Upload Tizen:Base source
[external/gmp.git] / mpn / alpha / README
1 Copyright 1996, 1997, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software
2 Foundation, Inc.
3
4 This file is part of the GNU MP Library.
5
6 The GNU MP Library is free software; you can redistribute it and/or modify it
7 under the terms of the GNU Lesser General Public License as published by the
8 Free Software Foundation; either version 3 of the License, or (at your
9 option) any later version.
10
11 The GNU MP Library is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public License
14 for more details.
15
16 You should have received a copy of the GNU Lesser General Public License along
17 with the GNU MP Library.  If not, see http://www.gnu.org/licenses/.
18
19
20
21
22
23 This directory contains mpn functions optimized for DEC Alpha processors.
24
25 ALPHA ASSEMBLY RULES AND REGULATIONS
26
27 The `.prologue N' pseudo op marks the end of instruction that needs special
28 handling by unwinding.  It also says whether $27 is really needed for computing
29 the gp.  The `.mask M' pseudo op says which registers are saved on the stack,
30 and at what offset in the frame.
31
32 Cray T3 code is very very different...
33
34 "$6" / "$f6" etc is the usual syntax for registers, but on Unicos instead "r6"
35 / "f6" is required.  We use the "r6" / "f6" forms, and have m4 defines expand
36 them to "$6" or "$f6" where necessary.
37
38 "0x" introduces a hex constant in gas and DEC as, but on Unicos "^X" is
39 required.  The X() macro accommodates this difference.
40
41 "cvttqc" is required by DEC as, "cvttq/c" is required by Unicos, and gas will
42 accept either.  We use cvttqc and have an m4 define expand to cvttq/c where
43 necessary.
44
45 "not" as an alias for "ornot r31, ..." is available in gas and DEC as, but not
46 the Unicos assembler.  The full "ornot" must be used.
47
48 "unop" is not available in Unicos.  We make an m4 define to the usual "ldq_u
49 r31,0(r30)", and in fact use that define on all systems since it comes out the
50 same.
51
52 "!literal!123" etc explicit relocations as per Tru64 4.0 are apparently not
53 available in older alpha assemblers (including gas prior to 2.12), according to
54 the GCC manual, so the assembler macro forms must be used (eg. ldgp).
55
56
57
58 RELEVANT OPTIMIZATION ISSUES
59
60 EV4
61
62 1. This chip has very limited store bandwidth.  The on-chip L1 cache is write-
63    through, and a cache line is transferred from the store buffer to the off-
64    chip L2 in as much 15 cycles on most systems.  This delay hurts mpn_add_n,
65    mpn_sub_n, mpn_lshift, and mpn_rshift.
66
67 2. Pairing is possible between memory instructions and integer arithmetic
68    instructions.
69
70 3. mulq and umulh are documented to have a latency of 23 cycles, but 2 of these
71    cycles are pipelined.  Thus, multiply instructions can be issued at a rate
72    of one each 21st cycle.
73
74 EV5
75
76 1. The memory bandwidth of this chip is good, both for loads and stores.  The
77    L1 cache can handle two loads or one store per cycle, but two cycles after a
78    store, no ld can issue.
79
80 2. mulq has a latency of 12 cycles and an issue rate of 1 each 8th cycle.
81    umulh has a latency of 14 cycles and an issue rate of 1 each 10th cycle.
82    (Note that published documentation gets these numbers slightly wrong.)
83
84 3. mpn_add_n.  With 4-fold unrolling, we need 37 instructions, whereof 12
85    are memory operations.  This will take at least
86         ceil(37/2) [dual issue] + 1 [taken branch] = 19 cycles
87    We have 12 memory cycles, plus 4 after-store conflict cycles, or 16 data
88    cache cycles, which should be completely hidden in the 19 issue cycles.
89    The computation is inherently serial, with these dependencies:
90
91                ldq  ldq
92                  \  /\
93           (or)   addq |
94            |\   /   \ |
95            | addq  cmpult
96             \  |     |
97              cmpult  |
98                  \  /
99                   or
100
101    I.e., 3 operations are needed between carry-in and carry-out, making 12
102    cycles the absolute minimum for the 4 limbs.  We could replace the `or' with
103    a cmoveq/cmovne, which could issue one cycle earlier that the `or', but that
104    might waste a cycle on EV4.  The total depth remain unaffected, since cmov
105    has a latency of 2 cycles.
