Bluetooth: Add LE connection parameter update
[platform/kernel/linux-rpi.git] / net / bluetooth / hci_conn.c
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
4
5    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License version 2 as
9    published by the Free Software Foundation;
10
11    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19
20    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22    SOFTWARE IS DISCLAIMED.
23 */
24
25 /* Bluetooth HCI connection handling. */
26
27 #include <linux/export.h>
28 #include <linux/debugfs.h>
29
30 #include <net/bluetooth/bluetooth.h>
31 #include <net/bluetooth/hci_core.h>
32 #include <net/bluetooth/l2cap.h>
33
34 #include "hci_request.h"
35 #include "smp.h"
36 #include "a2mp.h"
37
38 struct sco_param {
39         u16 pkt_type;
40         u16 max_latency;
41         u8  retrans_effort;
42 };
43
44 #ifdef TIZEN_BT
45 static const struct sco_param esco_param_cvsd[] = {
46         { (EDR_ESCO_MASK & ~ESCO_2EV3) | SCO_ESCO_MASK | ESCO_EV3,
47                                       0x000a,   0x01 }, /* S3 */
48         { EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007,   0x01 }, /* S2 */
49         { EDR_ESCO_MASK | ESCO_EV3,   0x0007,   0x01 }, /* S1 */
50         { EDR_ESCO_MASK | ESCO_HV3,   0xffff,   0x01 }, /* D1 */
51         { EDR_ESCO_MASK | ESCO_HV1,   0xffff,   0x01 }, /* D0 */
52 };
53 #else
54 static const struct sco_param esco_param_cvsd[] = {
55         { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a,   0x01 }, /* S3 */
56         { EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007,   0x01 }, /* S2 */
57         { EDR_ESCO_MASK | ESCO_EV3,   0x0007,   0x01 }, /* S1 */
58         { EDR_ESCO_MASK | ESCO_HV3,   0xffff,   0x01 }, /* D1 */
59         { EDR_ESCO_MASK | ESCO_HV1,   0xffff,   0x01 }, /* D0 */
60 };
61 #endif
62
63 static const struct sco_param sco_param_cvsd[] = {
64         { EDR_ESCO_MASK | ESCO_HV3,   0xffff,   0xff }, /* D1 */
65         { EDR_ESCO_MASK | ESCO_HV1,   0xffff,   0xff }, /* D0 */
66 };
67
68 #ifdef TIZEN_BT
69 static const struct sco_param esco_param_msbc[] = {
70         { (EDR_ESCO_MASK & ~ESCO_2EV3) | ESCO_EV3,
71                                       0x000d,   0x02 }, /* T2 */
72         { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d,   0x02 }, /* T2 */
73 };
74 #else
75 static const struct sco_param esco_param_msbc[] = {
76         { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d,   0x02 }, /* T2 */
77         { EDR_ESCO_MASK | ESCO_EV3,   0x0008,   0x02 }, /* T1 */
78 };
79 #endif
80
81 /* This function requires the caller holds hdev->lock */
82 static void hci_connect_le_scan_cleanup(struct hci_conn *conn)
83 {
84         struct hci_conn_params *params;
85         struct hci_dev *hdev = conn->hdev;
86         struct smp_irk *irk;
87         bdaddr_t *bdaddr;
88         u8 bdaddr_type;
89
90         bdaddr = &conn->dst;
91         bdaddr_type = conn->dst_type;
92
93         /* Check if we need to convert to identity address */
94         irk = hci_get_irk(hdev, bdaddr, bdaddr_type);
95         if (irk) {
96                 bdaddr = &irk->bdaddr;
97                 bdaddr_type = irk->addr_type;
98         }
99
100         params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr,
101                                            bdaddr_type);
102         if (!params || !params->explicit_connect)
103                 return;
104
105         /* The connection attempt was doing scan for new RPA, and is
106          * in scan phase. If params are not associated with any other
107          * autoconnect action, remove them completely. If they are, just unmark
108          * them as waiting for connection, by clearing explicit_connect field.
109          */
110         params->explicit_connect = false;
111
112         list_del_init(&params->action);
113
114         switch (params->auto_connect) {
115         case HCI_AUTO_CONN_EXPLICIT:
116                 hci_conn_params_del(hdev, bdaddr, bdaddr_type);
117                 /* return instead of break to avoid duplicate scan update */
118                 return;
119         case HCI_AUTO_CONN_DIRECT:
120         case HCI_AUTO_CONN_ALWAYS:
121                 list_add(&params->action, &hdev->pend_le_conns);
122                 break;
123         case HCI_AUTO_CONN_REPORT:
124                 list_add(&params->action, &hdev->pend_le_reports);
125                 break;
126         default:
127                 break;
128         }
129
130         hci_update_background_scan(hdev);
131 }
132
133 static void hci_conn_cleanup(struct hci_conn *conn)
134 {
135         struct hci_dev *hdev = conn->hdev;
136
137         if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags))
138                 hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type);
139
140         hci_chan_list_flush(conn);
141
142         hci_conn_hash_del(hdev, conn);
143
144         if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
145                 switch (conn->setting & SCO_AIRMODE_MASK) {
146                 case SCO_AIRMODE_CVSD:
147                 case SCO_AIRMODE_TRANSP:
148                         if (hdev->notify)
149                                 hdev->notify(hdev, HCI_NOTIFY_DISABLE_SCO);
150                         break;
151                 }
152         } else {
153                 if (hdev->notify)
154                         hdev->notify(hdev, HCI_NOTIFY_CONN_DEL);
155         }
156
157         hci_conn_del_sysfs(conn);
158
159         debugfs_remove_recursive(conn->debugfs);
160
161         hci_dev_put(hdev);
162
163         hci_conn_put(conn);
164 }
165
166 static void le_scan_cleanup(struct work_struct *work)
167 {
168         struct hci_conn *conn = container_of(work, struct hci_conn,
169                                              le_scan_cleanup);
170         struct hci_dev *hdev = conn->hdev;
171         struct hci_conn *c = NULL;
172
173         BT_DBG("%s hcon %p", hdev->name, conn);
174
175         hci_dev_lock(hdev);
176
177         /* Check that the hci_conn is still around */
178         rcu_read_lock();
179         list_for_each_entry_rcu(c, &hdev->conn_hash.list, list) {
180                 if (c == conn)
181                         break;
182         }
183         rcu_read_unlock();
184
185         if (c == conn) {
186                 hci_connect_le_scan_cleanup(conn);
187                 hci_conn_cleanup(conn);
188         }
189
190         hci_dev_unlock(hdev);
191         hci_dev_put(hdev);
192         hci_conn_put(conn);
193 }
194
195 static void hci_connect_le_scan_remove(struct hci_conn *conn)
196 {
197         BT_DBG("%s hcon %p", conn->hdev->name, conn);
198
199         /* We can't call hci_conn_del/hci_conn_cleanup here since that
200          * could deadlock with another hci_conn_del() call that's holding
201          * hci_dev_lock and doing cancel_delayed_work_sync(&conn->disc_work).
202          * Instead, grab temporary extra references to the hci_dev and
203          * hci_conn and perform the necessary cleanup in a separate work
204          * callback.
205          */
206
207         hci_dev_hold(conn->hdev);
208         hci_conn_get(conn);
209
210         /* Even though we hold a reference to the hdev, many other
211          * things might get cleaned up meanwhile, including the hdev's
212          * own workqueue, so we can't use that for scheduling.
213          */
214         schedule_work(&conn->le_scan_cleanup);
215 }
216
217 static void hci_acl_create_connection(struct hci_conn *conn)
218 {
219         struct hci_dev *hdev = conn->hdev;
220         struct inquiry_entry *ie;
221         struct hci_cp_create_conn cp;
222
223         BT_DBG("hcon %p", conn);
224
225         /* Many controllers disallow HCI Create Connection while it is doing
226          * HCI Inquiry. So we cancel the Inquiry first before issuing HCI Create
227          * Connection. This may cause the MGMT discovering state to become false
228          * without user space's request but it is okay since the MGMT Discovery
229          * APIs do not promise that discovery should be done forever. Instead,
230          * the user space monitors the status of MGMT discovering and it may
231          * request for discovery again when this flag becomes false.
232          */
233         if (test_bit(HCI_INQUIRY, &hdev->flags)) {
234                 /* Put this connection to "pending" state so that it will be
235                  * executed after the inquiry cancel command complete event.
