Merge pull request #1670 from jet47:cuda-cmake-fix
[profile/ivi/opencv.git] / modules / ocl / src / haar.cpp
1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                           License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
14 // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // @Authors
18 //    Niko Li, newlife20080214@gmail.com
19 //    Wang Weiyan, wangweiyanster@gmail.com
20 //    Jia Haipeng, jiahaipeng95@gmail.com
21 //    Wu Xinglong, wxl370@126.com
22 //    Wang Yao, bitwangyaoyao@gmail.com
23 //    Sen Liu, swjtuls1987@126.com
24 //
25 // Redistribution and use in source and binary forms, with or without modification,
26 // are permitted provided that the following conditions are met:
27 //
28 //   * Redistribution's of source code must retain the above copyright notice,
29 //     this list of conditions and the following disclaimer.
30 //
31 //   * Redistribution's in binary form must reproduce the above copyright notice,
32 //     this list of conditions and the following disclaimer in the documentation
33 //     and/or other materials provided with the distribution.
34 //
35 //   * The name of the copyright holders may not be used to endorse or promote products
36 //     derived from this software without specific prior written permission.
37 //
38 // This software is provided by the copyright holders and contributors "as is" and
39 // any express or implied warranties, including, but not limited to, the implied
40 // warranties of merchantability and fitness for a particular purpose are disclaimed.
41 // In no event shall the Intel Corporation or contributors be liable for any direct,
42 // indirect, incidental, special, exemplary, or consequential damages
43 // (including, but not limited to, procurement of substitute goods or services;
44 // loss of use, data, or profits; or business interruption) however caused
45 // and on any theory of liability, whether in contract, strict liability,
46 // or tort (including negligence or otherwise) arising in any way out of
47 // the use of this software, even if advised of the possibility of such damage.
48 //
49 //M*/
50
51 #include "precomp.hpp"
52 #include "opencl_kernels.hpp"
53
54 using namespace cv;
55 using namespace cv::ocl;
56
57 /* these settings affect the quality of detection: change with care */
58 #define CV_ADJUST_FEATURES 1
59 #define CV_ADJUST_WEIGHTS  0
60
61 typedef int sumtype;
62 typedef double sqsumtype;
63
64 typedef struct CvHidHaarFeature
65 {
66     struct
67     {
68         sumtype *p0, *p1, *p2, *p3;
69         float weight;
70     }
71     rect[CV_HAAR_FEATURE_MAX];
72 }
73 CvHidHaarFeature;
74
75
76 typedef struct CvHidHaarTreeNode
77 {
78     CvHidHaarFeature feature;
79     float threshold;
80     int left;
81     int right;
82 }
83 CvHidHaarTreeNode;
84
85
86 typedef struct CvHidHaarClassifier
87 {
88     int count;
89     //CvHaarFeature* orig_feature;
90     CvHidHaarTreeNode *node;
91     float *alpha;
92 }
93 CvHidHaarClassifier;
94
95
96 typedef struct CvHidHaarStageClassifier
97 {
98     int  count;
99     float threshold;
100     CvHidHaarClassifier *classifier;
101     int two_rects;
102
103     struct CvHidHaarStageClassifier *next;
104     struct CvHidHaarStageClassifier *child;
105     struct CvHidHaarStageClassifier *parent;
106 }
107 CvHidHaarStageClassifier;
108
109
110 struct CvHidHaarClassifierCascade
111 {
112     int  count;
113     int  is_stump_based;
114     int  has_tilted_features;
115     int  is_tree;
116     double inv_window_area;
117     CvMat sum, sqsum, tilted;
118     CvHidHaarStageClassifier *stage_classifier;
119     sqsumtype *pq0, *pq1, *pq2, *pq3;
120     sumtype *p0, *p1, *p2, *p3;
121
122     void **ipp_stages;
123 };
124 typedef struct
125 {
126     int width_height;
127     int grpnumperline_totalgrp;
128     int imgoff;
129     float factor;
130 } detect_piramid_info;
131 #ifdef _MSC_VER
132 #define _ALIGNED_ON(_ALIGNMENT) __declspec(align(_ALIGNMENT))
133
134 typedef _ALIGNED_ON(128) struct  GpuHidHaarTreeNode
135 {
136     _ALIGNED_ON(64) int p[CV_HAAR_FEATURE_MAX][4];
137     float weight[CV_HAAR_FEATURE_MAX] ;
138     float threshold ;
139     _ALIGNED_ON(16) float alpha[3] ;
140     _ALIGNED_ON(4) int left ;
141     _ALIGNED_ON(4) int right ;
142 }
143 GpuHidHaarTreeNode;
144
145
146 typedef  _ALIGNED_ON(32) struct  GpuHidHaarClassifier
147 {
148     _ALIGNED_ON(4) int count;
149     _ALIGNED_ON(8) GpuHidHaarTreeNode *node ;
150     _ALIGNED_ON(8) float *alpha ;
151 }
152 GpuHidHaarClassifier;
153
154
155 typedef _ALIGNED_ON(64) struct   GpuHidHaarStageClassifier
156 {
157     _ALIGNED_ON(4) int  count ;
158     _ALIGNED_ON(4) float threshold ;
159     _ALIGNED_ON(4) int two_rects ;
160     _ALIGNED_ON(8) GpuHidHaarClassifier *classifier ;
161     _ALIGNED_ON(8) struct GpuHidHaarStageClassifier *next;
162     _ALIGNED_ON(8) struct GpuHidHaarStageClassifier *child ;
163     _ALIGNED_ON(8) struct GpuHidHaarStageClassifier *parent ;
164 }
165 GpuHidHaarStageClassifier;
166
167
168 typedef _ALIGNED_ON(64) struct  GpuHidHaarClassifierCascade
169 {
170     _ALIGNED_ON(4) int  count ;
171     _ALIGNED_ON(4) int  is_stump_based ;
172     _ALIGNED_ON(4) int  has_tilted_features ;
173     _ALIGNED_ON(4) int  is_tree ;
174     _ALIGNED_ON(4) int pq0 ;
175     _ALIGNED_ON(4) int pq1 ;
176     _ALIGNED_ON(4) int pq2 ;
177     _ALIGNED_ON(4) int pq3 ;
178     _ALIGNED_ON(4) int p0 ;
179     _ALIGNED_ON(4) int p1 ;
180     _ALIGNED_ON(4) int p2 ;
181     _ALIGNED_ON(4) int p3 ;
182     _ALIGNED_ON(4) float inv_window_area ;
183 } GpuHidHaarClassifierCascade;
184 #else
185 #define _ALIGNED_ON(_ALIGNMENT) __attribute__((aligned(_ALIGNMENT) ))
186
187 typedef struct _ALIGNED_ON(128) GpuHidHaarTreeNode
188 {
189     int p[CV_HAAR_FEATURE_MAX][4] _ALIGNED_ON(64);
190     float weight[CV_HAAR_FEATURE_MAX];// _ALIGNED_ON(16);
191     float threshold;// _ALIGNED_ON(4);
192     float alpha[3] _ALIGNED_ON(16);
193     int left _ALIGNED_ON(4);
194     int right _ALIGNED_ON(4);
195 }
196 GpuHidHaarTreeNode;
197
198 typedef struct _ALIGNED_ON(32) GpuHidHaarClassifier
199 {
200     int count _ALIGNED_ON(4);
201     GpuHidHaarTreeNode *node _ALIGNED_ON(8);
202     float *alpha _ALIGNED_ON(8);
203 }
204 GpuHidHaarClassifier;
205
206
207 typedef struct _ALIGNED_ON(64) GpuHidHaarStageClassifier
208 {
209     int  count _ALIGNED_ON(4);
210     float threshold _ALIGNED_ON(4);
211     int two_rects _ALIGNED_ON(4);
212     GpuHidHaarClassifier *classifier _ALIGNED_ON(8);
213     struct GpuHidHaarStageClassifier *next _ALIGNED_ON(8);
214     struct GpuHidHaarStageClassifier *child _ALIGNED_ON(8);
215     struct GpuHidHaarStageClassifier *parent _ALIGNED_ON(8);
216 }
217 GpuHidHaarStageClassifier;
218
219
220 typedef struct _ALIGNED_ON(64) GpuHidHaarClassifierCascade
221 {
222     int  count _ALIGNED_ON(4);
223     int  is_stump_based _ALIGNED_ON(4);
224     int  has_tilted_features _ALIGNED_ON(4);
225     int  is_tree _ALIGNED_ON(4);
226     int pq0 _ALIGNED_ON(4);
227     int pq1 _ALIGNED_ON(4);
228     int pq2 _ALIGNED_ON(4);
229     int pq3 _ALIGNED_ON(4);
230     int p0 _ALIGNED_ON(4);
231     int p1 _ALIGNED_ON(4);
232     int p2 _ALIGNED_ON(4);
233     int p3 _ALIGNED_ON(4);
234     float inv_window_area _ALIGNED_ON(4);
235 } GpuHidHaarClassifierCascade;
236 #endif
237
238 const int icv_object_win_border = 1;
239 const float icv_stage_threshold_bias = 0.0001f;
240 double globaltime = 0;
241
242 /* create more efficient internal representation of haar classifier cascade */
243 static GpuHidHaarClassifierCascade * gpuCreateHidHaarClassifierCascade( CvHaarClassifierCascade *cascade, int *size, int *totalclassifier)
244 {
245     GpuHidHaarClassifierCascade *out = 0;
246
247     int i, j, k, l;
248     int datasize;
249     int total_classifiers = 0;
250     int total_nodes = 0;
251     char errorstr[256];
252
253     GpuHidHaarStageClassifier *stage_classifier_ptr;
254     GpuHidHaarClassifier *haar_classifier_ptr;
255     GpuHidHaarTreeNode *haar_node_ptr;
256
257     CvSize orig_window_size;
258     int has_tilted_features = 0;
259
260     if( !CV_IS_HAAR_CLASSIFIER(cascade) )
261         CV_Error( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" );
262
263     if( cascade->hid_cascade )
264         CV_Error( CV_StsError, "hid_cascade has been already created" );
265
266     if( !cascade->stage_classifier )
267         CV_Error( CV_StsNullPtr, "" );
268
269     if( cascade->count <= 0 )
270         CV_Error( CV_StsOutOfRange, "Negative number of cascade stages" );
271
272     orig_window_size = cascade->orig_window_size;
273
274     /* check input structure correctness and calculate total memory size needed for
275     internal representation of the classifier cascade */
276     for( i = 0; i < cascade->count; i++ )
277     {
278         CvHaarStageClassifier *stage_classifier = cascade->stage_classifier + i;
279
280         if( !stage_classifier->classifier ||
281                 stage_classifier->count <= 0 )
282         {
283             sprintf( errorstr, "header of the stage classifier #%d is invalid "
