Bluetooth: Add MGMT command to set SCO settings
[platform/kernel/linux-rpi.git] / net / bluetooth / hci_conn.c
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
4
5    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License version 2 as
9    published by the Free Software Foundation;
10
11    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19
20    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22    SOFTWARE IS DISCLAIMED.
23 */
24
25 /* Bluetooth HCI connection handling. */
26
27 #include <linux/export.h>
28 #include <linux/debugfs.h>
29
30 #include <net/bluetooth/bluetooth.h>
31 #include <net/bluetooth/hci_core.h>
32 #include <net/bluetooth/l2cap.h>
33
34 #include "hci_request.h"
35 #include "smp.h"
36 #include "a2mp.h"
37
38 struct sco_param {
39         u16 pkt_type;
40         u16 max_latency;
41         u8  retrans_effort;
42 };
43
44 #ifdef TIZEN_BT
45 static const struct sco_param esco_param_cvsd[] = {
46         { (EDR_ESCO_MASK & ~ESCO_2EV3) | SCO_ESCO_MASK | ESCO_EV3,
47                                       0x000a,   0x01 }, /* S3 */
48         { EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007,   0x01 }, /* S2 */
49         { EDR_ESCO_MASK | ESCO_EV3,   0x0007,   0x01 }, /* S1 */
50         { EDR_ESCO_MASK | ESCO_HV3,   0xffff,   0x01 }, /* D1 */
51         { EDR_ESCO_MASK | ESCO_HV1,   0xffff,   0x01 }, /* D0 */
52 };
53 #else
54 static const struct sco_param esco_param_cvsd[] = {
55         { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a,   0x01 }, /* S3 */
56         { EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007,   0x01 }, /* S2 */
57         { EDR_ESCO_MASK | ESCO_EV3,   0x0007,   0x01 }, /* S1 */
58         { EDR_ESCO_MASK | ESCO_HV3,   0xffff,   0x01 }, /* D1 */
59         { EDR_ESCO_MASK | ESCO_HV1,   0xffff,   0x01 }, /* D0 */
60 };
61 #endif
62
63 static const struct sco_param sco_param_cvsd[] = {
64         { EDR_ESCO_MASK | ESCO_HV3,   0xffff,   0xff }, /* D1 */
65         { EDR_ESCO_MASK | ESCO_HV1,   0xffff,   0xff }, /* D0 */
66 };
67
68 #ifdef TIZEN_BT
69 static const struct sco_param esco_param_msbc[] = {
70         { (EDR_ESCO_MASK & ~ESCO_2EV3) | ESCO_EV3,
71                                       0x000d,   0x02 }, /* T2 */
72         { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d,   0x02 }, /* T2 */
73 };
74 #else
75 static const struct sco_param esco_param_msbc[] = {
76         { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d,   0x02 }, /* T2 */
77         { EDR_ESCO_MASK | ESCO_EV3,   0x0008,   0x02 }, /* T1 */
78 };
79 #endif
80
81 /* This function requires the caller holds hdev->lock */
82 static void hci_connect_le_scan_cleanup(struct hci_conn *conn)
83 {
84         struct hci_conn_params *params;
85         struct hci_dev *hdev = conn->hdev;
86         struct smp_irk *irk;
87         bdaddr_t *bdaddr;
88         u8 bdaddr_type;
89
90         bdaddr = &conn->dst;
91         bdaddr_type = conn->dst_type;
92
93         /* Check if we need to convert to identity address */
94         irk = hci_get_irk(hdev, bdaddr, bdaddr_type);
95         if (irk) {
96                 bdaddr = &irk->bdaddr;
97                 bdaddr_type = irk->addr_type;
98         }
99
100         params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr,
101                                            bdaddr_type);
102         if (!params || !params->explicit_connect)
103                 return;
104
105         /* The connection attempt was doing scan for new RPA, and is
106          * in scan phase. If params are not associated with any other
107          * autoconnect action, remove them completely. If they are, just unmark
108          * them as waiting for connection, by clearing explicit_connect field.
109          */
110         params->explicit_connect = false;
111
112         list_del_init(&params->action);
113
114         switch (params->auto_connect) {
115         case HCI_AUTO_CONN_EXPLICIT:
116                 hci_conn_params_del(hdev, bdaddr, bdaddr_type);
117                 /* return instead of break to avoid duplicate scan update */
118                 return;
119         case HCI_AUTO_CONN_DIRECT:
120         case HCI_AUTO_CONN_ALWAYS:
121                 list_add(&params->action, &hdev->pend_le_conns);
122                 break;
123         case HCI_AUTO_CONN_REPORT:
124                 list_add(&params->action, &hdev->pend_le_reports);
125                 break;
126         default:
127                 break;
128         }
129
130         hci_update_background_scan(hdev);
131 }
132
133 static void hci_conn_cleanup(struct hci_conn *conn)
134 {
135         struct hci_dev *hdev = conn->hdev;
136
137         if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags))
138                 hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type);
139
140         hci_chan_list_flush(conn);
141
142         hci_conn_hash_del(hdev, conn);
143
144         if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
145                 switch (conn->setting & SCO_AIRMODE_MASK) {
146                 case SCO_AIRMODE_CVSD:
147                 case SCO_AIRMODE_TRANSP:
148                         if (hdev->notify)
149                                 hdev->notify(hdev, HCI_NOTIFY_DISABLE_SCO);
150                         break;
151                 }
152         } else {
153                 if (hdev->notify)
154                         hdev->notify(hdev, HCI_NOTIFY_CONN_DEL);
155         }
156
157         hci_conn_del_sysfs(conn);
158
159         debugfs_remove_recursive(conn->debugfs);
160
161         hci_dev_put(hdev);
162
163         hci_conn_put(conn);
164 }
165
166 static void le_scan_cleanup(struct work_struct *work)
167 {
168         struct hci_conn *conn = container_of(work, struct hci_conn,
169                                              le_scan_cleanup);
170         struct hci_dev *hdev = conn->hdev;
171         struct hci_conn *c = NULL;
172
173         BT_DBG("%s hcon %p", hdev->name, conn);
174
175         hci_dev_lock(hdev);
176
177         /* Check that the hci_conn is still around */
178         rcu_read_lock();
179         list_for_each_entry_rcu(c, &hdev->conn_hash.list, list) {
180                 if (c == conn)
181                         break;
182         }
183         rcu_read_unlock();
184
185         if (c == conn) {
186                 hci_connect_le_scan_cleanup(conn);
187                 hci_conn_cleanup(conn);
188         }
189
190         hci_dev_unlock(hdev);
191         hci_dev_put(hdev);
192         hci_conn_put(conn);
193 }
194
195 static void hci_connect_le_scan_remove(struct hci_conn *conn)
196 {
197         BT_DBG("%s hcon %p", conn->hdev->name, conn);
198
199         /* We can't call hci_conn_del/hci_conn_cleanup here since that
200          * could deadlock with another hci_conn_del() call that's holding
201          * hci_dev_lock and doing cancel_delayed_work_sync(&conn->disc_work).
202          * Instead, grab temporary extra references to the hci_dev and
203          * hci_conn and perform the necessary cleanup in a separate work
204          * callback.
205          */
206
207         hci_dev_hold(conn->hdev);
208         hci_conn_get(conn);
209
210         /* Even though we hold a reference to the hdev, many other
211          * things might get cleaned up meanwhile, including the hdev's
212          * own workqueue, so we can't use that for scheduling.
213          */
214         schedule_work(&conn->le_scan_cleanup);
215 }
216
217 static void hci_acl_create_connection(struct hci_conn *conn)
218 {
219         struct hci_dev *hdev = conn->hdev;
220         struct inquiry_entry *ie;
221         struct hci_cp_create_conn cp;
222
223         BT_DBG("hcon %p", conn);
224
225         /* Many controllers disallow HCI Create Connection while it is doing
226          * HCI Inquiry. So we cancel the Inquiry first before issuing HCI Create
227          * Connection. This may cause the MGMT discovering state to become false
228          * without user space's request but it is okay since the MGMT Discovery
229          * APIs do not promise that discovery should be done forever. Instead,
230          * the user space monitors the status of MGMT discovering and it may
231          * request for discovery again when this flag becomes false.
232          */
233         if (test_bit(HCI_INQUIRY, &hdev->flags)) {
234                 /* Put this connection to "pending" state so that it will be
235                  * executed after the inquiry cancel command complete event.