236                  */
237                 conn->state = BT_CONNECT2;
238                 hci_send_cmd(hdev, HCI_OP_INQUIRY_CANCEL, 0, NULL);
239                 return;
240         }
241
242         conn->state = BT_CONNECT;
243         conn->out = true;
244         conn->role = HCI_ROLE_MASTER;
245
246         conn->attempt++;
247
248         conn->link_policy = hdev->link_policy;
249
250         memset(&cp, 0, sizeof(cp));
251         bacpy(&cp.bdaddr, &conn->dst);
252         cp.pscan_rep_mode = 0x02;
253
254         ie = hci_inquiry_cache_lookup(hdev, &conn->dst);
255         if (ie) {
256                 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) {
257                         cp.pscan_rep_mode = ie->data.pscan_rep_mode;
258                         cp.pscan_mode     = ie->data.pscan_mode;
259                         cp.clock_offset   = ie->data.clock_offset |
260                                             cpu_to_le16(0x8000);
261                 }
262
263                 memcpy(conn->dev_class, ie->data.dev_class, 3);
264         }
265
266         cp.pkt_type = cpu_to_le16(conn->pkt_type);
267         if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER))
268                 cp.role_switch = 0x01;
269         else
270                 cp.role_switch = 0x00;
271
272         hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp);
273 }
274
275 int hci_disconnect(struct hci_conn *conn, __u8 reason)
276 {
277         BT_DBG("hcon %p", conn);
278
279         /* When we are central of an established connection and it enters
280          * the disconnect timeout, then go ahead and try to read the
281          * current clock offset.  Processing of the result is done
282          * within the event handling and hci_clock_offset_evt function.
283          */
284         if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER &&
285             (conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) {
286                 struct hci_dev *hdev = conn->hdev;
287                 struct hci_cp_read_clock_offset clkoff_cp;
288
289                 clkoff_cp.handle = cpu_to_le16(conn->handle);
290                 hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp),
291                              &clkoff_cp);
292         }
293
294         return hci_abort_conn(conn, reason);
295 }
296
297 static void hci_add_sco(struct hci_conn *conn, __u16 handle)
298 {
299         struct hci_dev *hdev = conn->hdev;
300         struct hci_cp_add_sco cp;
301
302         BT_DBG("hcon %p", conn);
303
304         conn->state = BT_CONNECT;
305         conn->out = true;
306
307         conn->attempt++;
308
309         cp.handle   = cpu_to_le16(handle);
310         cp.pkt_type = cpu_to_le16(conn->pkt_type);
311
312         hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp);
313 }
314
315 static bool find_next_esco_param(struct hci_conn *conn,
316                                  const struct sco_param *esco_param, int size)
317 {
318         for (; conn->attempt <= size; conn->attempt++) {
319                 if (lmp_esco_2m_capable(conn->link) ||
320                     (esco_param[conn->attempt - 1].pkt_type & ESCO_2EV3))
321                         break;
322                 BT_DBG("hcon %p skipped attempt %d, eSCO 2M not supported",
323                        conn, conn->attempt);
324         }
325
326         return conn->attempt <= size;
327 }
328
329 bool hci_setup_sync(struct hci_conn *conn, __u16 handle)
330 {
331         struct hci_dev *hdev = conn->hdev;
332         struct hci_cp_setup_sync_conn cp;
333         const struct sco_param *param;
334
335         BT_DBG("hcon %p", conn);
336
337         conn->state = BT_CONNECT;
338         conn->out = true;
339
340         conn->attempt++;
341
342         cp.handle   = cpu_to_le16(handle);
343
344         cp.tx_bandwidth   = cpu_to_le32(0x00001f40);
345         cp.rx_bandwidth   = cpu_to_le32(0x00001f40);
346         cp.voice_setting  = cpu_to_le16(conn->setting);
347
348         switch (conn->setting & SCO_AIRMODE_MASK) {
349         case SCO_AIRMODE_TRANSP:
350                 if (!find_next_esco_param(conn, esco_param_msbc,
351                                           ARRAY_SIZE(esco_param_msbc)))
352                         return false;
353                 param = &esco_param_msbc[conn->attempt - 1];
354                 break;
355         case SCO_AIRMODE_CVSD:
356                 if (lmp_esco_capable(conn->link)) {
357                         if (!find_next_esco_param(conn, esco_param_cvsd,
358                                                   ARRAY_SIZE(esco_param_cvsd)))
359                                 return false;
360                         param = &esco_param_cvsd[conn->attempt - 1];
361                 } else {
362                         if (conn->attempt > ARRAY_SIZE(sco_param_cvsd))
363                                 return false;
364                         param = &sco_param_cvsd[conn->attempt - 1];
365                 }
366                 break;
367         default:
368                 return false;
369         }
370
371         cp.retrans_effort = param->retrans_effort;
372         cp.pkt_type = __cpu_to_le16(param->pkt_type);
373         cp.max_latency = __cpu_to_le16(param->max_latency);
374
375         if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0)
376                 return false;
377
378         return true;
379 }
380
381 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency,
382                       u16 to_multiplier)
383 {
384         struct hci_dev *hdev = conn->hdev;
385         struct hci_conn_params *params;
386         struct hci_cp_le_conn_update cp;
387
388         hci_dev_lock(hdev);
389
390         params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
391         if (params) {
392                 params->conn_min_interval = min;
393                 params->conn_max_interval = max;
394                 params->conn_latency = latency;
395                 params->supervision_timeout = to_multiplier;
396         }
397
398         hci_dev_unlock(hdev);
399
400         memset(&cp, 0, sizeof(cp));
401         cp.handle               = cpu_to_le16(conn->handle);
402         cp.conn_interval_min    = cpu_to_le16(min);
403         cp.conn_interval_max    = cpu_to_le16(max);
404         cp.conn_latency         = cpu_to_le16(latency);
405         cp.supervision_timeout  = cpu_to_le16(to_multiplier);
406
407 #ifdef TIZEN_BT
408         cp.min_ce_len           = cpu_to_le16(0x0009);
409         cp.max_ce_len           = cpu_to_le16(0x0009);
410
411         BT_INFO("[%s(%d)] Sent to Remote - Min Connection Interval: %u (in slots), Max Connection Interval: %u (in slots)", __FUNCTION__, __LINE__, min, max);
412 #else
413         cp.min_ce_len           = cpu_to_le16(0x0000);
414         cp.max_ce_len           = cpu_to_le16(0x0000);
415 #endif
416
417         hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp);
418
419         if (params)
420                 return 0x01;
421
422         return 0x00;
423 }
424
425 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand,
426                       __u8 ltk[16], __u8 key_size)
427 {
428         struct hci_dev *hdev = conn->hdev;
429         struct hci_cp_le_start_enc cp;
430
431         BT_DBG("hcon %p", conn);
432
433         memset(&cp, 0, sizeof(cp));
434
435         cp.handle = cpu_to_le16(conn->handle);
436         cp.rand = rand;
437         cp.ediv = ediv;
438         memcpy(cp.ltk, ltk, key_size);
439
440         hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp);
441 }
442
443 /* Device _must_ be locked */
444 void hci_sco_setup(struct hci_conn *conn, __u8 status)
445 {
446         struct hci_conn *sco = conn->link;
447
448         if (!sco)
449                 return;
450
451         BT_DBG("hcon %p", conn);
452
453         if (!status) {
454                 if (lmp_esco_capable(conn->hdev))
455                         hci_setup_sync(sco, conn->handle);
456                 else
457                         hci_add_sco(sco, conn->handle);
458         } else {
459                 hci_connect_cfm(sco, status);
460                 hci_conn_del(sco);
461         }
462 }
463
464 static void hci_conn_timeout(struct work_struct *work)
465 {
466         struct hci_conn *conn = container_of(work, struct hci_conn,
467                                              disc_work.work);
468         int refcnt = atomic_read(&conn->refcnt);
469
470         BT_DBG("hcon %p state %s", conn, state_to_string(conn->state));
471
472         WARN_ON(refcnt < 0);
473
474         /* FIXME: It was observed that in pairing failed scenario, refcnt
475          * drops below 0. Probably this is because l2cap_conn_del calls
476          * l2cap_chan_del for each channel, and inside l2cap_chan_del conn is
477          * dropped. After that loop hci_chan_del is called which also drops
478          * conn. For now make sure that ACL is alive if refcnt is higher then 0,
479          * otherwise drop it.