284                      "(has null pointers or non-positive classfier count)", i );
285             CV_Error( CV_StsError, errorstr );
286         }
287
288         total_classifiers += stage_classifier->count;
289
290         for( j = 0; j < stage_classifier->count; j++ )
291         {
292             CvHaarClassifier *classifier = stage_classifier->classifier + j;
293
294             total_nodes += classifier->count;
295             for( l = 0; l < classifier->count; l++ )
296             {
297                 for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ )
298                 {
299                     if( classifier->haar_feature[l].rect[k].r.width )
300                     {
301                         CvRect r = classifier->haar_feature[l].rect[k].r;
302                         int tilted = classifier->haar_feature[l].tilted;
303                         has_tilted_features |= tilted != 0;
304                         if( r.width < 0 || r.height < 0 || r.y < 0 ||
305                                 r.x + r.width > orig_window_size.width
306                                 ||
307                                 (!tilted &&
308                                  (r.x < 0 || r.y + r.height > orig_window_size.height))
309                                 ||
310                                 (tilted && (r.x - r.height < 0 ||
311                                             r.y + r.width + r.height > orig_window_size.height)))
312                         {
313                             sprintf( errorstr, "rectangle #%d of the classifier #%d of "
314                                      "the stage classifier #%d is not inside "
315                                      "the reference (original) cascade window", k, j, i );
316                             CV_Error( CV_StsNullPtr, errorstr );
317                         }
318                     }
319                 }
320             }
321         }
322     }
323
324     // this is an upper boundary for the whole hidden cascade size
325     datasize = sizeof(GpuHidHaarClassifierCascade)                   +
326                sizeof(GpuHidHaarStageClassifier) * cascade->count    +
327                sizeof(GpuHidHaarClassifier)      * total_classifiers +
328                sizeof(GpuHidHaarTreeNode)        * total_nodes;
329
330     *totalclassifier = total_classifiers;
331     *size = datasize;
332     out = (GpuHidHaarClassifierCascade *)cvAlloc( datasize );
333     memset( out, 0, sizeof(*out) );
334
335     /* init header */
336     out->count = cascade->count;
337     stage_classifier_ptr = (GpuHidHaarStageClassifier *)(out + 1);
338     haar_classifier_ptr = (GpuHidHaarClassifier *)(stage_classifier_ptr + cascade->count);
339     haar_node_ptr = (GpuHidHaarTreeNode *)(haar_classifier_ptr + total_classifiers);
340
341     out->is_stump_based = 1;
342     out->has_tilted_features = has_tilted_features;
343     out->is_tree = 0;
344
345     /* initialize internal representation */
346     for( i = 0; i < cascade->count; i++ )
347     {
348         CvHaarStageClassifier *stage_classifier = cascade->stage_classifier + i;
349         GpuHidHaarStageClassifier *hid_stage_classifier = stage_classifier_ptr + i;
350
351         hid_stage_classifier->count = stage_classifier->count;
352         hid_stage_classifier->threshold = stage_classifier->threshold - icv_stage_threshold_bias;
353         hid_stage_classifier->classifier = haar_classifier_ptr;
354         hid_stage_classifier->two_rects = 1;
355         haar_classifier_ptr += stage_classifier->count;
356
357         for( j = 0; j < stage_classifier->count; j++ )
358         {
359             CvHaarClassifier *classifier         = stage_classifier->classifier + j;
360             GpuHidHaarClassifier *hid_classifier = hid_stage_classifier->classifier + j;
361             int node_count = classifier->count;
362
363             float *alpha_ptr = &haar_node_ptr->alpha[0];
364
365             hid_classifier->count = node_count;
366             hid_classifier->node = haar_node_ptr;
367             hid_classifier->alpha = alpha_ptr;
368
369             for( l = 0; l < node_count; l++ )
370             {
371                 GpuHidHaarTreeNode *node     = hid_classifier->node + l;
372                 CvHaarFeature      *feature = classifier->haar_feature + l;
373
374                 memset( node, -1, sizeof(*node) );
375                 node->threshold = classifier->threshold[l];
376                 node->left      = classifier->left[l];
377                 node->right     = classifier->right[l];
378
379                 if( fabs(feature->rect[2].weight) < DBL_EPSILON ||
380                         feature->rect[2].r.width == 0 ||
381                         feature->rect[2].r.height == 0 )
382                 {
383                     node->p[2][0] = 0;
384                     node->p[2][1] = 0;
385                     node->p[2][2] = 0;
386                     node->p[2][3] = 0;
387                     node->weight[2] = 0;
388                 }
389                 else
390                     hid_stage_classifier->two_rects = 0;
391
392                 memcpy( node->alpha, classifier->alpha, (node_count + 1)*sizeof(alpha_ptr[0]));
393                 haar_node_ptr = haar_node_ptr + 1;
394             }
395             out->is_stump_based &= node_count == 1;
396         }
397     }
398
399     cascade->hid_cascade = (CvHidHaarClassifierCascade *)out;
400     assert( (char *)haar_node_ptr - (char *)out <= datasize );
401
402     return out;
403 }
404
405
406 #define sum_elem_ptr(sum,row,col)  \
407     ((sumtype*)CV_MAT_ELEM_PTR_FAST((sum),(row),(col),sizeof(sumtype)))
408
409 #define sqsum_elem_ptr(sqsum,row,col)  \
410     ((sqsumtype*)CV_MAT_ELEM_PTR_FAST((sqsum),(row),(col),sizeof(sqsumtype)))
411
412 #define calc_sum(rect,offset) \
413     ((rect).p0[offset] - (rect).p1[offset] - (rect).p2[offset] + (rect).p3[offset])
414
415
416 static void gpuSetImagesForHaarClassifierCascade( CvHaarClassifierCascade *_cascade,
417                                       double scale,
418                                       int step)
419 {
420     GpuHidHaarClassifierCascade *cascade;
421     int coi0 = 0, coi1 = 0;
422     int i;
423     int datasize;
424     int total;
425     CvRect equRect;
426     double weight_scale;
427     GpuHidHaarStageClassifier *stage_classifier;
428
429     if( !CV_IS_HAAR_CLASSIFIER(_cascade) )
430         CV_Error( !_cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" );
431
432     if( scale <= 0 )
433         CV_Error( CV_StsOutOfRange, "Scale must be positive" );
434
435     if( coi0 || coi1 )
436         CV_Error( CV_BadCOI, "COI is not supported" );
437
438     if( !_cascade->hid_cascade )
439         gpuCreateHidHaarClassifierCascade(_cascade, &datasize, &total);
440
441     cascade = (GpuHidHaarClassifierCascade *) _cascade->hid_cascade;
442     stage_classifier = (GpuHidHaarStageClassifier *) (cascade + 1);
443
444     _cascade->scale = scale;
445     _cascade->real_window_size.width = cvRound( _cascade->orig_window_size.width * scale );
446     _cascade->real_window_size.height = cvRound( _cascade->orig_window_size.height * scale );
447
448     equRect.x = equRect.y = cvRound(scale);
449     equRect.width = cvRound((_cascade->orig_window_size.width - 2) * scale);
450     equRect.height = cvRound((_cascade->orig_window_size.height - 2) * scale);
451     weight_scale = 1. / (equRect.width * equRect.height);
452     cascade->inv_window_area = weight_scale;
453
454     cascade->pq0 = equRect.x;
455     cascade->pq1 = equRect.y;
456     cascade->pq2 = equRect.x + equRect.width;
457     cascade->pq3 = equRect.y + equRect.height;
458
459     cascade->p0 = equRect.x;
460     cascade->p1 = equRect.y;
461     cascade->p2 = equRect.x + equRect.width;
462     cascade->p3 = equRect.y + equRect.height;
463
464
465     /* init pointers in haar features according to real window size and
466     given image pointers */
467     for( i = 0; i < _cascade->count; i++ )
468     {
469         int j, k, l;
470         for( j = 0; j < stage_classifier[i].count; j++ )
471         {
472             for( l = 0; l < stage_classifier[i].classifier[j].count; l++ )
473             {
474                 CvHaarFeature *feature =
475                     &_cascade->stage_classifier[i].classifier[j].haar_feature[l];
476                 GpuHidHaarTreeNode *hidnode = &stage_classifier[i].classifier[j].node[l];
477                 double sum0 = 0, area0 = 0;
478                 CvRect r[3];
479
480                 int base_w = -1, base_h = -1;
481                 int new_base_w = 0, new_base_h = 0;
482                 int kx, ky;
483                 int flagx = 0, flagy = 0;
484                 int x0 = 0, y0 = 0;
485                 int nr;
486
487                 /* align blocks */
488                 for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ )
489                 {
490                     if(!hidnode->p[k][0])
491                         break;