236                  */
237                 conn->state = BT_CONNECT2;
238                 hci_send_cmd(hdev, HCI_OP_INQUIRY_CANCEL, 0, NULL);
239                 return;
240         }
241
242         conn->state = BT_CONNECT;
243         conn->out = true;
244         conn->role = HCI_ROLE_MASTER;
245
246         conn->attempt++;
247
248         conn->link_policy = hdev->link_policy;
249
250         memset(&cp, 0, sizeof(cp));
251         bacpy(&cp.bdaddr, &conn->dst);
252         cp.pscan_rep_mode = 0x02;
253
254         ie = hci_inquiry_cache_lookup(hdev, &conn->dst);
255         if (ie) {
256                 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) {
257                         cp.pscan_rep_mode = ie->data.pscan_rep_mode;
258                         cp.pscan_mode     = ie->data.pscan_mode;
259                         cp.clock_offset   = ie->data.clock_offset |
260                                             cpu_to_le16(0x8000);
261                 }
262
263                 memcpy(conn->dev_class, ie->data.dev_class, 3);
264         }
265
266         cp.pkt_type = cpu_to_le16(conn->pkt_type);
267         if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER))
268                 cp.role_switch = 0x01;
269         else
270                 cp.role_switch = 0x00;
271
272         hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp);
273 }
274
275 int hci_disconnect(struct hci_conn *conn, __u8 reason)
276 {
277         BT_DBG("hcon %p", conn);
278
279         /* When we are central of an established connection and it enters
280          * the disconnect timeout, then go ahead and try to read the
281          * current clock offset.  Processing of the result is done
282          * within the event handling and hci_clock_offset_evt function.
283          */
284         if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER &&
285             (conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) {
286                 struct hci_dev *hdev = conn->hdev;
287                 struct hci_cp_read_clock_offset clkoff_cp;
288
289                 clkoff_cp.handle = cpu_to_le16(conn->handle);
290                 hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp),
291                              &clkoff_cp);
292         }
293
294         return hci_abort_conn(conn, reason);
295 }
296
297 static void hci_add_sco(struct hci_conn *conn, __u16 handle)
298 {
299         struct hci_dev *hdev = conn->hdev;
300         struct hci_cp_add_sco cp;
301
302         BT_DBG("hcon %p", conn);
303
304         conn->state = BT_CONNECT;
305         conn->out = true;
306
307         conn->attempt++;
308
309         cp.handle   = cpu_to_le16(handle);
310         cp.pkt_type = cpu_to_le16(conn->pkt_type);
311
312         hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp);
313 }
314
315 static bool find_next_esco_param(struct hci_conn *conn,
316                                  const struct sco_param *esco_param, int size)
317 {
318         for (; conn->attempt <= size; conn->attempt++) {
319                 if (lmp_esco_2m_capable(conn->link) ||
320                     (esco_param[conn->attempt - 1].pkt_type & ESCO_2EV3))
321                         break;
322                 BT_DBG("hcon %p skipped attempt %d, eSCO 2M not supported",
323                        conn, conn->attempt);
324         }
325
326         return conn->attempt <= size;
327 }
328
329 bool hci_setup_sync(struct hci_conn *conn, __u16 handle)
330 {
331         struct hci_dev *hdev = conn->hdev;
332         struct hci_cp_setup_sync_conn cp;
333         const struct sco_param *param;
334
335         BT_DBG("hcon %p", conn);
336
337         conn->state = BT_CONNECT;
338         conn->out = true;
339
340         conn->attempt++;
341
342         cp.handle   = cpu_to_le16(handle);
343
344         cp.tx_bandwidth   = cpu_to_le32(0x00001f40);
345         cp.rx_bandwidth   = cpu_to_le32(0x00001f40);
346         cp.voice_setting  = cpu_to_le16(conn->setting);
347
348         switch (conn->setting & SCO_AIRMODE_MASK) {
349         case SCO_AIRMODE_TRANSP:
350                 if (!find_next_esco_param(conn, esco_param_msbc,
351                                           ARRAY_SIZE(esco_param_msbc)))
352                         return false;
353                 param = &esco_param_msbc[conn->attempt - 1];
354                 break;
355         case SCO_AIRMODE_CVSD:
356                 if (lmp_esco_capable(conn->link)) {
357                         if (!find_next_esco_param(conn, esco_param_cvsd,
358                                                   ARRAY_SIZE(esco_param_cvsd)))
359                                 return false;
360                         param = &esco_param_cvsd[conn->attempt - 1];
361                 } else {
362                         if (conn->attempt > ARRAY_SIZE(sco_param_cvsd))
363                                 return false;
364                         param = &sco_param_cvsd[conn->attempt - 1];
365                 }
366                 break;
367         default:
368                 return false;
369         }
370
371         cp.retrans_effort = param->retrans_effort;
372         cp.pkt_type = __cpu_to_le16(param->pkt_type);
373         cp.max_latency = __cpu_to_le16(param->max_latency);
374
375         if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0)
376                 return false;
377
378         return true;
379 }
380
381 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency,
382                       u16 to_multiplier)
383 {
384         struct hci_dev *hdev = conn->hdev;
385         struct hci_conn_params *params;
386         struct hci_cp_le_conn_update cp;
387
388         hci_dev_lock(hdev);
389
390         params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
391         if (params) {
392                 params->conn_min_interval = min;
393                 params->conn_max_interval = max;
394                 params->conn_latency = latency;
395                 params->supervision_timeout = to_multiplier;
396         }
397
398         hci_dev_unlock(hdev);
399
400         memset(&cp, 0, sizeof(cp));
401         cp.handle               = cpu_to_le16(conn->handle);
402         cp.conn_interval_min    = cpu_to_le16(min);
403         cp.conn_interval_max    = cpu_to_le16(max);
404         cp.conn_latency         = cpu_to_le16(latency);
405         cp.supervision_timeout  = cpu_to_le16(to_multiplier);
406         cp.min_ce_len           = cpu_to_le16(0x0000);
407         cp.max_ce_len           = cpu_to_le16(0x0000);
408
409         hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp);
410
411         if (params)
412                 return 0x01;
413
414         return 0x00;
415 }
416
417 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand,
418                       __u8 ltk[16], __u8 key_size)
419 {
420         struct hci_dev *hdev = conn->hdev;
421         struct hci_cp_le_start_enc cp;
422
423         BT_DBG("hcon %p", conn);
424
425         memset(&cp, 0, sizeof(cp));
426
427         cp.handle = cpu_to_le16(conn->handle);
428         cp.rand = rand;
429         cp.ediv = ediv;
430         memcpy(cp.ltk, ltk, key_size);
431
432         hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp);
433 }
434
435 /* Device _must_ be locked */
436 void hci_sco_setup(struct hci_conn *conn, __u8 status)
437 {
438         struct hci_conn *sco = conn->link;
439
440         if (!sco)
441                 return;
442
443         BT_DBG("hcon %p", conn);
444
445         if (!status) {
446                 if (lmp_esco_capable(conn->hdev))
447                         hci_setup_sync(sco, conn->handle);
448                 else
449                         hci_add_sco(sco, conn->handle);
450         } else {
451                 hci_connect_cfm(sco, status);
452                 hci_conn_del(sco);
453         }
454 }
455
456 static void hci_conn_timeout(struct work_struct *work)
457 {
458         struct hci_conn *conn = container_of(work, struct hci_conn,
459                                              disc_work.work);
460         int refcnt = atomic_read(&conn->refcnt);
461
462         BT_DBG("hcon %p state %s", conn, state_to_string(conn->state));
463
464         WARN_ON(refcnt < 0);
465
466         /* FIXME: It was observed that in pairing failed scenario, refcnt
467          * drops below 0. Probably this is because l2cap_conn_del calls
468          * l2cap_chan_del for each channel, and inside l2cap_chan_del conn is
469          * dropped. After that loop hci_chan_del is called which also drops
470          * conn. For now make sure that ACL is alive if refcnt is higher then 0,
471          * otherwise drop it.