480          */
481         if (refcnt > 0)
482                 return;
483
484         /* LE connections in scanning state need special handling */
485         if (conn->state == BT_CONNECT && conn->type == LE_LINK &&
486             test_bit(HCI_CONN_SCANNING, &conn->flags)) {
487                 hci_connect_le_scan_remove(conn);
488                 return;
489         }
490
491         hci_abort_conn(conn, hci_proto_disconn_ind(conn));
492 }
493
494 /* Enter sniff mode */
495 static void hci_conn_idle(struct work_struct *work)
496 {
497         struct hci_conn *conn = container_of(work, struct hci_conn,
498                                              idle_work.work);
499         struct hci_dev *hdev = conn->hdev;
500
501         BT_DBG("hcon %p mode %d", conn, conn->mode);
502
503         if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn))
504                 return;
505
506         if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF))
507                 return;
508
509         if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) {
510                 struct hci_cp_sniff_subrate cp;
511                 cp.handle             = cpu_to_le16(conn->handle);
512                 cp.max_latency        = cpu_to_le16(0);
513                 cp.min_remote_timeout = cpu_to_le16(0);
514                 cp.min_local_timeout  = cpu_to_le16(0);
515                 hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp);
516         }
517
518         if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
519                 struct hci_cp_sniff_mode cp;
520                 cp.handle       = cpu_to_le16(conn->handle);
521                 cp.max_interval = cpu_to_le16(hdev->sniff_max_interval);
522                 cp.min_interval = cpu_to_le16(hdev->sniff_min_interval);
523                 cp.attempt      = cpu_to_le16(4);
524                 cp.timeout      = cpu_to_le16(1);
525                 hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp);
526         }
527 }
528
529 static void hci_conn_auto_accept(struct work_struct *work)
530 {
531         struct hci_conn *conn = container_of(work, struct hci_conn,
532                                              auto_accept_work.work);
533
534         hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst),
535                      &conn->dst);
536 }
537
538 static void le_disable_advertising(struct hci_dev *hdev)
539 {
540         if (ext_adv_capable(hdev)) {
541                 struct hci_cp_le_set_ext_adv_enable cp;
542
543                 cp.enable = 0x00;
544                 cp.num_of_sets = 0x00;
545
546                 hci_send_cmd(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp),
547                              &cp);
548         } else {
549                 u8 enable = 0x00;
550                 hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
551                              &enable);
552         }
553 }
554
555 static void le_conn_timeout(struct work_struct *work)
556 {
557         struct hci_conn *conn = container_of(work, struct hci_conn,
558                                              le_conn_timeout.work);
559         struct hci_dev *hdev = conn->hdev;
560
561         BT_DBG("");
562
563         /* We could end up here due to having done directed advertising,
564          * so clean up the state if necessary. This should however only
565          * happen with broken hardware or if low duty cycle was used
566          * (which doesn't have a timeout of its own).
567          */
568         if (conn->role == HCI_ROLE_SLAVE) {
569                 /* Disable LE Advertising */
570                 le_disable_advertising(hdev);
571                 hci_dev_lock(hdev);
572                 hci_le_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT);
573                 hci_dev_unlock(hdev);
574                 return;
575         }
576
577         hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM);
578 }
579
580 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst,
581                               u8 role)
582 {
583         struct hci_conn *conn;
584
585         BT_DBG("%s dst %pMR", hdev->name, dst);
586
587         conn = kzalloc(sizeof(*conn), GFP_KERNEL);
588         if (!conn)
589                 return NULL;
590
591         bacpy(&conn->dst, dst);
592         bacpy(&conn->src, &hdev->bdaddr);
593         conn->hdev  = hdev;
594         conn->type  = type;
595         conn->role  = role;
596         conn->mode  = HCI_CM_ACTIVE;
597         conn->state = BT_OPEN;
598         conn->auth_type = HCI_AT_GENERAL_BONDING;
599         conn->io_capability = hdev->io_capability;
600         conn->remote_auth = 0xff;
601         conn->key_type = 0xff;
602         conn->rssi = HCI_RSSI_INVALID;
603         conn->tx_power = HCI_TX_POWER_INVALID;
604         conn->max_tx_power = HCI_TX_POWER_INVALID;
605
606 #ifdef TIZEN_BT
607         /* enable sniff mode for incoming connection */
608         conn->link_policy = hdev->link_policy;
609 #endif
610
611         set_bit(HCI_CONN_POWER_SAVE, &conn->flags);
612         conn->disc_timeout = HCI_DISCONN_TIMEOUT;
613
614         /* Set Default Authenticated payload timeout to 30s */
615         conn->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
616
617         if (conn->role == HCI_ROLE_MASTER)
618                 conn->out = true;
619
620         switch (type) {
621         case ACL_LINK:
622                 conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK;
623                 break;
624         case LE_LINK:
625                 /* conn->src should reflect the local identity address */
626                 hci_copy_identity_address(hdev, &conn->src, &conn->src_type);
627                 break;
628         case SCO_LINK:
629                 if (lmp_esco_capable(hdev))
630                         conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) |
631                                         (hdev->esco_type & EDR_ESCO_MASK);
632                 else
633                         conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK;
634                 break;
635         case ESCO_LINK:
636                 conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK;
637                 break;
638         }
639
640         skb_queue_head_init(&conn->data_q);
641
642         INIT_LIST_HEAD(&conn->chan_list);
643
644         INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout);
645         INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept);
646         INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle);
647         INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout);
648         INIT_WORK(&conn->le_scan_cleanup, le_scan_cleanup);
649
650         atomic_set(&conn->refcnt, 0);
651
652         hci_dev_hold(hdev);
653
654         hci_conn_hash_add(hdev, conn);
655
656         /* The SCO and eSCO connections will only be notified when their
657          * setup has been completed. This is different to ACL links which
658          * can be notified right away.
659          */
660         if (conn->type != SCO_LINK && conn->type != ESCO_LINK) {
661                 if (hdev->notify)
662                         hdev->notify(hdev, HCI_NOTIFY_CONN_ADD);
663         }
664
665         hci_conn_init_sysfs(conn);
666
667         return conn;
668 }
669
670 int hci_conn_del(struct hci_conn *conn)
671 {
672         struct hci_dev *hdev = conn->hdev;
673
674         BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle);
675
676         cancel_delayed_work_sync(&conn->disc_work);
677         cancel_delayed_work_sync(&conn->auto_accept_work);
678         cancel_delayed_work_sync(&conn->idle_work);
679
680         if (conn->type == ACL_LINK) {
681                 struct hci_conn *sco = conn->link;
682                 if (sco)
683                         sco->link = NULL;
684
685                 /* Unacked frames */
686                 hdev->acl_cnt += conn->sent;
687         } else if (conn->type == LE_LINK) {
688                 cancel_delayed_work(&conn->le_conn_timeout);
689
690                 if (hdev->le_pkts)
691                         hdev->le_cnt += conn->sent;
692                 else
693                         hdev->acl_cnt += conn->sent;
694         } else {
695                 struct hci_conn *acl = conn->link;
696                 if (acl) {
697                         acl->link = NULL;
698                         hci_conn_drop(acl);
699                 }
700         }
701
702         if (conn->amp_mgr)
703                 amp_mgr_put(conn->amp_mgr);
704
705         skb_queue_purge(&conn->data_q);
706
707         /* Remove the connection from the list and cleanup its remaining
708          * state. This is a separate function since for some cases like
709          * BT_CONNECT_SCAN we *only* want the cleanup part without the
710          * rest of hci_conn_del.
711          */
712         hci_conn_cleanup(conn);
713
714         return 0;
715 }
716
717 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, uint8_t src_type)
718 {
719         int use_src = bacmp(src, BDADDR_ANY);
720         struct hci_dev *hdev = NULL, *d;
721
722         BT_DBG("%pMR -> %pMR", src, dst);
723
724         read_lock(&hci_dev_list_lock);
725
726         list_for_each_entry(d, &hci_dev_list, list) {
727                 if (!test_bit(HCI_UP, &d->flags) ||
728                     hci_dev_test_flag(d, HCI_USER_CHANNEL) ||
729                     d->dev_type != HCI_PRIMARY)
730                         continue;
731
732                 /* Simple routing:
733                  *   No source address - find interface with bdaddr != dst
734                  *   Source address    - find interface with bdaddr == src
735                  */
736
737                 if (use_src) {
738                         bdaddr_t id_addr;
739                         u8 id_addr_type;
740
741                         if (src_type == BDADDR_BREDR) {
742                                 if (!lmp_bredr_capable(d))
743                                         continue;
744                                 bacpy(&id_addr, &d->bdaddr);
745                                 id_addr_type = BDADDR_BREDR;
746                         } else {
747                                 if (!lmp_le_capable(d))
748                                         continue;
749
750                                 hci_copy_identity_address(d, &id_addr,
751                                                           &id_addr_type);
752
753                                 /* Convert from HCI to three-value type */
754                                 if (id_addr_type == ADDR_LE_DEV_PUBLIC)
755                                         id_addr_type = BDADDR_LE_PUBLIC;
756                                 else
757                                         id_addr_type = BDADDR_LE_RANDOM;
758                         }
759
760                         if (!bacmp(&id_addr, src) && id_addr_type == src_type) {
761                                 hdev = d; break;
762                         }
763                 } else {
764                         if (bacmp(&d->bdaddr, dst)) {
765                                 hdev = d; break;
766                         }
767                 }
768         }
769
770         if (hdev)
771                 hdev = hci_dev_hold(hdev);
772
773         read_unlock(&hci_dev_list_lock);
774         return hdev;
775 }
776 EXPORT_SYMBOL(hci_get_route);
777
778 /* This function requires the caller holds hdev->lock */
779 void hci_le_conn_failed(struct hci_conn *conn, u8 status)
780 {
781         struct hci_dev *hdev = conn->hdev;
782         struct hci_conn_params *params;
783
784         params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst,
785                                            conn->dst_type);
786         if (params && params->conn) {
787                 hci_conn_drop(params->conn);
788                 hci_conn_put(params->conn);
789                 params->conn = NULL;
790         }
791
792         conn->state = BT_CLOSED;
793
794         /* If the status indicates successful cancellation of
795          * the attempt (i.e. Unknown Connection Id) there's no point of
796          * notifying failure since we'll go back to keep trying to
797          * connect. The only exception is explicit connect requests
798          * where a timeout + cancel does indicate an actual failure.
