add ocl::min and ocl::max (includes accuracy tests update)
[profile/ivi/opencv.git] / modules / ocl / src / haar.cpp
1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                           License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
14 // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // @Authors
18 //    Niko Li, newlife20080214@gmail.com
19 //    Wang Weiyan, wangweiyanster@gmail.com
20 //    Jia Haipeng, jiahaipeng95@gmail.com
21 //    Wu Xinglong, wxl370@126.com
22 //    Wang Yao, bitwangyaoyao@gmail.com
23 //    Sen Liu, swjtuls1987@126.com
24 //
25 // Redistribution and use in source and binary forms, with or without modification,
26 // are permitted provided that the following conditions are met:
27 //
28 //   * Redistribution's of source code must retain the above copyright notice,
29 //     this list of conditions and the following disclaimer.
30 //
31 //   * Redistribution's in binary form must reproduce the above copyright notice,
32 //     this list of conditions and the following disclaimer in the documentation
33 //     and/or other oclMaterials provided with the distribution.
34 //
35 //   * The name of the copyright holders may not be used to endorse or promote products
36 //     derived from this software without specific prior written permission.
37 //
38 // This software is provided by the copyright holders and contributors "as is" and
39 // any express or implied warranties, including, but not limited to, the implied
40 // warranties of merchantability and fitness for a particular purpose are disclaimed.
41 // In no event shall the Intel Corporation or contributors be liable for any direct,
42 // indirect, incidental, special, exemplary, or consequential damages
43 // (including, but not limited to, procurement of substitute goods or services;
44 // loss of use, data, or profits; or business interruption) however caused
45 // and on any theory of liability, whether in contract, strict liability,
46 // or tort (including negligence or otherwise) arising in any way out of
47 // the use of this software, even if advised of the possibility of such damage.
48 //
49 //M*/
50
51 #include "precomp.hpp"
52 #include "opencl_kernels.hpp"
53
54 using namespace cv;
55 using namespace cv::ocl;
56
57 /* these settings affect the quality of detection: change with care */
58 #define CV_ADJUST_FEATURES 1
59 #define CV_ADJUST_WEIGHTS  0
60
61 typedef int sumtype;
62 typedef double sqsumtype;
63
64 typedef struct CvHidHaarFeature
65 {
66     struct
67     {
68         sumtype *p0, *p1, *p2, *p3;
69         float weight;
70     }
71     rect[CV_HAAR_FEATURE_MAX];
72 }
73 CvHidHaarFeature;
74
75
76 typedef struct CvHidHaarTreeNode
77 {
78     CvHidHaarFeature feature;
79     float threshold;
80     int left;
81     int right;
82 }
83 CvHidHaarTreeNode;
84
85
86 typedef struct CvHidHaarClassifier
87 {
88     int count;
89     //CvHaarFeature* orig_feature;
90     CvHidHaarTreeNode *node;
91     float *alpha;
92 }
93 CvHidHaarClassifier;
94
95
96 typedef struct CvHidHaarStageClassifier
97 {
98     int  count;
99     float threshold;
100     CvHidHaarClassifier *classifier;
101     int two_rects;
102
103     struct CvHidHaarStageClassifier *next;
104     struct CvHidHaarStageClassifier *child;
105     struct CvHidHaarStageClassifier *parent;
106 }
107 CvHidHaarStageClassifier;
108
109
110 struct CvHidHaarClassifierCascade
111 {
112     int  count;
113     int  is_stump_based;
114     int  has_tilted_features;
115     int  is_tree;
116     double inv_window_area;
117     CvMat sum, sqsum, tilted;
118     CvHidHaarStageClassifier *stage_classifier;
119     sqsumtype *pq0, *pq1, *pq2, *pq3;
120     sumtype *p0, *p1, *p2, *p3;
121
122     void **ipp_stages;
123 };
124 typedef struct
125 {
126     int width_height;
127     int grpnumperline_totalgrp;
128     int imgoff;
129     float factor;
130 } detect_piramid_info;
131 #ifdef _MSC_VER
132 #define _ALIGNED_ON(_ALIGNMENT) __declspec(align(_ALIGNMENT))
133
134 typedef _ALIGNED_ON(128) struct  GpuHidHaarTreeNode
135 {
136     _ALIGNED_ON(64) int p[CV_HAAR_FEATURE_MAX][4];
137     float weight[CV_HAAR_FEATURE_MAX] ;
138     float threshold ;
139     _ALIGNED_ON(16) float alpha[3] ;
140     _ALIGNED_ON(4) int left ;
141     _ALIGNED_ON(4) int right ;
142 }
143 GpuHidHaarTreeNode;
144
145
146 typedef  _ALIGNED_ON(32) struct  GpuHidHaarClassifier
147 {
148     _ALIGNED_ON(4) int count;
149     _ALIGNED_ON(8) GpuHidHaarTreeNode *node ;
150     _ALIGNED_ON(8) float *alpha ;
151 }
152 GpuHidHaarClassifier;
153
154
155 typedef _ALIGNED_ON(64) struct   GpuHidHaarStageClassifier
156 {
157     _ALIGNED_ON(4) int  count ;
158     _ALIGNED_ON(4) float threshold ;
159     _ALIGNED_ON(4) int two_rects ;
160     _ALIGNED_ON(8) GpuHidHaarClassifier *classifier ;
161     _ALIGNED_ON(8) struct GpuHidHaarStageClassifier *next;
162     _ALIGNED_ON(8) struct GpuHidHaarStageClassifier *child ;
163     _ALIGNED_ON(8) struct GpuHidHaarStageClassifier *parent ;
164 }
165 GpuHidHaarStageClassifier;
166
167
168 typedef _ALIGNED_ON(64) struct  GpuHidHaarClassifierCascade
169 {
170     _ALIGNED_ON(4) int  count ;
171     _ALIGNED_ON(4) int  is_stump_based ;
172     _ALIGNED_ON(4) int  has_tilted_features ;
173     _ALIGNED_ON(4) int  is_tree ;
174     _ALIGNED_ON(4) int pq0 ;
175     _ALIGNED_ON(4) int pq1 ;
176     _ALIGNED_ON(4) int pq2 ;
177     _ALIGNED_ON(4) int pq3 ;
178     _ALIGNED_ON(4) int p0 ;
179     _ALIGNED_ON(4) int p1 ;
180     _ALIGNED_ON(4) int p2 ;
181     _ALIGNED_ON(4) int p3 ;
182     _ALIGNED_ON(4) float inv_window_area ;
183 } GpuHidHaarClassifierCascade;
184 #else
185 #define _ALIGNED_ON(_ALIGNMENT) __attribute__((aligned(_ALIGNMENT) ))
186
187 typedef struct _ALIGNED_ON(128) GpuHidHaarTreeNode
188 {
189     int p[CV_HAAR_FEATURE_MAX][4] _ALIGNED_ON(64);
190     float weight[CV_HAAR_FEATURE_MAX];// _ALIGNED_ON(16);
191     float threshold;// _ALIGNED_ON(4);
192     float alpha[3] _ALIGNED_ON(16);
193     int left _ALIGNED_ON(4);
194     int right _ALIGNED_ON(4);
195 }
196 GpuHidHaarTreeNode;
197
198 typedef struct _ALIGNED_ON(32) GpuHidHaarClassifier
199 {
200     int count _ALIGNED_ON(4);
201     GpuHidHaarTreeNode *node _ALIGNED_ON(8);
202     float *alpha _ALIGNED_ON(8);
203 }
204 GpuHidHaarClassifier;
205
206
207 typedef struct _ALIGNED_ON(64) GpuHidHaarStageClassifier
208 {
209     int  count _ALIGNED_ON(4);
210     float threshold _ALIGNED_ON(4);
211     int two_rects _ALIGNED_ON(4);
212     GpuHidHaarClassifier *classifier _ALIGNED_ON(8);
213     struct GpuHidHaarStageClassifier *next _ALIGNED_ON(8);
214     struct GpuHidHaarStageClassifier *child _ALIGNED_ON(8);
215     struct GpuHidHaarStageClassifier *parent _ALIGNED_ON(8);
216 }
217 GpuHidHaarStageClassifier;
218
219
220 typedef struct _ALIGNED_ON(64) GpuHidHaarClassifierCascade
221 {
222     int  count _ALIGNED_ON(4);
223     int  is_stump_based _ALIGNED_ON(4);
224     int  has_tilted_features _ALIGNED_ON(4);
225     int  is_tree _ALIGNED_ON(4);
226     int pq0 _ALIGNED_ON(4);
227     int pq1 _ALIGNED_ON(4);
228     int pq2 _ALIGNED_ON(4);
229     int pq3 _ALIGNED_ON(4);
230     int p0 _ALIGNED_ON(4);
231     int p1 _ALIGNED_ON(4);
232     int p2 _ALIGNED_ON(4);
233     int p3 _ALIGNED_ON(4);
234     float inv_window_area _ALIGNED_ON(4);
235 } GpuHidHaarClassifierCascade;
236 #endif
237
238 const int icv_object_win_border = 1;
239 const float icv_stage_threshold_bias = 0.0001f;
240 double globaltime = 0;
241
242 /* create more efficient internal representation of haar classifier cascade */
243 static GpuHidHaarClassifierCascade * gpuCreateHidHaarClassifierCascade( CvHaarClassifierCascade *cascade, int *size, int *totalclassifier)
244 {
245     GpuHidHaarClassifierCascade *out = 0;
246
247     int i, j, k, l;
248     int datasize;
249     int total_classifiers = 0;
250     int total_nodes = 0;
251     char errorstr[256];
252
253     GpuHidHaarStageClassifier *stage_classifier_ptr;
254     GpuHidHaarClassifier *haar_classifier_ptr;
255     GpuHidHaarTreeNode *haar_node_ptr;
256
257     CvSize orig_window_size;
258     int has_tilted_features = 0;
259
260     if( !CV_IS_HAAR_CLASSIFIER(cascade) )
261         CV_Error( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" );
262
263     if( cascade->hid_cascade )
264         CV_Error( CV_StsError, "hid_cascade has been already created" );
265
266     if( !cascade->stage_classifier )
267         CV_Error( CV_StsNullPtr, "" );
268
269     if( cascade->count <= 0 )
270         CV_Error( CV_StsOutOfRange, "Negative number of cascade stages" );
271
272     orig_window_size = cascade->orig_window_size;
273
274     /* check input structure correctness and calculate total memory size needed for
275     internal representation of the classifier cascade */
276     for( i = 0; i < cascade->count; i++ )
277     {
278         CvHaarStageClassifier *stage_classifier = cascade->stage_classifier + i;
279
280         if( !stage_classifier->classifier ||
281                 stage_classifier->count <= 0 )
282         {
283             sprintf( errorstr, "header of the stage classifier #%d is invalid "
284                      "(has null pointers or non-positive classfier count)", i );
285             CV_Error( CV_StsError, errorstr );
286         }
287
288         total_classifiers += stage_classifier->count;
289
290         for( j = 0; j < stage_classifier->count; j++ )
291         {
292             CvHaarClassifier *classifier = stage_classifier->classifier + j;
293
294             total_nodes += classifier->count;
295             for( l = 0; l < classifier->count; l++ )
296             {
297                 for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ )
298                 {
299                     if( classifier->haar_feature[l].rect[k].r.width )
300                     {
301                         CvRect r = classifier->haar_feature[l].rect[k].r;
302                         int tilted = classifier->haar_feature[l].tilted;
303                         has_tilted_features |= tilted != 0;
304                         if( r.width < 0 || r.height < 0 || r.y < 0 ||
305                                 r.x + r.width > orig_window_size.width
306                                 ||
307                                 (!tilted &&
308                                  (r.x < 0 || r.y + r.height > orig_window_size.height))
309                                 ||
310                                 (tilted && (r.x - r.height < 0 ||
311                                             r.y + r.width + r.height > orig_window_size.height)))
312                         {
313                             sprintf( errorstr, "rectangle #%d of the classifier #%d of "
314                                      "the stage classifier #%d is not inside "
315                                      "the reference (original) cascade window", k, j, i );
316                             CV_Error( CV_StsNullPtr, errorstr );
317                         }
318                     }
319                 }
320             }
321         }
322     }
323
324     // this is an upper boundary for the whole hidden cascade size
325     datasize = sizeof(GpuHidHaarClassifierCascade)                   +
326                sizeof(GpuHidHaarStageClassifier) * cascade->count    +
327                sizeof(GpuHidHaarClassifier)      * total_classifiers +
328                sizeof(GpuHidHaarTreeNode)        * total_nodes;
329
330     *totalclassifier = total_classifiers;
331     *size = datasize;
332     out = (GpuHidHaarClassifierCascade *)cvAlloc( datasize );
333     memset( out, 0, sizeof(*out) );
334
335     /* init header */
336     out->count = cascade->count;
337     stage_classifier_ptr = (GpuHidHaarStageClassifier *)(out + 1);
338     haar_classifier_ptr = (GpuHidHaarClassifier *)(stage_classifier_ptr + cascade->count);
339     haar_node_ptr = (GpuHidHaarTreeNode *)(haar_classifier_ptr + total_classifiers);
340
341     out->is_stump_based = 1;
342     out->has_tilted_features = has_tilted_features;
343     out->is_tree = 0;
344
345     /* initialize internal representation */
346     for( i = 0; i < cascade->count; i++ )
347     {
348         CvHaarStageClassifier *stage_classifier = cascade->stage_classifier + i;
349         GpuHidHaarStageClassifier *hid_stage_classifier = stage_classifier_ptr + i;
350
351         hid_stage_classifier->count = stage_classifier->count;
352         hid_stage_classifier->threshold = stage_classifier->threshold - icv_stage_threshold_bias;
353         hid_stage_classifier->classifier = haar_classifier_ptr;
354         hid_stage_classifier->two_rects = 1;
355         haar_classifier_ptr += stage_classifier->count;
356
357         for( j = 0; j < stage_classifier->count; j++ )
358         {
359             CvHaarClassifier *classifier         = stage_classifier->classifier + j;
360             GpuHidHaarClassifier *hid_classifier = hid_stage_classifier->classifier + j;
361             int node_count = classifier->count;
362
363             float *alpha_ptr = &haar_node_ptr->alpha[0];
364
365             hid_classifier->count = node_count;
366             hid_classifier->node = haar_node_ptr;
367             hid_classifier->alpha = alpha_ptr;
368
369             for( l = 0; l < node_count; l++ )
370             {
371                 GpuHidHaarTreeNode *node     = hid_classifier->node + l;
372                 CvHaarFeature      *feature = classifier->haar_feature + l;
373
374                 memset( node, -1, sizeof(*node) );
375                 node->threshold = classifier->threshold[l];
376                 node->left      = classifier->left[l];
377                 node->right     = classifier->right[l];
378
379                 if( fabs(feature->rect[2].weight) < DBL_EPSILON ||
380                         feature->rect[2].r.width == 0 ||
381                         feature->rect[2].r.height == 0 )
382                 {
383                     node->p[2][0] = 0;
384                     node->p[2][1] = 0;
385                     node->p[2][2] = 0;
386                     node->p[2][3] = 0;
387                     node->weight[2] = 0;
388                 }
389                 else
390                     hid_stage_classifier->two_rects = 0;
391
392                 memcpy( node->alpha, classifier->alpha, (node_count + 1)*sizeof(alpha_ptr[0]));
393                 haar_node_ptr = haar_node_ptr + 1;
394             }
395             out->is_stump_based &= node_count == 1;
396         }
397     }
398
399     cascade->hid_cascade = (CvHidHaarClassifierCascade *)out;
400     assert( (char *)haar_node_ptr - (char *)out <= datasize );
401
402     return out;
403 }
404
405
406 #define sum_elem_ptr(sum,row,col)  \
407     ((sumtype*)CV_MAT_ELEM_PTR_FAST((sum),(row),(col),sizeof(sumtype)))
408
409 #define sqsum_elem_ptr(sqsum,row,col)  \
410     ((sqsumtype*)CV_MAT_ELEM_PTR_FAST((sqsum),(row),(col),sizeof(sqsumtype)))
411
412 #define calc_sum(rect,offset) \
413     ((rect).p0[offset] - (rect).p1[offset] - (rect).p2[offset] + (rect).p3[offset])
414
415
416 static void gpuSetImagesForHaarClassifierCascade( CvHaarClassifierCascade *_cascade,
417                                       double scale,
418                                       int step)
419 {
420     GpuHidHaarClassifierCascade *cascade;
421     int coi0 = 0, coi1 = 0;
422     int i;
423     int datasize;
424     int total;
425     CvRect equRect;
426     double weight_scale;
427     GpuHidHaarStageClassifier *stage_classifier;
428
429     if( !CV_IS_HAAR_CLASSIFIER(_cascade) )
430         CV_Error( !_cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" );
431
432     if( scale <= 0 )
433         CV_Error( CV_StsOutOfRange, "Scale must be positive" );
434
435     if( coi0 || coi1 )
436         CV_Error( CV_BadCOI, "COI is not supported" );
437
438     if( !_cascade->hid_cascade )
439         gpuCreateHidHaarClassifierCascade(_cascade, &datasize, &total);
440
441     cascade = (GpuHidHaarClassifierCascade *) _cascade->hid_cascade;
442     stage_classifier = (GpuHidHaarStageClassifier *) (cascade + 1);
443
444     _cascade->scale = scale;
445     _cascade->real_window_size.width = cvRound( _cascade->orig_window_size.width * scale );
446     _cascade->real_window_size.height = cvRound( _cascade->orig_window_size.height * scale );
447
448     equRect.x = equRect.y = cvRound(scale);
449     equRect.width = cvRound((_cascade->orig_window_size.width - 2) * scale);
450     equRect.height = cvRound((_cascade->orig_window_size.height - 2) * scale);
451     weight_scale = 1. / (equRect.width * equRect.height);
452     cascade->inv_window_area = weight_scale;
453
454     cascade->pq0 = equRect.x;
455     cascade->pq1 = equRect.y;
456     cascade->pq2 = equRect.x + equRect.width;
457     cascade->pq3 = equRect.y + equRect.height;
458
459     cascade->p0 = equRect.x;
460     cascade->p1 = equRect.y;
461     cascade->p2 = equRect.x + equRect.width;
462     cascade->p3 = equRect.y + equRect.height;
463
464
465     /* init pointers in haar features according to real window size and
466     given image pointers */
467     for( i = 0; i < _cascade->count; i++ )
468     {
469         int j, k, l;
470         for( j = 0; j < stage_classifier[i].count; j++ )
471         {
472             for( l = 0; l < stage_classifier[i].classifier[j].count; l++ )
473             {
474                 CvHaarFeature *feature =
475                     &_cascade->stage_classifier[i].classifier[j].haar_feature[l];
476                 GpuHidHaarTreeNode *hidnode = &stage_classifier[i].classifier[j].node[l];
477                 double sum0 = 0, area0 = 0;
478                 CvRect r[3];
479
480                 int base_w = -1, base_h = -1;
481                 int new_base_w = 0, new_base_h = 0;
482                 int kx, ky;
483                 int flagx = 0, flagy = 0;
484                 int x0 = 0, y0 = 0;
485                 int nr;
486
487                 /* align blocks */
488                 for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ )
489                 {
490                     if(!hidnode->p[k][0])
491                         break;
492                     r[k] = feature->rect[k].r;
493                     base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].width - 1) );
494                     base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].x - r[0].x - 1) );
495                     base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].height - 1) );
496                     base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].y - r[0].y - 1) );
497                 }
498
499                 nr = k;
500                 base_w += 1;
501                 base_h += 1;
502                 if(base_w == 0)
503                     base_w = 1;
504                 kx = r[0].width / base_w;
505                 if(base_h == 0)
506                     base_h = 1;
507                 ky = r[0].height / base_h;
508
509                 if( kx <= 0 )
510                 {
511                     flagx = 1;
512                     new_base_w = cvRound( r[0].width * scale ) / kx;
513                     x0 = cvRound( r[0].x * scale );
514                 }
515
516                 if( ky <= 0 )
517                 {
518                     flagy = 1;
519                     new_base_h = cvRound( r[0].height * scale ) / ky;
520                     y0 = cvRound( r[0].y * scale );
521                 }
522
523                 for( k = 0; k < nr; k++ )
524                 {
525                     CvRect tr;
526                     double correction_ratio;
527
528                     if( flagx )
529                     {
530                         tr.x = (r[k].x - r[0].x) * new_base_w / base_w + x0;
531                         tr.width = r[k].width * new_base_w / base_w;
532                     }
533                     else
534                     {
535                         tr.x = cvRound( r[k].x * scale );
536                         tr.width = cvRound( r[k].width * scale );
537                     }
538
539                     if( flagy )
540                     {
541                         tr.y = (r[k].y - r[0].y) * new_base_h / base_h + y0;
542                         tr.height = r[k].height * new_base_h / base_h;
543                     }
544                     else
545                     {
546                         tr.y = cvRound( r[k].y * scale );
547                         tr.height = cvRound( r[k].height * scale );
548                     }
549
550 #if CV_ADJUST_WEIGHTS
551                     {
552                         // RAINER START
553                         const float orig_feature_size =  (float)(feature->rect[k].r.width) * feature->rect[k].r.height;
554                         const float orig_norm_size = (float)(_cascade->orig_window_size.width) * (_cascade->orig_window_size.height);
555                         const float feature_size = float(tr.width * tr.height);
556                         //const float normSize    = float(equRect.width*equRect.height);
557                         float target_ratio = orig_feature_size / orig_norm_size;
558                         //float isRatio = featureSize / normSize;
559                         //correctionRatio = targetRatio / isRatio / normSize;
560                         correction_ratio = target_ratio / feature_size;
561                         // RAINER END
562                     }
563 #else
564                     correction_ratio = weight_scale * (!feature->tilted ? 1 : 0.5);
565 #endif
566
567                     if( !feature->tilted )
568                     {
569                         hidnode->p[k][0] = tr.x;
570                         hidnode->p[k][1] = tr.y;
571                         hidnode->p[k][2] = tr.x + tr.width;
572                         hidnode->p[k][3] = tr.y + tr.height;
573                     }
574                     else
575                     {
576                         hidnode->p[k][2] = (tr.y + tr.width) * step + tr.x + tr.width;
577                         hidnode->p[k][3] = (tr.y + tr.width + tr.height) * step + tr.x + tr.width - tr.height;
578                         hidnode->p[k][0] = tr.y * step + tr.x;
579                         hidnode->p[k][1] = (tr.y + tr.height) * step + tr.x - tr.height;
580                     }
581                     hidnode->weight[k] = (float)(feature->rect[k].weight * correction_ratio);
582                     if( k == 0 )
583                         area0 = tr.width * tr.height;
584                     else
585                         sum0 += hidnode->weight[k] * tr.width * tr.height;
586                 }
587                 hidnode->weight[0] = (float)(-sum0 / area0);
588             } /* l */
589         } /* j */
590     }
591 }
592
593 static void gpuSetHaarClassifierCascade( CvHaarClassifierCascade *_cascade)
594 {
595     GpuHidHaarClassifierCascade *cascade;
596     int i;
597     int datasize;
598     int total;
599     CvRect equRect;
600     double weight_scale;
601     GpuHidHaarStageClassifier *stage_classifier;
602
603     if( !CV_IS_HAAR_CLASSIFIER(_cascade) )
604         CV_Error( !_cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" );
605
606     if( !_cascade->hid_cascade )
607         gpuCreateHidHaarClassifierCascade(_cascade, &datasize, &total);
608
609     cascade = (GpuHidHaarClassifierCascade *) _cascade->hid_cascade;
610     stage_classifier = (GpuHidHaarStageClassifier *) cascade + 1;
611
612     _cascade->scale = 1.0;
613     _cascade->real_window_size.width =  _cascade->orig_window_size.width ;
614     _cascade->real_window_size.height = _cascade->orig_window_size.height;
615
616     equRect.x = equRect.y = 1;
617     equRect.width = _cascade->orig_window_size.width - 2;
618     equRect.height = _cascade->orig_window_size.height - 2;
619     weight_scale = 1;
620     cascade->inv_window_area = weight_scale;
621
622     cascade->p0 = equRect.x;
623     cascade->p1 = equRect.y;
624     cascade->p2 = equRect.height;
625     cascade->p3 = equRect.width ;
626     for( i = 0; i < _cascade->count; i++ )
627     {
628         int j, k, l;
629         for( j = 0; j < stage_classifier[i].count; j++ )
630         {
631             for( l = 0; l < stage_classifier[i].classifier[j].count; l++ )
632             {
633                 CvHaarFeature *feature =
634                     &_cascade->stage_classifier[i].classifier[j].haar_feature[l];
635                 GpuHidHaarTreeNode *hidnode = &stage_classifier[i].classifier[j].node[l];
636                 CvRect r[3];
637
638
639                 int nr;
640
641                 /* align blocks */
642                 for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ )
643                 {
644                     if(!hidnode->p[k][0])
645                         break;
646                     r[k] = feature->rect[k].r;
647                }
648
649                 nr = k;
650                 for( k = 0; k < nr; k++ )
651                 {
652                     CvRect tr;
653                     double correction_ratio;
654                     tr.x = r[k].x;
655                     tr.width = r[k].width;
656                     tr.y = r[k].y ;
657                     tr.height = r[k].height;
658                     correction_ratio = weight_scale * (!feature->tilted ? 1 : 0.5);
659                     hidnode->p[k][0] = tr.x;
660                     hidnode->p[k][1] = tr.y;
661                     hidnode->p[k][2] = tr.width;
662                     hidnode->p[k][3] = tr.height;
663                     hidnode->weight[k] = (float)(feature->rect[k].weight * correction_ratio);
664                 }
665             } /* l */
666         } /* j */
667     }
668 }
669
670 CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemStorage *storage, double scaleFactor,
671         int minNeighbors, int flags, CvSize minSize, CvSize maxSize)
672 {
673     CvHaarClassifierCascade *cascade = oldCascade;
674
675     const double GROUP_EPS = 0.2;
676     CvSeq *result_seq = 0;
677
678     cv::ConcurrentRectVector allCandidates;
679     std::vector<cv::Rect> rectList;
680     std::vector<int> rweights;
681     double factor;
682     int datasize=0;
683     int totalclassifier=0;
684
685     GpuHidHaarClassifierCascade *gcascade;
686     GpuHidHaarStageClassifier    *stage;
687     GpuHidHaarClassifier         *classifier;
688     GpuHidHaarTreeNode           *node;
689
690     int *candidate;
691     cl_int status;
692
693     bool findBiggestObject = (flags & CV_HAAR_FIND_BIGGEST_OBJECT) != 0;
694
695     if( maxSize.height == 0 || maxSize.width == 0 )
696     {
697         maxSize.height = gimg.rows;
698         maxSize.width = gimg.cols;
699     }
700
701     if( !CV_IS_HAAR_CLASSIFIER(cascade) )
702         CV_Error( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier cascade" );
703
704     if( !storage )
705         CV_Error( CV_StsNullPtr, "Null storage pointer" );
706
707     if( CV_MAT_DEPTH(gimg.type()) != CV_8U )
708         CV_Error( CV_StsUnsupportedFormat, "Only 8-bit images are supported" );
709
710     if( scaleFactor <= 1 )
711         CV_Error( CV_StsOutOfRange, "scale factor must be > 1" );
712
713     if( findBiggestObject )
714         flags &= ~CV_HAAR_SCALE_IMAGE;
715
716     if( !cascade->hid_cascade )
717         gpuCreateHidHaarClassifierCascade(cascade, &datasize, &totalclassifier);
718
719     result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), storage );
720
721     if( CV_MAT_CN(gimg.type()) > 1 )
722     {
723         oclMat gtemp;
724         cvtColor( gimg, gtemp, CV_BGR2GRAY );
725         gimg = gtemp;
726     }
727
728     if( findBiggestObject )
729         flags &= ~(CV_HAAR_SCALE_IMAGE | CV_HAAR_DO_CANNY_PRUNING);
730
731     if( gimg.cols < minSize.width || gimg.rows < minSize.height )
732         CV_Error(CV_StsError, "Image too small");
733
734     cl_command_queue qu = getClCommandQueue(Context::getContext());
735     if( (flags & CV_HAAR_SCALE_IMAGE) )
736     {
737         CvSize winSize0 = cascade->orig_window_size;
738         int totalheight = 0;
739         int indexy = 0;
740         CvSize sz;
741         vector<CvSize> sizev;
742         vector<float> scalev;
743         for(factor = 1.f;; factor *= scaleFactor)
744         {
745             CvSize winSize = { cvRound(winSize0.width * factor), cvRound(winSize0.height * factor) };
746             sz.width     = cvRound( gimg.cols / factor ) + 1;
747             sz.height    = cvRound( gimg.rows / factor ) + 1;
748             CvSize sz1     = { sz.width - winSize0.width - 1,      sz.height - winSize0.height - 1 };
749
750             if( sz1.width <= 0 || sz1.height <= 0 )
751                 break;
752             if( winSize.width > maxSize.width || winSize.height > maxSize.height )
753                 break;
754             if( winSize.width < minSize.width || winSize.height < minSize.height )
755                 continue;
756
757             totalheight += sz.height;
758             sizev.push_back(sz);
759             scalev.push_back(factor);
760         }
761
762         oclMat gimg1(gimg.rows, gimg.cols, CV_8UC1);
763         oclMat gsum(totalheight + 4, gimg.cols + 1, CV_32SC1);
764         oclMat gsqsum(totalheight + 4, gimg.cols + 1, CV_32FC1);
765
766         cl_mem stagebuffer;
767         cl_mem nodebuffer;
768         cl_mem candidatebuffer;
769         cl_mem scaleinfobuffer;
770         cv::Rect roi, roi2;
771         cv::Mat imgroi, imgroisq;
772         cv::ocl::oclMat resizeroi, gimgroi, gimgroisq;
773         int grp_per_CU = 12;
774
775         size_t blocksize = 8;
776         size_t localThreads[3] = { blocksize, blocksize , 1 };
777         size_t globalThreads[3] = { grp_per_CU *(gsum.clCxt->getDeviceInfo().maxComputeUnits) *localThreads[0],
778                                     localThreads[1], 1
779                                   };
780         int outputsz = 256 * globalThreads[0] / localThreads[0];
781         int loopcount = sizev.size();
782         detect_piramid_info *scaleinfo = (detect_piramid_info *)malloc(sizeof(detect_piramid_info) * loopcount);
783
784         for( int i = 0; i < loopcount; i++ )
785         {
786             sz = sizev[i];
787             factor = scalev[i];
788             roi = Rect(0, indexy, sz.width, sz.height);
789             roi2 = Rect(0, 0, sz.width - 1, sz.height - 1);
790             resizeroi = gimg1(roi2);
791             gimgroi = gsum(roi);
792             gimgroisq = gsqsum(roi);
793             int width = gimgroi.cols - 1 - cascade->orig_window_size.width;
794             int height = gimgroi.rows - 1 - cascade->orig_window_size.height;
795             scaleinfo[i].width_height = (width << 16) | height;
796
797
798             int grpnumperline = (width + localThreads[0] - 1) / localThreads[0];
799             int totalgrp = ((height + localThreads[1] - 1) / localThreads[1]) * grpnumperline;
800
801             scaleinfo[i].grpnumperline_totalgrp = (grpnumperline << 16) | totalgrp;
802             scaleinfo[i].imgoff = gimgroi.offset >> 2;
803             scaleinfo[i].factor = factor;
804             cv::ocl::resize(gimg, resizeroi, Size(sz.width - 1, sz.height - 1), 0, 0, INTER_LINEAR);
805             cv::ocl::integral(resizeroi, gimgroi, gimgroisq);
806             indexy += sz.height;
807         }
808
809         gcascade   = (GpuHidHaarClassifierCascade *)cascade->hid_cascade;
810         stage      = (GpuHidHaarStageClassifier *)(gcascade + 1);
811         classifier = (GpuHidHaarClassifier *)(stage + gcascade->count);
812         node       = (GpuHidHaarTreeNode *)(classifier->node);
813
814         int nodenum = (datasize - sizeof(GpuHidHaarClassifierCascade) -
815                        sizeof(GpuHidHaarStageClassifier) * gcascade->count - sizeof(GpuHidHaarClassifier) * totalclassifier) / sizeof(GpuHidHaarTreeNode);
816
817         candidate = (int *)malloc(4 * sizeof(int) * outputsz);
818
819         gpuSetImagesForHaarClassifierCascade( cascade, 1., gsum.step / 4 );
820
821         stagebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(GpuHidHaarStageClassifier) * gcascade->count);
822         openCLSafeCall(clEnqueueWriteBuffer(qu, stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL));
823
824         nodebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, nodenum * sizeof(GpuHidHaarTreeNode));
825
826         openCLSafeCall(clEnqueueWriteBuffer(qu, nodebuffer, 1, 0, nodenum * sizeof(GpuHidHaarTreeNode),
827                                             node, 0, NULL, NULL));
828         candidatebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_WRITE_ONLY, 4 * sizeof(int) * outputsz);
829
830         scaleinfobuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(detect_piramid_info) * loopcount);
831         openCLSafeCall(clEnqueueWriteBuffer(qu, scaleinfobuffer, 1, 0, sizeof(detect_piramid_info)*loopcount, scaleinfo, 0, NULL, NULL));
832
833         int startstage = 0;
834         int endstage = gcascade->count;
835         int startnode = 0;
836         int pixelstep = gsum.step / 4;
837         int splitstage = 3;
838         int splitnode = stage[0].count + stage[1].count + stage[2].count;
839         cl_int4 p, pq;
840         p.s[0] = gcascade->p0;
841         p.s[1] = gcascade->p1;
842         p.s[2] = gcascade->p2;
843         p.s[3] = gcascade->p3;
844         pq.s[0] = gcascade->pq0;
845         pq.s[1] = gcascade->pq1;
846         pq.s[2] = gcascade->pq2;
847         pq.s[3] = gcascade->pq3;
848         float correction = gcascade->inv_window_area;
849
850         vector<pair<size_t, const void *> > args;
851         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&stagebuffer ));
852         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&scaleinfobuffer ));
853         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&nodebuffer ));
854         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsum.data ));
855         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsqsum.data ));
856         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&candidatebuffer ));
857         args.push_back ( make_pair(sizeof(cl_int) , (void *)&pixelstep ));
858         args.push_back ( make_pair(sizeof(cl_int) , (void *)&loopcount ));
859         args.push_back ( make_pair(sizeof(cl_int) , (void *)&startstage ));
860         args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitstage ));
861         args.push_back ( make_pair(sizeof(cl_int) , (void *)&endstage ));
862         args.push_back ( make_pair(sizeof(cl_int) , (void *)&startnode ));
863         args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitnode ));
864         args.push_back ( make_pair(sizeof(cl_int4) , (void *)&p ));
865         args.push_back ( make_pair(sizeof(cl_int4) , (void *)&pq ));
866         args.push_back ( make_pair(sizeof(cl_float) , (void *)&correction ));
867
868         const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0";
869
870         openCLExecuteKernel(gsum.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascade", globalThreads, localThreads, args, -1, -1, build_options);
871
872         openCLReadBuffer( gsum.clCxt, candidatebuffer, candidate, 4 * sizeof(int)*outputsz );
873
874         for(int i = 0; i < outputsz; i++)
875             if(candidate[4 * i + 2] != 0)
876                 allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1],
877                 candidate[4 * i + 2], candidate[4 * i + 3]));
878
879         free(scaleinfo);
880         free(candidate);
881         openCLSafeCall(clReleaseMemObject(stagebuffer));
882         openCLSafeCall(clReleaseMemObject(scaleinfobuffer));
883         openCLSafeCall(clReleaseMemObject(nodebuffer));
884         openCLSafeCall(clReleaseMemObject(candidatebuffer));
885
886     }
887     else
888     {
889         CvSize winsize0 = cascade->orig_window_size;
890         int n_factors = 0;
891         oclMat gsum;
892         oclMat gsqsum;
893         cv::ocl::integral(gimg, gsum, gsqsum);
894         CvSize sz;
895         vector<CvSize> sizev;
896         vector<float> scalev;
897         gpuSetHaarClassifierCascade(cascade);
898         gcascade   = (GpuHidHaarClassifierCascade *)cascade->hid_cascade;
899         stage      = (GpuHidHaarStageClassifier *)(gcascade + 1);
900         classifier = (GpuHidHaarClassifier *)(stage + gcascade->count);
901         node       = (GpuHidHaarTreeNode *)(classifier->node);
902         cl_mem stagebuffer;
903         cl_mem nodebuffer;