472          */
473         if (refcnt > 0)
474                 return;
475
476         /* LE connections in scanning state need special handling */
477         if (conn->state == BT_CONNECT && conn->type == LE_LINK &&
478             test_bit(HCI_CONN_SCANNING, &conn->flags)) {
479                 hci_connect_le_scan_remove(conn);
480                 return;
481         }
482
483         hci_abort_conn(conn, hci_proto_disconn_ind(conn));
484 }
485
486 /* Enter sniff mode */
487 static void hci_conn_idle(struct work_struct *work)
488 {
489         struct hci_conn *conn = container_of(work, struct hci_conn,
490                                              idle_work.work);
491         struct hci_dev *hdev = conn->hdev;
492
493         BT_DBG("hcon %p mode %d", conn, conn->mode);
494
495         if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn))
496                 return;
497
498         if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF))
499                 return;
500
501         if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) {
502                 struct hci_cp_sniff_subrate cp;
503                 cp.handle             = cpu_to_le16(conn->handle);
504                 cp.max_latency        = cpu_to_le16(0);
505                 cp.min_remote_timeout = cpu_to_le16(0);
506                 cp.min_local_timeout  = cpu_to_le16(0);
507                 hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp);
508         }
509
510         if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
511                 struct hci_cp_sniff_mode cp;
512                 cp.handle       = cpu_to_le16(conn->handle);
513                 cp.max_interval = cpu_to_le16(hdev->sniff_max_interval);
514                 cp.min_interval = cpu_to_le16(hdev->sniff_min_interval);
515                 cp.attempt      = cpu_to_le16(4);
516                 cp.timeout      = cpu_to_le16(1);
517                 hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp);
518         }
519 }
520
521 static void hci_conn_auto_accept(struct work_struct *work)
522 {
523         struct hci_conn *conn = container_of(work, struct hci_conn,
524                                              auto_accept_work.work);
525
526         hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst),
527                      &conn->dst);
528 }
529
530 static void le_disable_advertising(struct hci_dev *hdev)
531 {
532         if (ext_adv_capable(hdev)) {
533                 struct hci_cp_le_set_ext_adv_enable cp;
534
535                 cp.enable = 0x00;
536                 cp.num_of_sets = 0x00;
537
538                 hci_send_cmd(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp),
539                              &cp);
540         } else {
541                 u8 enable = 0x00;
542                 hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
543                              &enable);
544         }
545 }
546
547 static void le_conn_timeout(struct work_struct *work)
548 {
549         struct hci_conn *conn = container_of(work, struct hci_conn,
550                                              le_conn_timeout.work);
551         struct hci_dev *hdev = conn->hdev;
552
553         BT_DBG("");
554
555         /* We could end up here due to having done directed advertising,
556          * so clean up the state if necessary. This should however only
557          * happen with broken hardware or if low duty cycle was used
558          * (which doesn't have a timeout of its own).
559          */
560         if (conn->role == HCI_ROLE_SLAVE) {
561                 /* Disable LE Advertising */
562                 le_disable_advertising(hdev);
563                 hci_dev_lock(hdev);
564                 hci_le_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT);
565                 hci_dev_unlock(hdev);
566                 return;
567         }
568
569         hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM);
570 }
571
572 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst,
573                               u8 role)
574 {
575         struct hci_conn *conn;
576
577         BT_DBG("%s dst %pMR", hdev->name, dst);
578
579         conn = kzalloc(sizeof(*conn), GFP_KERNEL);
580         if (!conn)
581                 return NULL;
582
583         bacpy(&conn->dst, dst);
584         bacpy(&conn->src, &hdev->bdaddr);
585         conn->hdev  = hdev;
586         conn->type  = type;
587         conn->role  = role;
588         conn->mode  = HCI_CM_ACTIVE;
589         conn->state = BT_OPEN;
590         conn->auth_type = HCI_AT_GENERAL_BONDING;
591         conn->io_capability = hdev->io_capability;
592         conn->remote_auth = 0xff;
593         conn->key_type = 0xff;
594         conn->rssi = HCI_RSSI_INVALID;
595         conn->tx_power = HCI_TX_POWER_INVALID;
596         conn->max_tx_power = HCI_TX_POWER_INVALID;
597
598         set_bit(HCI_CONN_POWER_SAVE, &conn->flags);
599         conn->disc_timeout = HCI_DISCONN_TIMEOUT;
600
601         /* Set Default Authenticated payload timeout to 30s */
602         conn->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
603
604         if (conn->role == HCI_ROLE_MASTER)
605                 conn->out = true;
606
607         switch (type) {
608         case ACL_LINK:
609                 conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK;
610                 break;
611         case LE_LINK:
612                 /* conn->src should reflect the local identity address */
613                 hci_copy_identity_address(hdev, &conn->src, &conn->src_type);
614                 break;
615         case SCO_LINK:
616                 if (lmp_esco_capable(hdev))
617                         conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) |
618                                         (hdev->esco_type & EDR_ESCO_MASK);
619                 else
620                         conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK;
621                 break;
622         case ESCO_LINK:
623                 conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK;
624                 break;
625         }
626
627         skb_queue_head_init(&conn->data_q);
628
629         INIT_LIST_HEAD(&conn->chan_list);
630
631         INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout);
632         INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept);
633         INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle);
634         INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout);
635         INIT_WORK(&conn->le_scan_cleanup, le_scan_cleanup);
636
637         atomic_set(&conn->refcnt, 0);
638
639         hci_dev_hold(hdev);
640
641         hci_conn_hash_add(hdev, conn);
642
643         /* The SCO and eSCO connections will only be notified when their
644          * setup has been completed. This is different to ACL links which
645          * can be notified right away.
646          */
647         if (conn->type != SCO_LINK && conn->type != ESCO_LINK) {
648                 if (hdev->notify)
649                         hdev->notify(hdev, HCI_NOTIFY_CONN_ADD);
650         }
651
652         hci_conn_init_sysfs(conn);
653
654         return conn;
655 }
656
657 int hci_conn_del(struct hci_conn *conn)
658 {
659         struct hci_dev *hdev = conn->hdev;
660
661         BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle);
662
663         cancel_delayed_work_sync(&conn->disc_work);
664         cancel_delayed_work_sync(&conn->auto_accept_work);
665         cancel_delayed_work_sync(&conn->idle_work);
666
667         if (conn->type == ACL_LINK) {
668                 struct hci_conn *sco = conn->link;
669                 if (sco)
670                         sco->link = NULL;
671
672                 /* Unacked frames */
673                 hdev->acl_cnt += conn->sent;
674         } else if (conn->type == LE_LINK) {
675                 cancel_delayed_work(&conn->le_conn_timeout);
676
677                 if (hdev->le_pkts)
678                         hdev->le_cnt += conn->sent;
679                 else
680                         hdev->acl_cnt += conn->sent;
681         } else {
682                 struct hci_conn *acl = conn->link;
683                 if (acl) {
684                         acl->link = NULL;
685                         hci_conn_drop(acl);
686                 }
687         }
688
689         if (conn->amp_mgr)
690                 amp_mgr_put(conn->amp_mgr);
691
692         skb_queue_purge(&conn->data_q);
693
694         /* Remove the connection from the list and cleanup its remaining
695          * state. This is a separate function since for some cases like
696          * BT_CONNECT_SCAN we *only* want the cleanup part without the
697          * rest of hci_conn_del.
698          */
699         hci_conn_cleanup(conn);
700
701         return 0;
702 }
703
704 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, uint8_t src_type)
705 {
706         int use_src = bacmp(src, BDADDR_ANY);
707         struct hci_dev *hdev = NULL, *d;
708
709         BT_DBG("%pMR -> %pMR", src, dst);
710
711         read_lock(&hci_dev_list_lock);
712
713         list_for_each_entry(d, &hci_dev_list, list) {
714                 if (!test_bit(HCI_UP, &d->flags) ||
715                     hci_dev_test_flag(d, HCI_USER_CHANNEL) ||
716                     d->dev_type != HCI_PRIMARY)
717                         continue;
718
719                 /* Simple routing:
720                  *   No source address - find interface with bdaddr != dst
721                  *   Source address    - find interface with bdaddr == src
722                  */
723
724                 if (use_src) {
725                         bdaddr_t id_addr;
726                         u8 id_addr_type;
727
728                         if (src_type == BDADDR_BREDR) {
729                                 if (!lmp_bredr_capable(d))
730                                         continue;
731                                 bacpy(&id_addr, &d->bdaddr);
732                                 id_addr_type = BDADDR_BREDR;
733                         } else {
734                                 if (!lmp_le_capable(d))
735                                         continue;
736
737                                 hci_copy_identity_address(d, &id_addr,
738                                                           &id_addr_type);
739
740                                 /* Convert from HCI to three-value type */
741                                 if (id_addr_type == ADDR_LE_DEV_PUBLIC)
742                                         id_addr_type = BDADDR_LE_PUBLIC;
743                                 else
744                                         id_addr_type = BDADDR_LE_RANDOM;
745                         }
746
747                         if (!bacmp(&id_addr, src) && id_addr_type == src_type) {
748                                 hdev = d; break;
749                         }
750                 } else {
751                         if (bacmp(&d->bdaddr, dst)) {
752                                 hdev = d; break;
753                         }
754                 }
755         }
756
757         if (hdev)
758                 hdev = hci_dev_hold(hdev);
759
760         read_unlock(&hci_dev_list_lock);
761         return hdev;
762 }
763 EXPORT_SYMBOL(hci_get_route);
764
765 /* This function requires the caller holds hdev->lock */
766 void hci_le_conn_failed(struct hci_conn *conn, u8 status)
767 {
768         struct hci_dev *hdev = conn->hdev;
769         struct hci_conn_params *params;
770
771         params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst,
772                                            conn->dst_type);
773         if (params && params->conn) {
774                 hci_conn_drop(params->conn);
775                 hci_conn_put(params->conn);
776                 params->conn = NULL;
777         }
778
779         conn->state = BT_CLOSED;
780
781         /* If the status indicates successful cancellation of
782          * the attempt (i.e. Unknown Connection Id) there's no point of
783          * notifying failure since we'll go back to keep trying to
784          * connect. The only exception is explicit connect requests
785          * where a timeout + cancel does indicate an actual failure.
