Bluetooth: Cancel the Sniff timer
[platform/kernel/linux-rpi.git] / net / bluetooth / hci_conn.c
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
4
5    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License version 2 as
9    published by the Free Software Foundation;
10
11    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19
20    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22    SOFTWARE IS DISCLAIMED.
23 */
24
25 /* Bluetooth HCI connection handling. */
26
27 #include <linux/export.h>
28 #include <linux/debugfs.h>
29
30 #include <net/bluetooth/bluetooth.h>
31 #include <net/bluetooth/hci_core.h>
32 #include <net/bluetooth/l2cap.h>
33
34 #include "hci_request.h"
35 #include "smp.h"
36 #include "a2mp.h"
37
38 struct sco_param {
39         u16 pkt_type;
40         u16 max_latency;
41         u8  retrans_effort;
42 };
43
44 #ifdef TIZEN_BT
45 static const struct sco_param esco_param_cvsd[] = {
46         { (EDR_ESCO_MASK & ~ESCO_2EV3) | SCO_ESCO_MASK | ESCO_EV3,
47                                       0x000a,   0x01 }, /* S3 */
48         { EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007,   0x01 }, /* S2 */
49         { EDR_ESCO_MASK | ESCO_EV3,   0x0007,   0x01 }, /* S1 */
50         { EDR_ESCO_MASK | ESCO_HV3,   0xffff,   0x01 }, /* D1 */
51         { EDR_ESCO_MASK | ESCO_HV1,   0xffff,   0x01 }, /* D0 */
52 };
53 #else
54 static const struct sco_param esco_param_cvsd[] = {
55         { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a,   0x01 }, /* S3 */
56         { EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007,   0x01 }, /* S2 */
57         { EDR_ESCO_MASK | ESCO_EV3,   0x0007,   0x01 }, /* S1 */
58         { EDR_ESCO_MASK | ESCO_HV3,   0xffff,   0x01 }, /* D1 */
59         { EDR_ESCO_MASK | ESCO_HV1,   0xffff,   0x01 }, /* D0 */
60 };
61 #endif
62
63 static const struct sco_param sco_param_cvsd[] = {
64         { EDR_ESCO_MASK | ESCO_HV3,   0xffff,   0xff }, /* D1 */
65         { EDR_ESCO_MASK | ESCO_HV1,   0xffff,   0xff }, /* D0 */
66 };
67
68 #ifdef TIZEN_BT
69 static const struct sco_param esco_param_msbc[] = {
70         { (EDR_ESCO_MASK & ~ESCO_2EV3) | ESCO_EV3,
71                                       0x000d,   0x02 }, /* T2 */
72         { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d,   0x02 }, /* T2 */
73 };
74 #else
75 static const struct sco_param esco_param_msbc[] = {
76         { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d,   0x02 }, /* T2 */
77         { EDR_ESCO_MASK | ESCO_EV3,   0x0008,   0x02 }, /* T1 */
78 };
79 #endif
80
81 /* This function requires the caller holds hdev->lock */
82 static void hci_connect_le_scan_cleanup(struct hci_conn *conn)
83 {
84         struct hci_conn_params *params;
85         struct hci_dev *hdev = conn->hdev;
86         struct smp_irk *irk;
87         bdaddr_t *bdaddr;
88         u8 bdaddr_type;
89
90         bdaddr = &conn->dst;
91         bdaddr_type = conn->dst_type;
92
93         /* Check if we need to convert to identity address */
94         irk = hci_get_irk(hdev, bdaddr, bdaddr_type);
95         if (irk) {
96                 bdaddr = &irk->bdaddr;
97                 bdaddr_type = irk->addr_type;
98         }
99
100         params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr,
101                                            bdaddr_type);
102         if (!params || !params->explicit_connect)
103                 return;
104
105         /* The connection attempt was doing scan for new RPA, and is
106          * in scan phase. If params are not associated with any other
107          * autoconnect action, remove them completely. If they are, just unmark
108          * them as waiting for connection, by clearing explicit_connect field.
109          */
110         params->explicit_connect = false;
111
112         list_del_init(&params->action);
113
114         switch (params->auto_connect) {
115         case HCI_AUTO_CONN_EXPLICIT:
116                 hci_conn_params_del(hdev, bdaddr, bdaddr_type);
117                 /* return instead of break to avoid duplicate scan update */
118                 return;
119         case HCI_AUTO_CONN_DIRECT:
120         case HCI_AUTO_CONN_ALWAYS:
121                 list_add(&params->action, &hdev->pend_le_conns);
122                 break;
123         case HCI_AUTO_CONN_REPORT:
124                 list_add(&params->action, &hdev->pend_le_reports);
125                 break;
126         default:
127                 break;
128         }
129
130         hci_update_background_scan(hdev);
131 }
132
133 static void hci_conn_cleanup(struct hci_conn *conn)
134 {
135         struct hci_dev *hdev = conn->hdev;
136
137         if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags))
138                 hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type);
139
140         hci_chan_list_flush(conn);
141
142         hci_conn_hash_del(hdev, conn);
143
144         if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
145                 switch (conn->setting & SCO_AIRMODE_MASK) {
146                 case SCO_AIRMODE_CVSD:
147                 case SCO_AIRMODE_TRANSP:
148                         if (hdev->notify)
149                                 hdev->notify(hdev, HCI_NOTIFY_DISABLE_SCO);
150                         break;
151                 }
152         } else {
153                 if (hdev->notify)
154                         hdev->notify(hdev, HCI_NOTIFY_CONN_DEL);
155         }
156
157         hci_conn_del_sysfs(conn);
158
159         debugfs_remove_recursive(conn->debugfs);
160
161         hci_dev_put(hdev);
162
163         hci_conn_put(conn);
164 }
165
166 static void le_scan_cleanup(struct work_struct *work)
167 {
168         struct hci_conn *conn = container_of(work, struct hci_conn,
169                                              le_scan_cleanup);
170         struct hci_dev *hdev = conn->hdev;
171         struct hci_conn *c = NULL;
172
173         BT_DBG("%s hcon %p", hdev->name, conn);
174
175         hci_dev_lock(hdev);
176
177         /* Check that the hci_conn is still around */
178         rcu_read_lock();
179         list_for_each_entry_rcu(c, &hdev->conn_hash.list, list) {
180                 if (c == conn)
181                         break;
182         }
183         rcu_read_unlock();
184
185         if (c == conn) {
186                 hci_connect_le_scan_cleanup(conn);
187                 hci_conn_cleanup(conn);
188         }
189
190         hci_dev_unlock(hdev);
191         hci_dev_put(hdev);
192         hci_conn_put(conn);
193 }
194
195 static void hci_connect_le_scan_remove(struct hci_conn *conn)
196 {
197         BT_DBG("%s hcon %p", conn->hdev->name, conn);
198
199         /* We can't call hci_conn_del/hci_conn_cleanup here since that
200          * could deadlock with another hci_conn_del() call that's holding
201          * hci_dev_lock and doing cancel_delayed_work_sync(&conn->disc_work).
202          * Instead, grab temporary extra references to the hci_dev and
203          * hci_conn and perform the necessary cleanup in a separate work
204          * callback.
205          */
206
207         hci_dev_hold(conn->hdev);
208         hci_conn_get(conn);
209
210         /* Even though we hold a reference to the hdev, many other
211          * things might get cleaned up meanwhile, including the hdev's
212          * own workqueue, so we can't use that for scheduling.
213          */
214         schedule_work(&conn->le_scan_cleanup);
215 }
216
217 static void hci_acl_create_connection(struct hci_conn *conn)
218 {
219         struct hci_dev *hdev = conn->hdev;
220         struct inquiry_entry *ie;
221         struct hci_cp_create_conn cp;
222
223         BT_DBG("hcon %p", conn);
224
225         /* Many controllers disallow HCI Create Connection while it is doing
226          * HCI Inquiry. So we cancel the Inquiry first before issuing HCI Create
227          * Connection. This may cause the MGMT discovering state to become false
228          * without user space's request but it is okay since the MGMT Discovery
229          * APIs do not promise that discovery should be done forever. Instead,
230          * the user space monitors the status of MGMT discovering and it may
231          * request for discovery again when this flag becomes false.
232          */
233         if (test_bit(HCI_INQUIRY, &hdev->flags)) {
234                 /* Put this connection to "pending" state so that it will be
235                  * executed after the inquiry cancel command complete event.