904         cl_mem candidatebuffer;
905         cl_mem scaleinfobuffer;
906         cl_mem pbuffer;
907         cl_mem correctionbuffer;
908         for( n_factors = 0, factor = 1;
909                 cvRound(factor * winsize0.width) < gimg.cols - 10 &&
910                 cvRound(factor * winsize0.height) < gimg.rows - 10;
911                 n_factors++, factor *= scaleFactor )
912         {
913             CvSize winSize = { cvRound( winsize0.width * factor ),
914                                cvRound( winsize0.height * factor )
915                              };
916             if( winSize.width < minSize.width || winSize.height < minSize.height )
917             {
918                 continue;
919             }
920             sizev.push_back(winSize);
921             scalev.push_back(factor);
922         }
923         int loopcount = scalev.size();
924         if(loopcount == 0)
925         {
926             loopcount = 1;
927             n_factors = 1;
928             sizev.push_back(minSize);
929             scalev.push_back( std::min(cvRound(minSize.width / winsize0.width), cvRound(minSize.height / winsize0.height)) );
930
931         }
932         detect_piramid_info *scaleinfo = (detect_piramid_info *)malloc(sizeof(detect_piramid_info) * loopcount);
933         cl_int4 *p = (cl_int4 *)malloc(sizeof(cl_int4) * loopcount);
934         float *correction = (float *)malloc(sizeof(float) * loopcount);
935         int grp_per_CU = 12;
936         size_t blocksize = 8;
937         size_t localThreads[3] = { blocksize, blocksize , 1 };
938         size_t globalThreads[3] = { grp_per_CU *gsum.clCxt->getDeviceInfo().maxComputeUnits *localThreads[0],
939                                     localThreads[1], 1 };
940         int outputsz = 256 * globalThreads[0] / localThreads[0];
941         int nodenum = (datasize - sizeof(GpuHidHaarClassifierCascade) -
942                        sizeof(GpuHidHaarStageClassifier) * gcascade->count - sizeof(GpuHidHaarClassifier) * totalclassifier) / sizeof(GpuHidHaarTreeNode);
943         nodebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY,
944                                         nodenum * sizeof(GpuHidHaarTreeNode));
945         openCLSafeCall(clEnqueueWriteBuffer(qu, nodebuffer, 1, 0,
946                                             nodenum * sizeof(GpuHidHaarTreeNode),
947                                             node, 0, NULL, NULL));
948         cl_mem newnodebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_WRITE,
949                                loopcount * nodenum * sizeof(GpuHidHaarTreeNode));
950         int startstage = 0;
951         int endstage = gcascade->count;
952         for(int i = 0; i < loopcount; i++)
953         {
954             sz = sizev[i];
955             factor = scalev[i];
956             int ystep = cvRound(std::max(2., factor));
957             int equRect_x = (int)(factor * gcascade->p0 + 0.5);
958             int equRect_y = (int)(factor * gcascade->p1 + 0.5);
959             int equRect_w = (int)(factor * gcascade->p3 + 0.5);
960             int equRect_h = (int)(factor * gcascade->p2 + 0.5);
961             p[i].s[0] = equRect_x;
962             p[i].s[1] = equRect_y;
963             p[i].s[2] = equRect_x + equRect_w;
964             p[i].s[3] = equRect_y + equRect_h;
965             correction[i] = 1. / (equRect_w * equRect_h);
966             int width = (gsum.cols - 1 - sz.width  + ystep - 1) / ystep;
967             int height = (gsum.rows - 1 - sz.height + ystep - 1) / ystep;
968             int grpnumperline = (width + localThreads[0] - 1) / localThreads[0];
969             int totalgrp = ((height + localThreads[1] - 1) / localThreads[1]) * grpnumperline;
970
971             scaleinfo[i].width_height = (width << 16) | height;
972             scaleinfo[i].grpnumperline_totalgrp = (grpnumperline << 16) | totalgrp;
973             scaleinfo[i].imgoff = 0;
974             scaleinfo[i].factor = factor;
975             int startnodenum = nodenum * i;
976             float factor2 = (float)factor;
977
978             vector<pair<size_t, const void *> > args1;
979             args1.push_back ( make_pair(sizeof(cl_mem) , (void *)&nodebuffer ));
980             args1.push_back ( make_pair(sizeof(cl_mem) , (void *)&newnodebuffer ));
981             args1.push_back ( make_pair(sizeof(cl_float) , (void *)&factor2 ));
982             args1.push_back ( make_pair(sizeof(cl_float) , (void *)&correction[i] ));
983             args1.push_back ( make_pair(sizeof(cl_int) , (void *)&startnodenum ));
984
985             size_t globalThreads2[3] = {nodenum, 1, 1};
986             openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuscaleclassifier", globalThreads2, NULL/*localThreads2*/, args1, -1, -1);
987         }
988
989         int step = gsum.step / 4;
990         int startnode = 0;
991         int splitstage = 3;
992         stagebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(GpuHidHaarStageClassifier) * gcascade->count);
993         openCLSafeCall(clEnqueueWriteBuffer(qu, stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL));
994         candidatebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_WRITE_ONLY | CL_MEM_ALLOC_HOST_PTR, 4 * sizeof(int) * outputsz);
995         scaleinfobuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(detect_piramid_info) * loopcount);
996         openCLSafeCall(clEnqueueWriteBuffer(qu, scaleinfobuffer, 1, 0, sizeof(detect_piramid_info)*loopcount, scaleinfo, 0, NULL, NULL));
997         pbuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(cl_int4) * loopcount);
998         openCLSafeCall(clEnqueueWriteBuffer(qu, pbuffer, 1, 0, sizeof(cl_int4)*loopcount, p, 0, NULL, NULL));
999         correctionbuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(cl_float) * loopcount);
1000         openCLSafeCall(clEnqueueWriteBuffer(qu, correctionbuffer, 1, 0, sizeof(cl_float)*loopcount, correction, 0, NULL, NULL));
1001
1002         vector<pair<size_t, const void *> > args;
1003         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&stagebuffer ));
1004         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&scaleinfobuffer ));
1005         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&newnodebuffer ));
1006         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsum.data ));
1007         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsqsum.data ));
1008         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&candidatebuffer ));
1009         args.push_back ( make_pair(sizeof(cl_int) , (void *)&gsum.rows ));
1010         args.push_back ( make_pair(sizeof(cl_int) , (void *)&gsum.cols ));
1011         args.push_back ( make_pair(sizeof(cl_int) , (void *)&step ));
1012         args.push_back ( make_pair(sizeof(cl_int) , (void *)&loopcount ));
1013         args.push_back ( make_pair(sizeof(cl_int) , (void *)&startstage ));
1014         args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitstage ));
1015         args.push_back ( make_pair(sizeof(cl_int) , (void *)&endstage ));
1016         args.push_back ( make_pair(sizeof(cl_int) , (void *)&startnode ));
1017         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&pbuffer ));
1018         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&correctionbuffer ));
1019         args.push_back ( make_pair(sizeof(cl_int) , (void *)&nodenum ));
1020         const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0";
1021         openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2", globalThreads, localThreads, args, -1, -1, build_options);
1022
1023         candidate = (int *)clEnqueueMapBuffer(qu, candidatebuffer, 1, CL_MAP_READ, 0, 4 * sizeof(int) * outputsz, 0, 0, 0, &status);
1024
1025         for(int i = 0; i < outputsz; i++)
1026         {
1027             if(candidate[4 * i + 2] != 0)
1028                 allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1], candidate[4 * i + 2], candidate[4 * i + 3]));
1029         }
1030
1031         free(scaleinfo);
1032         free(p);
1033         free(correction);
1034         clEnqueueUnmapMemObject(qu, candidatebuffer, candidate, 0, 0, 0);
1035         openCLSafeCall(clReleaseMemObject(stagebuffer));
1036         openCLSafeCall(clReleaseMemObject(scaleinfobuffer));
1037         openCLSafeCall(clReleaseMemObject(nodebuffer));
1038         openCLSafeCall(clReleaseMemObject(newnodebuffer));
1039         openCLSafeCall(clReleaseMemObject(candidatebuffer));
1040         openCLSafeCall(clReleaseMemObject(pbuffer));
1041         openCLSafeCall(clReleaseMemObject(correctionbuffer));
1042     }
1043
1044     cvFree(&cascade->hid_cascade);
1045     rectList.resize(allCandidates.size());
1046     if(!allCandidates.empty())
1047         std::copy(allCandidates.begin(), allCandidates.end(), rectList.begin());
1048
1049     if( minNeighbors != 0 || findBiggestObject )
1050         groupRectangles(rectList, rweights, std::max(minNeighbors, 1), GROUP_EPS);
1051     else
1052         rweights.resize(rectList.size(), 0);
1053
1054     if( findBiggestObject && rectList.size() )
1055     {
1056         CvAvgComp result_comp = {{0, 0, 0, 0}, 0};