106
107      addq
108      /   \
109    addq  cmpult
110      |      \
111    cmpult -> cmovne
112
113   Montgomery has a slightly different way of computing carry that requires one
114   less instruction, but has depth 4 (instead of the current 3).  Since the code
115   is currently instruction issue bound, Montgomery's idea should save us 1/2
116   cycle per limb, or bring us down to a total of 17 cycles or 4.25 cycles/limb.
117   Unfortunately, this method will not be good for the EV6.
118
119 4. addmul_1 and friends: We previously had a scheme for splitting the single-
120    limb operand in 21-bits chunks and the multi-limb operand in 32-bit chunks,
121    and then use FP operations for every 2nd multiply, and integer operations
122    for every 2nd multiply.
123
124    But it seems much better to split the single-limb operand in 16-bit chunks,
125    since we save many integer shifts and adds that way.  See powerpc64/README
126    for some more details.
127
128 EV6
129
130 Here we have a really parallel pipeline, capable of issuing up to 4 integer
131 instructions per cycle.  In actual practice, it is never possible to sustain
132 more than 3.5 integer insns/cycle due to rename register shortage.  One integer
133 multiply instruction can issue each cycle.  To get optimal speed, we need to
134 pretend we are vectorizing the code, i.e., minimize the depth of recurrences.
135
136 There are two dependencies to watch out for.  1) Address arithmetic
137 dependencies, and 2) carry propagation dependencies.
138
139 We can avoid serializing due to address arithmetic by unrolling loops, so that
140 addresses don't depend heavily on an index variable.  Avoiding serializing
141 because of carry propagation is trickier; the ultimate performance of the code
142 will be determined of the number of latency cycles it takes from accepting
143 carry-in to a vector point until we can generate carry-out.
144
145 Most integer instructions can execute in either the L0, U0, L1, or U1
146 pipelines.  Shifts only execute in U0 and U1, and multiply only in U1.
147
148 CMOV instructions split into two internal instructions, CMOV1 and CMOV2.  CMOV
149 split the mapping process (see pg 2-26 in cmpwrgd.pdf), suggesting the CMOV
150 should always be placed as the last instruction of an aligned 4 instruction
151 block, or perhaps simply avoided.
152
153 Perhaps the most important issue is the latency between the L0/U0 and L1/U1
154 clusters; a result obtained on either cluster has an extra cycle of latency for
155 consumers in the opposite cluster.  Because of the dynamic nature of the
156 implementation, it is hard to predict where an instruction will execute.
157
158
159
160 REFERENCES
161
162 "Alpha Architecture Handbook", version 4, Compaq, October 1998, order number
163 EC-QD2KC-TE.
164
165 "Alpha 21164 Microprocessor Hardware Reference Manual", Compaq, December 1998,
166 order number EC-QP99C-TE.
167
168 "Alpha 21264/EV67 Microprocessor Hardware Reference Manual", revision 1.4,
169 Compaq, September 2000, order number DS-0028B-TE.
170
171 "Compiler Writer's Guide for the Alpha 21264", Compaq, June 1999, order number
172 EC-RJ66A-TE.
173
174 All of the above are available online from
175
176   http://ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
177   ftp://ftp.compaq.com/pub/products/alphaCPUdocs
178
179 "Tru64 Unix Assembly Language Programmer's Guide", Compaq, March 1996, part
180 number AA-PS31D-TE.
181
182 "Digital UNIX Calling Standard for Alpha Systems", Digital Equipment Corp,
183 March 1996, part number AA-PY8AC-TE.
184
185 The above are available online,
186
187   http://h30097.www3.hp.com/docs/pub_page/V40F_DOCS.HTM
188
189 (Dunno what h30097 means in this URL, but if it moves try searching for "tru64
190 online documentation" from the main www.hp.com page.)
191
192
193
194 ----------------
195 Local variables:
196 mode: text
197 fill-column: 79
198 End: