmd_q);
3917         if (!skb)
3918                 return true;
3919
3920         return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
3921 }
3922
3923 static void hci_resend_last(struct hci_dev *hdev)
3924 {
3925         struct hci_command_hdr *sent;
3926         struct sk_buff *skb;
3927         u16 opcode;
3928
3929         if (!hdev->sent_cmd)
3930                 return;
3931
3932         sent = (void *) hdev->sent_cmd->data;
3933         opcode = __le16_to_cpu(sent->opcode);
3934         if (opcode == HCI_OP_RESET)
3935                 return;
3936
3937         skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3938         if (!skb)
3939                 return;
3940
3941         skb_queue_head(&hdev->cmd_q, skb);
3942         queue_work(hdev->workqueue, &hdev->cmd_work);
3943 }
3944
3945 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
3946                           hci_req_complete_t *req_complete,
3947                           hci_req_complete_skb_t *req_complete_skb)
3948 {
3949         struct sk_buff *skb;
3950         unsigned long flags;
3951
3952         BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3953
3954         /* If the completed command doesn't match the last one that was
3955          * sent we need to do special handling of it.
3956          */
3957         if (!hci_sent_cmd_data(hdev, opcode)) {
3958                 /* Some CSR based controllers generate a spontaneous
3959                  * reset complete event during init and any pending
3960                  * command will never be completed. In such a case we
3961                  * need to resend whatever was the last sent
3962                  * command.
3963                  */
3964                 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
3965                         hci_resend_last(hdev);
3966
3967                 return;
3968         }
3969
3970         /* If we reach this point this event matches the last command sent */
3971         hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
3972
3973         /* If the command succeeded and there's still more commands in
3974          * this request the request is not yet complete.
3975          */
3976         if (!status && !hci_req_is_complete(hdev))
3977                 return;
3978
3979         /* If this was the last command in a request the complete
3980          * callback would be found in hdev->sent_cmd instead of the
3981          * command queue (hdev->cmd_q).
3982          */
3983         if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
3984                 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
3985                 return;
3986         }
3987
3988         if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
3989                 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
3990                 return;
3991         }
3992
3993         /* Remove all pending commands belonging to this request */
3994         spin_lock_irqsave(&hdev->cmd_q.lock, flags);
3995         while ((skb = __skb_dequeue(&hdev->cmd_q))) {
3996                 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
3997                         __skb_queue_head(&hdev->cmd_q, skb);
3998                         break;
3999                 }
4000
4001                 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4002                         *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4003                 else
4004                         *req_complete = bt_cb(skb)->hci.req_complete;
4005                 dev_kfree_skb_irq(skb);
4006         }
4007         spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4008 }
4009
4010 static void hci_rx_work(struct work_struct *work)
4011 {
4012         struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4013         struct sk_buff *skb;
4014
4015         BT_DBG("%s", hdev->name);
4016
4017         /* The kcov_remote functions used for collecting packet parsing
4018          * coverage information from this background thread and associate
4019          * the coverage with the syscall's thread which originally injected
4020          * the packet. This helps fuzzing the kernel.
4021          */
4022         for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) {
4023                 kcov_remote_start_common(skb_get_kcov_handle(skb));
4024
4025                 /* Send copy to monitor */
4026                 hci_send_to_monitor(hdev, skb);
4027
4028                 if (atomic_read(&hdev->promisc)) {
4029                         /* Send copy to the sockets */
4030                         hci_send_to_sock(hdev, skb);
4031                 }
4032
4033                 /* If the device has been opened in HCI_USER_CHANNEL,
4034                  * the userspace has exclusive access to device.
4035                  * When device is HCI_INIT, we still need to process
4036                  * the data packets to the driver in order
4037                  * to complete its setup().
4038                  */
4039                 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4040                     !test_bit(HCI_INIT, &hdev->flags)) {
4041                         kfree_skb(skb);
4042                         continue;
4043                 }
4044
4045                 if (test_bit(HCI_INIT, &hdev->flags)) {
4046                         /* Don't process data packets in this states. */
4047                         switch (hci_skb_pkt_type(skb)) {
4048                         case HCI_ACLDATA_PKT:
4049                         case HCI_SCODATA_PKT:
4050                         case HCI_ISODATA_PKT:
4051                                 kfree_skb(skb);
4052                                 continue;
4053                         }
4054                 }
4055
4056                 /* Process frame */
4057                 switch (hci_skb_pkt_type(skb)) {
4058                 case HCI_EVENT_PKT:
4059                         BT_DBG("%s Event packet", hdev->name);
4060                         hci_event_packet(hdev, skb);
4061                         break;
4062
4063                 case HCI_ACLDATA_PKT:
4064                         BT_DBG("%s ACL data packet", hdev->name);
4065                         hci_acldata_packet(hdev, skb);
4066                         break;
4067
4068                 case HCI_SCODATA_PKT:
4069                         BT_DBG("%s SCO data packet", hdev->name);
4070                         hci_scodata_packet(hdev, skb);
4071                         break;
4072
4073                 case HCI_ISODATA_PKT:
4074                         BT_DBG("%s ISO data packet", hdev->name);
4075                         hci_isodata_packet(hdev, skb);
4076                         break;
4077
4078                 default:
4079                         kfree_skb(skb);
4080                         break;
4081                 }
4082         }
4083 }
4084
4085 static void hci_cmd_work(struct work_struct *work)
4086 {
4087         struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4088         struct sk_buff *skb;
4089
4090         BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4091                atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4092
4093         /* Send queued commands */
4094         if (atomic_read(&hdev->cmd_cnt)) {
4095                 skb = skb_dequeue(&hdev->cmd_q);
4096                 if (!skb)
4097                         return;
4098
4099                 kfree_skb(hdev->sent_cmd);
4100
4101                 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4102                 if (hdev->sent_cmd) {
4103                         int res;
4104                         if (hci_req_status_pend(hdev))
4105                                 hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4106                         atomic_dec(&hdev->cmd_cnt);
4107
4108                         res = hci_send_frame(hdev, skb);
4109                         if (res < 0)
4110                                 __hci_cmd_sync_cancel(hdev, -res);
4111
4112                         rcu_read_lock();
4113                         if (test_bit(HCI_RESET, &hdev->flags) ||
4114                             hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
4115                                 cancel_delayed_work(&hdev->cmd_timer);
4116                         else
4117                                 queue_delayed_work(hdev->workqueue, &hdev->cmd_timer,
4118                                                    HCI_CMD_TIMEOUT);
4119                         rcu_read_unlock();
4120                 } else {
4121                         skb_queue_head(&hdev->cmd_q, skb);
4122                         queue_work(hdev->workqueue, &hdev->cmd_work);
4123                 }
4124         }
4125 }