492                     r[k] = feature->rect[k].r;
493                     base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].width - 1) );
494                     base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].x - r[0].x - 1) );
495                     base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].height - 1) );
496                     base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].y - r[0].y - 1) );
497                 }
498
499                 nr = k;
500                 base_w += 1;
501                 base_h += 1;
502                 if(base_w == 0)
503                     base_w = 1;
504                 kx = r[0].width / base_w;
505                 if(base_h == 0)
506                     base_h = 1;
507                 ky = r[0].height / base_h;
508
509                 if( kx <= 0 )
510                 {
511                     flagx = 1;
512                     new_base_w = cvRound( r[0].width * scale ) / kx;
513                     x0 = cvRound( r[0].x * scale );
514                 }
515
516                 if( ky <= 0 )
517                 {
518                     flagy = 1;
519                     new_base_h = cvRound( r[0].height * scale ) / ky;
520                     y0 = cvRound( r[0].y * scale );
521                 }
522
523                 for( k = 0; k < nr; k++ )
524                 {
525                     CvRect tr;
526                     double correction_ratio;
527
528                     if( flagx )
529                     {
530                         tr.x = (r[k].x - r[0].x) * new_base_w / base_w + x0;
531                         tr.width = r[k].width * new_base_w / base_w;
532                     }
533                     else
534                     {
535                         tr.x = cvRound( r[k].x * scale );
536                         tr.width = cvRound( r[k].width * scale );
537                     }
538
539                     if( flagy )
540                     {
541                         tr.y = (r[k].y - r[0].y) * new_base_h / base_h + y0;
542                         tr.height = r[k].height * new_base_h / base_h;
543                     }
544                     else
545                     {
546                         tr.y = cvRound( r[k].y * scale );
547                         tr.height = cvRound( r[k].height * scale );
548                     }
549
550 #if CV_ADJUST_WEIGHTS
551                     {
552                         // RAINER START
553                         const float orig_feature_size =  (float)(feature->rect[k].r.width) * feature->rect[k].r.height;
554                         const float orig_norm_size = (float)(_cascade->orig_window_size.width) * (_cascade->orig_window_size.height);
555                         const float feature_size = float(tr.width * tr.height);
556                         //const float normSize    = float(equRect.width*equRect.height);
557                         float target_ratio = orig_feature_size / orig_norm_size;
558                         //float isRatio = featureSize / normSize;
559                         //correctionRatio = targetRatio / isRatio / normSize;
560                         correction_ratio = target_ratio / feature_size;
561                         // RAINER END
562                     }
563 #else
564                     correction_ratio = weight_scale * (!feature->tilted ? 1 : 0.5);
565 #endif
566
567                     if( !feature->tilted )
568                     {
569                         hidnode->p[k][0] = tr.x;
570                         hidnode->p[k][1] = tr.y;
571                         hidnode->p[k][2] = tr.x + tr.width;
572                         hidnode->p[k][3] = tr.y + tr.height;
573                     }
574                     else
575                     {
576                         hidnode->p[k][2] = (tr.y + tr.width) * step + tr.x + tr.width;
577                         hidnode->p[k][3] = (tr.y + tr.width + tr.height) * step + tr.x + tr.width - tr.height;
578                         hidnode->p[k][0] = tr.y * step + tr.x;
579                         hidnode->p[k][1] = (tr.y + tr.height) * step + tr.x - tr.height;
580                     }
581                     hidnode->weight[k] = (float)(feature->rect[k].weight * correction_ratio);
582                     if( k == 0 )
583                         area0 = tr.width * tr.height;
584                     else
585                         sum0 += hidnode->weight[k] * tr.width * tr.height;
586                 }
587                 hidnode->weight[0] = (float)(-sum0 / area0);
588             } /* l */
589         } /* j */
590     }
591 }
592
593 static void gpuSetHaarClassifierCascade( CvHaarClassifierCascade *_cascade)
594 {
595     GpuHidHaarClassifierCascade *cascade;
596     int i;
597     int datasize;
598     int total;
599     CvRect equRect;
600     double weight_scale;
601     GpuHidHaarStageClassifier *stage_classifier;
602
603     if( !CV_IS_HAAR_CLASSIFIER(_cascade) )
604         CV_Error( !_cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" );
605
606     if( !_cascade->hid_cascade )
607         gpuCreateHidHaarClassifierCascade(_cascade, &datasize, &total);
608
609     cascade = (GpuHidHaarClassifierCascade *) _cascade->hid_cascade;
610     stage_classifier = (GpuHidHaarStageClassifier *) cascade + 1;
611
612     _cascade->scale = 1.0;
613     _cascade->real_window_size.width =  _cascade->orig_window_size.width ;
614     _cascade->real_window_size.height = _cascade->orig_window_size.height;
615
616     equRect.x = equRect.y = 1;
617     equRect.width = _cascade->orig_window_size.width - 2;
618     equRect.height = _cascade->orig_window_size.height - 2;
619     weight_scale = 1;
620     cascade->inv_window_area = weight_scale;
621
622     cascade->p0 = equRect.x;
623     cascade->p1 = equRect.y;
624     cascade->p2 = equRect.height;
625     cascade->p3 = equRect.width ;
626     for( i = 0; i < _cascade->count; i++ )
627     {
628         int j, l;
629         for( j = 0; j < stage_classifier[i].count; j++ )
630         {
631             for( l = 0; l < stage_classifier[i].classifier[j].count; l++ )
632             {
633                 const CvHaarFeature *feature =
634                     &_cascade->stage_classifier[i].classifier[j].haar_feature[l];
635                 GpuHidHaarTreeNode *hidnode = &stage_classifier[i].classifier[j].node[l];
636
637                 for( int k = 0; k < CV_HAAR_FEATURE_MAX; k++ )
638                 {
639                     const CvRect tr = feature->rect[k].r;
640                     if (tr.width == 0)
641                         break;
642                     double correction_ratio = weight_scale * (!feature->tilted ? 1 : 0.5);
643                     hidnode->p[k][0] = tr.x;
644                     hidnode->p[k][1] = tr.y;
645                     hidnode->p[k][2] = tr.width;
646                     hidnode->p[k][3] = tr.height;
647                     hidnode->weight[k] = (float)(feature->rect[k].weight * correction_ratio);
648                 }
649             } /* l */
650         } /* j */
651     }
652 }
653
654 CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemStorage *storage, double scaleFactor,
655         int minNeighbors, int flags, CvSize minSize, CvSize maxSize)
656 {
657     CvHaarClassifierCascade *cascade = oldCascade;
658
659     const double GROUP_EPS = 0.2;
660     CvSeq *result_seq = 0;
661
662     cv::ConcurrentRectVector allCandidates;
663     std::vector<cv::Rect> rectList;
664     std::vector<int> rweights;
665     double factor;
666     int datasize=0;
667     int totalclassifier=0;
668
669     GpuHidHaarClassifierCascade *gcascade;
670     GpuHidHaarStageClassifier    *stage;
671     GpuHidHaarClassifier         *classifier;
672     GpuHidHaarTreeNode           *node;
673
674     int *candidate;
675     cl_int status;
676
677     bool findBiggestObject = (flags & CV_HAAR_FIND_BIGGEST_OBJECT) != 0;
678
679     if( maxSize.height == 0 || maxSize.width == 0 )
680     {
681         maxSize.height = gimg.rows;
682         maxSize.width = gimg.cols;
683     }
684
685     if( !CV_IS_HAAR_CLASSIFIER(cascade) )
686         CV_Error( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier cascade" );
687
688     if( !storage )
689         CV_Error( CV_StsNullPtr, "Null storage pointer" );
690
691     if( CV_MAT_DEPTH(gimg.type()) != CV_8U )
692         CV_Error( CV_StsUnsupportedFormat, "Only 8-bit images are supported" );
693
694     if( scaleFactor <= 1 )
695         CV_Error( CV_StsOutOfRange, "scale factor must be > 1" );
696
697     if( findBiggestObject )
698         flags &= ~CV_HAAR_SCALE_IMAGE;
699
700     if( !cascade->hid_cascade )
701         gpuCreateHidHaarClassifierCascade(cascade, &datasize, &totalclassifier);
702
703     result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), storage );
704
705     if( CV_MAT_CN(gimg.type()) > 1 )
706     {
707         oclMat gtemp;
708         cvtColor( gimg, gtemp, CV_BGR2GRAY );
709         gimg = gtemp;
710     }
711
712     if( findBiggestObject )