236                  */
237                 conn->state = BT_CONNECT2;
238                 hci_send_cmd(hdev, HCI_OP_INQUIRY_CANCEL, 0, NULL);
239                 return;
240         }
241
242         conn->state = BT_CONNECT;
243         conn->out = true;
244         conn->role = HCI_ROLE_MASTER;
245
246         conn->attempt++;
247
248         conn->link_policy = hdev->link_policy;
249
250         memset(&cp, 0, sizeof(cp));
251         bacpy(&cp.bdaddr, &conn->dst);
252         cp.pscan_rep_mode = 0x02;
253
254         ie = hci_inquiry_cache_lookup(hdev, &conn->dst);
255         if (ie) {
256                 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) {
257                         cp.pscan_rep_mode = ie->data.pscan_rep_mode;
258                         cp.pscan_mode     = ie->data.pscan_mode;
259                         cp.clock_offset   = ie->data.clock_offset |
260                                             cpu_to_le16(0x8000);
261                 }
262
263                 memcpy(conn->dev_class, ie->data.dev_class, 3);
264         }
265
266         cp.pkt_type = cpu_to_le16(conn->pkt_type);
267         if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER))
268                 cp.role_switch = 0x01;
269         else
270                 cp.role_switch = 0x00;
271
272         hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp);
273 }
274
275 int hci_disconnect(struct hci_conn *conn, __u8 reason)
276 {
277         BT_DBG("hcon %p", conn);
278
279         /* When we are central of an established connection and it enters
280          * the disconnect timeout, then go ahead and try to read the
281          * current clock offset.  Processing of the result is done
282          * within the event handling and hci_clock_offset_evt function.
283          */
284         if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER &&
285             (conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) {
286                 struct hci_dev *hdev = conn->hdev;
287                 struct hci_cp_read_clock_offset clkoff_cp;
288
289                 clkoff_cp.handle = cpu_to_le16(conn->handle);
290                 hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp),
291                              &clkoff_cp);
292         }
293
294         return hci_abort_conn(conn, reason);
295 }
296
297 static void hci_add_sco(struct hci_conn *conn, __u16 handle)
298 {
299         struct hci_dev *hdev = conn->hdev;
300         struct hci_cp_add_sco cp;
301
302         BT_DBG("hcon %p", conn);
303
304         conn->state = BT_CONNECT;
305         conn->out = true;
306
307         conn->attempt++;
308
309         cp.handle   = cpu_to_le16(handle);
310         cp.pkt_type = cpu_to_le16(conn->pkt_type);
311
312         hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp);
313 }
314
315 static bool find_next_esco_param(struct hci_conn *conn,
316                                  const struct sco_param *esco_param, int size)
317 {
318         for (; conn->attempt <= size; conn->attempt++) {
319                 if (lmp_esco_2m_capable(conn->link) ||
320                     (esco_param[conn->attempt - 1].pkt_type & ESCO_2EV3))
321                         break;
322                 BT_DBG("hcon %p skipped attempt %d, eSCO 2M not supported",
323                        conn, conn->attempt);
324         }
325
326         return conn->attempt <= size;
327 }
328
329 bool hci_setup_sync(struct hci_conn *conn, __u16 handle)
330 {
331         struct hci_dev *hdev = conn->hdev;
332         struct hci_cp_setup_sync_conn cp;
333         const struct sco_param *param;
334
335         BT_DBG("hcon %p", conn);
336
337         conn->state = BT_CONNECT;
338         conn->out = true;
339
340         conn->attempt++;
341
342         cp.handle   = cpu_to_le16(handle);
343
344         cp.tx_bandwidth   = cpu_to_le32(0x00001f40);
345         cp.rx_bandwidth   = cpu_to_le32(0x00001f40);
346         cp.voice_setting  = cpu_to_le16(conn->setting);
347
348         switch (conn->setting & SCO_AIRMODE_MASK) {
349         case SCO_AIRMODE_TRANSP:
350                 if (!find_next_esco_param(conn, esco_param_msbc,
351                                           ARRAY_SIZE(esco_param_msbc)))
352                         return false;
353                 param = &esco_param_msbc[conn->attempt - 1];
354                 break;
355         case SCO_AIRMODE_CVSD:
356                 if (lmp_esco_capable(conn->link)) {
357                         if (!find_next_esco_param(conn, esco_param_cvsd,
358                                                   ARRAY_SIZE(esco_param_cvsd)))
359                                 return false;
360                         param = &esco_param_cvsd[conn->attempt - 1];
361                 } else {
362                         if (conn->attempt > ARRAY_SIZE(sco_param_cvsd))
363                                 return false;
364                         param = &sco_param_cvsd[conn->attempt - 1];
365                 }
366                 break;
367         default:
368                 return false;
369         }
370
371         cp.retrans_effort = param->retrans_effort;
372         cp.pkt_type = __cpu_to_le16(param->pkt_type);
373         cp.max_latency = __cpu_to_le16(param->max_latency);
374
375         if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0)
376                 return false;
377
378         return true;
379 }
380
381 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency,
382                       u16 to_multiplier)
383 {
384         struct hci_dev *hdev = conn->hdev;
385         struct hci_conn_params *params;
386         struct hci_cp_le_conn_update cp;
387
388         hci_dev_lock(hdev);
389
390         params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
391         if (params) {
392                 params->conn_min_interval = min;
393                 params->conn_max_interval = max;
394                 params->conn_latency = latency;
395                 params->supervision_timeout = to_multiplier;
396         }
397
398         hci_dev_unlock(hdev);
399
400         memset(&cp, 0, sizeof(cp));
401         cp.handle               = cpu_to_le16(conn->handle);
402         cp.conn_interval_min    = cpu_to_le16(min);
403         cp.conn_interval_max    = cpu_to_le16(max);
404         cp.conn_latency         = cpu_to_le16(latency);
405         cp.supervision_timeout  = cpu_to_le16(to_multiplier);
406         cp.min_ce_len           = cpu_to_le16(0x0000);
407         cp.max_ce_len           = cpu_to_le16(0x0000);
408
409         hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp);
410
411         if (params)
412                 return 0x01;
413
414         return 0x00;
415 }
416
417 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand,
418                       __u8 ltk[16], __u8 key_size)
419 {
420         struct hci_dev *hdev = conn->hdev;
421         struct hci_cp_le_start_enc cp;
422
423         BT_DBG("hcon %p", conn);
424
425         memset(&cp, 0, sizeof(cp));
426
427         cp.handle = cpu_to_le16(conn->handle);
428         cp.rand = rand;
429         cp.ediv = ediv;
430         memcpy(cp.ltk, ltk, key_size);
431
432         hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp);
433 }
434
435 /* Device _must_ be locked */
436 void hci_sco_setup(struct hci_conn *conn, __u8 status)
437 {
438         struct hci_conn *sco = conn->link;
439
440         if (!sco)
441                 return;
442
443         BT_DBG("hcon %p", conn);
444
445         if (!status) {
446                 if (lmp_esco_capable(conn->hdev))
447                         hci_setup_sync(sco, conn->handle);
448                 else
449                         hci_add_sco(sco, conn->handle);
450         } else {
451                 hci_connect_cfm(sco, status);
452                 hci_conn_del(sco);
453         }
454 }
455
456 static void hci_conn_timeout(struct work_struct *work)
457 {
458         struct hci_conn *conn = container_of(work, struct hci_conn,
459                                              disc_work.work);
460         int refcnt = atomic_read(&conn->refcnt);
461
462         BT_DBG("hcon %p state %s", conn, state_to_string(conn->state));
463
464         WARN_ON(refcnt < 0);
465
466         /* FIXME: It was observed that in pairing failed scenario, refcnt
467          * drops below 0. Probably this is because l2cap_conn_del calls
468          * l2cap_chan_del for each channel, and inside l2cap_chan_del conn is
469          * dropped. After that loop hci_chan_del is called which also drops
470          * conn. For now make sure that ACL is alive if refcnt is higher then 0,
471          * otherwise drop it.