799          */
800         if (status != HCI_ERROR_UNKNOWN_CONN_ID ||
801             (params && params->explicit_connect))
802                 mgmt_connect_failed(hdev, &conn->dst, conn->type,
803                                     conn->dst_type, status);
804
805         hci_connect_cfm(conn, status);
806
807         hci_conn_del(conn);
808
809         /* The suspend notifier is waiting for all devices to disconnect and an
810          * LE connect cancel will result in an hci_le_conn_failed. Once the last
811          * connection is deleted, we should also wake the suspend queue to
812          * complete suspend operations.
813          */
814         if (list_empty(&hdev->conn_hash.list) &&
815             test_and_clear_bit(SUSPEND_DISCONNECTING, hdev->suspend_tasks)) {
816                 wake_up(&hdev->suspend_wait_q);
817         }
818
819         /* Since we may have temporarily stopped the background scanning in
820          * favor of connection establishment, we should restart it.
821          */
822         hci_update_background_scan(hdev);
823
824         /* Re-enable advertising in case this was a failed connection
825          * attempt as a peripheral.
826          */
827         hci_req_reenable_advertising(hdev);
828 }
829
830 static void create_le_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
831 {
832         struct hci_conn *conn;
833
834         hci_dev_lock(hdev);
835
836         conn = hci_lookup_le_connect(hdev);
837
838         if (hdev->adv_instance_cnt)
839                 hci_req_resume_adv_instances(hdev);
840
841         if (!status) {
842                 hci_connect_le_scan_cleanup(conn);
843                 goto done;
844         }
845
846         bt_dev_err(hdev, "request failed to create LE connection: "
847                    "status 0x%2.2x", status);
848
849         if (!conn)
850                 goto done;
851
852         hci_le_conn_failed(conn, status);
853
854 done:
855         hci_dev_unlock(hdev);
856 }
857
858 static bool conn_use_rpa(struct hci_conn *conn)
859 {
860         struct hci_dev *hdev = conn->hdev;
861
862         return hci_dev_test_flag(hdev, HCI_PRIVACY);
863 }
864
865 static void set_ext_conn_params(struct hci_conn *conn,
866                                 struct hci_cp_le_ext_conn_param *p)
867 {
868         struct hci_dev *hdev = conn->hdev;
869
870         memset(p, 0, sizeof(*p));
871
872         p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
873         p->scan_window = cpu_to_le16(hdev->le_scan_window_connect);
874         p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
875         p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
876         p->conn_latency = cpu_to_le16(conn->le_conn_latency);
877         p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
878         p->min_ce_len = cpu_to_le16(0x0000);
879         p->max_ce_len = cpu_to_le16(0x0000);
880 }
881
882 static void hci_req_add_le_create_conn(struct hci_request *req,
883                                        struct hci_conn *conn,
884                                        bdaddr_t *direct_rpa)
885 {
886         struct hci_dev *hdev = conn->hdev;
887         u8 own_addr_type;
888
889         /* If direct address was provided we use it instead of current
890          * address.
891          */
892         if (direct_rpa) {
893                 if (bacmp(&req->hdev->random_addr, direct_rpa))
894                         hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
895                                                                 direct_rpa);
896
897                 /* direct address is always RPA */
898                 own_addr_type = ADDR_LE_DEV_RANDOM;
899         } else {
900                 /* Update random address, but set require_privacy to false so
901                  * that we never connect with an non-resolvable address.
902                  */
903                 if (hci_update_random_address(req, false, conn_use_rpa(conn),
904                                               &own_addr_type))
905                         return;
906         }
907
908         if (use_ext_conn(hdev)) {
909                 struct hci_cp_le_ext_create_conn *cp;
910                 struct hci_cp_le_ext_conn_param *p;
911                 u8 data[sizeof(*cp) + sizeof(*p) * 3];
912                 u32 plen;
913
914                 cp = (void *) data;
915                 p = (void *) cp->data;
916
917                 memset(cp, 0, sizeof(*cp));
918
919                 bacpy(&cp->peer_addr, &conn->dst);
920                 cp->peer_addr_type = conn->dst_type;
921                 cp->own_addr_type = own_addr_type;
922
923                 plen = sizeof(*cp);
924
925                 if (scan_1m(hdev)) {
926                         cp->phys |= LE_SCAN_PHY_1M;
927                         set_ext_conn_params(conn, p);
928
929                         p++;
930                         plen += sizeof(*p);
931                 }
932
933                 if (scan_2m(hdev)) {
934                         cp->phys |= LE_SCAN_PHY_2M;
935                         set_ext_conn_params(conn, p);
936
937                         p++;
938                         plen += sizeof(*p);
939                 }
940
941                 if (scan_coded(hdev)) {
942                         cp->phys |= LE_SCAN_PHY_CODED;
943                         set_ext_conn_params(conn, p);
944
945                         plen += sizeof(*p);
946                 }
947
948                 hci_req_add(req, HCI_OP_LE_EXT_CREATE_CONN, plen, data);
949
950         } else {
951                 struct hci_cp_le_create_conn cp;
952
953                 memset(&cp, 0, sizeof(cp));
954
955                 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
956                 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect);
957
958 #ifdef TIZEN_BT
959                 /* LE auto connect */
960                 if (!bacmp(&conn->dst, BDADDR_ANY))
961                         cp.filter_policy = 0x1;
962                 else
963                 bacpy(&cp.peer_addr, &conn->dst);
964 #else
965                 bacpy(&cp.peer_addr, &conn->dst);
966 #endif
967                 cp.peer_addr_type = conn->dst_type;
968                 cp.own_address_type = own_addr_type;
969                 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
970                 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
971                 cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
972                 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
973                 cp.min_ce_len = cpu_to_le16(0x0000);
974                 cp.max_ce_len = cpu_to_le16(0x0000);
975
976                 hci_req_add(req, HCI_OP_LE_CREATE_CONN, sizeof(cp), &cp);
977         }
978
979         conn->state = BT_CONNECT;
980         clear_bit(HCI_CONN_SCANNING, &conn->flags);
981 }
982
983 static void hci_req_directed_advertising(struct hci_request *req,
984                                          struct hci_conn *conn)
985 {
986         struct hci_dev *hdev = req->hdev;
987         u8 own_addr_type;
988         u8 enable;
989
990         if (ext_adv_capable(hdev)) {
991                 struct hci_cp_le_set_ext_adv_params cp;
992                 bdaddr_t random_addr;
993
994                 /* Set require_privacy to false so that the remote device has a
995                  * chance of identifying us.
996                  */
997                 if (hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL,
998                                            &own_addr_type, &random_addr) < 0)
999                         return;
1000
1001                 memset(&cp, 0, sizeof(cp));
1002
1003                 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND);
1004                 cp.own_addr_type = own_addr_type;
1005                 cp.channel_map = hdev->le_adv_channel_map;
1006                 cp.tx_power = HCI_TX_POWER_INVALID;
1007                 cp.primary_phy = HCI_ADV_PHY_1M;
1008                 cp.secondary_phy = HCI_ADV_PHY_1M;
1009                 cp.handle = 0; /* Use instance 0 for directed adv */
1010                 cp.own_addr_type = own_addr_type;
1011                 cp.peer_addr_type = conn->dst_type;
1012                 bacpy(&cp.peer_addr, &conn->dst);
1013
1014                 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for
1015                  * advertising_event_property LE_LEGACY_ADV_DIRECT_IND
1016                  * does not supports advertising data when the advertising set already
1017                  * contains some, the controller shall return erroc code 'Invalid
1018                  * HCI Command Parameters(0x12).
1019                  * So it is required to remove adv set for handle 0x00. since we use
1020                  * instance 0 for directed adv.