786          */
787         if (status != HCI_ERROR_UNKNOWN_CONN_ID ||
788             (params && params->explicit_connect))
789                 mgmt_connect_failed(hdev, &conn->dst, conn->type,
790                                     conn->dst_type, status);
791
792         hci_connect_cfm(conn, status);
793
794         hci_conn_del(conn);
795
796         /* The suspend notifier is waiting for all devices to disconnect and an
797          * LE connect cancel will result in an hci_le_conn_failed. Once the last
798          * connection is deleted, we should also wake the suspend queue to
799          * complete suspend operations.
800          */
801         if (list_empty(&hdev->conn_hash.list) &&
802             test_and_clear_bit(SUSPEND_DISCONNECTING, hdev->suspend_tasks)) {
803                 wake_up(&hdev->suspend_wait_q);
804         }
805
806         /* Since we may have temporarily stopped the background scanning in
807          * favor of connection establishment, we should restart it.
808          */
809         hci_update_background_scan(hdev);
810
811         /* Re-enable advertising in case this was a failed connection
812          * attempt as a peripheral.
813          */
814         hci_req_reenable_advertising(hdev);
815 }
816
817 static void create_le_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
818 {
819         struct hci_conn *conn;
820
821         hci_dev_lock(hdev);
822
823         conn = hci_lookup_le_connect(hdev);
824
825         if (hdev->adv_instance_cnt)
826                 hci_req_resume_adv_instances(hdev);
827
828         if (!status) {
829                 hci_connect_le_scan_cleanup(conn);
830                 goto done;
831         }
832
833         bt_dev_err(hdev, "request failed to create LE connection: "
834                    "status 0x%2.2x", status);
835
836         if (!conn)
837                 goto done;
838
839         hci_le_conn_failed(conn, status);
840
841 done:
842         hci_dev_unlock(hdev);
843 }
844
845 static bool conn_use_rpa(struct hci_conn *conn)
846 {
847         struct hci_dev *hdev = conn->hdev;
848
849         return hci_dev_test_flag(hdev, HCI_PRIVACY);
850 }
851
852 static void set_ext_conn_params(struct hci_conn *conn,
853                                 struct hci_cp_le_ext_conn_param *p)
854 {
855         struct hci_dev *hdev = conn->hdev;
856
857         memset(p, 0, sizeof(*p));
858
859         p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
860         p->scan_window = cpu_to_le16(hdev->le_scan_window_connect);
861         p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
862         p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
863         p->conn_latency = cpu_to_le16(conn->le_conn_latency);
864         p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
865         p->min_ce_len = cpu_to_le16(0x0000);
866         p->max_ce_len = cpu_to_le16(0x0000);
867 }
868
869 static void hci_req_add_le_create_conn(struct hci_request *req,
870                                        struct hci_conn *conn,
871                                        bdaddr_t *direct_rpa)
872 {
873         struct hci_dev *hdev = conn->hdev;
874         u8 own_addr_type;
875
876         /* If direct address was provided we use it instead of current
877          * address.
878          */
879         if (direct_rpa) {
880                 if (bacmp(&req->hdev->random_addr, direct_rpa))
881                         hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
882                                                                 direct_rpa);
883
884                 /* direct address is always RPA */
885                 own_addr_type = ADDR_LE_DEV_RANDOM;
886         } else {
887                 /* Update random address, but set require_privacy to false so
888                  * that we never connect with an non-resolvable address.
889                  */
890                 if (hci_update_random_address(req, false, conn_use_rpa(conn),
891                                               &own_addr_type))
892                         return;
893         }
894
895         if (use_ext_conn(hdev)) {
896                 struct hci_cp_le_ext_create_conn *cp;
897                 struct hci_cp_le_ext_conn_param *p;
898                 u8 data[sizeof(*cp) + sizeof(*p) * 3];
899                 u32 plen;
900
901                 cp = (void *) data;
902                 p = (void *) cp->data;
903
904                 memset(cp, 0, sizeof(*cp));
905
906                 bacpy(&cp->peer_addr, &conn->dst);
907                 cp->peer_addr_type = conn->dst_type;
908                 cp->own_addr_type = own_addr_type;
909
910                 plen = sizeof(*cp);
911
912                 if (scan_1m(hdev)) {
913                         cp->phys |= LE_SCAN_PHY_1M;
914                         set_ext_conn_params(conn, p);
915
916                         p++;
917                         plen += sizeof(*p);
918                 }
919
920                 if (scan_2m(hdev)) {
921                         cp->phys |= LE_SCAN_PHY_2M;
922                         set_ext_conn_params(conn, p);
923
924                         p++;
925                         plen += sizeof(*p);
926                 }
927
928                 if (scan_coded(hdev)) {
929                         cp->phys |= LE_SCAN_PHY_CODED;
930                         set_ext_conn_params(conn, p);
931
932                         plen += sizeof(*p);
933                 }
934
935                 hci_req_add(req, HCI_OP_LE_EXT_CREATE_CONN, plen, data);
936
937         } else {
938                 struct hci_cp_le_create_conn cp;
939
940                 memset(&cp, 0, sizeof(cp));
941
942                 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
943                 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect);
944
945                 bacpy(&cp.peer_addr, &conn->dst);
946                 cp.peer_addr_type = conn->dst_type;
947                 cp.own_address_type = own_addr_type;
948                 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
949                 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
950                 cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
951                 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
952                 cp.min_ce_len = cpu_to_le16(0x0000);
953                 cp.max_ce_len = cpu_to_le16(0x0000);
954
955                 hci_req_add(req, HCI_OP_LE_CREATE_CONN, sizeof(cp), &cp);
956         }
957
958         conn->state = BT_CONNECT;
959         clear_bit(HCI_CONN_SCANNING, &conn->flags);
960 }
961
962 static void hci_req_directed_advertising(struct hci_request *req,
963                                          struct hci_conn *conn)
964 {
965         struct hci_dev *hdev = req->hdev;
966         u8 own_addr_type;
967         u8 enable;
968
969         if (ext_adv_capable(hdev)) {
970                 struct hci_cp_le_set_ext_adv_params cp;
971                 bdaddr_t random_addr;
972
973                 /* Set require_privacy to false so that the remote device has a
974                  * chance of identifying us.
975                  */
976                 if (hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL,
977                                            &own_addr_type, &random_addr) < 0)
978                         return;
979
980                 memset(&cp, 0, sizeof(cp));
981
982                 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND);
983                 cp.own_addr_type = own_addr_type;
984                 cp.channel_map = hdev->le_adv_channel_map;
985                 cp.tx_power = HCI_TX_POWER_INVALID;
986                 cp.primary_phy = HCI_ADV_PHY_1M;
987                 cp.secondary_phy = HCI_ADV_PHY_1M;
988                 cp.handle = 0; /* Use instance 0 for directed adv */
989                 cp.own_addr_type = own_addr_type;
990                 cp.peer_addr_type = conn->dst_type;
991                 bacpy(&cp.peer_addr, &conn->dst);
992
993                 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for
994                  * advertising_event_property LE_LEGACY_ADV_DIRECT_IND
995                  * does not supports advertising data when the advertising set already
996                  * contains some, the controller shall return erroc code 'Invalid
997                  * HCI Command Parameters(0x12).