472          */
473         if (refcnt > 0)
474                 return;
475
476         /* LE connections in scanning state need special handling */
477         if (conn->state == BT_CONNECT && conn->type == LE_LINK &&
478             test_bit(HCI_CONN_SCANNING, &conn->flags)) {
479                 hci_connect_le_scan_remove(conn);
480                 return;
481         }
482
483         hci_abort_conn(conn, hci_proto_disconn_ind(conn));
484 }
485
486 /* Enter sniff mode */
487 static void hci_conn_idle(struct work_struct *work)
488 {
489         struct hci_conn *conn = container_of(work, struct hci_conn,
490                                              idle_work.work);
491         struct hci_dev *hdev = conn->hdev;
492
493         BT_DBG("hcon %p mode %d", conn, conn->mode);
494
495         if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn))
496                 return;
497
498         if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF))
499                 return;
500
501         if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) {
502                 struct hci_cp_sniff_subrate cp;
503                 cp.handle             = cpu_to_le16(conn->handle);
504                 cp.max_latency        = cpu_to_le16(0);
505                 cp.min_remote_timeout = cpu_to_le16(0);
506                 cp.min_local_timeout  = cpu_to_le16(0);
507                 hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp);
508         }
509
510         if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
511                 struct hci_cp_sniff_mode cp;
512                 cp.handle       = cpu_to_le16(conn->handle);
513                 cp.max_interval = cpu_to_le16(hdev->sniff_max_interval);
514                 cp.min_interval = cpu_to_le16(hdev->sniff_min_interval);
515                 cp.attempt      = cpu_to_le16(4);
516                 cp.timeout      = cpu_to_le16(1);
517                 hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp);
518         }
519 }
520
521 static void hci_conn_auto_accept(struct work_struct *work)
522 {
523         struct hci_conn *conn = container_of(work, struct hci_conn,
524                                              auto_accept_work.work);
525
526         hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst),
527                      &conn->dst);
528 }
529
530 static void le_disable_advertising(struct hci_dev *hdev)
531 {
532         if (ext_adv_capable(hdev)) {
533                 struct hci_cp_le_set_ext_adv_enable cp;
534
535                 cp.enable = 0x00;
536                 cp.num_of_sets = 0x00;
537
538                 hci_send_cmd(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp),
539                              &cp);
540         } else {
541                 u8 enable = 0x00;
542                 hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
543                              &enable);
544         }
545 }
546
547 static void le_conn_timeout(struct work_struct *work)
548 {
549         struct hci_conn *conn = container_of(work, struct hci_conn,
550                                              le_conn_timeout.work);
551         struct hci_dev *hdev = conn->hdev;
552
553         BT_DBG("");
554
555         /* We could end up here due to having done directed advertising,
556          * so clean up the state if necessary. This should however only
557          * happen with broken hardware or if low duty cycle was used
558          * (which doesn't have a timeout of its own).
559          */
560         if (conn->role == HCI_ROLE_SLAVE) {
561                 /* Disable LE Advertising */
562                 le_disable_advertising(hdev);
563                 hci_dev_lock(hdev);
564                 hci_le_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT);
565                 hci_dev_unlock(hdev);
566                 return;
567         }
568
569         hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM);
570 }
571
572 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst,
573                               u8 role)
574 {
575         struct hci_conn *conn;
576
577         BT_DBG("%s dst %pMR", hdev->name, dst);
578
579         conn = kzalloc(sizeof(*conn), GFP_KERNEL);
580         if (!conn)
581                 return NULL;
582
583         bacpy(&conn->dst, dst);
584         bacpy(&conn->src, &hdev->bdaddr);
585         conn->hdev  = hdev;
586         conn->type  = type;
587         conn->role  = role;
588         conn->mode  = HCI_CM_ACTIVE;
589         conn->state = BT_OPEN;
590         conn->auth_type = HCI_AT_GENERAL_BONDING;
591         conn->io_capability = hdev->io_capability;
592         conn->remote_auth = 0xff;
593         conn->key_type = 0xff;
594         conn->rssi = HCI_RSSI_INVALID;
595         conn->tx_power = HCI_TX_POWER_INVALID;
596         conn->max_tx_power = HCI_TX_POWER_INVALID;
597
598 #ifdef TIZEN_BT
599         /* enable sniff mode for incoming connection */
600         conn->link_policy = hdev->link_policy;
601 #endif
602
603         set_bit(HCI_CONN_POWER_SAVE, &conn->flags);
604         conn->disc_timeout = HCI_DISCONN_TIMEOUT;
605
606         /* Set Default Authenticated payload timeout to 30s */
607         conn->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
608
609         if (conn->role == HCI_ROLE_MASTER)
610                 conn->out = true;
611
612         switch (type) {
613         case ACL_LINK:
614                 conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK;
615                 break;
616         case LE_LINK:
617                 /* conn->src should reflect the local identity address */
618                 hci_copy_identity_address(hdev, &conn->src, &conn->src_type);
619                 break;
620         case SCO_LINK:
621                 if (lmp_esco_capable(hdev))
622                         conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) |
623                                         (hdev->esco_type & EDR_ESCO_MASK);
624                 else
625                         conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK;
626                 break;
627         case ESCO_LINK:
628                 conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK;
629                 break;
630         }
631
632         skb_queue_head_init(&conn->data_q);
633
634         INIT_LIST_HEAD(&conn->chan_list);
635
636         INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout);
637         INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept);
638         INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle);
639         INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout);
640         INIT_WORK(&conn->le_scan_cleanup, le_scan_cleanup);
641
642         atomic_set(&conn->refcnt, 0);
643
644         hci_dev_hold(hdev);
645
646         hci_conn_hash_add(hdev, conn);
647
648         /* The SCO and eSCO connections will only be notified when their
649          * setup has been completed. This is different to ACL links which
650          * can be notified right away.
651          */
652         if (conn->type != SCO_LINK && conn->type != ESCO_LINK) {
653                 if (hdev->notify)
654                         hdev->notify(hdev, HCI_NOTIFY_CONN_ADD);
655         }
656
657         hci_conn_init_sysfs(conn);
658
659         return conn;
660 }
661
662 int hci_conn_del(struct hci_conn *conn)
663 {
664         struct hci_dev *hdev = conn->hdev;
665
666         BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle);
667
668         cancel_delayed_work_sync(&conn->disc_work);
669         cancel_delayed_work_sync(&conn->auto_accept_work);
670         cancel_delayed_work_sync(&conn->idle_work);
671
672         if (conn->type == ACL_LINK) {
673                 struct hci_conn *sco = conn->link;
674                 if (sco)
675                         sco->link = NULL;
676
677                 /* Unacked frames */
678                 hdev->acl_cnt += conn->sent;
679         } else if (conn->type == LE_LINK) {
680                 cancel_delayed_work(&conn->le_conn_timeout);
681
682                 if (hdev->le_pkts)
683                         hdev->le_cnt += conn->sent;
684                 else
685                         hdev->acl_cnt += conn->sent;
686         } else {
687                 struct hci_conn *acl = conn->link;
688                 if (acl) {
689                         acl->link = NULL;
690                         hci_conn_drop(acl);
691                 }
692         }
693
694         if (conn->amp_mgr)
695                 amp_mgr_put(conn->amp_mgr);
696
697         skb_queue_purge(&conn->data_q);
698
699         /* Remove the connection from the list and cleanup its remaining
700          * state. This is a separate function since for some cases like
701          * BT_CONNECT_SCAN we *only* want the cleanup part without the
702          * rest of hci_conn_del.
703          */
704         hci_conn_cleanup(conn);
705
706         return 0;
707 }
708
709 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, uint8_t src_type)
710 {
711         int use_src = bacmp(src, BDADDR_ANY);
712         struct hci_dev *hdev = NULL, *d;
713
714         BT_DBG("%pMR -> %pMR", src, dst);
715
716         read_lock(&hci_dev_list_lock);
717
718         list_for_each_entry(d, &hci_dev_list, list) {
719                 if (!test_bit(HCI_UP, &d->flags) ||
720                     hci_dev_test_flag(d, HCI_USER_CHANNEL) ||
721                     d->dev_type != HCI_PRIMARY)
722                         continue;
723
724                 /* Simple routing:
725                  *   No source address - find interface with bdaddr != dst
726                  *   Source address    - find interface with bdaddr == src
727                  */
728
729                 if (use_src) {
730                         bdaddr_t id_addr;
731                         u8 id_addr_type;
732
733                         if (src_type == BDADDR_BREDR) {
734                                 if (!lmp_bredr_capable(d))
735                                         continue;
736                                 bacpy(&id_addr, &d->bdaddr);
737                                 id_addr_type = BDADDR_BREDR;
738                         } else {
739                                 if (!lmp_le_capable(d))
740                                         continue;
741
742                                 hci_copy_identity_address(d, &id_addr,
743                                                           &id_addr_type);
744
745                                 /* Convert from HCI to three-value type */
746                                 if (id_addr_type == ADDR_LE_DEV_PUBLIC)
747                                         id_addr_type = BDADDR_LE_PUBLIC;
748                                 else
749                                         id_addr_type = BDADDR_LE_RANDOM;
750                         }
751
752                         if (!bacmp(&id_addr, src) && id_addr_type == src_type) {
753                                 hdev = d; break;
754                         }
755                 } else {
756                         if (bacmp(&d->bdaddr, dst)) {
757                                 hdev = d; break;
758                         }
759                 }
760         }
761
762         if (hdev)
763                 hdev = hci_dev_hold(hdev);
764
765         read_unlock(&hci_dev_list_lock);
766         return hdev;
767 }
768 EXPORT_SYMBOL(hci_get_route);
769
770 /* This function requires the caller holds hdev->lock */
771 void hci_le_conn_failed(struct hci_conn *conn, u8 status)
772 {
773         struct hci_dev *hdev = conn->hdev;
774         struct hci_conn_params *params;
775
776         params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst,
777                                            conn->dst_type);
778         if (params && params->conn) {
779                 hci_conn_drop(params->conn);
780                 hci_conn_put(params->conn);
781                 params->conn = NULL;
782         }
783
784         conn->state = BT_CLOSED;
785
786         /* If the status indicates successful cancellation of
787          * the attempt (i.e. Unknown Connection Id) there's no point of
788          * notifying failure since we'll go back to keep trying to
789          * connect. The only exception is explicit connect requests
790          * where a timeout + cancel does indicate an actual failure.