713         flags &= ~(CV_HAAR_SCALE_IMAGE | CV_HAAR_DO_CANNY_PRUNING);
714
715     if( gimg.cols < minSize.width || gimg.rows < minSize.height )
716         CV_Error(CV_StsError, "Image too small");
717
718     cl_command_queue qu = getClCommandQueue(Context::getContext());
719     if( (flags & CV_HAAR_SCALE_IMAGE) )
720     {
721         CvSize winSize0 = cascade->orig_window_size;
722         int totalheight = 0;
723         int indexy = 0;
724         CvSize sz;
725         vector<CvSize> sizev;
726         vector<float> scalev;
727         for(factor = 1.f;; factor *= scaleFactor)
728         {
729             CvSize winSize = { cvRound(winSize0.width * factor), cvRound(winSize0.height * factor) };
730             sz.width     = cvRound( gimg.cols / factor ) + 1;
731             sz.height    = cvRound( gimg.rows / factor ) + 1;
732             CvSize sz1     = { sz.width - winSize0.width - 1,      sz.height - winSize0.height - 1 };
733
734             if( sz1.width <= 0 || sz1.height <= 0 )
735                 break;
736             if( winSize.width > maxSize.width || winSize.height > maxSize.height )
737                 break;
738             if( winSize.width < minSize.width || winSize.height < minSize.height )
739                 continue;
740
741             totalheight += sz.height;
742             sizev.push_back(sz);
743             scalev.push_back(factor);
744         }
745
746         oclMat gimg1(gimg.rows, gimg.cols, CV_8UC1);
747         oclMat gsum(totalheight + 4, gimg.cols + 1, CV_32SC1);
748         oclMat gsqsum(totalheight + 4, gimg.cols + 1, CV_32FC1);
749
750         cl_mem stagebuffer;
751         cl_mem nodebuffer;
752         cl_mem candidatebuffer;
753         cl_mem scaleinfobuffer;
754         cv::Rect roi, roi2;
755         cv::Mat imgroi, imgroisq;
756         cv::ocl::oclMat resizeroi, gimgroi, gimgroisq;
757         int grp_per_CU = 12;
758
759         size_t blocksize = 8;
760         size_t localThreads[3] = { blocksize, blocksize , 1 };
761         size_t globalThreads[3] = { grp_per_CU *(gsum.clCxt->getDeviceInfo().maxComputeUnits) *localThreads[0],
762                                     localThreads[1], 1
763                                   };
764         int outputsz = 256 * globalThreads[0] / localThreads[0];
765         int loopcount = sizev.size();
766         detect_piramid_info *scaleinfo = (detect_piramid_info *)malloc(sizeof(detect_piramid_info) * loopcount);
767
768         for( int i = 0; i < loopcount; i++ )
769         {
770             sz = sizev[i];
771             factor = scalev[i];
772             roi = Rect(0, indexy, sz.width, sz.height);
773             roi2 = Rect(0, 0, sz.width - 1, sz.height - 1);
774             resizeroi = gimg1(roi2);
775             gimgroi = gsum(roi);
776             gimgroisq = gsqsum(roi);
777             int width = gimgroi.cols - 1 - cascade->orig_window_size.width;
778             int height = gimgroi.rows - 1 - cascade->orig_window_size.height;
779             scaleinfo[i].width_height = (width << 16) | height;
780
781
782             int grpnumperline = (width + localThreads[0] - 1) / localThreads[0];
783             int totalgrp = ((height + localThreads[1] - 1) / localThreads[1]) * grpnumperline;
784
785             scaleinfo[i].grpnumperline_totalgrp = (grpnumperline << 16) | totalgrp;
786             scaleinfo[i].imgoff = gimgroi.offset >> 2;
787             scaleinfo[i].factor = factor;
788             cv::ocl::resize(gimg, resizeroi, Size(sz.width - 1, sz.height - 1), 0, 0, INTER_LINEAR);
789             cv::ocl::integral(resizeroi, gimgroi, gimgroisq);
790             indexy += sz.height;
791         }
792
793         gcascade   = (GpuHidHaarClassifierCascade *)cascade->hid_cascade;
794         stage      = (GpuHidHaarStageClassifier *)(gcascade + 1);
795         classifier = (GpuHidHaarClassifier *)(stage + gcascade->count);
796         node       = (GpuHidHaarTreeNode *)(classifier->node);
797
798         int nodenum = (datasize - sizeof(GpuHidHaarClassifierCascade) -
799                        sizeof(GpuHidHaarStageClassifier) * gcascade->count - sizeof(GpuHidHaarClassifier) * totalclassifier) / sizeof(GpuHidHaarTreeNode);
800
801         candidate = (int *)malloc(4 * sizeof(int) * outputsz);
802
803         gpuSetImagesForHaarClassifierCascade( cascade, 1., gsum.step / 4 );
804
805         stagebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(GpuHidHaarStageClassifier) * gcascade->count);
806         openCLSafeCall(clEnqueueWriteBuffer(qu, stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL));
807
808         nodebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, nodenum * sizeof(GpuHidHaarTreeNode));
809
810         openCLSafeCall(clEnqueueWriteBuffer(qu, nodebuffer, 1, 0, nodenum * sizeof(GpuHidHaarTreeNode),
811                                             node, 0, NULL, NULL));
812         candidatebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_WRITE_ONLY, 4 * sizeof(int) * outputsz);
813
814         scaleinfobuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(detect_piramid_info) * loopcount);
815         openCLSafeCall(clEnqueueWriteBuffer(qu, scaleinfobuffer, 1, 0, sizeof(detect_piramid_info)*loopcount, scaleinfo, 0, NULL, NULL));
816
817         int startstage = 0;
818         int endstage = gcascade->count;
819         int startnode = 0;
820         int pixelstep = gsum.step / 4;
821         int splitstage = 3;
822         int splitnode = stage[0].count + stage[1].count + stage[2].count;
823         cl_int4 p, pq;
824         p.s[0] = gcascade->p0;
825         p.s[1] = gcascade->p1;
826         p.s[2] = gcascade->p2;
827         p.s[3] = gcascade->p3;
828         pq.s[0] = gcascade->pq0;
829         pq.s[1] = gcascade->pq1;
830         pq.s[2] = gcascade->pq2;
831         pq.s[3] = gcascade->pq3;
832         float correction = gcascade->inv_window_area;
833
834         vector<pair<size_t, const void *> > args;
835         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&stagebuffer ));
836         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&scaleinfobuffer ));
837         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&nodebuffer ));
838         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsum.data ));
839         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsqsum.data ));
840         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&candidatebuffer ));
841         args.push_back ( make_pair(sizeof(cl_int) , (void *)&pixelstep ));
842         args.push_back ( make_pair(sizeof(cl_int) , (void *)&loopcount ));
843         args.push_back ( make_pair(sizeof(cl_int) , (void *)&startstage ));
844         args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitstage ));
845         args.push_back ( make_pair(sizeof(cl_int) , (void *)&endstage ));
846         args.push_back ( make_pair(sizeof(cl_int) , (void *)&startnode ));
847         args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitnode ));
848         args.push_back ( make_pair(sizeof(cl_int4) , (void *)&p ));
849         args.push_back ( make_pair(sizeof(cl_int4) , (void *)&pq ));
850         args.push_back ( make_pair(sizeof(cl_float) , (void *)&correction ));
851
852         const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0";
853
854         openCLExecuteKernel(gsum.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascade", globalThreads, localThreads, args, -1, -1, build_options);
855
856         openCLReadBuffer( gsum.clCxt, candidatebuffer, candidate, 4 * sizeof(int)*outputsz );
857
858         for(int i = 0; i < outputsz; i++)
859             if(candidate[4 * i + 2] != 0)
860                 allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1],
861                 candidate[4 * i + 2], candidate[4 * i + 3]));
862
863         free(scaleinfo);
864         free(candidate);
865         openCLSafeCall(clReleaseMemObject(stagebuffer));
866         openCLSafeCall(clReleaseMemObject(scaleinfobuffer));
867         openCLSafeCall(clReleaseMemObject(nodebuffer));
868         openCLSafeCall(clReleaseMemObject(candidatebuffer));
869
870     }
871     else
872     {
873         CvSize winsize0 = cascade->orig_window_size;
874         int n_factors = 0;
875         oclMat gsum;
876         oclMat gsqsum;
877         cv::ocl::integral(gimg, gsum, gsqsum);
878         CvSize sz;
879         vector<CvSize> sizev;
880         vector<float> scalev;
881         gpuSetHaarClassifierCascade(cascade);
882         gcascade   = (GpuHidHaarClassifierCascade *)cascade->hid_cascade;
883         stage      = (GpuHidHaarStageClassifier *)(gcascade + 1);
884         classifier = (GpuHidHaarClassifier *)(stage + gcascade->count);
885         node       = (GpuHidHaarTreeNode *)(classifier->node);
886         cl_mem stagebuffer;
887         cl_mem nodebuffer;
888         cl_mem candidatebuffer;
889         cl_mem scaleinfobuffer;
890         cl_mem pbuffer;
891         cl_mem correctionbuffer;
892         for( n_factors = 0, factor = 1;
893                 cvRound(factor * winsize0.width) < gimg.cols - 10 &&