998                  * So it is required to remove adv set for handle 0x00. since we use
999                  * instance 0 for directed adv.
1000                  */
1001                 __hci_req_remove_ext_adv_instance(req, cp.handle);
1002
1003                 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);
1004
1005                 if (own_addr_type == ADDR_LE_DEV_RANDOM &&
1006                     bacmp(&random_addr, BDADDR_ANY) &&
1007                     bacmp(&random_addr, &hdev->random_addr)) {
1008                         struct hci_cp_le_set_adv_set_rand_addr cp;
1009
1010                         memset(&cp, 0, sizeof(cp));
1011
1012                         cp.handle = 0;
1013                         bacpy(&cp.bdaddr, &random_addr);
1014
1015                         hci_req_add(req,
1016                                     HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
1017                                     sizeof(cp), &cp);
1018                 }
1019
1020                 __hci_req_enable_ext_advertising(req, 0x00);
1021         } else {
1022                 struct hci_cp_le_set_adv_param cp;
1023
1024                 /* Clear the HCI_LE_ADV bit temporarily so that the
1025                  * hci_update_random_address knows that it's safe to go ahead
1026                  * and write a new random address. The flag will be set back on
1027                  * as soon as the SET_ADV_ENABLE HCI command completes.
1028                  */
1029                 hci_dev_clear_flag(hdev, HCI_LE_ADV);
1030
1031                 /* Set require_privacy to false so that the remote device has a
1032                  * chance of identifying us.
1033                  */
1034                 if (hci_update_random_address(req, false, conn_use_rpa(conn),
1035                                               &own_addr_type) < 0)
1036                         return;
1037
1038                 memset(&cp, 0, sizeof(cp));
1039
1040                 /* Some controllers might reject command if intervals are not
1041                  * within range for undirected advertising.
1042                  * BCM20702A0 is known to be affected by this.
1043                  */
1044                 cp.min_interval = cpu_to_le16(0x0020);
1045                 cp.max_interval = cpu_to_le16(0x0020);
1046
1047                 cp.type = LE_ADV_DIRECT_IND;
1048                 cp.own_address_type = own_addr_type;
1049                 cp.direct_addr_type = conn->dst_type;
1050                 bacpy(&cp.direct_addr, &conn->dst);
1051                 cp.channel_map = hdev->le_adv_channel_map;
1052
1053                 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
1054
1055                 enable = 0x01;
1056                 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
1057                             &enable);
1058         }
1059
1060         conn->state = BT_CONNECT;
1061 }
1062
1063 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst,
1064                                 u8 dst_type, u8 sec_level, u16 conn_timeout,
1065                                 u8 role, bdaddr_t *direct_rpa)
1066 {
1067         struct hci_conn_params *params;
1068         struct hci_conn *conn;
1069         struct smp_irk *irk;
1070         struct hci_request req;
1071         int err;
1072
1073         /* This ensures that during disable le_scan address resolution
1074          * will not be disabled if it is followed by le_create_conn
1075          */
1076         bool rpa_le_conn = true;
1077
1078         /* Let's make sure that le is enabled.*/
1079         if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
1080                 if (lmp_le_capable(hdev))
1081                         return ERR_PTR(-ECONNREFUSED);
1082
1083                 return ERR_PTR(-EOPNOTSUPP);
1084         }
1085
1086         /* Since the controller supports only one LE connection attempt at a
1087          * time, we return -EBUSY if there is any connection attempt running.
1088          */
1089         if (hci_lookup_le_connect(hdev))
1090                 return ERR_PTR(-EBUSY);
1091
1092         /* If there's already a connection object but it's not in
1093          * scanning state it means it must already be established, in
1094          * which case we can't do anything else except report a failure
1095          * to connect.
1096          */
1097         conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
1098         if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) {
1099                 return ERR_PTR(-EBUSY);
1100         }
1101
1102         /* When given an identity address with existing identity
1103          * resolving key, the connection needs to be established
1104          * to a resolvable random address.
1105          *
1106          * Storing the resolvable random address is required here
1107          * to handle connection failures. The address will later
1108          * be resolved back into the original identity address
1109          * from the connect request.
1110          */
1111         irk = hci_find_irk_by_addr(hdev, dst, dst_type);
1112         if (irk && bacmp(&irk->rpa, BDADDR_ANY)) {
1113                 dst = &irk->rpa;
1114                 dst_type = ADDR_LE_DEV_RANDOM;
1115         }
1116
1117         if (conn) {
1118                 bacpy(&conn->dst, dst);
1119         } else {
1120                 conn = hci_conn_add(hdev, LE_LINK, dst, role);
1121                 if (!conn)
1122                         return ERR_PTR(-ENOMEM);
1123                 hci_conn_hold(conn);
1124                 conn->pending_sec_level = sec_level;
1125         }
1126
1127         conn->dst_type = dst_type;
1128         conn->sec_level = BT_SECURITY_LOW;
1129         conn->conn_timeout = conn_timeout;
1130
1131         hci_req_init(&req, hdev);
1132
1133         /* Disable advertising if we're active. For central role
1134          * connections most controllers will refuse to connect if
1135          * advertising is enabled, and for peripheral role connections we
1136          * anyway have to disable it in order to start directed
1137          * advertising. Any registered advertisements will be
1138          * re-enabled after the connection attempt is finished.
1139          */
1140         if (hci_dev_test_flag(hdev, HCI_LE_ADV))
1141                 __hci_req_pause_adv_instances(&req);
1142
1143         /* If requested to connect as peripheral use directed advertising */
1144         if (conn->role == HCI_ROLE_SLAVE) {
1145                 /* If we're active scanning most controllers are unable
1146                  * to initiate advertising. Simply reject the attempt.
1147                  */
1148                 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
1149                     hdev->le_scan_type == LE_SCAN_ACTIVE) {
1150                         hci_req_purge(&req);
1151                         hci_conn_del(conn);
1152                         return ERR_PTR(-EBUSY);
1153                 }
1154
1155                 hci_req_directed_advertising(&req, conn);
1156                 goto create_conn;
1157         }
1158
1159         params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
1160         if (params) {
1161                 conn->le_conn_min_interval = params->conn_min_interval;
1162                 conn->le_conn_max_interval = params->conn_max_interval;
1163                 conn->le_conn_latency = params->conn_latency;
1164                 conn->le_supv_timeout = params->supervision_timeout;
1165         } else {
1166                 conn->le_conn_min_interval = hdev->le_conn_min_interval;
1167                 conn->le_conn_max_interval = hdev->le_conn_max_interval;
1168                 conn->le_conn_latency = hdev->le_conn_latency;
1169                 conn->le_supv_timeout = hdev->le_supv_timeout;
1170         }
1171
1172         /* If controller is scanning, we stop it since some controllers are
1173          * not able to scan and connect at the same time. Also set the
1174          * HCI_LE_SCAN_INTERRUPTED flag so that the command complete
1175          * handler for scan disabling knows to set the correct discovery
1176          * state.
1177          */
1178         if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
1179                 hci_req_add_le_scan_disable(&req, rpa_le_conn);
1180                 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
1181         }
1182
1183         hci_req_add_le_create_conn(&req, conn, direct_rpa);
1184
1185 create_conn:
1186         err = hci_req_run(&req, create_le_conn_complete);
1187         if (err) {
1188                 hci_conn_del(conn);
1189
1190                 if (hdev->adv_instance_cnt)
1191                         hci_req_resume_adv_instances(hdev);
1192
1193                 return ERR_PTR(err);
1194         }
1195
1196         return conn;
1197 }
1198
1199 static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type)
1200 {
1201         struct hci_conn *conn;
1202
1203         conn = hci_conn_hash_lookup_le(hdev, addr, type);
1204         if (!conn)
1205                 return false;
1206
1207         if (conn->state != BT_CONNECTED)
1208                 return false;
1209
1210         return true;
1211 }
1212
1213 /* This function requires the caller holds hdev->lock */
1214 static int hci_explicit_conn_params_set(struct hci_dev *hdev,
1215                                         bdaddr_t *addr, u8 addr_type)
1216 {
1217         struct hci_conn_params *params;
1218
1219         if (is_connected(hdev, addr, addr_type))
1220                 return -EISCONN;
1221
1222         params = hci_conn_params_lookup(hdev, addr, addr_type);
1223         if (!params) {
1224                 params = hci_conn_params_add(hdev, addr, addr_type);
1225                 if (!params)
1226                         return -ENOMEM;
1227
1228                 /* If we created new params, mark them to be deleted in
1229                  * hci_connect_le_scan_cleanup. It's different case than
1230                  * existing disabled params, those will stay after cleanup.