791          */
792         if (status != HCI_ERROR_UNKNOWN_CONN_ID ||
793             (params && params->explicit_connect))
794                 mgmt_connect_failed(hdev, &conn->dst, conn->type,
795                                     conn->dst_type, status);
796
797         hci_connect_cfm(conn, status);
798
799         hci_conn_del(conn);
800
801         /* The suspend notifier is waiting for all devices to disconnect and an
802          * LE connect cancel will result in an hci_le_conn_failed. Once the last
803          * connection is deleted, we should also wake the suspend queue to
804          * complete suspend operations.
805          */
806         if (list_empty(&hdev->conn_hash.list) &&
807             test_and_clear_bit(SUSPEND_DISCONNECTING, hdev->suspend_tasks)) {
808                 wake_up(&hdev->suspend_wait_q);
809         }
810
811         /* Since we may have temporarily stopped the background scanning in
812          * favor of connection establishment, we should restart it.
813          */
814         hci_update_background_scan(hdev);
815
816         /* Re-enable advertising in case this was a failed connection
817          * attempt as a peripheral.
818          */
819         hci_req_reenable_advertising(hdev);
820 }
821
822 static void create_le_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
823 {
824         struct hci_conn *conn;
825
826         hci_dev_lock(hdev);
827
828         conn = hci_lookup_le_connect(hdev);
829
830         if (hdev->adv_instance_cnt)
831                 hci_req_resume_adv_instances(hdev);
832
833         if (!status) {
834                 hci_connect_le_scan_cleanup(conn);
835                 goto done;
836         }
837
838         bt_dev_err(hdev, "request failed to create LE connection: "
839                    "status 0x%2.2x", status);
840
841         if (!conn)
842                 goto done;
843
844         hci_le_conn_failed(conn, status);
845
846 done:
847         hci_dev_unlock(hdev);
848 }
849
850 static bool conn_use_rpa(struct hci_conn *conn)
851 {
852         struct hci_dev *hdev = conn->hdev;
853
854         return hci_dev_test_flag(hdev, HCI_PRIVACY);
855 }
856
857 static void set_ext_conn_params(struct hci_conn *conn,
858                                 struct hci_cp_le_ext_conn_param *p)
859 {
860         struct hci_dev *hdev = conn->hdev;
861
862         memset(p, 0, sizeof(*p));
863
864         p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
865         p->scan_window = cpu_to_le16(hdev->le_scan_window_connect);
866         p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
867         p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
868         p->conn_latency = cpu_to_le16(conn->le_conn_latency);
869         p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
870         p->min_ce_len = cpu_to_le16(0x0000);
871         p->max_ce_len = cpu_to_le16(0x0000);
872 }
873
874 static void hci_req_add_le_create_conn(struct hci_request *req,
875                                        struct hci_conn *conn,
876                                        bdaddr_t *direct_rpa)
877 {
878         struct hci_dev *hdev = conn->hdev;
879         u8 own_addr_type;
880
881         /* If direct address was provided we use it instead of current
882          * address.
883          */
884         if (direct_rpa) {
885                 if (bacmp(&req->hdev->random_addr, direct_rpa))
886                         hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
887                                                                 direct_rpa);
888
889                 /* direct address is always RPA */
890                 own_addr_type = ADDR_LE_DEV_RANDOM;
891         } else {
892                 /* Update random address, but set require_privacy to false so
893                  * that we never connect with an non-resolvable address.
894                  */
895                 if (hci_update_random_address(req, false, conn_use_rpa(conn),
896                                               &own_addr_type))
897                         return;
898         }
899
900         if (use_ext_conn(hdev)) {
901                 struct hci_cp_le_ext_create_conn *cp;
902                 struct hci_cp_le_ext_conn_param *p;
903                 u8 data[sizeof(*cp) + sizeof(*p) * 3];
904                 u32 plen;
905
906                 cp = (void *) data;
907                 p = (void *) cp->data;
908
909                 memset(cp, 0, sizeof(*cp));
910
911                 bacpy(&cp->peer_addr, &conn->dst);
912                 cp->peer_addr_type = conn->dst_type;
913                 cp->own_addr_type = own_addr_type;
914
915                 plen = sizeof(*cp);
916
917                 if (scan_1m(hdev)) {
918                         cp->phys |= LE_SCAN_PHY_1M;
919                         set_ext_conn_params(conn, p);
920
921                         p++;
922                         plen += sizeof(*p);
923                 }
924
925                 if (scan_2m(hdev)) {
926                         cp->phys |= LE_SCAN_PHY_2M;
927                         set_ext_conn_params(conn, p);
928
929                         p++;
930                         plen += sizeof(*p);
931                 }
932
933                 if (scan_coded(hdev)) {
934                         cp->phys |= LE_SCAN_PHY_CODED;
935                         set_ext_conn_params(conn, p);
936
937                         plen += sizeof(*p);
938                 }
939
940                 hci_req_add(req, HCI_OP_LE_EXT_CREATE_CONN, plen, data);
941
942         } else {
943                 struct hci_cp_le_create_conn cp;
944
945                 memset(&cp, 0, sizeof(cp));
946
947                 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
948                 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect);
949
950 #ifdef TIZEN_BT
951                 /* LE auto connect */
952                 if (!bacmp(&conn->dst, BDADDR_ANY))
953                         cp.filter_policy = 0x1;
954                 else
955                 bacpy(&cp.peer_addr, &conn->dst);
956 #else
957                 bacpy(&cp.peer_addr, &conn->dst);
958 #endif
959                 cp.peer_addr_type = conn->dst_type;
960                 cp.own_address_type = own_addr_type;
961                 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
962                 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
963                 cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
964                 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
965                 cp.min_ce_len = cpu_to_le16(0x0000);
966                 cp.max_ce_len = cpu_to_le16(0x0000);
967
968                 hci_req_add(req, HCI_OP_LE_CREATE_CONN, sizeof(cp), &cp);
969         }
970
971         conn->state = BT_CONNECT;
972         clear_bit(HCI_CONN_SCANNING, &conn->flags);
973 }
974
975 static void hci_req_directed_advertising(struct hci_request *req,
976                                          struct hci_conn *conn)
977 {
978         struct hci_dev *hdev = req->hdev;
979         u8 own_addr_type;
980         u8 enable;
981
982         if (ext_adv_capable(hdev)) {
983                 struct hci_cp_le_set_ext_adv_params cp;
984                 bdaddr_t random_addr;
985
986                 /* Set require_privacy to false so that the remote device has a
987                  * chance of identifying us.
988                  */
989                 if (hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL,
990                                            &own_addr_type, &random_addr) < 0)
991                         return;
992
993                 memset(&cp, 0, sizeof(cp));
994
995                 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND);
996                 cp.own_addr_type = own_addr_type;
997                 cp.channel_map = hdev->le_adv_channel_map;
998                 cp.tx_power = HCI_TX_POWER_INVALID;
999                 cp.primary_phy = HCI_ADV_PHY_1M;
1000                 cp.secondary_phy = HCI_ADV_PHY_1M;
1001                 cp.handle = 0; /* Use instance 0 for directed adv */
1002                 cp.own_addr_type = own_addr_type;
1003                 cp.peer_addr_type = conn->dst_type;
1004                 bacpy(&cp.peer_addr, &conn->dst);
1005
1006                 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for
1007                  * advertising_event_property LE_LEGACY_ADV_DIRECT_IND
1008                  * does not supports advertising data when the advertising set already
1009                  * contains some, the controller shall return erroc code 'Invalid
1010                  * HCI Command Parameters(0x12).
1011                  * So it is required to remove adv set for handle 0x00. since we use
1012                  * instance 0 for directed adv.
