Tegra30: MMC: Enable DT MMC driver support for Tegra30 Cardhu boards
[platform/kernel/u-boot.git] / nand_spl / nand_boot.c
1 /*
2  * (C) Copyright 2006-2008
3  * Stefan Roese, DENX Software Engineering, sr@denx.de.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation; either version 2 of
8  * the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
18  * MA 02111-1307 USA
19  */
20
21 #include <common.h>
22 #include <nand.h>
23 #include <asm/io.h>
24
25 static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
26
27 #define ECCSTEPS        (CONFIG_SYS_NAND_PAGE_SIZE / \
28                                         CONFIG_SYS_NAND_ECCSIZE)
29 #define ECCTOTAL        (ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES)
30
31
32 #if (CONFIG_SYS_NAND_PAGE_SIZE <= 512)
33 /*
34  * NAND command for small page NAND devices (512)
35  */
36 static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
37 {
38         struct nand_chip *this = mtd->priv;
39         int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
40
41         while (!this->dev_ready(mtd))
42                 ;
43
44         /* Begin command latch cycle */
45         this->cmd_ctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
46         /* Set ALE and clear CLE to start address cycle */
47         /* Column address */
48         this->cmd_ctrl(mtd, offs, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
49         this->cmd_ctrl(mtd, page_addr & 0xff, NAND_CTRL_ALE); /* A[16:9] */
50         this->cmd_ctrl(mtd, (page_addr >> 8) & 0xff,
51                        NAND_CTRL_ALE); /* A[24:17] */
52 #ifdef CONFIG_SYS_NAND_4_ADDR_CYCLE
53         /* One more address cycle for devices > 32MiB */
54         this->cmd_ctrl(mtd, (page_addr >> 16) & 0x0f,
55                        NAND_CTRL_ALE); /* A[28:25] */
56 #endif
57         /* Latch in address */
58         this->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
59
60         /*
61          * Wait a while for the data to be ready
62          */
63         while (!this->dev_ready(mtd))
64                 ;
65
66         return 0;
67 }
68 #else
69 /*
70  * NAND command for large page NAND devices (2k)
71  */
72 static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
73 {
74         struct nand_chip *this = mtd->priv;
75         int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
76         void (*hwctrl)(struct mtd_info *mtd, int cmd,
77                         unsigned int ctrl) = this->cmd_ctrl;
78
79         while (!this->dev_ready(mtd))
80                 ;
81
82         /* Emulate NAND_CMD_READOOB */
83         if (cmd == NAND_CMD_READOOB) {
84                 offs += CONFIG_SYS_NAND_PAGE_SIZE;
85                 cmd = NAND_CMD_READ0;
86         }
87
88         /* Shift the offset from byte addressing to word addressing. */
89         if (this->options & NAND_BUSWIDTH_16)
90                 offs >>= 1;
91
92         /* Begin command latch cycle */
93         hwctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
94         /* Set ALE and clear CLE to start address cycle */
95         /* Column address */
96         hwctrl(mtd, offs & 0xff,
97                        NAND_CTRL_ALE | NAND_CTRL_CHANGE); /* A[7:0] */
98         hwctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE); /* A[11:9] */
99         /* Row address */
100         hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE); /* A[19:12] */
101         hwctrl(mtd, ((page_addr >> 8) & 0xff),
102                        NAND_CTRL_ALE); /* A[27:20] */
103 #ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
104         /* One more address cycle for devices > 128MiB */
105         hwctrl(mtd, (page_addr >> 16) & 0x0f,
106                        NAND_CTRL_ALE); /* A[31:28] */
107 #endif
108         /* Latch in address */
109         hwctrl(mtd, NAND_CMD_READSTART,
110                        NAND_CTRL_CLE | NAND_CTRL_CHANGE);
111         hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
112
113         /*
114          * Wait a while for the data to be ready
115          */
116         while (!this->dev_ready(mtd))
117                 ;
118
119         return 0;
120 }
121 #endif
122
123 static int nand_is_bad_block(struct mtd_info *mtd, int block)
124 {
125         struct nand_chip *this = mtd->priv;
126
127         nand_command(mtd, block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
128
129         /*
130          * Read one byte (or two if it's a 16 bit chip).