1057
1058         for( size_t i = 0; i < rectList.size(); i++ )
1059         {
1060             cv::Rect r = rectList[i];
1061             if( r.area() > cv::Rect(result_comp.rect).area() )
1062             {
1063                 result_comp.rect = r;
1064                 result_comp.neighbors = rweights[i];
1065             }
1066         }
1067         cvSeqPush( result_seq, &result_comp );
1068     }
1069     else
1070     {
1071         for( size_t i = 0; i < rectList.size(); i++ )
1072         {
1073             CvAvgComp c;
1074             c.rect = rectList[i];
1075             c.neighbors = rweights[i];
1076             cvSeqPush( result_seq, &c );
1077         }
1078     }
1079
1080     return result_seq;
1081 }
1082
1083 struct OclBuffers
1084 {
1085     cl_mem stagebuffer;
1086     cl_mem nodebuffer;
1087     cl_mem candidatebuffer;
1088     cl_mem scaleinfobuffer;
1089     cl_mem pbuffer;
1090     cl_mem correctionbuffer;
1091     cl_mem newnodebuffer;
1092 };
1093
1094 struct getRect
1095 {
1096     Rect operator()(const CvAvgComp &e) const
1097     {
1098         return e.rect;
1099     }
1100 };
1101
1102 void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std::vector<cv::Rect>& faces,
1103                                                         double scaleFactor, int minNeighbors, int flags,
1104                                                         Size minSize, Size maxSize)
1105 {
1106     int blocksize = 8;
1107     int grp_per_CU = 12;
1108     size_t localThreads[3] = { blocksize, blocksize, 1 };
1109     size_t globalThreads[3] = { grp_per_CU * cv::ocl::Context::getContext()->getDeviceInfo().maxComputeUnits *localThreads[0],
1110         localThreads[1],
1111         1 };
1112     int outputsz = 256 * globalThreads[0] / localThreads[0];
1113
1114     Init(gimg.rows, gimg.cols, scaleFactor, flags, outputsz, localThreads, minSize, maxSize);
1115
1116     const double GROUP_EPS = 0.2;
1117
1118     cv::ConcurrentRectVector allCandidates;
1119     std::vector<cv::Rect> rectList;
1120     std::vector<int> rweights;
1121
1122     CvHaarClassifierCascade      *cascade = oldCascade;
1123     GpuHidHaarClassifierCascade  *gcascade;
1124     GpuHidHaarStageClassifier    *stage;
1125
1126     if( CV_MAT_DEPTH(gimg.type()) != CV_8U )
1127         CV_Error( CV_StsUnsupportedFormat, "Only 8-bit images are supported" );
1128
1129     if( CV_MAT_CN(gimg.type()) > 1 )
1130     {
1131         oclMat gtemp;
1132         cvtColor( gimg, gtemp, CV_BGR2GRAY );
1133         gimg = gtemp;
1134     }
1135
1136     int *candidate;
1137     cl_command_queue qu = getClCommandQueue(Context::getContext());
1138     if( (flags & CV_HAAR_SCALE_IMAGE) )
1139     {
1140         int indexy = 0;
1141         CvSize sz;
1142
1143         cv::Rect roi, roi2;
1144         cv::ocl::oclMat resizeroi, gimgroi, gimgroisq;
1145
1146         for( int i = 0; i < m_loopcount; i++ )
1147         {
1148             sz = sizev[i];
1149             roi = Rect(0, indexy, sz.width, sz.height);
1150             roi2 = Rect(0, 0, sz.width - 1, sz.height - 1);
1151             resizeroi = gimg1(roi2);
1152             gimgroi = gsum(roi);
1153             gimgroisq = gsqsum(roi);
1154
1155             cv::ocl::resize(gimg, resizeroi, Size(sz.width - 1, sz.height - 1), 0, 0, INTER_LINEAR);
1156             cv::ocl::integral(resizeroi, gimgroi, gimgroisq);
1157             indexy += sz.height;
1158         }
1159
1160         gcascade   = (GpuHidHaarClassifierCascade *)(cascade->hid_cascade);
1161         stage      = (GpuHidHaarStageClassifier *)(gcascade + 1);
1162
1163         int startstage = 0;
1164         int endstage = gcascade->count;
1165         int startnode = 0;
1166         int pixelstep = gsum.step / 4;
1167         int splitstage = 3;
1168         int splitnode = stage[0].count + stage[1].count + stage[2].count;
1169         cl_int4 p, pq;
1170         p.s[0] = gcascade->p0;
1171         p.s[1] = gcascade->p1;
1172         p.s[2] = gcascade->p2;
1173         p.s[3] = gcascade->p3;
1174         pq.s[0] = gcascade->pq0;
1175         pq.s[1] = gcascade->pq1;
1176         pq.s[2] = gcascade->pq2;
1177         pq.s[3] = gcascade->pq3;
1178         float correction = gcascade->inv_window_area;
1179
1180         vector<pair<size_t, const void *> > args;
1181         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->stagebuffer ));
1182         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->scaleinfobuffer ));
1183         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->nodebuffer ));
1184         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsum.data ));
1185         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsqsum.data ));
1186         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->candidatebuffer ));
1187         args.push_back ( make_pair(sizeof(cl_int) , (void *)&pixelstep ));
1188         args.push_back ( make_pair(sizeof(cl_int) , (void *)&m_loopcount ));
1189         args.push_back ( make_pair(sizeof(cl_int) , (void *)&startstage ));
1190         args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitstage ));
1191         args.push_back ( make_pair(sizeof(cl_int) , (void *)&endstage ));
1192         args.push_back ( make_pair(sizeof(cl_int) , (void *)&startnode ));
1193         args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitnode ));
1194         args.push_back ( make_pair(sizeof(cl_int4) , (void *)&p ));
1195         args.push_back ( make_pair(sizeof(cl_int4) , (void *)&pq ));
1196         args.push_back ( make_pair(sizeof(cl_float) , (void *)&correction ));
1197
1198         const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0";
1199
1200         openCLExecuteKernel(gsum.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascade", globalThreads, localThreads, args, -1, -1, build_options);
1201
1202         candidate = (int *)malloc(4 * sizeof(int) * outputsz);
1203         memset(candidate, 0, 4 * sizeof(int) * outputsz);
1204
1205         openCLReadBuffer( gsum.clCxt, ((OclBuffers *)buffers)->candidatebuffer, candidate, 4 * sizeof(int)*outputsz );
1206
1207         for(int i = 0; i < outputsz; i++)
1208         {
1209             if(candidate[4 * i + 2] != 0)
1210             {
1211                 allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1],
1212                 candidate[4 * i + 2], candidate[4 * i + 3]));
1213             }
1214         }
1215         free((void *)candidate);
1216         candidate = NULL;
1217     }
1218     else
1219     {
1220         cv::ocl::integral(gimg, gsum, gsqsum);
1221
1222         gcascade   = (GpuHidHaarClassifierCascade *)cascade->hid_cascade;
1223
1224         int step = gsum.step / 4;
1225         int startnode = 0;
1226         int splitstage = 3;
1227
1228         int startstage = 0;
1229         int endstage = gcascade->count;
1230
1231         vector<pair<size_t, const void *> > args;
1232         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->stagebuffer ));
1233         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->scaleinfobuffer ));
1234         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->newnodebuffer ));
1235         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsum.data ));
1236         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsqsum.data ));
1237         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->candidatebuffer ));
1238         args.push_back ( make_pair(sizeof(cl_int) , (void *)&gsum.rows ));
1239         args.push_back ( make_pair(sizeof(cl_int) , (void *)&gsum.cols ));
1240         args.push_back ( make_pair(sizeof(cl_int) , (void *)&step ));
1241         args.push_back ( make_pair(sizeof(cl_int) , (void *)&m_loopcount ));
1242         args.push_back ( make_pair(sizeof(cl_int) , (void *)&startstage ));
1243         args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitstage ));
1244         args.push_back ( make_pair(sizeof(cl_int) , (void *)&endstage ));
1245         args.push_back ( make_pair(sizeof(cl_int) , (void *)&startnode ));
1246         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->pbuffer ));
1247         args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->correctionbuffer ));
1248         args.push_back ( make_pair(sizeof(cl_int) , (void *)&m_nodenum ));
1249
1250         const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0";
1251         openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2", globalThreads, localThreads, args, -1, -1, build_options);
1252
1253         candidate = (int *)clEnqueueMapBuffer(qu, ((OclBuffers *)buffers)->candidatebuffer, 1, CL_MAP_READ, 0, 4 * sizeof(int) * outputsz, 0, 0, 0, NULL);
1254
1255         for(int i = 0; i < outputsz; i++)
1256         {
1257             if(candidate[4 * i + 2] != 0)
1258                 allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1],
1259                 candidate[4 * i + 2], candidate[4 * i + 3]));
1260         }
1261         clEnqueueUnmapMemObject(qu, ((OclBuffers *)buffers)->candidatebuffer, candidate, 0, 0, 0);
1262     }