1013                  */
1014                 __hci_req_remove_ext_adv_instance(req, cp.handle);
1015
1016                 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);
1017
1018                 if (own_addr_type == ADDR_LE_DEV_RANDOM &&
1019                     bacmp(&random_addr, BDADDR_ANY) &&
1020                     bacmp(&random_addr, &hdev->random_addr)) {
1021                         struct hci_cp_le_set_adv_set_rand_addr cp;
1022
1023                         memset(&cp, 0, sizeof(cp));
1024
1025                         cp.handle = 0;
1026                         bacpy(&cp.bdaddr, &random_addr);
1027
1028                         hci_req_add(req,
1029                                     HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
1030                                     sizeof(cp), &cp);
1031                 }
1032
1033                 __hci_req_enable_ext_advertising(req, 0x00);
1034         } else {
1035                 struct hci_cp_le_set_adv_param cp;
1036
1037                 /* Clear the HCI_LE_ADV bit temporarily so that the
1038                  * hci_update_random_address knows that it's safe to go ahead
1039                  * and write a new random address. The flag will be set back on
1040                  * as soon as the SET_ADV_ENABLE HCI command completes.
1041                  */
1042                 hci_dev_clear_flag(hdev, HCI_LE_ADV);
1043
1044                 /* Set require_privacy to false so that the remote device has a
1045                  * chance of identifying us.
1046                  */
1047                 if (hci_update_random_address(req, false, conn_use_rpa(conn),
1048                                               &own_addr_type) < 0)
1049                         return;
1050
1051                 memset(&cp, 0, sizeof(cp));
1052
1053                 /* Some controllers might reject command if intervals are not
1054                  * within range for undirected advertising.
1055                  * BCM20702A0 is known to be affected by this.
1056                  */
1057                 cp.min_interval = cpu_to_le16(0x0020);
1058                 cp.max_interval = cpu_to_le16(0x0020);
1059
1060                 cp.type = LE_ADV_DIRECT_IND;
1061                 cp.own_address_type = own_addr_type;
1062                 cp.direct_addr_type = conn->dst_type;
1063                 bacpy(&cp.direct_addr, &conn->dst);
1064                 cp.channel_map = hdev->le_adv_channel_map;
1065
1066                 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
1067
1068                 enable = 0x01;
1069                 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
1070                             &enable);
1071         }
1072
1073         conn->state = BT_CONNECT;
1074 }
1075
1076 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst,
1077                                 u8 dst_type, u8 sec_level, u16 conn_timeout,
1078                                 u8 role, bdaddr_t *direct_rpa)
1079 {
1080         struct hci_conn_params *params;
1081         struct hci_conn *conn;
1082         struct smp_irk *irk;
1083         struct hci_request req;
1084         int err;
1085
1086         /* This ensures that during disable le_scan address resolution
1087          * will not be disabled if it is followed by le_create_conn
1088          */
1089         bool rpa_le_conn = true;
1090
1091         /* Let's make sure that le is enabled.*/
1092         if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
1093                 if (lmp_le_capable(hdev))
1094                         return ERR_PTR(-ECONNREFUSED);
1095
1096                 return ERR_PTR(-EOPNOTSUPP);
1097         }
1098
1099         /* Since the controller supports only one LE connection attempt at a
1100          * time, we return -EBUSY if there is any connection attempt running.
1101          */
1102         if (hci_lookup_le_connect(hdev))
1103                 return ERR_PTR(-EBUSY);
1104
1105         /* If there's already a connection object but it's not in
1106          * scanning state it means it must already be established, in
1107          * which case we can't do anything else except report a failure
1108          * to connect.
1109          */
1110         conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
1111         if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) {
1112                 return ERR_PTR(-EBUSY);
1113         }
1114
1115         /* When given an identity address with existing identity
1116          * resolving key, the connection needs to be established
1117          * to a resolvable random address.
1118          *
1119          * Storing the resolvable random address is required here
1120          * to handle connection failures. The address will later
1121          * be resolved back into the original identity address
1122          * from the connect request.
1123          */
1124         irk = hci_find_irk_by_addr(hdev, dst, dst_type);
1125         if (irk && bacmp(&irk->rpa, BDADDR_ANY)) {
1126                 dst = &irk->rpa;
1127                 dst_type = ADDR_LE_DEV_RANDOM;
1128         }
1129
1130         if (conn) {
1131                 bacpy(&conn->dst, dst);
1132         } else {
1133                 conn = hci_conn_add(hdev, LE_LINK, dst, role);
1134                 if (!conn)
1135                         return ERR_PTR(-ENOMEM);
1136                 hci_conn_hold(conn);
1137                 conn->pending_sec_level = sec_level;
1138         }
1139
1140         conn->dst_type = dst_type;
1141         conn->sec_level = BT_SECURITY_LOW;
1142         conn->conn_timeout = conn_timeout;
1143
1144         hci_req_init(&req, hdev);
1145
1146         /* Disable advertising if we're active. For central role
1147          * connections most controllers will refuse to connect if
1148          * advertising is enabled, and for peripheral role connections we
1149          * anyway have to disable it in order to start directed
1150          * advertising. Any registered advertisements will be
1151          * re-enabled after the connection attempt is finished.
1152          */
1153         if (hci_dev_test_flag(hdev, HCI_LE_ADV))
1154                 __hci_req_pause_adv_instances(&req);
1155
1156         /* If requested to connect as peripheral use directed advertising */
1157         if (conn->role == HCI_ROLE_SLAVE) {
1158                 /* If we're active scanning most controllers are unable
1159                  * to initiate advertising. Simply reject the attempt.
1160                  */
1161                 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
1162                     hdev->le_scan_type == LE_SCAN_ACTIVE) {
1163                         hci_req_purge(&req);
1164                         hci_conn_del(conn);
1165                         return ERR_PTR(-EBUSY);
1166                 }
1167
1168                 hci_req_directed_advertising(&req, conn);
1169                 goto create_conn;
1170         }
1171
1172         params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
1173         if (params) {
1174                 conn->le_conn_min_interval = params->conn_min_interval;
1175                 conn->le_conn_max_interval = params->conn_max_interval;
1176                 conn->le_conn_latency = params->conn_latency;
1177                 conn->le_supv_timeout = params->supervision_timeout;
1178         } else {
1179                 conn->le_conn_min_interval = hdev->le_conn_min_interval;
1180                 conn->le_conn_max_interval = hdev->le_conn_max_interval;
1181                 conn->le_conn_latency = hdev->le_conn_latency;
1182                 conn->le_supv_timeout = hdev->le_supv_timeout;
1183         }
1184
1185         /* If controller is scanning, we stop it since some controllers are
1186          * not able to scan and connect at the same time. Also set the
1187          * HCI_LE_SCAN_INTERRUPTED flag so that the command complete
1188          * handler for scan disabling knows to set the correct discovery
1189          * state.
1190          */
1191         if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
1192                 hci_req_add_le_scan_disable(&req, rpa_le_conn);
1193                 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
1194         }
1195
1196         hci_req_add_le_create_conn(&req, conn, direct_rpa);
1197
1198 create_conn:
1199         err = hci_req_run(&req, create_le_conn_complete);
1200         if (err) {
1201                 hci_conn_del(conn);
1202
1203                 if (hdev->adv_instance_cnt)
1204                         hci_req_resume_adv_instances(hdev);
1205
1206                 return ERR_PTR(err);
1207         }
1208
1209         return conn;
1210 }
1211
1212 static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type)
1213 {
1214         struct hci_conn *conn;
1215
1216         conn = hci_conn_hash_lookup_le(hdev, addr, type);
1217         if (!conn)
1218                 return false;
1219
1220         if (conn->state != BT_CONNECTED)
1221                 return false;
1222
1223         return true;
1224 }
1225
1226 /* This function requires the caller holds hdev->lock */
1227 static int hci_explicit_conn_params_set(struct hci_dev *hdev,
1228                                         bdaddr_t *addr, u8 addr_type)
1229 {
1230         struct hci_conn_params *params;
1231
1232         if (is_connected(hdev, addr, addr_type))
1233                 return -EISCONN;
1234
1235         params = hci_conn_params_lookup(hdev, addr, addr_type);
1236         if (!params) {
1237                 params = hci_conn_params_add(hdev, addr, addr_type);
1238                 if (!params)
1239                         return -ENOMEM;
1240
1241                 /* If we created new params, mark them to be deleted in
1242                  * hci_connect_le_scan_cleanup. It's different case than
1243                  * existing disabled params, those will stay after cleanup.