894                 cvRound(factor * winsize0.height) < gimg.rows - 10;
895                 n_factors++, factor *= scaleFactor )
896         {
897             CvSize winSize = { cvRound( winsize0.width * factor ),
898                                cvRound( winsize0.height * factor )
899                              };
900             if( winSize.width < minSize.width || winSize.height < minSize.height )
901             {
902                 continue;
903             }
904             sizev.push_back(winSize);
905             scalev.push_back(factor);
906         }
907         int loopcount = scalev.size();
908         if(loopcount == 0)
909         {
910             loopcount = 1;
911             n_factors = 1;
912             sizev.push_back(minSize);
913             scalev.push_back( std::min(cvRound(minSize.width / winsize0.width), cvRound(minSize.height / winsize0.height)) );
914
915         }
916         detect_piramid_info *scaleinfo = (detect_piramid_info *)malloc(sizeof(detect_piramid_info) * loopcount);
917         cl_int4 *p = (cl_int4 *)malloc(sizeof(cl_int4) * loopcount);
918         float *correction = (float *)malloc(sizeof(float) * loopcount);
919         int grp_per_CU = 12;
920         size_t blocksize = 8;
921         size_t localThreads[3] = { blocksize, blocksize , 1 };
922         size_t globalThreads[3] = { grp_per_CU *gsum.clCxt->getDeviceInfo().maxComputeUnits *localThreads[0],
923                                     localThreads[1], 1 };
924         int outputsz = 256 * globalThreads[0] / localThreads[0];
925         int nodenum = (datasize - sizeof(GpuHidHaarClassifierCascade) -
926                        sizeof(GpuHidHaarStageClassifier) * gcascade->count - sizeof(GpuHidHaarClassifier) * totalclassifier) / sizeof(GpuHidHaarTreeNode);
927         nodebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY,
928                                         nodenum * sizeof(GpuHidHaarTreeNode));
929         openCLSafeCall(clEnqueueWriteBuffer(qu, nodebuffer, 1, 0,
930                                             nodenum * sizeof(GpuHidHaarTreeNode),
931                                             node, 0, NULL, NULL));
932         cl_mem newnodebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_WRITE,
933                                loopcount * nodenum * sizeof(GpuHidHaarTreeNode));
934         int startstage = 0;
935         int endstage = gcascade->count;
936         for(int i = 0; i < loopcount; i++)
937         {
938             sz = sizev[i];
939             factor = scalev[i];
940             int ystep = cvRound(std::max(2., factor));
941             int equRect_x = (int)(factor * gcascade->p0 + 0.5);
942             int equRect_y = (int)(factor * gcascade->p1 + 0.5);
943             int equRect_w = (int)(factor * gcascade->p3 + 0.5);
944             int equRect_h = (int)(factor * gcascade->p2 + 0.5);
945             p[i].s[0] = equRect_x;
946             p[i].s[1] = equRect_y;
947             p[i].s[2] = equRect_x + equRect_w;
948             p[i].s[3] = equRect_y + equRect_h;
949             correction[i] = 1. / (equRect_w * equRect_h);
950             int width = (gsum.cols - 1 - sz.width  + ystep - 1) / ystep;
951             int height = (gsum.rows - 1 - sz.height + ystep - 1) / ystep;
952             int grpnumperline = (width + localThreads[0] - 1) / localThreads[0];
953             int totalgrp = ((height + localThreads[1] - 1) / localThreads[1]) * grpnumperline;
954
955             scaleinfo[i].width_height = (width << 16) | height;
956             scaleinfo[i].grpnumperline_totalgrp = (grpnumperline << 16) | totalgrp;
957             scaleinfo[i].imgoff = 0;
958             scaleinfo[i].factor = factor;
959             int startnodenum = nodenum * i;
960             float factor2 = (float)factor;
961
962             vector<pair<size_t, const void *> > args1;
963             args1.push_back ( make_pair(sizeof(cl_mem) , (void *)&nodebuffer ));
964             args1.push_back ( make_pair(sizeof(cl_mem) , (void *)&newnodebuffer ));
965             args1.push_back ( make_pair(sizeof(cl_float) , (void *)&factor2 ));
966             args1.push_back ( make_pair(sizeof(cl_float) , (void *)&correction[i] ));
967             args1.push_back ( make_pair(sizeof(cl_int) , (void *)&startnodenum ));
968
969             size_t globalThreads2[3] = {nodenum, 1, 1};
970             openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuscaleclassifier", globalThreads2, NULL/*localThreads2*/, args1, -1, -1);
971         }
972
973         int step = gsum.step / 4;
974         int startnode = 0;
975         int splitstage = 3;
976         stagebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(GpuHidHaarStageClassifier) * gcascade->count);
977         openCLSafeCall(clEnqueueWriteBuffer(qu, stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL));
978         candidatebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_WRITE_ONLY | CL_MEM_ALLOC_HOST_PTR, 4 * sizeof(int) * outputsz);
979         scaleinfobuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(detect_piramid_info) * loopcount);
980         openCLSafeCall(clEnqueueWriteBuffer(qu, scaleinfobuffer, 1, 0, sizeof(detect_piramid_info)*loopcount, scaleinfo, 0, NULL, NULL));
981         pbuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(cl_int4) * loopcount);
982         openCLSafeCall(clEnqueueWriteBuffer(qu, pbuffer, 1, 0, sizeof(cl_int4)*loopcount, p, 0, NULL, NULL));
983         correctionbuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(cl_float) * loopcount);
984         openCLSafeCall(clEnqueueWriteBuffer(qu, correctionbuffer, 1, 0, sizeof(cl_float)*loopcount, correction, 0, NULL, NULL));
985
986         vector<pair<size_t, const void *> > args;
987         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&stagebuffer ));
988         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&scaleinfobuffer ));
989         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&newnodebuffer ));
990         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsum.data ));
991         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsqsum.data ));
992         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&candidatebuffer ));
993         args.push_back ( make_pair(sizeof(cl_int) , (void *)&gsum.rows ));
994         args.push_back ( make_pair(sizeof(cl_int) , (void *)&gsum.cols ));
995         args.push_back ( make_pair(sizeof(cl_int) , (void *)&step ));
996         args.push_back ( make_pair(sizeof(cl_int) , (void *)&loopcount ));
997         args.push_back ( make_pair(sizeof(cl_int) , (void *)&startstage ));
998         args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitstage ));
999         args.push_back ( make_pair(sizeof(cl_int) , (void *)&endstage ));
1000         args.push_back ( make_pair(sizeof(cl_int) , (void *)&startnode ));
1001         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&pbuffer ));
1002         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&correctionbuffer ));
1003         args.push_back ( make_pair(sizeof(cl_int) , (void *)&nodenum ));
1004         const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0";
1005         openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2", globalThreads, localThreads, args, -1, -1, build_options);
1006
1007         candidate = (int *)clEnqueueMapBuffer(qu, candidatebuffer, 1, CL_MAP_READ, 0, 4 * sizeof(int) * outputsz, 0, 0, 0, &status);
1008
1009         for(int i = 0; i < outputsz; i++)
1010         {
1011             if(candidate[4 * i + 2] != 0)
1012                 allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1], candidate[4 * i + 2], candidate[4 * i + 3]));
1013         }
1014
1015         free(scaleinfo);
1016         free(p);
1017         free(correction);
1018         clEnqueueUnmapMemObject(qu, candidatebuffer, candidate, 0, 0, 0);
1019         openCLSafeCall(clReleaseMemObject(stagebuffer));
1020         openCLSafeCall(clReleaseMemObject(scaleinfobuffer));
1021         openCLSafeCall(clReleaseMemObject(nodebuffer));
1022         openCLSafeCall(clReleaseMemObject(newnodebuffer));
1023         openCLSafeCall(clReleaseMemObject(candidatebuffer));
1024         openCLSafeCall(clReleaseMemObject(pbuffer));
1025         openCLSafeCall(clReleaseMemObject(correctionbuffer));
1026     }
1027
1028     cvFree(&cascade->hid_cascade);
1029     rectList.resize(allCandidates.size());
1030     if(!allCandidates.empty())
1031         std::copy(allCandidates.begin(), allCandidates.end(), rectList.begin());
1032
1033     if( minNeighbors != 0 || findBiggestObject )
1034         groupRectangles(rectList, rweights, std::max(minNeighbors, 1), GROUP_EPS);
1035     else
1036         rweights.resize(rectList.size(), 0);
1037
1038     if( findBiggestObject && rectList.size() )
1039     {
1040         CvAvgComp result_comp = {{0, 0, 0, 0}, 0};
1041
1042         for( size_t i = 0; i < rectList.size(); i++ )
1043         {
1044             cv::Rect r = rectList[i];
1045             if( r.area() > cv::Rect(result_comp.rect).area() )
1046             {
1047                 result_comp.rect = r;
1048                 result_comp.neighbors = rweights[i];
1049             }
1050         }
1051         cvSeqPush( result_seq, &result_comp );
1052     }
1053     else
1054     {
1055         for( size_t i = 0; i < rectList.size(); i++ )
1056         {
1057             CvAvgComp c;
1058             c.rect = rectList[i];
1059             c.neighbors = rweights[i];
1060             cvSeqPush( result_seq, &c );
1061         }
1062     }
1063
1064     return result_seq;
1065 }
1066
1067 struct OclBuffers
1068 {
1069     cl_mem stagebuffer;
1070     cl_mem nodebuffer;
1071     cl_mem candidatebuffer;
1072     cl_mem scaleinfobuffer;
1073     cl_mem pbuffer;
1074     cl_mem correctionbuffer;
1075     cl_mem newnodebuffer;
1076 };
1077
1078 struct getRect
1079 {
1080     Rect operator()(const CvAvgComp &e) const
1081     {
1082         return e.rect;
1083     }
1084 };
1085
1086 void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std::vector<cv::Rect>& faces,
1087                                                         double scaleFactor, int minNeighbors, int flags,
1088                                                         Size minSize, Size maxSize)
1089 {
1090     int blocksize = 8;
1091     int grp_per_CU = 12;
1092     size_t localThreads[3] = { blocksize, blocksize, 1 };
1093     size_t globalThreads[3] = { grp_per_CU * cv::ocl::Context::getContext()->getDeviceInfo().maxComputeUnits *localThreads[0],
1094         localThreads[1],
1095         1 };
1096     int outputsz = 256 * globalThreads[0] / localThreads[0];
1097
1098     Init(gimg.rows, gimg.cols, scaleFactor, flags, outputsz, localThreads, minSize, maxSize);
1099
1100     const double GROUP_EPS = 0.2;
1101
1102     cv::ConcurrentRectVector allCandidates;
1103     std::vector<cv::Rect> rectList;
1104     std::vector<int> rweights;
1105
1106     CvHaarClassifierCascade      *cascade = oldCascade;
1107     GpuHidHaarClassifierCascade  *gcascade;
1108     GpuHidHaarStageClassifier    *stage;
1109
1110     if( CV_MAT_DEPTH(gimg.type()) != CV_8U )
1111         CV_Error( CV_StsUnsupportedFormat, "Only 8-bit images are supported" );
1112
1113     if( CV_MAT_CN(gimg.type()) > 1 )
1114     {
1115         oclMat gtemp;
1116         cvtColor( gimg, gtemp, CV_BGR2GRAY );
1117         gimg = gtemp;
1118     }
1119
1120     int *candidate;
1121     cl_command_queue qu = getClCommandQueue(Context::getContext());
1122     if( (flags & CV_HAAR_SCALE_IMAGE) )
1123     {
1124         int indexy = 0;
1125         CvSize sz;
1126
1127         cv::Rect roi, roi2;
1128         cv::ocl::oclMat resizeroi, gimgroi, gimgroisq;
1129
1130         for( int i = 0; i < m_loopcount; i++ )
1131         {
1132             sz = sizev[i];
1133             roi = Rect(0, indexy, sz.width, sz.height);
1134             roi2 = Rect(0, 0, sz.width - 1, sz.height - 1);
1135             resizeroi = gimg1(roi2);
1136             gimgroi = gsum(roi);
1137             gimgroisq = gsqsum(roi);
1138
1139             cv::ocl::resize(gimg, resizeroi, Size(sz.width - 1, sz.height - 1), 0, 0, INTER_LINEAR);
1140             cv::ocl::integral(resizeroi, gimgroi, gimgroisq);
1141             indexy += sz.height;
1142         }
1143
1144         gcascade   = (GpuHidHaarClassifierCascade *)(cascade->hid_cascade);
1145         stage      = (GpuHidHaarStageClassifier *)(gcascade + 1);
1146
1147         int startstage = 0;
1148         int endstage = gcascade->count;
1149         int startnode = 0;
1150         int pixelstep = gsum.step / 4;
1151         int splitstage = 3;
1152         int splitnode = stage[0].count + stage[1].count + stage[2].count;
1153         cl_int4 p, pq;
1154         p.s[0] = gcascade->p0;
1155         p.s[1] = gcascade->p1;
1156         p.s[2] = gcascade->p2;
1157         p.s[3] = gcascade->p3;
1158         pq.s[0] = gcascade->pq0;
1159         pq.s[1] = gcascade->pq1;
1160         pq.s[2] = gcascade->pq2;
1161         pq.s[3] = gcascade->pq3;
1162         float correction = gcascade->inv_window_area;
1163
1164         vector<pair<size_t, const void *> > args;
1165         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->stagebuffer ));
1166         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->scaleinfobuffer ));
1167         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->nodebuffer ));
1168         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsum.data ));
1169         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsqsum.data ));
1170         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->candidatebuffer ));
1171         args.push_back ( make_pair(sizeof(cl_int) , (void *)&pixelstep ));
1172         args.push_back ( make_pair(sizeof(cl_int) , (void *)&m_loopcount ));
1173         args.push_back ( make_pair(sizeof(cl_int) , (void *)&startstage ));
1174         args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitstage ));
1175         args.push_back ( make_pair(sizeof(cl_int) , (void *)&endstage ));
1176         args.push_back ( make_pair(sizeof(cl_int) , (void *)&startnode ));
1177         args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitnode ));
1178         args.push_back ( make_pair(sizeof(cl_int4) , (void *)&p ));
1179         args.push_back ( make_pair(sizeof(cl_int4) , (void *)&pq ));
1180         args.push_back ( make_pair(sizeof(cl_float) , (void *)&correction ));
1181
1182         const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0";
1183
1184         openCLExecuteKernel(gsum.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascade", globalThreads, localThreads, args, -1, -1, build_options);
1185
1186         candidate = (int *)malloc(4 * sizeof(int) * outputsz);
1187         memset(candidate, 0, 4 * sizeof(int) * outputsz);
1188
1189         openCLReadBuffer( gsum.clCxt, ((OclBuffers *)buffers)->candidatebuffer, candidate, 4 * sizeof(int)*outputsz );
1190
1191         for(int i = 0; i < outputsz; i++)
1192         {
1193             if(candidate[4 * i + 2] != 0)
1194             {
1195                 allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1],
1196                 candidate[4 * i + 2], candidate[4 * i + 3]));
1197             }
1198         }
1199         free((void *)candidate);
1200         candidate = NULL;
1201     }
1202     else
1203     {
1204         cv::ocl::integral(gimg, gsum, gsqsum);
1205
1206         gcascade   = (GpuHidHaarClassifierCascade *)cascade->hid_cascade;
1207
1208         int step = gsum.step / 4;
1209         int startnode = 0;
1210         int splitstage = 3;
1211
1212         int startstage = 0;
1213         int endstage = gcascade->count;
1214
1215         vector<pair<size_t, const void *> > args;
1216         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->stagebuffer ));
1217         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->scaleinfobuffer ));
1218         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->newnodebuffer ));
1219         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsum.data ));
1220         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsqsum.data ));
1221         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->candidatebuffer ));
1222         args.push_back ( make_pair(sizeof(cl_int) , (void *)&gsum.rows ));
1223         args.push_back ( make_pair(sizeof(cl_int) , (void *)&gsum.cols ));
1224         args.push_back ( make_pair(sizeof(cl_int) , (void *)&step ));
1225         args.push_back ( make_pair(sizeof(cl_int) , (void *)&m_loopcount ));
1226         args.push_back ( make_pair(sizeof(cl_int) , (void *)&startstage ));
1227         args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitstage ));
1228         args.push_back ( make_pair(sizeof(cl_int) , (void *)&endstage ));
1229         args.push_back ( make_pair(sizeof(cl_int) , (void *)&startnode ));
1230         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->pbuffer ));
1231         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->correctionbuffer ));
1232         args.push_back ( make_pair(sizeof(cl_int) , (void *)&m_nodenum ));
1233
1234         const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0";
1235         openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2", globalThreads, localThreads, args, -1, -1, build_options);
1236
1237         candidate = (int *)clEnqueueMapBuffer(qu, ((OclBuffers *)buffers)->candidatebuffer, 1, CL_MAP_READ, 0, 4 * sizeof(int) * outputsz, 0, 0, 0, NULL);
1238
1239         for(int i = 0; i < outputsz; i++)
1240         {
1241             if(candidate[4 * i + 2] != 0)
1242                 allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1],
1243                 candidate[4 * i + 2], candidate[4 * i + 3]));
1244         }
1245         clEnqueueUnmapMemObject(qu, ((OclBuffers *)buffers)->candidatebuffer, candidate, 0, 0, 0);
1246     }
1247     rectList.resize(allCandidates.size());
1248     if(!allCandidates.empty())
1249         std::copy(allCandidates.begin(), allCandidates.end(), rectList.begin());