1263     rectList.resize(allCandidates.size());
1264     if(!allCandidates.empty())
1265         std::copy(allCandidates.begin(), allCandidates.end(), rectList.begin());
1266
1267     if( minNeighbors != 0 || findBiggestObject )
1268         groupRectangles(rectList, rweights, std::max(minNeighbors, 1), GROUP_EPS);
1269     else
1270         rweights.resize(rectList.size(), 0);
1271
1272     GenResult(faces, rectList, rweights);
1273 }
1274
1275 void cv::ocl::OclCascadeClassifierBuf::Init(const int rows, const int cols,
1276     double scaleFactor, int flags,
1277     const int outputsz, const size_t localThreads[],
1278     CvSize minSize, CvSize maxSize)
1279 {
1280     if(initialized)
1281     {
1282         return; // we only allow one time initialization
1283     }
1284     CvHaarClassifierCascade      *cascade = oldCascade;
1285
1286     if( !CV_IS_HAAR_CLASSIFIER(cascade) )
1287         CV_Error( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier cascade" );
1288
1289     if( scaleFactor <= 1 )
1290         CV_Error( CV_StsOutOfRange, "scale factor must be > 1" );
1291
1292     if( cols < minSize.width || rows < minSize.height )
1293         CV_Error(CV_StsError, "Image too small");
1294
1295     int datasize=0;
1296     int totalclassifier=0;
1297
1298     if( !cascade->hid_cascade )
1299     {
1300         gpuCreateHidHaarClassifierCascade(cascade, &datasize, &totalclassifier);
1301     }
1302
1303     if( maxSize.height == 0 || maxSize.width == 0 )
1304     {
1305         maxSize.height = rows;
1306         maxSize.width = cols;
1307     }
1308
1309     findBiggestObject = (flags & CV_HAAR_FIND_BIGGEST_OBJECT) != 0;
1310     if( findBiggestObject )
1311         flags &= ~(CV_HAAR_SCALE_IMAGE | CV_HAAR_DO_CANNY_PRUNING);
1312
1313     CreateBaseBufs(datasize, totalclassifier, flags, outputsz);
1314     CreateFactorRelatedBufs(rows, cols, flags, scaleFactor, localThreads, minSize, maxSize);
1315
1316     m_scaleFactor = scaleFactor;
1317     m_rows = rows;
1318     m_cols = cols;
1319     m_flags = flags;
1320     m_minSize = minSize;
1321     m_maxSize = maxSize;
1322
1323     // initialize nodes
1324     GpuHidHaarClassifierCascade  *gcascade;
1325     GpuHidHaarStageClassifier    *stage;
1326     GpuHidHaarClassifier         *classifier;
1327     GpuHidHaarTreeNode           *node;
1328     cl_command_queue qu = getClCommandQueue(Context::getContext());
1329     if( (flags & CV_HAAR_SCALE_IMAGE) )
1330     {
1331         gcascade   = (GpuHidHaarClassifierCascade *)(cascade->hid_cascade);
1332         stage      = (GpuHidHaarStageClassifier *)(gcascade + 1);
1333         classifier = (GpuHidHaarClassifier *)(stage + gcascade->count);
1334         node       = (GpuHidHaarTreeNode *)(classifier->node);
1335
1336         gpuSetImagesForHaarClassifierCascade( cascade, 1., gsum.step / 4 );
1337
1338         openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->stagebuffer, 1, 0,
1339             sizeof(GpuHidHaarStageClassifier) * gcascade->count,
1340             stage, 0, NULL, NULL));
1341
1342         openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->nodebuffer, 1, 0,
1343                                             m_nodenum * sizeof(GpuHidHaarTreeNode),
1344                                             node, 0, NULL, NULL));
1345     }
1346     else
1347     {
1348         gpuSetHaarClassifierCascade(cascade);
1349
1350         gcascade   = (GpuHidHaarClassifierCascade *)cascade->hid_cascade;
1351         stage      = (GpuHidHaarStageClassifier *)(gcascade + 1);
1352         classifier = (GpuHidHaarClassifier *)(stage + gcascade->count);
1353         node       = (GpuHidHaarTreeNode *)(classifier->node);
1354
1355         openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->nodebuffer, 1, 0,
1356             m_nodenum * sizeof(GpuHidHaarTreeNode),
1357             node, 0, NULL, NULL));
1358
1359         cl_int4 *p = (cl_int4 *)malloc(sizeof(cl_int4) * m_loopcount);
1360         float *correction = (float *)malloc(sizeof(float) * m_loopcount);
1361         double factor;
1362         for(int i = 0; i < m_loopcount; i++)
1363         {
1364             factor = scalev[i];
1365             int equRect_x = (int)(factor * gcascade->p0 + 0.5);
1366             int equRect_y = (int)(factor * gcascade->p1 + 0.5);
1367             int equRect_w = (int)(factor * gcascade->p3 + 0.5);
1368             int equRect_h = (int)(factor * gcascade->p2 + 0.5);
1369             p[i].s[0] = equRect_x;
1370             p[i].s[1] = equRect_y;
1371             p[i].s[2] = equRect_x + equRect_w;
1372             p[i].s[3] = equRect_y + equRect_h;
1373             correction[i] = 1. / (equRect_w * equRect_h);
1374             int startnodenum = m_nodenum * i;
1375             float factor2 = (float)factor;
1376
1377             vector<pair<size_t, const void *> > args1;
1378             args1.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->nodebuffer ));
1379             args1.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->newnodebuffer ));
1380             args1.push_back ( make_pair(sizeof(cl_float) , (void *)&factor2 ));
1381             args1.push_back ( make_pair(sizeof(cl_float) , (void *)&correction[i] ));
1382             args1.push_back ( make_pair(sizeof(cl_int) , (void *)&startnodenum ));
1383
1384             size_t globalThreads2[3] = {m_nodenum, 1, 1};
1385
1386             openCLExecuteKernel(Context::getContext(), &haarobjectdetect_scaled2, "gpuscaleclassifier", globalThreads2, NULL/*localThreads2*/, args1, -1, -1);
1387         }
1388         openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL));
1389         openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->pbuffer, 1, 0, sizeof(cl_int4)*m_loopcount, p, 0, NULL, NULL));
1390         openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->correctionbuffer, 1, 0, sizeof(cl_float)*m_loopcount, correction, 0, NULL, NULL));
1391
1392         free(p);
1393         free(correction);
1394     }
1395     initialized = true;
1396 }
1397
1398 void cv::ocl::OclCascadeClassifierBuf::CreateBaseBufs(const int datasize, const int totalclassifier,
1399                                                       const int flags, const int outputsz)
1400 {
1401     if (!initialized)
1402     {
1403         buffers = malloc(sizeof(OclBuffers));
1404
1405         size_t tempSize =
1406             sizeof(GpuHidHaarStageClassifier) * ((GpuHidHaarClassifierCascade *)oldCascade->hid_cascade)->count;
1407         m_nodenum = (datasize - sizeof(GpuHidHaarClassifierCascade) - tempSize - sizeof(GpuHidHaarClassifier) * totalclassifier)
1408             / sizeof(GpuHidHaarTreeNode);
1409
1410         ((OclBuffers *)buffers)->stagebuffer     = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY,  tempSize);
1411         ((OclBuffers *)buffers)->nodebuffer      = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY,  m_nodenum * sizeof(GpuHidHaarTreeNode));
1412     }
1413
1414     if (initialized
1415         && ((m_flags & CV_HAAR_SCALE_IMAGE) ^ (flags & CV_HAAR_SCALE_IMAGE)))
1416     {
1417         openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->candidatebuffer));
1418     }
1419
1420     if (flags & CV_HAAR_SCALE_IMAGE)
1421     {
1422         ((OclBuffers *)buffers)->candidatebuffer = openCLCreateBuffer(cv::ocl::Context::getContext(),
1423                                                         CL_MEM_WRITE_ONLY,
1424                                                         4 * sizeof(int) * outputsz);
1425     }
1426     else
1427     {
1428         ((OclBuffers *)buffers)->candidatebuffer = openCLCreateBuffer(cv::ocl::Context::getContext(),
1429                                                         CL_MEM_WRITE_ONLY | CL_MEM_ALLOC_HOST_PTR,
1430                                                         4 * sizeof(int) * outputsz);
1431     }
1432 }
1433
1434 void cv::ocl::OclCascadeClassifierBuf::CreateFactorRelatedBufs(
1435     const int rows, const int cols, const int flags,
1436     const double scaleFactor, const size_t localThreads[],
1437     CvSize minSize, CvSize maxSize)
1438 {
1439     if (initialized)
1440     {
1441         if ((m_flags & CV_HAAR_SCALE_IMAGE) && !(flags & CV_HAAR_SCALE_IMAGE))
1442         {
1443             gimg1.release();
1444             gsum.release();
1445             gsqsum.release();
1446         }
1447         else if (!(m_flags & CV_HAAR_SCALE_IMAGE) && (flags & CV_HAAR_SCALE_IMAGE))
1448         {
1449             openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->newnodebuffer));
1450             openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->correctionbuffer));
1451             openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->pbuffer));
1452         }
1453         else if ((m_flags & CV_HAAR_SCALE_IMAGE) && (flags & CV_HAAR_SCALE_IMAGE))
1454         {
1455             if (fabs(m_scaleFactor - scaleFactor) < 1e-6
1456                 && (rows == m_rows && cols == m_cols)
1457                 && (minSize.width == m_minSize.width)
1458                 && (minSize.height == m_minSize.height)
1459                 && (maxSize.width == m_maxSize.width)