1244                  */
1245                 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
1246         }
1247
1248         /* We're trying to connect, so make sure params are at pend_le_conns */
1249         if (params->auto_connect == HCI_AUTO_CONN_DISABLED ||
1250             params->auto_connect == HCI_AUTO_CONN_REPORT ||
1251             params->auto_connect == HCI_AUTO_CONN_EXPLICIT) {
1252                 list_del_init(&params->action);
1253                 list_add(&params->action, &hdev->pend_le_conns);
1254         }
1255
1256         params->explicit_connect = true;
1257
1258         BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type,
1259                params->auto_connect);
1260
1261         return 0;
1262 }
1263
1264 /* This function requires the caller holds hdev->lock */
1265 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst,
1266                                      u8 dst_type, u8 sec_level,
1267                                      u16 conn_timeout,
1268                                      enum conn_reasons conn_reason)
1269 {
1270         struct hci_conn *conn;
1271
1272         /* Let's make sure that le is enabled.*/
1273         if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
1274                 if (lmp_le_capable(hdev))
1275                         return ERR_PTR(-ECONNREFUSED);
1276
1277                 return ERR_PTR(-EOPNOTSUPP);
1278         }
1279
1280         /* Some devices send ATT messages as soon as the physical link is
1281          * established. To be able to handle these ATT messages, the user-
1282          * space first establishes the connection and then starts the pairing
1283          * process.
1284          *
1285          * So if a hci_conn object already exists for the following connection
1286          * attempt, we simply update pending_sec_level and auth_type fields
1287          * and return the object found.
1288          */
1289         conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
1290         if (conn) {
1291                 if (conn->pending_sec_level < sec_level)
1292                         conn->pending_sec_level = sec_level;
1293                 goto done;
1294         }
1295
1296         BT_DBG("requesting refresh of dst_addr");
1297
1298         conn = hci_conn_add(hdev, LE_LINK, dst, HCI_ROLE_MASTER);
1299         if (!conn)
1300                 return ERR_PTR(-ENOMEM);
1301
1302         if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0) {
1303                 hci_conn_del(conn);
1304                 return ERR_PTR(-EBUSY);
1305         }
1306
1307         conn->state = BT_CONNECT;
1308         set_bit(HCI_CONN_SCANNING, &conn->flags);
1309         conn->dst_type = dst_type;
1310         conn->sec_level = BT_SECURITY_LOW;
1311         conn->pending_sec_level = sec_level;
1312         conn->conn_timeout = conn_timeout;
1313         conn->conn_reason = conn_reason;
1314
1315         hci_update_background_scan(hdev);
1316
1317 done:
1318         hci_conn_hold(conn);
1319         return conn;
1320 }
1321
1322 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst,
1323                                  u8 sec_level, u8 auth_type,
1324                                  enum conn_reasons conn_reason)
1325 {
1326         struct hci_conn *acl;
1327
1328         if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1329                 if (lmp_bredr_capable(hdev))
1330                         return ERR_PTR(-ECONNREFUSED);
1331
1332                 return ERR_PTR(-EOPNOTSUPP);
1333         }
1334
1335         acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst);
1336         if (!acl) {
1337                 acl = hci_conn_add(hdev, ACL_LINK, dst, HCI_ROLE_MASTER);
1338                 if (!acl)
1339                         return ERR_PTR(-ENOMEM);
1340         }
1341
1342         hci_conn_hold(acl);
1343
1344         acl->conn_reason = conn_reason;
1345         if (acl->state == BT_OPEN || acl->state == BT_CLOSED) {
1346                 acl->sec_level = BT_SECURITY_LOW;
1347                 acl->pending_sec_level = sec_level;
1348                 acl->auth_type = auth_type;
1349                 hci_acl_create_connection(acl);
1350         }
1351
1352         return acl;
1353 }
1354
1355 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst,
1356                                  __u16 setting)
1357 {
1358         struct hci_conn *acl;
1359         struct hci_conn *sco;
1360
1361         acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING,
1362                               CONN_REASON_SCO_CONNECT);
1363         if (IS_ERR(acl))
1364                 return acl;
1365
1366         sco = hci_conn_hash_lookup_ba(hdev, type, dst);
1367         if (!sco) {
1368                 sco = hci_conn_add(hdev, type, dst, HCI_ROLE_MASTER);
1369                 if (!sco) {
1370                         hci_conn_drop(acl);
1371                         return ERR_PTR(-ENOMEM);
1372                 }
1373         }
1374
1375         acl->link = sco;
1376         sco->link = acl;
1377
1378         hci_conn_hold(sco);
1379
1380         sco->setting = setting;
1381
1382         if (acl->state == BT_CONNECTED &&
1383             (sco->state == BT_OPEN || sco->state == BT_CLOSED)) {
1384                 set_bit(HCI_CONN_POWER_SAVE, &acl->flags);
1385                 hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON);
1386
1387                 if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) {
1388                         /* defer SCO setup until mode change completed */
1389                         set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags);
1390                         return sco;
1391                 }
1392
1393                 hci_sco_setup(acl, 0x00);
1394         }
1395
1396         return sco;
1397 }
1398
1399 /* Check link security requirement */
1400 int hci_conn_check_link_mode(struct hci_conn *conn)
1401 {
1402         BT_DBG("hcon %p", conn);
1403
1404         /* In Secure Connections Only mode, it is required that Secure
1405          * Connections is used and the link is encrypted with AES-CCM
1406          * using a P-256 authenticated combination key.
1407          */
1408         if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) {
1409                 if (!hci_conn_sc_enabled(conn) ||
1410                     !test_bit(HCI_CONN_AES_CCM, &conn->flags) ||
1411                     conn->key_type != HCI_LK_AUTH_COMBINATION_P256)
1412                         return 0;
1413         }
1414
1415          /* AES encryption is required for Level 4:
1416           *
1417           * BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 3, Part C
1418           * page 1319:
1419           *
1420           * 128-bit equivalent strength for link and encryption keys
1421           * required using FIPS approved algorithms (E0 not allowed,
1422           * SAFER+ not allowed, and P-192 not allowed; encryption key
1423           * not shortened)
1424           */
1425         if (conn->sec_level == BT_SECURITY_FIPS &&
1426             !test_bit(HCI_CONN_AES_CCM, &conn->flags)) {
1427                 bt_dev_err(conn->hdev,
1428                            "Invalid security: Missing AES-CCM usage");
1429                 return 0;
1430         }
1431
1432         if (hci_conn_ssp_enabled(conn) &&
1433             !test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1434                 return 0;
1435
1436         return 1;
1437 }
1438
1439 /* Authenticate remote device */
1440 static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type)
1441 {
1442         BT_DBG("hcon %p", conn);
1443
1444         if (conn->pending_sec_level > sec_level)
1445                 sec_level = conn->pending_sec_level;
1446
1447         if (sec_level > conn->sec_level)
1448                 conn->pending_sec_level = sec_level;
1449         else if (test_bit(HCI_CONN_AUTH, &conn->flags))
1450                 return 1;
1451
1452         /* Make sure we preserve an existing MITM requirement*/
1453         auth_type |= (conn->auth_type & 0x01);
1454
1455         conn->auth_type = auth_type;
1456
1457         if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) {
1458                 struct hci_cp_auth_requested cp;
1459
1460                 cp.handle = cpu_to_le16(conn->handle);
1461                 hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED,
1462                              sizeof(cp), &cp);
1463
1464                 /* If we're already encrypted set the REAUTH_PEND flag,
1465                  * otherwise set the ENCRYPT_PEND.
1466                  */
1467                 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1468                         set_bit(HCI_CONN_REAUTH_PEND, &conn->flags);
1469                 else
1470                         set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags);
1471         }
1472
1473         return 0;
1474 }
1475
1476 /* Encrypt the link */
1477 static void hci_conn_encrypt(struct hci_conn *conn)
1478 {
1479         BT_DBG("hcon %p", conn);
1480
1481         if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) {
1482                 struct hci_cp_set_conn_encrypt cp;
1483                 cp.handle  = cpu_to_le16(conn->handle);
1484                 cp.encrypt = 0x01;
1485                 hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp),
1486                              &cp);
1487         }
1488 }
1489
1490 /* Enable security */
1491 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type,
1492                       bool initiator)
1493 {
1494         BT_DBG("hcon %p", conn);
1495
1496         if (conn->type == LE_LINK)
1497                 return smp_conn_security(conn, sec_level);
1498
1499         /* For sdp we don't need the link key. */
1500         if (sec_level == BT_SECURITY_SDP)
1501                 return 1;
1502
1503         /* For non 2.1 devices and low security level we don't need the link
1504            key. */
1505         if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn))
1506                 return 1;
1507
1508         /* For other security levels we need the link key. */
1509         if (!test_bit(HCI_CONN_AUTH, &conn->flags))
1510                 goto auth;
1511
1512         /* An authenticated FIPS approved combination key has sufficient
1513          * security for security level 4. */
1514         if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256 &&
1515             sec_level == BT_SECURITY_FIPS)
1516                 goto encrypt;
1517
1518         /* An authenticated combination key has sufficient security for
1519            security level 3. */
1520         if ((conn->key_type == HCI_LK_AUTH_COMBINATION_P192 ||
1521              conn->key_type == HCI_LK_AUTH_COMBINATION_P256) &&
1522             sec_level == BT_SECURITY_HIGH)
1523                 goto encrypt;
1524
1525         /* An unauthenticated combination key has sufficient security for
1526            security level 1 and 2. */
1527         if ((conn->key_type == HCI_LK_UNAUTH_COMBINATION_P192 ||
1528              conn->key_type == HCI_LK_UNAUTH_COMBINATION_P256) &&
1529             (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW))
1530                 goto encrypt;
1531
1532         /* A combination key has always sufficient security for the security
1533            levels 1 or 2. High security level requires the combination key
1534            is generated using maximum PIN code length (16).
1535            For pre 2.1 units. */
1536         if (conn->key_type == HCI_LK_COMBINATION &&
1537             (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW ||
1538              conn->pin_length == 16))
1539                 goto encrypt;
1540
1541 auth:
1542         if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
1543                 return 0;
1544
1545         if (initiator)
1546                 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags);
1547
1548         if (!hci_conn_auth(conn, sec_level, auth_type))
1549                 return 0;
1550
1551 encrypt:
1552         if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) {
1553                 /* Ensure that the encryption key size has been read,
1554                  * otherwise stall the upper layer responses.
1555                  */
1556                 if (!conn->enc_key_size)
1557                         return 0;
1558
1559                 /* Nothing else needed, all requirements are met */
1560                 return 1;
1561         }
1562
1563         hci_conn_encrypt(conn);
1564         return 0;
1565 }
1566 EXPORT_SYMBOL(hci_conn_security);
1567
1568 /* Check secure link requirement */
1569 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level)
1570 {
1571         BT_DBG("hcon %p", conn);
1572
1573         /* Accept if non-secure or higher security level is required */
1574         if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS)
1575                 return 1;
1576
1577         /* Accept if secure or higher security level is already present */
1578         if (conn->sec_level == BT_SECURITY_HIGH ||
1579             conn->sec_level == BT_SECURITY_FIPS)
1580                 return 1;
1581
1582         /* Reject not secure link */
1583         return 0;
1584 }
1585 EXPORT_SYMBOL(hci_conn_check_secure);
1586
1587 /* Switch role */
1588 int hci_conn_switch_role(struct hci_conn *conn, __u8 role)
1589 {
1590         BT_DBG("hcon %p", conn);
1591
1592         if (role == conn->role)
1593                 return 1;
1594
1595         if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) {
1596                 struct hci_cp_switch_role cp;
1597                 bacpy(&cp.bdaddr, &conn->dst);
1598                 cp.role = role;
1599                 hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp);
1600         }
1601
1602         return 0;
1603 }
1604 EXPORT_SYMBOL(hci_conn_switch_role);
1605
1606 #ifdef TIZEN_BT
1607 int hci_conn_change_supervision_timeout(struct hci_conn *conn, __u16 timeout)
1608 {
1609         struct hci_cp_write_link_supervision_timeout cp;
1610
1611         if (!((get_link_mode(conn)) & HCI_LM_MASTER))
1612                 return 1;
1613
1614         if (conn->handle == 0)
1615                 return 1;
1616
1617         memset(&cp, 0, sizeof(cp));
1618         cp.handle  = cpu_to_le16(conn->handle);
1619         cp.timeout = cpu_to_le16(timeout);
1620
1621         if (hci_send_cmd(conn->hdev, HCI_OP_WRITE_LINK_SUPERVISION_TIMEOUT,
1622                          sizeof(cp), &cp) < 0)
1623                 BT_ERR("HCI_OP_WRITE_LINK_SUPERVISION_TIMEOUT is failed");
1624
1625         return 0;
1626 }
1627 #endif
1628
1629 /* Enter active mode */
1630 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active)
1631 {
1632         struct hci_dev *hdev = conn->hdev;
1633
1634         BT_DBG("hcon %p mode %d", conn, conn->mode);
1635
1636         if (conn->mode != HCI_CM_SNIFF)
1637                 goto timer;
1638
1639         if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active)
1640                 goto timer;
1641
1642         if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
1643                 struct hci_cp_exit_sniff_mode cp;
1644                 cp.handle = cpu_to_le16(conn->handle);
1645                 hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp);
1646         }
1647
1648 timer:
1649 #ifdef TIZEN_BT
1650         if (hdev->idle_timeout > 0) {
1651                 /* Sniff timer cancel */
1652                 cancel_delayed_work(&conn->idle_work);
1653                 queue_delayed_work(hdev->workqueue, &conn->idle_work,
1654                                    msecs_to_jiffies(hdev->idle_timeout));
1655         }
1656 #else
1657         if (hdev->idle_timeout > 0)
1658                 queue_delayed_work(hdev->workqueue, &conn->idle_work,
1659                                    msecs_to_jiffies(hdev->idle_timeout));
1660 #endif
1661 }
1662
1663 /* Drop all connection on the device */
1664 void hci_conn_hash_flush(struct hci_dev *hdev)
1665 {
1666         struct hci_conn_hash *h = &hdev->conn_hash;
1667         struct hci_conn *c, *n;
1668
1669         BT_DBG("hdev %s", hdev->name);
1670
1671         list_for_each_entry_safe(c, n, &h->list, list) {
1672                 c->state = BT_CLOSED;
1673
1674                 hci_disconn_cfm(c, HCI_ERROR_LOCAL_HOST_TERM);
1675                 hci_conn_del(c);
1676         }
1677 }
1678
1679 /* Check pending connect attempts */
1680 void hci_conn_check_pending(struct hci_dev *hdev)
1681 {
1682         struct hci_conn *conn;
1683
1684         BT_DBG("hdev %s", hdev->name);
1685
1686         hci_dev_lock(hdev);
1687
1688         conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2);
1689         if (conn)
1690                 hci_acl_create_connection(conn);
1691
1692         hci_dev_unlock(hdev);
1693 }
1694
1695 #ifndef TIZEN_BT
1696 static u32 get_link_mode(struct hci_conn *conn)
1697 #else
1698 u32 get_link_mode(struct hci_conn *conn)
1699 #endif
1700 {
1701         u32 link_mode = 0;
1702
1703         if (conn->role == HCI_ROLE_MASTER)
1704                 link_mode |= HCI_LM_MASTER;
1705
1706         if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1707                 link_mode |= HCI_LM_ENCRYPT;
1708
1709         if (test_bit(HCI_CONN_AUTH, &conn->flags))
1710                 link_mode |= HCI_LM_AUTH;
1711
1712         if (test_bit(HCI_CONN_SECURE, &conn->flags))
1713                 link_mode |= HCI_LM_SECURE;
1714
1715         if (test_bit(HCI_CONN_FIPS, &conn->flags))
1716                 link_mode |= HCI_LM_FIPS;
1717
1718         return link_mode;
1719 }
1720
1721 int hci_get_conn_list(void __user *arg)
1722 {
1723         struct hci_conn *c;
1724         struct hci_conn_list_req req, *cl;
1725         struct hci_conn_info *ci;
1726         struct hci_dev *hdev;
1727         int n = 0, size, err;
1728
1729         if (copy_from_user(&req, arg, sizeof(req)))
1730                 return -EFAULT;
1731
1732         if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci))
1733                 return -EINVAL;
1734
1735         size = sizeof(req) + req.conn_num * sizeof(*ci);
1736
1737         cl = kmalloc(size, GFP_KERNEL);
1738         if (!cl)
1739                 return -ENOMEM;
1740
1741         hdev = hci_dev_get(req.dev_id);
1742         if (!hdev) {
1743                 kfree(cl);
1744                 return -ENODEV;
1745         }
1746
1747         ci = cl->conn_info;
1748
1749         hci_dev_lock(hdev);
1750         list_for_each_entry(c, &hdev->conn_hash.list, list) {
1751                 bacpy(&(ci + n)->bdaddr, &c->dst);
1752                 (ci + n)->handle = c->handle;
1753                 (ci + n)->type  = c->type;
1754                 (ci + n)->out   = c->out;
1755                 (ci + n)->state = c->state;
1756                 (ci + n)->link_mode = get_link_mode(c);
1757                 if (++n >= req.conn_num)
1758                         break;
1759         }
1760         hci_dev_unlock(hdev);
1761
1762         cl->dev_id = hdev->id;
1763         cl->conn_num = n;
1764         size = sizeof(req) + n * sizeof(*ci);
1765
1766         hci_dev_put(hdev);
1767
1768         err = copy_to_user(arg, cl, size);
1769         kfree(cl);
1770
1771         return err ? -EFAULT : 0;
1772 }
1773
1774 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg)
1775 {