1021                  */
1022                 __hci_req_remove_ext_adv_instance(req, cp.handle);
1023
1024                 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);
1025
1026                 if (own_addr_type == ADDR_LE_DEV_RANDOM &&
1027                     bacmp(&random_addr, BDADDR_ANY) &&
1028                     bacmp(&random_addr, &hdev->random_addr)) {
1029                         struct hci_cp_le_set_adv_set_rand_addr cp;
1030
1031                         memset(&cp, 0, sizeof(cp));
1032
1033                         cp.handle = 0;
1034                         bacpy(&cp.bdaddr, &random_addr);
1035
1036                         hci_req_add(req,
1037                                     HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
1038                                     sizeof(cp), &cp);
1039                 }
1040
1041                 __hci_req_enable_ext_advertising(req, 0x00);
1042         } else {
1043                 struct hci_cp_le_set_adv_param cp;
1044
1045                 /* Clear the HCI_LE_ADV bit temporarily so that the
1046                  * hci_update_random_address knows that it's safe to go ahead
1047                  * and write a new random address. The flag will be set back on
1048                  * as soon as the SET_ADV_ENABLE HCI command completes.
1049                  */
1050                 hci_dev_clear_flag(hdev, HCI_LE_ADV);
1051
1052                 /* Set require_privacy to false so that the remote device has a
1053                  * chance of identifying us.
1054                  */
1055                 if (hci_update_random_address(req, false, conn_use_rpa(conn),
1056                                               &own_addr_type) < 0)
1057                         return;
1058
1059                 memset(&cp, 0, sizeof(cp));
1060
1061                 /* Some controllers might reject command if intervals are not
1062                  * within range for undirected advertising.
1063                  * BCM20702A0 is known to be affected by this.
1064                  */
1065                 cp.min_interval = cpu_to_le16(0x0020);
1066                 cp.max_interval = cpu_to_le16(0x0020);
1067
1068                 cp.type = LE_ADV_DIRECT_IND;
1069                 cp.own_address_type = own_addr_type;
1070                 cp.direct_addr_type = conn->dst_type;
1071                 bacpy(&cp.direct_addr, &conn->dst);
1072                 cp.channel_map = hdev->le_adv_channel_map;
1073
1074                 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
1075
1076                 enable = 0x01;
1077                 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
1078                             &enable);
1079         }
1080
1081         conn->state = BT_CONNECT;
1082 }
1083
1084 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst,
1085                                 u8 dst_type, u8 sec_level, u16 conn_timeout,
1086                                 u8 role, bdaddr_t *direct_rpa)
1087 {
1088         struct hci_conn_params *params;
1089         struct hci_conn *conn;
1090         struct smp_irk *irk;
1091         struct hci_request req;
1092         int err;
1093
1094         /* This ensures that during disable le_scan address resolution
1095          * will not be disabled if it is followed by le_create_conn
1096          */
1097         bool rpa_le_conn = true;
1098
1099         /* Let's make sure that le is enabled.*/
1100         if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
1101                 if (lmp_le_capable(hdev))
1102                         return ERR_PTR(-ECONNREFUSED);
1103
1104                 return ERR_PTR(-EOPNOTSUPP);
1105         }
1106
1107         /* Since the controller supports only one LE connection attempt at a
1108          * time, we return -EBUSY if there is any connection attempt running.
1109          */
1110         if (hci_lookup_le_connect(hdev))
1111                 return ERR_PTR(-EBUSY);
1112
1113         /* If there's already a connection object but it's not in
1114          * scanning state it means it must already be established, in
1115          * which case we can't do anything else except report a failure
1116          * to connect.
1117          */
1118         conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
1119         if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) {
1120                 return ERR_PTR(-EBUSY);
1121         }
1122
1123         /* When given an identity address with existing identity
1124          * resolving key, the connection needs to be established
1125          * to a resolvable random address.
1126          *
1127          * Storing the resolvable random address is required here
1128          * to handle connection failures. The address will later
1129          * be resolved back into the original identity address
1130          * from the connect request.
1131          */
1132         irk = hci_find_irk_by_addr(hdev, dst, dst_type);
1133         if (irk && bacmp(&irk->rpa, BDADDR_ANY)) {
1134                 dst = &irk->rpa;
1135                 dst_type = ADDR_LE_DEV_RANDOM;
1136         }
1137
1138         if (conn) {
1139                 bacpy(&conn->dst, dst);
1140         } else {
1141                 conn = hci_conn_add(hdev, LE_LINK, dst, role);
1142                 if (!conn)
1143                         return ERR_PTR(-ENOMEM);
1144                 hci_conn_hold(conn);
1145                 conn->pending_sec_level = sec_level;
1146         }
1147
1148         conn->dst_type = dst_type;
1149         conn->sec_level = BT_SECURITY_LOW;
1150         conn->conn_timeout = conn_timeout;
1151
1152         hci_req_init(&req, hdev);
1153
1154         /* Disable advertising if we're active. For central role
1155          * connections most controllers will refuse to connect if
1156          * advertising is enabled, and for peripheral role connections we
1157          * anyway have to disable it in order to start directed
1158          * advertising. Any registered advertisements will be
1159          * re-enabled after the connection attempt is finished.
1160          */
1161         if (hci_dev_test_flag(hdev, HCI_LE_ADV))
1162                 __hci_req_pause_adv_instances(&req);
1163
1164         /* If requested to connect as peripheral use directed advertising */
1165         if (conn->role == HCI_ROLE_SLAVE) {
1166                 /* If we're active scanning most controllers are unable
1167                  * to initiate advertising. Simply reject the attempt.
1168                  */
1169                 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
1170                     hdev->le_scan_type == LE_SCAN_ACTIVE) {
1171                         hci_req_purge(&req);
1172                         hci_conn_del(conn);
1173                         return ERR_PTR(-EBUSY);
1174                 }
1175
1176                 hci_req_directed_advertising(&req, conn);
1177                 goto create_conn;
1178         }
1179
1180         params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
1181         if (params) {
1182                 conn->le_conn_min_interval = params->conn_min_interval;
1183                 conn->le_conn_max_interval = params->conn_max_interval;
1184                 conn->le_conn_latency = params->conn_latency;
1185                 conn->le_supv_timeout = params->supervision_timeout;
1186         } else {
1187                 conn->le_conn_min_interval = hdev->le_conn_min_interval;
1188                 conn->le_conn_max_interval = hdev->le_conn_max_interval;
1189                 conn->le_conn_latency = hdev->le_conn_latency;
1190                 conn->le_supv_timeout = hdev->le_supv_timeout;
1191         }
1192
1193         /* If controller is scanning, we stop it since some controllers are
1194          * not able to scan and connect at the same time. Also set the
1195          * HCI_LE_SCAN_INTERRUPTED flag so that the command complete
1196          * handler for scan disabling knows to set the correct discovery
1197          * state.
1198          */
1199         if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
1200                 hci_req_add_le_scan_disable(&req, rpa_le_conn);
1201                 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
1202         }
1203
1204         hci_req_add_le_create_conn(&req, conn, direct_rpa);
1205
1206 create_conn:
1207         err = hci_req_run(&req, create_le_conn_complete);
1208         if (err) {
1209                 hci_conn_del(conn);
1210
1211                 if (hdev->adv_instance_cnt)
1212                         hci_req_resume_adv_instances(hdev);
1213
1214                 return ERR_PTR(err);
1215         }
1216
1217         return conn;
1218 }
1219
1220 static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type)
1221 {
1222         struct hci_conn *conn;
1223
1224         conn = hci_conn_hash_lookup_le(hdev, addr, type);
1225         if (!conn)
1226                 return false;
1227
1228         if (conn->state != BT_CONNECTED)
1229                 return false;
1230
1231         return true;
1232 }
1233
1234 /* This function requires the caller holds hdev->lock */
1235 static int hci_explicit_conn_params_set(struct hci_dev *hdev,
1236                                         bdaddr_t *addr, u8 addr_type)
1237 {
1238         struct hci_conn_params *params;
1239
1240         if (is_connected(hdev, addr, addr_type))
1241                 return -EISCONN;
1242
1243         params = hci_conn_params_lookup(hdev, addr, addr_type);
1244         if (!params) {
1245                 params = hci_conn_params_add(hdev, addr, addr_type);
1246                 if (!params)
1247                         return -ENOMEM;
1248
1249                 /* If we created new params, mark them to be deleted in
1250                  * hci_connect_le_scan_cleanup. It's different case than
1251                  * existing disabled params, those will stay after cleanup.
1252                  */
1253                 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
1254         }
1255
1256         /* We're trying to connect, so make sure params are at pend_le_conns */
1257         if (params->auto_connect == HCI_AUTO_CONN_DISABLED ||
1258             params->auto_connect == HCI_AUTO_CONN_REPORT ||
1259             params->auto_connect == HCI_AUTO_CONN_EXPLICIT) {
1260                 list_del_init(&params->action);
1261                 list_add(&params->action, &hdev->pend_le_conns);
1262         }
1263
1264         params->explicit_connect = true;
1265
1266         BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type,
1267                params->auto_connect);
1268
1269         return 0;
1270 }
1271
1272 /* This function requires the caller holds hdev->lock */
1273 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst,
1274                                      u8 dst_type, u8 sec_level,
1275                                      u16 conn_timeout,
1276                                      enum conn_reasons conn_reason)
1277 {
1278         struct hci_conn *conn;
1279
1280         /* Let's make sure that le is enabled.*/
1281         if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
1282                 if (lmp_le_capable(hdev))
1283                         return ERR_PTR(-ECONNREFUSED);
1284
1285                 return ERR_PTR(-EOPNOTSUPP);
1286         }
1287
1288         /* Some devices send ATT messages as soon as the physical link is
1289          * established. To be able to handle these ATT messages, the user-
1290          * space first establishes the connection and then starts the pairing
1291          * process.