1231                  */
1232                 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
1233         }
1234
1235         /* We're trying to connect, so make sure params are at pend_le_conns */
1236         if (params->auto_connect == HCI_AUTO_CONN_DISABLED ||
1237             params->auto_connect == HCI_AUTO_CONN_REPORT ||
1238             params->auto_connect == HCI_AUTO_CONN_EXPLICIT) {
1239                 list_del_init(&params->action);
1240                 list_add(&params->action, &hdev->pend_le_conns);
1241         }
1242
1243         params->explicit_connect = true;
1244
1245         BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type,
1246                params->auto_connect);
1247
1248         return 0;
1249 }
1250
1251 /* This function requires the caller holds hdev->lock */
1252 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst,
1253                                      u8 dst_type, u8 sec_level,
1254                                      u16 conn_timeout,
1255                                      enum conn_reasons conn_reason)
1256 {
1257         struct hci_conn *conn;
1258
1259         /* Let's make sure that le is enabled.*/
1260         if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
1261                 if (lmp_le_capable(hdev))
1262                         return ERR_PTR(-ECONNREFUSED);
1263
1264                 return ERR_PTR(-EOPNOTSUPP);
1265         }
1266
1267         /* Some devices send ATT messages as soon as the physical link is
1268          * established. To be able to handle these ATT messages, the user-
1269          * space first establishes the connection and then starts the pairing
1270          * process.
1271          *
1272          * So if a hci_conn object already exists for the following connection
1273          * attempt, we simply update pending_sec_level and auth_type fields
1274          * and return the object found.
1275          */
1276         conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
1277         if (conn) {
1278                 if (conn->pending_sec_level < sec_level)
1279                         conn->pending_sec_level = sec_level;
1280                 goto done;
1281         }
1282
1283         BT_DBG("requesting refresh of dst_addr");
1284
1285         conn = hci_conn_add(hdev, LE_LINK, dst, HCI_ROLE_MASTER);
1286         if (!conn)
1287                 return ERR_PTR(-ENOMEM);
1288
1289         if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0) {
1290                 hci_conn_del(conn);
1291                 return ERR_PTR(-EBUSY);
1292         }
1293
1294         conn->state = BT_CONNECT;
1295         set_bit(HCI_CONN_SCANNING, &conn->flags);
1296         conn->dst_type = dst_type;
1297         conn->sec_level = BT_SECURITY_LOW;
1298         conn->pending_sec_level = sec_level;
1299         conn->conn_timeout = conn_timeout;
1300         conn->conn_reason = conn_reason;
1301
1302         hci_update_background_scan(hdev);
1303
1304 done:
1305         hci_conn_hold(conn);
1306         return conn;
1307 }
1308
1309 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst,
1310                                  u8 sec_level, u8 auth_type,
1311                                  enum conn_reasons conn_reason)
1312 {
1313         struct hci_conn *acl;
1314
1315         if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1316                 if (lmp_bredr_capable(hdev))
1317                         return ERR_PTR(-ECONNREFUSED);
1318
1319                 return ERR_PTR(-EOPNOTSUPP);
1320         }
1321
1322         acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst);
1323         if (!acl) {
1324                 acl = hci_conn_add(hdev, ACL_LINK, dst, HCI_ROLE_MASTER);
1325                 if (!acl)
1326                         return ERR_PTR(-ENOMEM);
1327         }
1328
1329         hci_conn_hold(acl);
1330
1331         acl->conn_reason = conn_reason;
1332         if (acl->state == BT_OPEN || acl->state == BT_CLOSED) {
1333                 acl->sec_level = BT_SECURITY_LOW;
1334                 acl->pending_sec_level = sec_level;
1335                 acl->auth_type = auth_type;
1336                 hci_acl_create_connection(acl);
1337         }
1338
1339         return acl;
1340 }
1341
1342 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst,
1343                                  __u16 setting)
1344 {
1345         struct hci_conn *acl;
1346         struct hci_conn *sco;
1347
1348         acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING,
1349                               CONN_REASON_SCO_CONNECT);
1350         if (IS_ERR(acl))
1351                 return acl;
1352
1353         sco = hci_conn_hash_lookup_ba(hdev, type, dst);
1354         if (!sco) {
1355                 sco = hci_conn_add(hdev, type, dst, HCI_ROLE_MASTER);
1356                 if (!sco) {
1357                         hci_conn_drop(acl);
1358                         return ERR_PTR(-ENOMEM);
1359                 }
1360         }
1361
1362         acl->link = sco;
1363         sco->link = acl;
1364
1365         hci_conn_hold(sco);
1366
1367         sco->setting = setting;
1368
1369         if (acl->state == BT_CONNECTED &&
1370             (sco->state == BT_OPEN || sco->state == BT_CLOSED)) {
1371                 set_bit(HCI_CONN_POWER_SAVE, &acl->flags);
1372                 hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON);
1373
1374                 if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) {
1375                         /* defer SCO setup until mode change completed */
1376                         set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags);
1377                         return sco;
1378                 }
1379
1380                 hci_sco_setup(acl, 0x00);
1381         }
1382
1383         return sco;
1384 }
1385
1386 /* Check link security requirement */
1387 int hci_conn_check_link_mode(struct hci_conn *conn)
1388 {
1389         BT_DBG("hcon %p", conn);
1390
1391         /* In Secure Connections Only mode, it is required that Secure
1392          * Connections is used and the link is encrypted with AES-CCM
1393          * using a P-256 authenticated combination key.
1394          */
1395         if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) {
1396                 if (!hci_conn_sc_enabled(conn) ||
1397                     !test_bit(HCI_CONN_AES_CCM, &conn->flags) ||
1398                     conn->key_type != HCI_LK_AUTH_COMBINATION_P256)
1399                         return 0;
1400         }
1401
1402          /* AES encryption is required for Level 4:
1403           *
1404           * BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 3, Part C
1405           * page 1319:
1406           *
1407           * 128-bit equivalent strength for link and encryption keys
1408           * required using FIPS approved algorithms (E0 not allowed,
1409           * SAFER+ not allowed, and P-192 not allowed; encryption key
1410           * not shortened)
1411           */
1412         if (conn->sec_level == BT_SECURITY_FIPS &&
1413             !test_bit(HCI_CONN_AES_CCM, &conn->flags)) {
1414                 bt_dev_err(conn->hdev,
1415                            "Invalid security: Missing AES-CCM usage");
1416                 return 0;
1417         }
1418
1419         if (hci_conn_ssp_enabled(conn) &&
1420             !test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1421                 return 0;
1422
1423         return 1;
1424 }
1425
1426 /* Authenticate remote device */
1427 static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type)
1428 {
1429         BT_DBG("hcon %p", conn);
1430
1431         if (conn->pending_sec_level > sec_level)
1432                 sec_level = conn->pending_sec_level;
1433
1434         if (sec_level > conn->sec_level)
1435                 conn->pending_sec_level = sec_level;
1436         else if (test_bit(HCI_CONN_AUTH, &conn->flags))
1437                 return 1;
1438
1439         /* Make sure we preserve an existing MITM requirement*/
1440         auth_type |= (conn->auth_type & 0x01);
1441
1442         conn->auth_type = auth_type;
1443
1444         if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) {
1445                 struct hci_cp_auth_requested cp;
1446
1447                 cp.handle = cpu_to_le16(conn->handle);
1448                 hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED,
1449                              sizeof(cp), &cp);
1450
1451                 /* If we're already encrypted set the REAUTH_PEND flag,
1452                  * otherwise set the ENCRYPT_PEND.