1776         struct hci_conn_info_req req;
1777         struct hci_conn_info ci;
1778         struct hci_conn *conn;
1779         char __user *ptr = arg + sizeof(req);
1780
1781         if (copy_from_user(&req, arg, sizeof(req)))
1782                 return -EFAULT;
1783
1784         hci_dev_lock(hdev);
1785         conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr);
1786         if (conn) {
1787                 bacpy(&ci.bdaddr, &conn->dst);
1788                 ci.handle = conn->handle;
1789                 ci.type  = conn->type;
1790                 ci.out   = conn->out;
1791                 ci.state = conn->state;
1792                 ci.link_mode = get_link_mode(conn);
1793         }
1794         hci_dev_unlock(hdev);
1795
1796         if (!conn)
1797                 return -ENOENT;
1798
1799         return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0;
1800 }
1801
1802 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg)
1803 {
1804         struct hci_auth_info_req req;
1805         struct hci_conn *conn;
1806
1807         if (copy_from_user(&req, arg, sizeof(req)))
1808                 return -EFAULT;
1809
1810         hci_dev_lock(hdev);
1811         conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr);
1812         if (conn)
1813                 req.type = conn->auth_type;
1814         hci_dev_unlock(hdev);
1815
1816         if (!conn)
1817                 return -ENOENT;
1818
1819         return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0;
1820 }
1821
1822 struct hci_chan *hci_chan_create(struct hci_conn *conn)
1823 {
1824         struct hci_dev *hdev = conn->hdev;
1825         struct hci_chan *chan;
1826
1827         BT_DBG("%s hcon %p", hdev->name, conn);
1828
1829         if (test_bit(HCI_CONN_DROP, &conn->flags)) {
1830                 BT_DBG("Refusing to create new hci_chan");
1831                 return NULL;
1832         }
1833
1834         chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1835         if (!chan)
1836                 return NULL;
1837
1838         chan->conn = hci_conn_get(conn);
1839         skb_queue_head_init(&chan->data_q);
1840         chan->state = BT_CONNECTED;
1841
1842         list_add_rcu(&chan->list, &conn->chan_list);
1843
1844         return chan;
1845 }
1846
1847 void hci_chan_del(struct hci_chan *chan)
1848 {
1849         struct hci_conn *conn = chan->conn;
1850         struct hci_dev *hdev = conn->hdev;
1851
1852         BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan);
1853
1854         list_del_rcu(&chan->list);
1855
1856         synchronize_rcu();
1857
1858         /* Prevent new hci_chan's to be created for this hci_conn */
1859         set_bit(HCI_CONN_DROP, &conn->flags);
1860
1861         hci_conn_put(conn);
1862
1863         skb_queue_purge(&chan->data_q);
1864         kfree(chan);
1865 }
1866
1867 void hci_chan_list_flush(struct hci_conn *conn)
1868 {
1869         struct hci_chan *chan, *n;
1870
1871         BT_DBG("hcon %p", conn);
1872
1873         list_for_each_entry_safe(chan, n, &conn->chan_list, list)
1874                 hci_chan_del(chan);
1875 }
1876
1877 static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon,
1878                                                  __u16 handle)
1879 {
1880         struct hci_chan *hchan;
1881
1882         list_for_each_entry(hchan, &hcon->chan_list, list) {
1883                 if (hchan->handle == handle)
1884                         return hchan;
1885         }
1886
1887         return NULL;
1888 }
1889
1890 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle)
1891 {
1892         struct hci_conn_hash *h = &hdev->conn_hash;
1893         struct hci_conn *hcon;
1894         struct hci_chan *hchan = NULL;
1895
1896         rcu_read_lock();
1897
1898         list_for_each_entry_rcu(hcon, &h->list, list) {
1899                 hchan = __hci_chan_lookup_handle(hcon, handle);
1900                 if (hchan)
1901                         break;
1902         }
1903
1904         rcu_read_unlock();
1905
1906         return hchan;
1907 }
1908
1909 u32 hci_conn_get_phy(struct hci_conn *conn)
1910 {
1911         u32 phys = 0;
1912
1913         /* BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 2, Part B page 471:
1914          * Table 6.2: Packets defined for synchronous, asynchronous, and
1915          * CPB logical transport types.
1916          */
1917         switch (conn->type) {
1918         case SCO_LINK:
1919                 /* SCO logical transport (1 Mb/s):
1920                  * HV1, HV2, HV3 and DV.
1921                  */
1922                 phys |= BT_PHY_BR_1M_1SLOT;
1923
1924                 break;
1925
1926         case ACL_LINK:
1927                 /* ACL logical transport (1 Mb/s) ptt=0:
1928                  * DH1, DM3, DH3, DM5 and DH5.
1929                  */
1930                 phys |= BT_PHY_BR_1M_1SLOT;
1931
1932                 if (conn->pkt_type & (HCI_DM3 | HCI_DH3))
1933                         phys |= BT_PHY_BR_1M_3SLOT;
1934
1935                 if (conn->pkt_type & (HCI_DM5 | HCI_DH5))
1936                         phys |= BT_PHY_BR_1M_5SLOT;
1937
1938                 /* ACL logical transport (2 Mb/s) ptt=1:
1939                  * 2-DH1, 2-DH3 and 2-DH5.
1940                  */
1941                 if (!(conn->pkt_type & HCI_2DH1))
1942                         phys |= BT_PHY_EDR_2M_1SLOT;
1943
1944                 if (!(conn->pkt_type & HCI_2DH3))
1945                         phys |= BT_PHY_EDR_2M_3SLOT;
1946
1947                 if (!(conn->pkt_type & HCI_2DH5))
1948                         phys |= BT_PHY_EDR_2M_5SLOT;
1949
1950                 /* ACL logical transport (3 Mb/s) ptt=1:
1951                  * 3-DH1, 3-DH3 and 3-DH5.
1952                  */
1953                 if (!(conn->pkt_type & HCI_3DH1))
1954                         phys |= BT_PHY_EDR_3M_1SLOT;
1955
1956                 if (!(conn->pkt_type & HCI_3DH3))
1957                         phys |= BT_PHY_EDR_3M_3SLOT;
1958
1959                 if (!(conn->pkt_type & HCI_3DH5))
1960                         phys |= BT_PHY_EDR_3M_5SLOT;
1961
1962                 break;
1963
1964         case ESCO_LINK:
1965                 /* eSCO logical transport (1 Mb/s): EV3, EV4 and EV5 */
1966                 phys |= BT_PHY_BR_1M_1SLOT;
1967
1968                 if (!(conn->pkt_type & (ESCO_EV4 | ESCO_EV5)))
1969                         phys |= BT_PHY_BR_1M_3SLOT;
1970
1971                 /* eSCO logical transport (2 Mb/s): 2-EV3, 2-EV5 */
1972                 if (!(conn->pkt_type & ESCO_2EV3))
1973                         phys |= BT_PHY_EDR_2M_1SLOT;
1974
1975                 if (!(conn->pkt_type & ESCO_2EV5))
1976                         phys |= BT_PHY_EDR_2M_3SLOT;
1977
1978                 /* eSCO logical transport (3 Mb/s): 3-EV3, 3-EV5 */
1979                 if (!(conn->pkt_type & ESCO_3EV3))
1980                         phys |= BT_PHY_EDR_3M_1SLOT;
1981
1982                 if (!(conn->pkt_type & ESCO_3EV5))
1983                         phys |= BT_PHY_EDR_3M_3SLOT;
1984
1985                 break;
1986
1987         case LE_LINK:
1988                 if (conn->le_tx_phy & HCI_LE_SET_PHY_1M)
1989                         phys |= BT_PHY_LE_1M_TX;
1990
1991                 if (conn->le_rx_phy & HCI_LE_SET_PHY_1M)
1992                         phys |= BT_PHY_LE_1M_RX;
1993
1994                 if (conn->le_tx_phy & HCI_LE_SET_PHY_2M)
1995                         phys |= BT_PHY_LE_2M_TX;
1996
1997                 if (conn->le_rx_phy & HCI_LE_SET_PHY_2M)
1998                         phys |= BT_PHY_LE_2M_RX;
1999
2000                 if (conn->le_tx_phy & HCI_LE_SET_PHY_CODED)
2001                         phys |= BT_PHY_LE_CODED_TX;
2002
2003                 if (conn->le_rx_phy & HCI_LE_SET_PHY_CODED)
2004                         phys |= BT_PHY_LE_CODED_RX;
2005
2006                 break;
2007         }
2008
2009         return phys;
2010 }