1460                 && (maxSize.height == m_maxSize.height))
1461             {
1462                 return;
1463             }
1464         }
1465         else
1466         {
1467             if (fabs(m_scaleFactor - scaleFactor) < 1e-6
1468                 && (rows == m_rows && cols == m_cols)
1469                 && (minSize.width == m_minSize.width)
1470                 && (minSize.height == m_minSize.height)
1471                 && (maxSize.width == m_maxSize.width)
1472                 && (maxSize.height == m_maxSize.height))
1473             {
1474                 return;
1475             }
1476             else
1477             {
1478                 openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->newnodebuffer));
1479                 openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->correctionbuffer));
1480                 openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->pbuffer));
1481             }
1482         }
1483     }
1484
1485     int loopcount;
1486     int indexy = 0;
1487     int totalheight = 0;
1488     double factor;
1489     Rect roi;
1490     CvSize sz;
1491     CvSize winSize0 = oldCascade->orig_window_size;
1492     detect_piramid_info *scaleinfo;
1493     cl_command_queue qu = getClCommandQueue(Context::getContext());
1494     if (flags & CV_HAAR_SCALE_IMAGE)
1495     {
1496         for(factor = 1.f;; factor *= scaleFactor)
1497         {
1498             CvSize winSize = { cvRound(winSize0.width * factor), cvRound(winSize0.height * factor) };
1499             sz.width     = cvRound( cols / factor ) + 1;
1500             sz.height    = cvRound( rows / factor ) + 1;
1501             CvSize sz1     = { sz.width - winSize0.width - 1,      sz.height - winSize0.height - 1 };
1502
1503             if( sz1.width <= 0 || sz1.height <= 0 )
1504                 break;
1505             if( winSize.width > maxSize.width || winSize.height > maxSize.height )
1506                 break;
1507             if( winSize.width < minSize.width || winSize.height < minSize.height )
1508                 continue;
1509
1510             totalheight += sz.height;
1511             sizev.push_back(sz);
1512             scalev.push_back(static_cast<float>(factor));
1513         }
1514
1515         loopcount = sizev.size();
1516         gimg1.create(rows, cols, CV_8UC1);
1517         gsum.create(totalheight + 4, cols + 1, CV_32SC1);
1518         gsqsum.create(totalheight + 4, cols + 1, CV_32FC1);
1519
1520         scaleinfo = (detect_piramid_info *)malloc(sizeof(detect_piramid_info) * loopcount);
1521         for( int i = 0; i < loopcount; i++ )
1522         {
1523             sz = sizev[i];
1524             roi = Rect(0, indexy, sz.width, sz.height);
1525             int width = sz.width - 1 - oldCascade->orig_window_size.width;
1526             int height = sz.height - 1 - oldCascade->orig_window_size.height;
1527             int grpnumperline = (width + localThreads[0] - 1) / localThreads[0];
1528             int totalgrp = ((height + localThreads[1] - 1) / localThreads[1]) * grpnumperline;
1529
1530             ((detect_piramid_info *)scaleinfo)[i].width_height = (width << 16) | height;
1531             ((detect_piramid_info *)scaleinfo)[i].grpnumperline_totalgrp = (grpnumperline << 16) | totalgrp;
1532             ((detect_piramid_info *)scaleinfo)[i].imgoff = gsum(roi).offset >> 2;
1533             ((detect_piramid_info *)scaleinfo)[i].factor = scalev[i];
1534
1535             indexy += sz.height;
1536         }
1537     }
1538     else
1539     {
1540         for(factor = 1;
1541             cvRound(factor * winSize0.width) < cols - 10 && cvRound(factor * winSize0.height) < rows - 10;
1542             factor *= scaleFactor)
1543         {
1544             CvSize winSize = { cvRound( winSize0.width * factor ), cvRound( winSize0.height * factor ) };
1545             if( winSize.width < minSize.width || winSize.height < minSize.height )
1546             {
1547                 continue;
1548             }
1549             sizev.push_back(winSize);
1550             scalev.push_back(factor);
1551         }
1552
1553         loopcount = scalev.size();
1554         if(loopcount == 0)
1555         {
1556             loopcount = 1;
1557             sizev.push_back(minSize);
1558             scalev.push_back( std::min(cvRound(minSize.width / winSize0.width), cvRound(minSize.height / winSize0.height)) );
1559         }
1560
1561         ((OclBuffers *)buffers)->pbuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY,
1562             sizeof(cl_int4) * loopcount);
1563         ((OclBuffers *)buffers)->correctionbuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY,
1564             sizeof(cl_float) * loopcount);
1565         ((OclBuffers *)buffers)->newnodebuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_WRITE,
1566             loopcount * m_nodenum * sizeof(GpuHidHaarTreeNode));
1567
1568         scaleinfo = (detect_piramid_info *)malloc(sizeof(detect_piramid_info) * loopcount);
1569         for( int i = 0; i < loopcount; i++ )
1570         {
1571             sz = sizev[i];
1572             factor = scalev[i];
1573             int ystep = cvRound(std::max(2., factor));
1574             int width = (cols - 1 - sz.width  + ystep - 1) / ystep;
1575             int height = (rows - 1 - sz.height + ystep - 1) / ystep;
1576             int grpnumperline = (width + localThreads[0] - 1) / localThreads[0];
1577             int totalgrp = ((height + localThreads[1] - 1) / localThreads[1]) * grpnumperline;
1578
1579             ((detect_piramid_info *)scaleinfo)[i].width_height = (width << 16) | height;
1580             ((detect_piramid_info *)scaleinfo)[i].grpnumperline_totalgrp = (grpnumperline << 16) | totalgrp;
1581             ((detect_piramid_info *)scaleinfo)[i].imgoff = 0;
1582             ((detect_piramid_info *)scaleinfo)[i].factor = factor;
1583         }
1584     }
1585
1586     if (loopcount != m_loopcount)
1587     {
1588         if (initialized)
1589         {
1590             openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->scaleinfobuffer));
1591         }
1592         ((OclBuffers *)buffers)->scaleinfobuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY, sizeof(detect_piramid_info) * loopcount);
1593     }
1594
1595     openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->scaleinfobuffer, 1, 0,
1596         sizeof(detect_piramid_info)*loopcount,
1597         scaleinfo, 0, NULL, NULL));
1598     free(scaleinfo);
1599
1600     m_loopcount = loopcount;
1601 }
1602
1603 void cv::ocl::OclCascadeClassifierBuf::GenResult(CV_OUT std::vector<cv::Rect>& faces,
1604                                                  const std::vector<cv::Rect> &rectList,
1605                                                  const std::vector<int> &rweights)
1606 {
1607     MemStorage tempStorage(cvCreateMemStorage(0));
1608     CvSeq *result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), tempStorage );
1609
1610     if( findBiggestObject && rectList.size() )
1611     {
1612         CvAvgComp result_comp = {{0, 0, 0, 0}, 0};
1613
1614         for( size_t i = 0; i < rectList.size(); i++ )
1615         {
1616             cv::Rect r = rectList[i];
1617             if( r.area() > cv::Rect(result_comp.rect).area() )
1618             {
1619                 result_comp.rect = r;
1620                 result_comp.neighbors = rweights[i];
1621             }
1622         }
1623         cvSeqPush( result_seq, &result_comp );
1624     }
1625     else
1626     {
1627         for( size_t i = 0; i < rectList.size(); i++ )
1628         {
1629             CvAvgComp c;
1630             c.rect = rectList[i];
1631             c.neighbors = rweights[i];
1632             cvSeqPush( result_seq, &c );
1633         }
1634     }
1635
1636     vector<CvAvgComp> vecAvgComp;
1637     Seq<CvAvgComp>(result_seq).copyTo(vecAvgComp);
1638     faces.resize(vecAvgComp.size());
1639     std::transform(vecAvgComp.begin(), vecAvgComp.end(), faces.begin(), getRect());
1640 }
1641
1642 void cv::ocl::OclCascadeClassifierBuf::release()
1643 {
1644     if(initialized)
1645     {
1646         openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->stagebuffer));
1647         openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->scaleinfobuffer));
1648         openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->nodebuffer));
1649         openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->candidatebuffer));
1650
1651         if( (m_flags & CV_HAAR_SCALE_IMAGE) )
1652         {
1653             cvFree(&oldCascade->hid_cascade);
1654         }
1655         else
1656         {
1657             openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->newnodebuffer));
1658             openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->correctionbuffer));
1659             openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->pbuffer));
1660         }
1661
1662         free(buffers);
1663         buffers = NULL;
1664         initialized = false;
1665     }
1666 }
1667
1668 #ifndef _MAX_PATH
1669 #define _MAX_PATH 1024
1670 #endif