powerpc/8xxx: query feature reporting register for num cores on unknown cpus
[platform/kernel/u-boot.git] / nand_spl / nand_boot.c
1 /*
2  * (C) Copyright 2006-2008
3  * Stefan Roese, DENX Software Engineering, sr@denx.de.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation; either version 2 of
8  * the License, or (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
18  * MA 02111-1307 USA
19  */
20
21 #include <common.h>
22 #include <nand.h>
23 #include <asm/io.h>
24
25 #define CONFIG_SYS_NAND_READ_DELAY \
26         { volatile int dummy; int i; for (i=0; i<10000; i++) dummy = i; }
27
28 static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
29
30 #if (CONFIG_SYS_NAND_PAGE_SIZE <= 512)
31 /*
32  * NAND command for small page NAND devices (512)
33  */
34 static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
35 {
36         struct nand_chip *this = mtd->priv;
37         int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
38
39         if (this->dev_ready)
40                 while (!this->dev_ready(mtd))
41                         ;
42         else
43                 CONFIG_SYS_NAND_READ_DELAY;
44
45         /* Begin command latch cycle */
46         this->cmd_ctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
47         /* Set ALE and clear CLE to start address cycle */
48         /* Column address */
49         this->cmd_ctrl(mtd, offs, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
50         this->cmd_ctrl(mtd, page_addr & 0xff, NAND_CTRL_ALE); /* A[16:9] */
51         this->cmd_ctrl(mtd, (page_addr >> 8) & 0xff,
52                        NAND_CTRL_ALE); /* A[24:17] */
53 #ifdef CONFIG_SYS_NAND_4_ADDR_CYCLE
54         /* One more address cycle for devices > 32MiB */
55         this->cmd_ctrl(mtd, (page_addr >> 16) & 0x0f,
56                        NAND_CTRL_ALE); /* A[28:25] */
57 #endif
58         /* Latch in address */
59         this->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
60
61         /*
62          * Wait a while for the data to be ready
63          */
64         if (this->dev_ready)
65                 while (!this->dev_ready(mtd))
66                         ;
67         else
68                 CONFIG_SYS_NAND_READ_DELAY;
69
70         return 0;
71 }
72 #else
73 /*
74  * NAND command for large page NAND devices (2k)
75  */
76 static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
77 {
78         struct nand_chip *this = mtd->priv;
79         int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
80
81         if (this->dev_ready)
82                 while (!this->dev_ready(mtd))
83                         ;
84         else
85                 CONFIG_SYS_NAND_READ_DELAY;
86
87         /* Emulate NAND_CMD_READOOB */
88         if (cmd == NAND_CMD_READOOB) {
89                 offs += CONFIG_SYS_NAND_PAGE_SIZE;
90                 cmd = NAND_CMD_READ0;
91         }
92
93         /* Begin command latch cycle */
94         this->cmd_ctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
95         /* Set ALE and clear CLE to start address cycle */
96         /* Column address */
97         this->cmd_ctrl(mtd, offs & 0xff,
98                        NAND_CTRL_ALE | NAND_CTRL_CHANGE); /* A[7:0] */
99         this->cmd_ctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE); /* A[11:9] */
100         /* Row address */
101         this->cmd_ctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE); /* A[19:12] */
102         this->cmd_ctrl(mtd, ((page_addr >> 8) & 0xff),
103                        NAND_CTRL_ALE); /* A[27:20] */
104 #ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
105         /* One more address cycle for devices > 128MiB */
106         this->cmd_ctrl(mtd, (page_addr >> 16) & 0x0f,
107                        NAND_CTRL_ALE); /* A[31:28] */
108 #endif
109         /* Latch in address */
110         this->cmd_ctrl(mtd, NAND_CMD_READSTART,
111                        NAND_CTRL_CLE | NAND_CTRL_CHANGE);
112         this->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
113
114         /*
115          * Wait a while for the data to be ready
116          */
117         if (this->dev_ready)
118                 while (!this->dev_ready(mtd))
119                         ;
120         else
121                 CONFIG_SYS_NAND_READ_DELAY;
122
123         return 0;
124 }
125 #endif
126
127 static int nand_is_bad_block(struct mtd_info *mtd, int block)
128 {
129         struct nand_chip *this = mtd->priv;
130
131         nand_command(mtd, block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
132
133         /*
134          * Read one byte
135          */
136         if (readb(this->IO_ADDR_R) != 0xff)
137                 return 1;
138
139         return 0;
140 }
141
142 static int nand_read_page(struct mtd_info *mtd, int block, int page, uchar *dst)