1250
1251     if( minNeighbors != 0 || findBiggestObject )
1252         groupRectangles(rectList, rweights, std::max(minNeighbors, 1), GROUP_EPS);
1253     else
1254         rweights.resize(rectList.size(), 0);
1255
1256     GenResult(faces, rectList, rweights);
1257 }
1258
1259 void cv::ocl::OclCascadeClassifierBuf::Init(const int rows, const int cols,
1260     double scaleFactor, int flags,
1261     const int outputsz, const size_t localThreads[],
1262     CvSize minSize, CvSize maxSize)
1263 {
1264     if(initialized)
1265     {
1266         return; // we only allow one time initialization
1267     }
1268     CvHaarClassifierCascade      *cascade = oldCascade;
1269
1270     if( !CV_IS_HAAR_CLASSIFIER(cascade) )
1271         CV_Error( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier cascade" );
1272
1273     if( scaleFactor <= 1 )
1274         CV_Error( CV_StsOutOfRange, "scale factor must be > 1" );
1275
1276     if( cols < minSize.width || rows < minSize.height )
1277         CV_Error(CV_StsError, "Image too small");
1278
1279     int datasize=0;
1280     int totalclassifier=0;
1281
1282     if( !cascade->hid_cascade )
1283     {
1284         gpuCreateHidHaarClassifierCascade(cascade, &datasize, &totalclassifier);
1285     }
1286
1287     if( maxSize.height == 0 || maxSize.width == 0 )
1288     {
1289         maxSize.height = rows;
1290         maxSize.width = cols;
1291     }
1292
1293     findBiggestObject = (flags & CV_HAAR_FIND_BIGGEST_OBJECT) != 0;
1294     if( findBiggestObject )
1295         flags &= ~(CV_HAAR_SCALE_IMAGE | CV_HAAR_DO_CANNY_PRUNING);
1296
1297     CreateBaseBufs(datasize, totalclassifier, flags, outputsz);
1298     CreateFactorRelatedBufs(rows, cols, flags, scaleFactor, localThreads, minSize, maxSize);
1299
1300     m_scaleFactor = scaleFactor;
1301     m_rows = rows;
1302     m_cols = cols;
1303     m_flags = flags;
1304     m_minSize = minSize;
1305     m_maxSize = maxSize;
1306
1307     // initialize nodes
1308     GpuHidHaarClassifierCascade  *gcascade;
1309     GpuHidHaarStageClassifier    *stage;
1310     GpuHidHaarClassifier         *classifier;
1311     GpuHidHaarTreeNode           *node;
1312     cl_command_queue qu = getClCommandQueue(Context::getContext());
1313     if( (flags & CV_HAAR_SCALE_IMAGE) )
1314     {
1315         gcascade   = (GpuHidHaarClassifierCascade *)(cascade->hid_cascade);
1316         stage      = (GpuHidHaarStageClassifier *)(gcascade + 1);
1317         classifier = (GpuHidHaarClassifier *)(stage + gcascade->count);
1318         node       = (GpuHidHaarTreeNode *)(classifier->node);
1319
1320         gpuSetImagesForHaarClassifierCascade( cascade, 1., gsum.step / 4 );
1321
1322         openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->stagebuffer, 1, 0,
1323             sizeof(GpuHidHaarStageClassifier) * gcascade->count,
1324             stage, 0, NULL, NULL));
1325
1326         openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->nodebuffer, 1, 0,
1327                                             m_nodenum * sizeof(GpuHidHaarTreeNode),
1328                                             node, 0, NULL, NULL));
1329     }
1330     else
1331     {
1332         gpuSetHaarClassifierCascade(cascade);
1333
1334         gcascade   = (GpuHidHaarClassifierCascade *)cascade->hid_cascade;
1335         stage      = (GpuHidHaarStageClassifier *)(gcascade + 1);
1336         classifier = (GpuHidHaarClassifier *)(stage + gcascade->count);
1337         node       = (GpuHidHaarTreeNode *)(classifier->node);
1338
1339         openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->nodebuffer, 1, 0,
1340             m_nodenum * sizeof(GpuHidHaarTreeNode),
1341             node, 0, NULL, NULL));
1342
1343         cl_int4 *p = (cl_int4 *)malloc(sizeof(cl_int4) * m_loopcount);
1344         float *correction = (float *)malloc(sizeof(float) * m_loopcount);
1345         double factor;
1346         for(int i = 0; i < m_loopcount; i++)
1347         {
1348             factor = scalev[i];
1349             int equRect_x = (int)(factor * gcascade->p0 + 0.5);
1350             int equRect_y = (int)(factor * gcascade->p1 + 0.5);
1351             int equRect_w = (int)(factor * gcascade->p3 + 0.5);
1352             int equRect_h = (int)(factor * gcascade->p2 + 0.5);
1353             p[i].s[0] = equRect_x;
1354             p[i].s[1] = equRect_y;
1355             p[i].s[2] = equRect_x + equRect_w;
1356             p[i].s[3] = equRect_y + equRect_h;
1357             correction[i] = 1. / (equRect_w * equRect_h);
1358             int startnodenum = m_nodenum * i;
1359             float factor2 = (float)factor;
1360
1361             vector<pair<size_t, const void *> > args1;
1362             args1.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->nodebuffer ));
1363             args1.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->newnodebuffer ));
1364             args1.push_back ( make_pair(sizeof(cl_float) , (void *)&factor2 ));
1365             args1.push_back ( make_pair(sizeof(cl_float) , (void *)&correction[i] ));
1366             args1.push_back ( make_pair(sizeof(cl_int) , (void *)&startnodenum ));
1367
1368             size_t globalThreads2[3] = {m_nodenum, 1, 1};
1369
1370             openCLExecuteKernel(Context::getContext(), &haarobjectdetect_scaled2, "gpuscaleclassifier", globalThreads2, NULL/*localThreads2*/, args1, -1, -1);
1371         }
1372         openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL));
1373         openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->pbuffer, 1, 0, sizeof(cl_int4)*m_loopcount, p, 0, NULL, NULL));
1374         openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->correctionbuffer, 1, 0, sizeof(cl_float)*m_loopcount, correction, 0, NULL, NULL));
1375
1376         free(p);
1377         free(correction);
1378     }
1379     initialized = true;
1380 }
1381
1382 void cv::ocl::OclCascadeClassifierBuf::CreateBaseBufs(const int datasize, const int totalclassifier,
1383                                                       const int flags, const int outputsz)
1384 {
1385     if (!initialized)
1386     {
1387         buffers = malloc(sizeof(OclBuffers));
1388
1389         size_t tempSize =
1390             sizeof(GpuHidHaarStageClassifier) * ((GpuHidHaarClassifierCascade *)oldCascade->hid_cascade)->count;
1391         m_nodenum = (datasize - sizeof(GpuHidHaarClassifierCascade) - tempSize - sizeof(GpuHidHaarClassifier) * totalclassifier)
1392             / sizeof(GpuHidHaarTreeNode);
1393
1394         ((OclBuffers *)buffers)->stagebuffer     = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY,  tempSize);
1395         ((OclBuffers *)buffers)->nodebuffer      = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY,  m_nodenum * sizeof(GpuHidHaarTreeNode));
1396     }
1397
1398     if (initialized
1399         && ((m_flags & CV_HAAR_SCALE_IMAGE) ^ (flags & CV_HAAR_SCALE_IMAGE)))
1400     {
1401         openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->candidatebuffer));
1402     }
1403
1404     if (flags & CV_HAAR_SCALE_IMAGE)
1405     {
1406         ((OclBuffers *)buffers)->candidatebuffer = openCLCreateBuffer(cv::ocl::Context::getContext(),
1407                                                         CL_MEM_WRITE_ONLY,
1408                                                         4 * sizeof(int) * outputsz);
1409     }
1410     else
1411     {
1412         ((OclBuffers *)buffers)->candidatebuffer = openCLCreateBuffer(cv::ocl::Context::getContext(),
1413                                                         CL_MEM_WRITE_ONLY | CL_MEM_ALLOC_HOST_PTR,
1414                                                         4 * sizeof(int) * outputsz);
1415     }
1416 }
1417
1418 void cv::ocl::OclCascadeClassifierBuf::CreateFactorRelatedBufs(
1419     const int rows, const int cols, const int flags,
1420     const double scaleFactor, const size_t localThreads[],
1421     CvSize minSize, CvSize maxSize)
1422 {
1423     if (initialized)
1424     {
1425         if ((m_flags & CV_HAAR_SCALE_IMAGE) && !(flags & CV_HAAR_SCALE_IMAGE))
1426         {
1427             gimg1.release();
1428             gsum.release();
1429             gsqsum.release();
1430         }
1431         else if (!(m_flags & CV_HAAR_SCALE_IMAGE) && (flags & CV_HAAR_SCALE_IMAGE))
1432         {
1433             openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->newnodebuffer));
1434             openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->correctionbuffer));
1435             openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->pbuffer));
1436         }
1437         else if ((m_flags & CV_HAAR_SCALE_IMAGE) && (flags & CV_HAAR_SCALE_IMAGE))
1438         {
1439             if (fabs(m_scaleFactor - scaleFactor) < 1e-6
1440                 && (rows == m_rows && cols == m_cols)
1441                 && (minSize.width == m_minSize.width)
1442                 && (minSize.height == m_minSize.height)
1443                 && (maxSize.width == m_maxSize.width)
1444                 && (maxSize.height == m_maxSize.height))