131          */
132         if (this->options & NAND_BUSWIDTH_16) {
133                 if (readw(this->IO_ADDR_R) != 0xffff)
134                         return 1;
135         } else {
136                 if (readb(this->IO_ADDR_R) != 0xff)
137                         return 1;
138         }
139
140         return 0;
141 }
142
143 #if defined(CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST)
144 static int nand_read_page(struct mtd_info *mtd, int block, int page, uchar *dst)
145 {
146         struct nand_chip *this = mtd->priv;
147         u_char ecc_calc[ECCTOTAL];
148         u_char ecc_code[ECCTOTAL];
149         u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
150         int i;
151         int eccsize = CONFIG_SYS_NAND_ECCSIZE;
152         int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
153         int eccsteps = ECCSTEPS;
154         uint8_t *p = dst;
155
156         nand_command(mtd, block, page, 0, NAND_CMD_READOOB);
157         this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
158         nand_command(mtd, block, page, 0, NAND_CMD_READ0);
159
160         /* Pick the ECC bytes out of the oob data */
161         for (i = 0; i < ECCTOTAL; i++)
162                 ecc_code[i] = oob_data[nand_ecc_pos[i]];
163
164
165         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
166                 this->ecc.hwctl(mtd, NAND_ECC_READ);
167                 this->read_buf(mtd, p, eccsize);
168                 this->ecc.calculate(mtd, p, &ecc_calc[i]);
169                 this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
170         }
171
172         return 0;
173 }
174 #else
175 static int nand_read_page(struct mtd_info *mtd, int block, int page, uchar *dst)
176 {
177         struct nand_chip *this = mtd->priv;
178         u_char ecc_calc[ECCTOTAL];
179         u_char ecc_code[ECCTOTAL];
180         u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
181         int i;
182         int eccsize = CONFIG_SYS_NAND_ECCSIZE;
183         int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
184         int eccsteps = ECCSTEPS;
185         uint8_t *p = dst;
186
187         nand_command(mtd, block, page, 0, NAND_CMD_READ0);
188
189         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
190                 this->ecc.hwctl(mtd, NAND_ECC_READ);
191                 this->read_buf(mtd, p, eccsize);
192                 this->ecc.calculate(mtd, p, &ecc_calc[i]);
193         }
194         this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
195
196         /* Pick the ECC bytes out of the oob data */
197         for (i = 0; i < ECCTOTAL; i++)
198                 ecc_code[i] = oob_data[nand_ecc_pos[i]];
199
200         eccsteps = ECCSTEPS;
201         p = dst;
202
203         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
204                 /* No chance to do something with the possible error message
205                  * from correct_data(). We just hope that all possible errors
206                  * are corrected by this routine.
207                  */
208                 this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
209         }
210
211         return 0;
212 }
213 #endif /* #if defined(CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST) */
214
215 static int nand_load(struct mtd_info *mtd, unsigned int offs,
216                      unsigned int uboot_size, uchar *dst)
217 {
218         unsigned int block, lastblock;
219         unsigned int page;
220
221         /*
222          * offs has to be aligned to a page address!
223          */
224         block = offs / CONFIG_SYS_NAND_BLOCK_SIZE;
225         lastblock = (offs + uboot_size - 1) / CONFIG_SYS_NAND_BLOCK_SIZE;
226         page = (offs % CONFIG_SYS_NAND_BLOCK_SIZE) / CONFIG_SYS_NAND_PAGE_SIZE;
227
228         while (block <= lastblock) {
229                 if (!nand_is_bad_block(mtd, block)) {
230                         /*
231                          * Skip bad blocks
232                          */
233                         while (page < CONFIG_SYS_NAND_PAGE_COUNT) {
234                                 nand_read_page(mtd, block, page, dst);
235                                 dst += CONFIG_SYS_NAND_PAGE_SIZE;
236                                 page++;
237                         }
238
239                         page = 0;
240                 } else {
241                         lastblock++;
242                 }
243
244                 block++;
245         }
246
247         return 0;
248 }
249
250 /*
251  * The main entry for NAND booting. It's necessary that SDRAM is already
252  * configured and available since this code loads the main U-Boot image
253  * from NAND into SDRAM and starts it from there.
254  */
255 void nand_boot(void)
256 {
257         struct nand_chip nand_chip;
258         nand_info_t nand_info;
259         __attribute__((noreturn)) void (*uboot)(void);
260
261         /*
262          * Init board specific nand support
263          */
264         nand_chip.select_chip = NULL;
265         nand_info.priv = &nand_chip;
266         nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W = (void  __iomem *)CONFIG_SYS_NAND_BASE;
267         nand_chip.dev_ready = NULL;     /* preset to NULL */
268         nand_chip.options = 0;
269         board_nand_init(&nand_chip);
270
271         if (nand_chip.select_chip)
272                 nand_chip.select_chip(&nand_info, 0);
273
274         /*
275          * Load U-Boot image from NAND into RAM
276          */
277         nand_load(&nand_info, CONFIG_SYS_NAND_U_BOOT_OFFS, CONFIG_SYS_NAND_U_BOOT_SIZE,
278                   (uchar *)CONFIG_SYS_NAND_U_BOOT_DST);
279
280 #ifdef CONFIG_NAND_ENV_DST
281         nand_load(&nand_info, CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE,
282                   (uchar *)CONFIG_NAND_ENV_DST);
283
284 #ifdef CONFIG_ENV_OFFSET_REDUND
285         nand_load(&nand_info, CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE,
286                   (uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE);
287 #endif
288 #endif
289
290         if (nand_chip.select_chip)
291                 nand_chip.select_chip(&nand_info, -1);
292
293         /*
294          * Jump to U-Boot image
295          */
296         uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
297         (*uboot)();
298 }