143 {
144         struct nand_chip *this = mtd->priv;
145         u_char *ecc_calc;
146         u_char *ecc_code;
147         u_char *oob_data;
148         int i;
149         int eccsize = CONFIG_SYS_NAND_ECCSIZE;
150         int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
151         int eccsteps = CONFIG_SYS_NAND_ECCSTEPS;
152         uint8_t *p = dst;
153         int stat;
154
155         nand_command(mtd, block, page, 0, NAND_CMD_READ0);
156
157         /* No malloc available for now, just use some temporary locations
158          * in SDRAM
159          */
160         ecc_calc = (u_char *)(CONFIG_SYS_SDRAM_BASE + 0x10000);
161         ecc_code = ecc_calc + 0x100;
162         oob_data = ecc_calc + 0x200;
163
164         for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
165                 this->ecc.hwctl(mtd, NAND_ECC_READ);
166                 this->read_buf(mtd, p, eccsize);
167                 this->ecc.calculate(mtd, p, &ecc_calc[i]);
168         }
169         this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
170
171         /* Pick the ECC bytes out of the oob data */
172         for (i = 0; i < CONFIG_SYS_NAND_ECCTOTAL; i++)
173                 ecc_code[i] = oob_data[nand_ecc_pos[i]];
174
175         eccsteps = CONFIG_SYS_NAND_ECCSTEPS;
176         p = dst;
177
178         for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
179                 /* No chance to do something with the possible error message
180                  * from correct_data(). We just hope that all possible errors
181                  * are corrected by this routine.
182                  */
183                 stat = this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
184         }
185
186         return 0;
187 }
188
189 static int nand_load(struct mtd_info *mtd, unsigned int offs,
190                      unsigned int uboot_size, uchar *dst)
191 {
192         unsigned int block, lastblock;
193         unsigned int page;
194
195         /*
196          * offs has to be aligned to a page address!
197          */
198         block = offs / CONFIG_SYS_NAND_BLOCK_SIZE;
199         lastblock = (offs + uboot_size - 1) / CONFIG_SYS_NAND_BLOCK_SIZE;
200         page = (offs % CONFIG_SYS_NAND_BLOCK_SIZE) / CONFIG_SYS_NAND_PAGE_SIZE;
201
202         while (block <= lastblock) {
203                 if (!nand_is_bad_block(mtd, block)) {
204                         /*
205                          * Skip bad blocks
206                          */
207                         while (page < CONFIG_SYS_NAND_PAGE_COUNT) {
208                                 nand_read_page(mtd, block, page, dst);
209                                 dst += CONFIG_SYS_NAND_PAGE_SIZE;
210                                 page++;
211                         }
212
213                         page = 0;
214                 } else {
215                         lastblock++;
216                 }
217
218                 block++;
219         }
220
221         return 0;
222 }
223
224 /*
225  * The main entry for NAND booting. It's necessary that SDRAM is already
226  * configured and available since this code loads the main U-Boot image
227  * from NAND into SDRAM and starts it from there.
228  */
229 void nand_boot(void)
230 {
231         struct nand_chip nand_chip;
232         nand_info_t nand_info;
233         int ret;
234         __attribute__((noreturn)) void (*uboot)(void);
235
236         /*
237          * Init board specific nand support
238          */
239         nand_info.priv = &nand_chip;
240         nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W = (void  __iomem *)CONFIG_SYS_NAND_BASE;
241         nand_chip.dev_ready = NULL;     /* preset to NULL */
242         board_nand_init(&nand_chip);
243
244         if (nand_chip.select_chip)
245                 nand_chip.select_chip(&nand_info, 0);
246
247         /*
248          * Load U-Boot image from NAND into RAM
249          */
250         ret = nand_load(&nand_info, CONFIG_SYS_NAND_U_BOOT_OFFS, CONFIG_SYS_NAND_U_BOOT_SIZE,
251                         (uchar *)CONFIG_SYS_NAND_U_BOOT_DST);
252
253 #ifdef CONFIG_NAND_ENV_DST
254         nand_load(&nand_info, CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE,
255                   (uchar *)CONFIG_NAND_ENV_DST);
256
257 #ifdef CONFIG_ENV_OFFSET_REDUND
258         nand_load(&nand_info, CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE,
259                   (uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE);
260 #endif
261 #endif
262
263         if (nand_chip.select_chip)
264                 nand_chip.select_chip(&nand_info, -1);
265
266         /*
267          * Jump to U-Boot image
268          */
269         uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
270         (*uboot)();
271 }