1453                  */
1454                 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1455                         set_bit(HCI_CONN_REAUTH_PEND, &conn->flags);
1456                 else
1457                         set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags);
1458         }
1459
1460         return 0;
1461 }
1462
1463 /* Encrypt the link */
1464 static void hci_conn_encrypt(struct hci_conn *conn)
1465 {
1466         BT_DBG("hcon %p", conn);
1467
1468         if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) {
1469                 struct hci_cp_set_conn_encrypt cp;
1470                 cp.handle  = cpu_to_le16(conn->handle);
1471                 cp.encrypt = 0x01;
1472                 hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp),
1473                              &cp);
1474         }
1475 }
1476
1477 /* Enable security */
1478 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type,
1479                       bool initiator)
1480 {
1481         BT_DBG("hcon %p", conn);
1482
1483         if (conn->type == LE_LINK)
1484                 return smp_conn_security(conn, sec_level);
1485
1486         /* For sdp we don't need the link key. */
1487         if (sec_level == BT_SECURITY_SDP)
1488                 return 1;
1489
1490         /* For non 2.1 devices and low security level we don't need the link
1491            key. */
1492         if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn))
1493                 return 1;
1494
1495         /* For other security levels we need the link key. */
1496         if (!test_bit(HCI_CONN_AUTH, &conn->flags))
1497                 goto auth;
1498
1499         /* An authenticated FIPS approved combination key has sufficient
1500          * security for security level 4. */
1501         if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256 &&
1502             sec_level == BT_SECURITY_FIPS)
1503                 goto encrypt;
1504
1505         /* An authenticated combination key has sufficient security for
1506            security level 3. */
1507         if ((conn->key_type == HCI_LK_AUTH_COMBINATION_P192 ||
1508              conn->key_type == HCI_LK_AUTH_COMBINATION_P256) &&
1509             sec_level == BT_SECURITY_HIGH)
1510                 goto encrypt;
1511
1512         /* An unauthenticated combination key has sufficient security for
1513            security level 1 and 2. */
1514         if ((conn->key_type == HCI_LK_UNAUTH_COMBINATION_P192 ||
1515              conn->key_type == HCI_LK_UNAUTH_COMBINATION_P256) &&
1516             (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW))
1517                 goto encrypt;
1518
1519         /* A combination key has always sufficient security for the security
1520            levels 1 or 2. High security level requires the combination key
1521            is generated using maximum PIN code length (16).
1522            For pre 2.1 units. */
1523         if (conn->key_type == HCI_LK_COMBINATION &&
1524             (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW ||
1525              conn->pin_length == 16))
1526                 goto encrypt;
1527
1528 auth:
1529         if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
1530                 return 0;
1531
1532         if (initiator)
1533                 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags);
1534
1535         if (!hci_conn_auth(conn, sec_level, auth_type))
1536                 return 0;
1537
1538 encrypt:
1539         if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) {
1540                 /* Ensure that the encryption key size has been read,
1541                  * otherwise stall the upper layer responses.
1542                  */
1543                 if (!conn->enc_key_size)
1544                         return 0;
1545
1546                 /* Nothing else needed, all requirements are met */
1547                 return 1;
1548         }
1549
1550         hci_conn_encrypt(conn);
1551         return 0;
1552 }
1553 EXPORT_SYMBOL(hci_conn_security);
1554
1555 /* Check secure link requirement */
1556 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level)
1557 {
1558         BT_DBG("hcon %p", conn);
1559
1560         /* Accept if non-secure or higher security level is required */
1561         if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS)
1562                 return 1;
1563
1564         /* Accept if secure or higher security level is already present */
1565         if (conn->sec_level == BT_SECURITY_HIGH ||
1566             conn->sec_level == BT_SECURITY_FIPS)
1567                 return 1;
1568
1569         /* Reject not secure link */
1570         return 0;
1571 }
1572 EXPORT_SYMBOL(hci_conn_check_secure);
1573
1574 /* Switch role */
1575 int hci_conn_switch_role(struct hci_conn *conn, __u8 role)
1576 {
1577         BT_DBG("hcon %p", conn);
1578
1579         if (role == conn->role)
1580                 return 1;
1581
1582         if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) {
1583                 struct hci_cp_switch_role cp;
1584                 bacpy(&cp.bdaddr, &conn->dst);
1585                 cp.role = role;
1586                 hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp);
1587         }
1588
1589         return 0;
1590 }
1591 EXPORT_SYMBOL(hci_conn_switch_role);
1592
1593 /* Enter active mode */
1594 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active)
1595 {
1596         struct hci_dev *hdev = conn->hdev;
1597
1598         BT_DBG("hcon %p mode %d", conn, conn->mode);
1599
1600         if (conn->mode != HCI_CM_SNIFF)
1601                 goto timer;
1602
1603         if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active)
1604                 goto timer;
1605
1606         if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
1607                 struct hci_cp_exit_sniff_mode cp;
1608                 cp.handle = cpu_to_le16(conn->handle);
1609                 hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp);
1610         }
1611
1612 timer:
1613         if (hdev->idle_timeout > 0)
1614                 queue_delayed_work(hdev->workqueue, &conn->idle_work,
1615                                    msecs_to_jiffies(hdev->idle_timeout));
1616 }
1617
1618 /* Drop all connection on the device */
1619 void hci_conn_hash_flush(struct hci_dev *hdev)
1620 {
1621         struct hci_conn_hash *h = &hdev->conn_hash;
1622         struct hci_conn *c, *n;
1623
1624         BT_DBG("hdev %s", hdev->name);
1625
1626         list_for_each_entry_safe(c, n, &h->list, list) {
1627                 c->state = BT_CLOSED;
1628
1629                 hci_disconn_cfm(c, HCI_ERROR_LOCAL_HOST_TERM);
1630                 hci_conn_del(c);
1631         }
1632 }
1633
1634 /* Check pending connect attempts */
1635 void hci_conn_check_pending(struct hci_dev *hdev)
1636 {
1637         struct hci_conn *conn;
1638
1639         BT_DBG("hdev %s", hdev->name);
1640
1641         hci_dev_lock(hdev);
1642
1643         conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2);
1644         if (conn)
1645                 hci_acl_create_connection(conn);
1646
1647         hci_dev_unlock(hdev);
1648 }
1649
1650 static u32 get_link_mode(struct hci_conn *conn)
1651 {
1652         u32 link_mode = 0;
1653
1654         if (conn->role == HCI_ROLE_MASTER)
1655                 link_mode |= HCI_LM_MASTER;
1656
1657         if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1658                 link_mode |= HCI_LM_ENCRYPT;
1659
1660         if (test_bit(HCI_CONN_AUTH, &conn->flags))
1661                 link_mode |= HCI_LM_AUTH;
1662
1663         if (test_bit(HCI_CONN_SECURE, &conn->flags))
1664                 link_mode |= HCI_LM_SECURE;
1665
1666         if (test_bit(HCI_CONN_FIPS, &conn->flags))
1667                 link_mode |= HCI_LM_FIPS;
1668
1669         return link_mode;
1670 }
1671
1672 int hci_get_conn_list(void __user *arg)
1673 {
1674         struct hci_conn *c;
1675         struct hci_conn_list_req req, *cl;
1676         struct hci_conn_info *ci;
1677         struct hci_dev *hdev;
1678         int n = 0, size, err;
1679
1680         if (copy_from_user(&req, arg, sizeof(req)))
1681                 return -EFAULT;
1682
1683         if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci))
1684                 return -EINVAL;
1685
1686         size = sizeof(req) + req.conn_num * sizeof(*ci);
1687
1688         cl = kmalloc(size, GFP_KERNEL);
1689         if (!cl)
1690                 return -ENOMEM;
1691
1692         hdev = hci_dev_get(req.dev_id);
1693         if (!hdev) {
1694                 kfree(cl);
1695                 return -ENODEV;
1696         }
1697
1698         ci = cl->conn_info;
1699
1700         hci_dev_lock(hdev);