1292          *
1293          * So if a hci_conn object already exists for the following connection
1294          * attempt, we simply update pending_sec_level and auth_type fields
1295          * and return the object found.
1296          */
1297         conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
1298         if (conn) {
1299                 if (conn->pending_sec_level < sec_level)
1300                         conn->pending_sec_level = sec_level;
1301                 goto done;
1302         }
1303
1304         BT_DBG("requesting refresh of dst_addr");
1305
1306         conn = hci_conn_add(hdev, LE_LINK, dst, HCI_ROLE_MASTER);
1307         if (!conn)
1308                 return ERR_PTR(-ENOMEM);
1309
1310         if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0) {
1311                 hci_conn_del(conn);
1312                 return ERR_PTR(-EBUSY);
1313         }
1314
1315         conn->state = BT_CONNECT;
1316         set_bit(HCI_CONN_SCANNING, &conn->flags);
1317         conn->dst_type = dst_type;
1318         conn->sec_level = BT_SECURITY_LOW;
1319         conn->pending_sec_level = sec_level;
1320         conn->conn_timeout = conn_timeout;
1321         conn->conn_reason = conn_reason;
1322
1323         hci_update_background_scan(hdev);
1324
1325 done:
1326         hci_conn_hold(conn);
1327         return conn;
1328 }
1329
1330 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst,
1331                                  u8 sec_level, u8 auth_type,
1332                                  enum conn_reasons conn_reason)
1333 {
1334         struct hci_conn *acl;
1335
1336         if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1337                 if (lmp_bredr_capable(hdev))
1338                         return ERR_PTR(-ECONNREFUSED);
1339
1340                 return ERR_PTR(-EOPNOTSUPP);
1341         }
1342
1343         acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst);
1344         if (!acl) {
1345                 acl = hci_conn_add(hdev, ACL_LINK, dst, HCI_ROLE_MASTER);
1346                 if (!acl)
1347                         return ERR_PTR(-ENOMEM);
1348         }
1349
1350         hci_conn_hold(acl);
1351
1352         acl->conn_reason = conn_reason;
1353         if (acl->state == BT_OPEN || acl->state == BT_CLOSED) {
1354                 acl->sec_level = BT_SECURITY_LOW;
1355                 acl->pending_sec_level = sec_level;
1356                 acl->auth_type = auth_type;
1357                 hci_acl_create_connection(acl);
1358         }
1359
1360         return acl;
1361 }
1362
1363 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst,
1364                                  __u16 setting)
1365 {
1366         struct hci_conn *acl;
1367         struct hci_conn *sco;
1368
1369         acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING,
1370                               CONN_REASON_SCO_CONNECT);
1371         if (IS_ERR(acl))
1372                 return acl;
1373
1374         sco = hci_conn_hash_lookup_ba(hdev, type, dst);
1375         if (!sco) {
1376                 sco = hci_conn_add(hdev, type, dst, HCI_ROLE_MASTER);
1377                 if (!sco) {
1378                         hci_conn_drop(acl);
1379                         return ERR_PTR(-ENOMEM);
1380                 }
1381         }
1382
1383         acl->link = sco;
1384         sco->link = acl;
1385
1386         hci_conn_hold(sco);
1387
1388         sco->setting = setting;
1389
1390         if (acl->state == BT_CONNECTED &&
1391             (sco->state == BT_OPEN || sco->state == BT_CLOSED)) {
1392                 set_bit(HCI_CONN_POWER_SAVE, &acl->flags);
1393                 hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON);
1394
1395                 if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) {
1396                         /* defer SCO setup until mode change completed */
1397                         set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags);
1398                         return sco;
1399                 }
1400
1401                 hci_sco_setup(acl, 0x00);
1402         }
1403
1404         return sco;
1405 }
1406
1407 /* Check link security requirement */
1408 int hci_conn_check_link_mode(struct hci_conn *conn)
1409 {
1410         BT_DBG("hcon %p", conn);
1411
1412         /* In Secure Connections Only mode, it is required that Secure
1413          * Connections is used and the link is encrypted with AES-CCM
1414          * using a P-256 authenticated combination key.
1415          */
1416         if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) {
1417                 if (!hci_conn_sc_enabled(conn) ||
1418                     !test_bit(HCI_CONN_AES_CCM, &conn->flags) ||
1419                     conn->key_type != HCI_LK_AUTH_COMBINATION_P256)
1420                         return 0;
1421         }
1422
1423          /* AES encryption is required for Level 4:
1424           *
1425           * BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 3, Part C
1426           * page 1319:
1427           *
1428           * 128-bit equivalent strength for link and encryption keys
1429           * required using FIPS approved algorithms (E0 not allowed,
1430           * SAFER+ not allowed, and P-192 not allowed; encryption key
1431           * not shortened)
1432           */
1433         if (conn->sec_level == BT_SECURITY_FIPS &&
1434             !test_bit(HCI_CONN_AES_CCM, &conn->flags)) {
1435                 bt_dev_err(conn->hdev,
1436                            "Invalid security: Missing AES-CCM usage");
1437                 return 0;
1438         }
1439
1440         if (hci_conn_ssp_enabled(conn) &&
1441             !test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1442                 return 0;
1443
1444         return 1;
1445 }
1446
1447 /* Authenticate remote device */
1448 static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type)
1449 {
1450         BT_DBG("hcon %p", conn);
1451
1452         if (conn->pending_sec_level > sec_level)
1453                 sec_level = conn->pending_sec_level;
1454
1455         if (sec_level > conn->sec_level)
1456                 conn->pending_sec_level = sec_level;
1457         else if (test_bit(HCI_CONN_AUTH, &conn->flags))
1458                 return 1;
1459
1460         /* Make sure we preserve an existing MITM requirement*/
1461         auth_type |= (conn->auth_type & 0x01);
1462
1463         conn->auth_type = auth_type;
1464
1465         if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) {
1466                 struct hci_cp_auth_requested cp;
1467
1468                 cp.handle = cpu_to_le16(conn->handle);
1469                 hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED,
1470                              sizeof(cp), &cp);
1471
1472                 /* If we're already encrypted set the REAUTH_PEND flag,
1473                  * otherwise set the ENCRYPT_PEND.
1474                  */
1475                 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1476                         set_bit(HCI_CONN_REAUTH_PEND, &conn->flags);
1477                 else
1478                         set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags);
1479         }
1480
1481         return 0;
1482 }
1483
1484 /* Encrypt the link */
1485 static void hci_conn_encrypt(struct hci_conn *conn)
1486 {
1487         BT_DBG("hcon %p", conn);
1488
1489         if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) {
1490                 struct hci_cp_set_conn_encrypt cp;
1491                 cp.handle  = cpu_to_le16(conn->handle);
1492                 cp.encrypt = 0x01;
1493                 hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp),
1494                              &cp);
1495         }
1496 }
1497
1498 /* Enable security */
1499 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type,
1500                       bool initiator)
1501 {
1502         BT_DBG("hcon %p", conn);
1503
1504         if (conn->type == LE_LINK)
1505                 return smp_conn_security(conn, sec_level);
1506
1507         /* For sdp we don't need the link key. */
1508         if (sec_level == BT_SECURITY_SDP)
1509                 return 1;
1510
1511         /* For non 2.1 devices and low security level we don't need the link
1512            key. */
1513         if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn))
1514                 return 1;
1515
1516         /* For other security levels we need the link key. */
1517         if (!test_bit(HCI_CONN_AUTH, &conn->flags))
1518                 goto auth;
1519
1520         /* An authenticated FIPS approved combination key has sufficient
1521          * security for security level 4. */
1522         if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256 &&
1523             sec_level == BT_SECURITY_FIPS)
1524                 goto encrypt;
1525
1526         /* An authenticated combination key has sufficient security for
1527            security level 3. */
1528         if ((conn->key_type == HCI_LK_AUTH_COMBINATION_P192 ||
1529              conn->key_type == HCI_LK_AUTH_COMBINATION_P256) &&
1530             sec_level == BT_SECURITY_HIGH)
1531                 goto encrypt;
1532
1533         /* An unauthenticated combination key has sufficient security for
1534            security level 1 and 2. */
1535         if ((conn->key_type == HCI_LK_UNAUTH_COMBINATION_P192 ||
1536              conn->key_type == HCI_LK_UNAUTH_COMBINATION_P256) &&
1537             (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW))
1538                 goto encrypt;
1539
1540         /* A combination key has always sufficient security for the security
1541            levels 1 or 2. High security level requires the combination key
1542            is generated using maximum PIN code length (16).