1445             {
1446                 return;
1447             }
1448         }
1449         else
1450         {
1451             if (fabs(m_scaleFactor - scaleFactor) < 1e-6
1452                 && (rows == m_rows && cols == m_cols)
1453                 && (minSize.width == m_minSize.width)
1454                 && (minSize.height == m_minSize.height)
1455                 && (maxSize.width == m_maxSize.width)
1456                 && (maxSize.height == m_maxSize.height))
1457             {
1458                 return;
1459             }
1460             else
1461             {
1462                 openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->newnodebuffer));
1463                 openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->correctionbuffer));
1464                 openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->pbuffer));
1465             }
1466         }
1467     }
1468
1469     int loopcount;
1470     int indexy = 0;
1471     int totalheight = 0;
1472     double factor;
1473     Rect roi;
1474     CvSize sz;
1475     CvSize winSize0 = oldCascade->orig_window_size;
1476     detect_piramid_info *scaleinfo;
1477     cl_command_queue qu = getClCommandQueue(Context::getContext());
1478     if (flags & CV_HAAR_SCALE_IMAGE)
1479     {
1480         for(factor = 1.f;; factor *= scaleFactor)
1481         {
1482             CvSize winSize = { cvRound(winSize0.width * factor), cvRound(winSize0.height * factor) };
1483             sz.width     = cvRound( cols / factor ) + 1;
1484             sz.height    = cvRound( rows / factor ) + 1;
1485             CvSize sz1     = { sz.width - winSize0.width - 1,      sz.height - winSize0.height - 1 };
1486
1487             if( sz1.width <= 0 || sz1.height <= 0 )
1488                 break;
1489             if( winSize.width > maxSize.width || winSize.height > maxSize.height )
1490                 break;
1491             if( winSize.width < minSize.width || winSize.height < minSize.height )
1492                 continue;
1493
1494             totalheight += sz.height;
1495             sizev.push_back(sz);
1496             scalev.push_back(static_cast<float>(factor));
1497         }
1498
1499         loopcount = sizev.size();
1500         gimg1.create(rows, cols, CV_8UC1);
1501         gsum.create(totalheight + 4, cols + 1, CV_32SC1);
1502         gsqsum.create(totalheight + 4, cols + 1, CV_32FC1);
1503
1504         scaleinfo = (detect_piramid_info *)malloc(sizeof(detect_piramid_info) * loopcount);
1505         for( int i = 0; i < loopcount; i++ )
1506         {
1507             sz = sizev[i];
1508             roi = Rect(0, indexy, sz.width, sz.height);
1509             int width = sz.width - 1 - oldCascade->orig_window_size.width;
1510             int height = sz.height - 1 - oldCascade->orig_window_size.height;
1511             int grpnumperline = (width + localThreads[0] - 1) / localThreads[0];
1512             int totalgrp = ((height + localThreads[1] - 1) / localThreads[1]) * grpnumperline;
1513
1514             ((detect_piramid_info *)scaleinfo)[i].width_height = (width << 16) | height;
1515             ((detect_piramid_info *)scaleinfo)[i].grpnumperline_totalgrp = (grpnumperline << 16) | totalgrp;
1516             ((detect_piramid_info *)scaleinfo)[i].imgoff = gsum(roi).offset >> 2;
1517             ((detect_piramid_info *)scaleinfo)[i].factor = scalev[i];
1518
1519             indexy += sz.height;
1520         }
1521     }
1522     else
1523     {
1524         for(factor = 1;
1525             cvRound(factor * winSize0.width) < cols - 10 && cvRound(factor * winSize0.height) < rows - 10;
1526             factor *= scaleFactor)
1527         {
1528             CvSize winSize = { cvRound( winSize0.width * factor ), cvRound( winSize0.height * factor ) };
1529             if( winSize.width < minSize.width || winSize.height < minSize.height )
1530             {
1531                 continue;
1532             }
1533             sizev.push_back(winSize);
1534             scalev.push_back(factor);
1535         }
1536
1537         loopcount = scalev.size();
1538         if(loopcount == 0)
1539         {
1540             loopcount = 1;
1541             sizev.push_back(minSize);
1542             scalev.push_back( std::min(cvRound(minSize.width / winSize0.width), cvRound(minSize.height / winSize0.height)) );
1543         }
1544
1545         ((OclBuffers *)buffers)->pbuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY,
1546             sizeof(cl_int4) * loopcount);
1547         ((OclBuffers *)buffers)->correctionbuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY,
1548             sizeof(cl_float) * loopcount);
1549         ((OclBuffers *)buffers)->newnodebuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_WRITE,
1550             loopcount * m_nodenum * sizeof(GpuHidHaarTreeNode));
1551
1552         scaleinfo = (detect_piramid_info *)malloc(sizeof(detect_piramid_info) * loopcount);
1553         for( int i = 0; i < loopcount; i++ )
1554         {
1555             sz = sizev[i];
1556             factor = scalev[i];
1557             int ystep = cvRound(std::max(2., factor));
1558             int width = (cols - 1 - sz.width  + ystep - 1) / ystep;
1559             int height = (rows - 1 - sz.height + ystep - 1) / ystep;
1560             int grpnumperline = (width + localThreads[0] - 1) / localThreads[0];
1561             int totalgrp = ((height + localThreads[1] - 1) / localThreads[1]) * grpnumperline;
1562
1563             ((detect_piramid_info *)scaleinfo)[i].width_height = (width << 16) | height;
1564             ((detect_piramid_info *)scaleinfo)[i].grpnumperline_totalgrp = (grpnumperline << 16) | totalgrp;
1565             ((detect_piramid_info *)scaleinfo)[i].imgoff = 0;
1566             ((detect_piramid_info *)scaleinfo)[i].factor = factor;
1567         }
1568     }
1569
1570     if (loopcount != m_loopcount)
1571     {
1572         if (initialized)
1573         {
1574             openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->scaleinfobuffer));
1575         }
1576         ((OclBuffers *)buffers)->scaleinfobuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY, sizeof(detect_piramid_info) * loopcount);
1577     }
1578
1579     openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->scaleinfobuffer, 1, 0,
1580         sizeof(detect_piramid_info)*loopcount,
1581         scaleinfo, 0, NULL, NULL));
1582     free(scaleinfo);
1583
1584     m_loopcount = loopcount;
1585 }
1586
1587 void cv::ocl::OclCascadeClassifierBuf::GenResult(CV_OUT std::vector<cv::Rect>& faces,
1588                                                  const std::vector<cv::Rect> &rectList,
1589                                                  const std::vector<int> &rweights)
1590 {
1591     MemStorage tempStorage(cvCreateMemStorage(0));
1592     CvSeq *result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), tempStorage );
1593
1594     if( findBiggestObject && rectList.size() )
1595     {
1596         CvAvgComp result_comp = {{0, 0, 0, 0}, 0};
1597
1598         for( size_t i = 0; i < rectList.size(); i++ )
1599         {
1600             cv::Rect r = rectList[i];
1601             if( r.area() > cv::Rect(result_comp.rect).area() )
1602             {
1603                 result_comp.rect = r;
1604                 result_comp.neighbors = rweights[i];
1605             }
1606         }
1607         cvSeqPush( result_seq, &result_comp );
1608     }
1609     else
1610     {
1611         for( size_t i = 0; i < rectList.size(); i++ )
1612         {
1613             CvAvgComp c;
1614             c.rect = rectList[i];
1615             c.neighbors = rweights[i];
1616             cvSeqPush( result_seq, &c );
1617         }
1618     }
1619
1620     vector<CvAvgComp> vecAvgComp;
1621     Seq<CvAvgComp>(result_seq).copyTo(vecAvgComp);
1622     faces.resize(vecAvgComp.size());
1623     std::transform(vecAvgComp.begin(), vecAvgComp.end(), faces.begin(), getRect());
1624 }
1625
1626 void cv::ocl::OclCascadeClassifierBuf::release()
1627 {
1628     if(initialized)
1629     {
1630         openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->stagebuffer));
1631         openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->scaleinfobuffer));
1632         openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->nodebuffer));
1633         openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->candidatebuffer));
1634
1635         if( (m_flags & CV_HAAR_SCALE_IMAGE) )
1636         {
1637             cvFree(&oldCascade->hid_cascade);
1638         }
1639         else
1640         {
1641             openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->newnodebuffer));
1642             openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->correctionbuffer));
1643             openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->pbuffer));
1644         }
1645
1646         free(buffers);
1647         buffers = NULL;
1648         initialized = false;
1649     }
1650 }
1651
1652 #ifndef _MAX_PATH
1653 #define _MAX_PATH 1024
1654 #endif