1701         list_for_each_entry(c, &hdev->conn_hash.list, list) {
1702                 bacpy(&(ci + n)->bdaddr, &c->dst);
1703                 (ci + n)->handle = c->handle;
1704                 (ci + n)->type  = c->type;
1705                 (ci + n)->out   = c->out;
1706                 (ci + n)->state = c->state;
1707                 (ci + n)->link_mode = get_link_mode(c);
1708                 if (++n >= req.conn_num)
1709                         break;
1710         }
1711         hci_dev_unlock(hdev);
1712
1713         cl->dev_id = hdev->id;
1714         cl->conn_num = n;
1715         size = sizeof(req) + n * sizeof(*ci);
1716
1717         hci_dev_put(hdev);
1718
1719         err = copy_to_user(arg, cl, size);
1720         kfree(cl);
1721
1722         return err ? -EFAULT : 0;
1723 }
1724
1725 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg)
1726 {
1727         struct hci_conn_info_req req;
1728         struct hci_conn_info ci;
1729         struct hci_conn *conn;
1730         char __user *ptr = arg + sizeof(req);
1731
1732         if (copy_from_user(&req, arg, sizeof(req)))
1733                 return -EFAULT;
1734
1735         hci_dev_lock(hdev);
1736         conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr);
1737         if (conn) {
1738                 bacpy(&ci.bdaddr, &conn->dst);
1739                 ci.handle = conn->handle;
1740                 ci.type  = conn->type;
1741                 ci.out   = conn->out;
1742                 ci.state = conn->state;
1743                 ci.link_mode = get_link_mode(conn);
1744         }
1745         hci_dev_unlock(hdev);
1746
1747         if (!conn)
1748                 return -ENOENT;
1749
1750         return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0;
1751 }
1752
1753 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg)
1754 {
1755         struct hci_auth_info_req req;
1756         struct hci_conn *conn;
1757
1758         if (copy_from_user(&req, arg, sizeof(req)))
1759                 return -EFAULT;
1760
1761         hci_dev_lock(hdev);
1762         conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr);
1763         if (conn)
1764                 req.type = conn->auth_type;
1765         hci_dev_unlock(hdev);
1766
1767         if (!conn)
1768                 return -ENOENT;
1769
1770         return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0;
1771 }
1772
1773 struct hci_chan *hci_chan_create(struct hci_conn *conn)
1774 {
1775         struct hci_dev *hdev = conn->hdev;
1776         struct hci_chan *chan;
1777
1778         BT_DBG("%s hcon %p", hdev->name, conn);
1779
1780         if (test_bit(HCI_CONN_DROP, &conn->flags)) {
1781                 BT_DBG("Refusing to create new hci_chan");
1782                 return NULL;
1783         }
1784
1785         chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1786         if (!chan)
1787                 return NULL;
1788
1789         chan->conn = hci_conn_get(conn);
1790         skb_queue_head_init(&chan->data_q);
1791         chan->state = BT_CONNECTED;
1792
1793         list_add_rcu(&chan->list, &conn->chan_list);
1794
1795         return chan;
1796 }
1797
1798 void hci_chan_del(struct hci_chan *chan)
1799 {
1800         struct hci_conn *conn = chan->conn;
1801         struct hci_dev *hdev = conn->hdev;
1802
1803         BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan);
1804
1805         list_del_rcu(&chan->list);
1806
1807         synchronize_rcu();
1808
1809         /* Prevent new hci_chan's to be created for this hci_conn */
1810         set_bit(HCI_CONN_DROP, &conn->flags);
1811
1812         hci_conn_put(conn);
1813
1814         skb_queue_purge(&chan->data_q);
1815         kfree(chan);
1816 }
1817
1818 void hci_chan_list_flush(struct hci_conn *conn)
1819 {
1820         struct hci_chan *chan, *n;
1821
1822         BT_DBG("hcon %p", conn);
1823
1824         list_for_each_entry_safe(chan, n, &conn->chan_list, list)
1825                 hci_chan_del(chan);
1826 }
1827
1828 static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon,
1829                                                  __u16 handle)
1830 {
1831         struct hci_chan *hchan;
1832
1833         list_for_each_entry(hchan, &hcon->chan_list, list) {
1834                 if (hchan->handle == handle)
1835                         return hchan;
1836         }
1837
1838         return NULL;
1839 }
1840
1841 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle)
1842 {
1843         struct hci_conn_hash *h = &hdev->conn_hash;
1844         struct hci_conn *hcon;
1845         struct hci_chan *hchan = NULL;
1846
1847         rcu_read_lock();
1848
1849         list_for_each_entry_rcu(hcon, &h->list, list) {
1850                 hchan = __hci_chan_lookup_handle(hcon, handle);
1851                 if (hchan)
1852                         break;
1853         }
1854
1855         rcu_read_unlock();
1856
1857         return hchan;
1858 }
1859
1860 u32 hci_conn_get_phy(struct hci_conn *conn)
1861 {
1862         u32 phys = 0;
1863
1864         /* BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 2, Part B page 471:
1865          * Table 6.2: Packets defined for synchronous, asynchronous, and
1866          * CPB logical transport types.
1867          */
1868         switch (conn->type) {
1869         case SCO_LINK:
1870                 /* SCO logical transport (1 Mb/s):
1871                  * HV1, HV2, HV3 and DV.
1872                  */
1873                 phys |= BT_PHY_BR_1M_1SLOT;
1874
1875                 break;
1876
1877         case ACL_LINK:
1878                 /* ACL logical transport (1 Mb/s) ptt=0:
1879                  * DH1, DM3, DH3, DM5 and DH5.
1880                  */
1881                 phys |= BT_PHY_BR_1M_1SLOT;
1882
1883                 if (conn->pkt_type & (HCI_DM3 | HCI_DH3))
1884                         phys |= BT_PHY_BR_1M_3SLOT;
1885
1886                 if (conn->pkt_type & (HCI_DM5 | HCI_DH5))
1887                         phys |= BT_PHY_BR_1M_5SLOT;
1888
1889                 /* ACL logical transport (2 Mb/s) ptt=1:
1890                  * 2-DH1, 2-DH3 and 2-DH5.
1891                  */
1892                 if (!(conn->pkt_type & HCI_2DH1))
1893                         phys |= BT_PHY_EDR_2M_1SLOT;
1894
1895                 if (!(conn->pkt_type & HCI_2DH3))
1896                         phys |= BT_PHY_EDR_2M_3SLOT;
1897
1898                 if (!(conn->pkt_type & HCI_2DH5))
1899                         phys |= BT_PHY_EDR_2M_5SLOT;
1900
1901                 /* ACL logical transport (3 Mb/s) ptt=1:
1902                  * 3-DH1, 3-DH3 and 3-DH5.
1903                  */
1904                 if (!(conn->pkt_type & HCI_3DH1))
1905                         phys |= BT_PHY_EDR_3M_1SLOT;
1906
1907                 if (!(conn->pkt_type & HCI_3DH3))
1908                         phys |= BT_PHY_EDR_3M_3SLOT;
1909
1910                 if (!(conn->pkt_type & HCI_3DH5))
1911                         phys |= BT_PHY_EDR_3M_5SLOT;
1912
1913                 break;
1914
1915         case ESCO_LINK:
1916                 /* eSCO logical transport (1 Mb/s): EV3, EV4 and EV5 */
1917                 phys |= BT_PHY_BR_1M_1SLOT;
1918
1919                 if (!(conn->pkt_type & (ESCO_EV4 | ESCO_EV5)))
1920                         phys |= BT_PHY_BR_1M_3SLOT;
1921
1922                 /* eSCO logical transport (2 Mb/s): 2-EV3, 2-EV5 */
1923                 if (!(conn->pkt_type & ESCO_2EV3))
1924                         phys |= BT_PHY_EDR_2M_1SLOT;
1925
1926                 if (!(conn->pkt_type & ESCO_2EV5))
1927                         phys |= BT_PHY_EDR_2M_3SLOT;
1928
1929                 /* eSCO logical transport (3 Mb/s): 3-EV3, 3-EV5 */
1930                 if (!(conn->pkt_type & ESCO_3EV3))
1931                         phys |= BT_PHY_EDR_3M_1SLOT;
1932
1933                 if (!(conn->pkt_type & ESCO_3EV5))
1934                         phys |= BT_PHY_EDR_3M_3SLOT;
1935
1936                 break;
1937
1938         case LE_LINK:
1939                 if (conn->le_tx_phy & HCI_LE_SET_PHY_1M)
1940                         phys |= BT_PHY_LE_1M_TX;
1941
1942                 if (conn->le_rx_phy & HCI_LE_SET_PHY_1M)
1943                         phys |= BT_PHY_LE_1M_RX;
1944
1945                 if (conn->le_tx_phy & HCI_LE_SET_PHY_2M)
1946                         phys |= BT_PHY_LE_2M_TX;
1947
1948                 if (conn->le_rx_phy & HCI_LE_SET_PHY_2M)
1949                         phys |= BT_PHY_LE_2M_RX;
1950
1951                 if (conn->le_tx_phy & HCI_LE_SET_PHY_CODED)
1952                         phys |= BT_PHY_LE_CODED_TX;
1953
1954                 if (conn->le_rx_phy & HCI_LE_SET_PHY_CODED)
1955                         phys |= BT_PHY_LE_CODED_RX;
1956
1957                 break;
1958         }
1959
1960         return phys;
1961 }