1543            For pre 2.1 units. */
1544         if (conn->key_type == HCI_LK_COMBINATION &&
1545             (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW ||
1546              conn->pin_length == 16))
1547                 goto encrypt;
1548
1549 auth:
1550         if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
1551                 return 0;
1552
1553         if (initiator)
1554                 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags);
1555
1556         if (!hci_conn_auth(conn, sec_level, auth_type))
1557                 return 0;
1558
1559 encrypt:
1560         if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) {
1561                 /* Ensure that the encryption key size has been read,
1562                  * otherwise stall the upper layer responses.
1563                  */
1564                 if (!conn->enc_key_size)
1565                         return 0;
1566
1567                 /* Nothing else needed, all requirements are met */
1568                 return 1;
1569         }
1570
1571         hci_conn_encrypt(conn);
1572         return 0;
1573 }
1574 EXPORT_SYMBOL(hci_conn_security);
1575
1576 /* Check secure link requirement */
1577 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level)
1578 {
1579         BT_DBG("hcon %p", conn);
1580
1581         /* Accept if non-secure or higher security level is required */
1582         if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS)
1583                 return 1;
1584
1585         /* Accept if secure or higher security level is already present */
1586         if (conn->sec_level == BT_SECURITY_HIGH ||
1587             conn->sec_level == BT_SECURITY_FIPS)
1588                 return 1;
1589
1590         /* Reject not secure link */
1591         return 0;
1592 }
1593 EXPORT_SYMBOL(hci_conn_check_secure);
1594
1595 /* Switch role */
1596 int hci_conn_switch_role(struct hci_conn *conn, __u8 role)
1597 {
1598         BT_DBG("hcon %p", conn);
1599
1600         if (role == conn->role)
1601                 return 1;
1602
1603         if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) {
1604                 struct hci_cp_switch_role cp;
1605                 bacpy(&cp.bdaddr, &conn->dst);
1606                 cp.role = role;
1607                 hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp);
1608         }
1609
1610         return 0;
1611 }
1612 EXPORT_SYMBOL(hci_conn_switch_role);
1613
1614 #ifdef TIZEN_BT
1615 int hci_conn_change_supervision_timeout(struct hci_conn *conn, __u16 timeout)
1616 {
1617         struct hci_cp_write_link_supervision_timeout cp;
1618
1619         if (!((get_link_mode(conn)) & HCI_LM_MASTER))
1620                 return 1;
1621
1622         if (conn->handle == 0)
1623                 return 1;
1624
1625         memset(&cp, 0, sizeof(cp));
1626         cp.handle  = cpu_to_le16(conn->handle);
1627         cp.timeout = cpu_to_le16(timeout);
1628
1629         if (hci_send_cmd(conn->hdev, HCI_OP_WRITE_LINK_SUPERVISION_TIMEOUT,
1630                          sizeof(cp), &cp) < 0)
1631                 BT_ERR("HCI_OP_WRITE_LINK_SUPERVISION_TIMEOUT is failed");
1632
1633         return 0;
1634 }
1635
1636 int hci_le_set_data_length(struct hci_conn *conn, u16 tx_octets, u16 tx_time)
1637 {
1638         struct hci_dev *hdev = conn->hdev;
1639         struct hci_conn_params *params;
1640         struct hci_cp_le_set_data_len cp;
1641
1642         hci_dev_lock(hdev);
1643
1644         params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
1645         if (params) {
1646                 params->max_tx_octets = tx_octets;
1647                 params->max_tx_time = tx_time;
1648         }
1649
1650         hci_dev_unlock(hdev);
1651
1652         memset(&cp, 0, sizeof(cp));
1653         cp.handle = cpu_to_le16(conn->handle);
1654         cp.tx_len = cpu_to_le16(tx_octets);
1655         cp.tx_time = cpu_to_le16(tx_time);
1656
1657         hci_send_cmd(hdev, HCI_OP_LE_SET_DATA_LEN, sizeof(cp), &cp);
1658
1659         if (params)
1660                 return 0x01;
1661
1662         return 0x00;
1663 }
1664 #endif
1665
1666 /* Enter active mode */
1667 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active)
1668 {
1669         struct hci_dev *hdev = conn->hdev;
1670
1671         BT_DBG("hcon %p mode %d", conn, conn->mode);
1672
1673         if (conn->mode != HCI_CM_SNIFF)
1674                 goto timer;
1675
1676         if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active)
1677                 goto timer;
1678
1679         if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
1680                 struct hci_cp_exit_sniff_mode cp;
1681                 cp.handle = cpu_to_le16(conn->handle);
1682                 hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp);
1683         }
1684
1685 timer:
1686 #ifdef TIZEN_BT
1687         if (hdev->idle_timeout > 0) {
1688                 /* Sniff timer cancel */
1689                 cancel_delayed_work(&conn->idle_work);
1690                 queue_delayed_work(hdev->workqueue, &conn->idle_work,
1691                                    msecs_to_jiffies(hdev->idle_timeout));
1692         }
1693 #else
1694         if (hdev->idle_timeout > 0)
1695                 queue_delayed_work(hdev->workqueue, &conn->idle_work,
1696                                    msecs_to_jiffies(hdev->idle_timeout));
1697 #endif
1698 }
1699
1700 /* Drop all connection on the device */
1701 void hci_conn_hash_flush(struct hci_dev *hdev)
1702 {
1703         struct hci_conn_hash *h = &hdev->conn_hash;
1704         struct hci_conn *c, *n;
1705
1706         BT_DBG("hdev %s", hdev->name);
1707
1708         list_for_each_entry_safe(c, n, &h->list, list) {
1709                 c->state = BT_CLOSED;
1710
1711                 hci_disconn_cfm(c, HCI_ERROR_LOCAL_HOST_TERM);
1712                 hci_conn_del(c);
1713         }
1714 }
1715
1716 /* Check pending connect attempts */
1717 void hci_conn_check_pending(struct hci_dev *hdev)
1718 {
1719         struct hci_conn *conn;
1720
1721         BT_DBG("hdev %s", hdev->name);
1722
1723         hci_dev_lock(hdev);
1724
1725         conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2);
1726         if (conn)
1727                 hci_acl_create_connection(conn);
1728
1729         hci_dev_unlock(hdev);
1730 }
1731
1732 #ifndef TIZEN_BT
1733 static u32 get_link_mode(struct hci_conn *conn)
1734 #else
1735 u32 get_link_mode(struct hci_conn *conn)
1736 #endif
1737 {
1738         u32 link_mode = 0;
1739
1740         if (conn->role == HCI_ROLE_MASTER)
1741                 link_mode |= HCI_LM_MASTER;
1742
1743         if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1744                 link_mode |= HCI_LM_ENCRYPT;
1745
1746         if (test_bit(HCI_CONN_AUTH, &conn->flags))
1747                 link_mode |= HCI_LM_AUTH;
1748
1749         if (test_bit(HCI_CONN_SECURE, &conn->flags))
1750                 link_mode |= HCI_LM_SECURE;
1751
1752         if (test_bit(HCI_CONN_FIPS, &conn->flags))
1753                 link_mode |= HCI_LM_FIPS;
1754
1755         return link_mode;
1756 }
1757
1758 int hci_get_conn_list(void __user *arg)
1759 {
1760         struct hci_conn *c;
1761         struct hci_conn_list_req req, *cl;
1762         struct hci_conn_info *ci;
1763         struct hci_dev *hdev;
1764         int n = 0, size, err;
1765
1766         if (copy_from_user(&req, arg, sizeof(req)))
1767                 return -EFAULT;
1768
1769         if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci))
1770                 return -EINVAL;
1771
1772         size = sizeof(req) + req.conn_num * sizeof(*ci);
1773
1774         cl = kmalloc(size, GFP_KERNEL);
1775         if (!cl)
1776                 return -ENOMEM;
1777
1778         hdev = hci_dev_get(req.dev_id);
1779         if (!hdev) {
1780                 kfree(cl);
1781                 return -ENODEV;
1782         }
1783
1784         ci = cl->conn_info;
1785
1786         hci_dev_lock(hdev);
1787         list_for_each_entry(c, &hdev->conn_hash.list, list) {
1788                 bacpy(&(ci + n)->bdaddr, &c->dst);
1789                 (ci + n)->handle = c->handle;
1790                 (ci + n)->type  = c->type;
1791                 (ci + n)->out   = c->out;
1792                 (ci + n)->state = c->state;
1793                 (ci + n)->link_mode = get_link_mode(c);
1794                 if (++n >= req.conn_num)
1795                         break;
1796         }
1797         hci_dev_unlock(hdev);
1798
1799         cl->dev_id = hdev->id;
1800         cl->conn_num = n;
1801         size = sizeof(req) + n * sizeof(*ci);
1802
1803         hci_dev_put(hdev);
1804
1805         err = copy_to_user(arg, cl, size);
1806         kfree(cl);
1807
1808         return err ? -EFAULT : 0;
1809 }
1810
1811 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg)
1812 {
1813         struct hci_conn_info_req req;
1814         struct hci_conn_info ci;
1815         struct hci_conn *conn;
1816         char __user *ptr = arg + sizeof(req);
1817
1818         if (copy_from_user(&req, arg, sizeof(req)))
1819                 return -EFAULT;
1820
1821         hci_dev_lock(hdev);
1822         conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr);
1823         if (conn) {
1824                 bacpy(&ci.bdaddr, &conn->dst);
1825                 ci.handle = conn->handle;
1826                 ci.type  = conn->type;
1827                 ci.out   = conn->out;
1828                 ci.state = conn->state;
1829                 ci.link_mode = get_link_mode(conn);
1830         }
1831         hci_dev_unlock(hdev);
1832
1833         if (!conn)
1834                 return -ENOENT;
1835
1836         return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0;
1837 }
1838
1839 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg)
1840 {
1841         struct hci_auth_info_req req;
1842         struct hci_conn *conn;
1843
1844         if (copy_from_user(&req, arg, sizeof(req)))
1845                 return -EFAULT;
1846
1847         hci_dev_lock(hdev);
1848         conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr);
1849         if (conn)
1850                 req.type = conn->auth_type;
1851         hci_dev_unlock(hdev);
1852
1853         if (!conn)
1854                 return -ENOENT;
1855
1856         return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0;
1857 }
1858
1859 struct hci_chan *hci_chan_create(struct hci_conn *conn)
1860 {
1861         struct hci_dev *hdev = conn->hdev;
1862         struct hci_chan *chan;
1863
1864         BT_DBG("%s hcon %p", hdev->name, conn);
1865
1866         if (test_bit(HCI_CONN_DROP, &conn->flags)) {
1867                 BT_DBG("Refusing to create new hci_chan");
1868                 return NULL;
1869         }
1870
1871         chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1872         if (!chan)
1873                 return NULL;
1874
1875         chan->conn = hci_conn_get(conn);
1876         skb_queue_head_init(&chan->data_q);
1877         chan->state = BT_CONNECTED;
1878
1879         list_add_rcu(&chan->list, &conn->chan_list);
1880
1881         return chan;
1882 }
1883
1884 void hci_chan_del(struct hci_chan *chan)
1885 {
1886         struct hci_conn *conn = chan->conn;
1887         struct hci_dev *hdev = conn->hdev;
1888
1889         BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan);
1890
1891         list_del_rcu(&chan->list);
1892
1893         synchronize_rcu();
1894
1895         /* Prevent new hci_chan's to be created for this hci_conn */
1896         set_bit(HCI_CONN_DROP, &conn->flags);
1897
1898         hci_conn_put(conn);
1899
1900         skb_queue_purge(&chan->data_q);
1901         kfree(chan);
1902 }
1903
1904 void hci_chan_list_flush(struct hci_conn *conn)
1905 {
1906         struct hci_chan *chan, *n;
1907
1908         BT_DBG("hcon %p", conn);
1909
1910         list_for_each_entry_safe(chan, n, &conn->chan_list, list)
1911                 hci_chan_del(chan);
1912 }
1913
1914 static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon,
1915                                                  __u16 handle)
1916 {
1917         struct hci_chan *hchan;
1918
1919         list_for_each_entry(hchan, &hcon->chan_list, list) {
1920                 if (hchan->handle == handle)
1921                         return hchan;
1922         }
1923
1924         return NULL;
1925 }
1926
1927 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle)
1928 {
1929         struct hci_conn_hash *h = &hdev->conn_hash;
1930         struct hci_conn *hcon;
1931         struct hci_chan *hchan = NULL;
1932
1933         rcu_read_lock();
1934
1935         list_for_each_entry_rcu(hcon, &h->list, list) {
1936                 hchan = __hci_chan_lookup_handle(hcon, handle);
1937                 if (hchan)
1938                         break;
1939         }
1940
1941         rcu_read_unlock();
1942
1943         return hchan;
1944 }
1945
1946 u32 hci_conn_get_phy(struct hci_conn *conn)
1947 {
1948         u32 phys = 0;
1949
1950         /* BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 2, Part B page 471:
1951          * Table 6.2: Packets defined for synchronous, asynchronous, and
1952          * CPB logical transport types.
1953          */
1954         switch (conn->type) {
1955         case SCO_LINK:
1956                 /* SCO logical transport (1 Mb/s):
1957                  * HV1, HV2, HV3 and DV.
1958                  */
1959                 phys |= BT_PHY_BR_1M_1SLOT;
1960
1961                 break;
1962
1963         case ACL_LINK:
1964                 /* ACL logical transport (1 Mb/s) ptt=0:
1965                  * DH1, DM3, DH3, DM5 and DH5.
1966                  */
1967                 phys |= BT_PHY_BR_1M_1SLOT;
1968
1969                 if (conn->pkt_type & (HCI_DM3 | HCI_DH3))
1970                         phys |= BT_PHY_BR_1M_3SLOT;
1971
1972                 if (conn->pkt_type & (HCI_DM5 | HCI_DH5))
1973                         phys |= BT_PHY_BR_1M_5SLOT;
1974
1975                 /* ACL logical transport (2 Mb/s) ptt=1:
1976                  * 2-DH1, 2-DH3 and 2-DH5.
1977                  */
1978                 if (!(conn->pkt_type & HCI_2DH1))
1979                         phys |= BT_PHY_EDR_2M_1SLOT;
1980
1981                 if (!(conn->pkt_type & HCI_2DH3))
1982                         phys |= BT_PHY_EDR_2M_3SLOT;
1983
1984                 if (!(conn->pkt_type & HCI_2DH5))
1985                         phys |= BT_PHY_EDR_2M_5SLOT;
1986
1987                 /* ACL logical transport (3 Mb/s) ptt=1:
1988                  * 3-DH1, 3-DH3 and 3-DH5.
1989                  */
1990                 if (!(conn->pkt_type & HCI_3DH1))
1991                         phys |= BT_PHY_EDR_3M_1SLOT;
1992
1993                 if (!(conn->pkt_type & HCI_3DH3))
1994                         phys |= BT_PHY_EDR_3M_3SLOT;
1995
1996                 if (!(conn->pkt_type & HCI_3DH5))
1997                         phys |= BT_PHY_EDR_3M_5SLOT;
1998
1999                 break;
2000
2001         case ESCO_LINK:
2002                 /* eSCO logical transport (1 Mb/s): EV3, EV4 and EV5 */
2003                 phys |= BT_PHY_BR_1M_1SLOT;
2004
2005                 if (!(conn->pkt_type & (ESCO_EV4 | ESCO_EV5)))
2006                         phys |= BT_PHY_BR_1M_3SLOT;
2007
2008                 /* eSCO logical transport (2 Mb/s): 2-EV3, 2-EV5 */
2009                 if (!(conn->pkt_type & ESCO_2EV3))
2010                         phys |= BT_PHY_EDR_2M_1SLOT;
2011
2012                 if (!(conn->pkt_type & ESCO_2EV5))
2013                         phys |= BT_PHY_EDR_2M_3SLOT;
2014
2015                 /* eSCO logical transport (3 Mb/s): 3-EV3, 3-EV5 */
2016                 if (!(conn->pkt_type & ESCO_3EV3))
2017                         phys |= BT_PHY_EDR_3M_1SLOT;
2018
2019                 if (!(conn->pkt_type & ESCO_3EV5))
2020                         phys |= BT_PHY_EDR_3M_3SLOT;
2021
2022                 break;
2023
2024         case LE_LINK:
2025                 if (conn->le_tx_phy & HCI_LE_SET_PHY_1M)
2026                         phys |= BT_PHY_LE_1M_TX;
2027
2028                 if (conn->le_rx_phy & HCI_LE_SET_PHY_1M)
2029                         phys |= BT_PHY_LE_1M_RX;
2030
2031                 if (conn->le_tx_phy & HCI_LE_SET_PHY_2M)
2032                         phys |= BT_PHY_LE_2M_TX;
2033
2034                 if (conn->le_rx_phy & HCI_LE_SET_PHY_2M)
2035                         phys |= BT_PHY_LE_2M_RX;
2036
2037                 if (conn->le_tx_phy & HCI_LE_SET_PHY_CODED)
2038                         phys |= BT_PHY_LE_CODED_TX;
2039
2040                 if (conn->le_rx_phy & HCI_LE_SET_PHY_CODED)
2041                         phys |= BT_PHY_LE_CODED_RX;
2042
2043                 break;
2044         }
2045
2046         return phys;
2047 }