1 /*M///////////////////////////////////////////////////////////////////////////////////////
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
11 // For Open Source Computer Vision Library
13 // Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
14 // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
15 // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
16 // Third party copyrights are property of their respective owners.
18 // Redistribution and use in source and binary forms, with or without modification,
19 // are permitted provided that the following conditions are met:
21 // * Redistribution's of source code must retain the above copyright notice,
22 // this list of conditions and the following disclaimer.
24 // * Redistribution's in binary form must reproduce the above copyright notice,
25 // this list of conditions and the following disclaimer in the documentation
26 // and/or other oclMaterials provided with the distribution.
28 // * The name of the copyright holders may not be used to endorse or promote products
29 // derived from this software without specific prior written permission.
31 // This software is provided by the copyright holders and contributors "as is" and
32 // any express or implied warranties, including, but not limited to, the implied
33 // warranties of merchantability and fitness for a particular purpose are disclaimed.
34 // In no event shall the Intel Corporation or contributors be liable for any direct,
35 // indirect, incidental, special, exemplary, or consequential damages
36 // (including, but not limited to, procurement of substitute goods or services;
37 // loss of use, data, or profits; or business interruption) however caused
38 // and on any theory of liability, whether in contract, strict liability,
39 // or tort (including negligence or otherwise) arising in any way out of
40 // the use of this software, even if advised of the possibility of such damage.
44 #ifndef __OPENCV_OCL_HPP__
45 #define __OPENCV_OCL_HPP__
50 #include "opencv2/core/core.hpp"
51 #include "opencv2/imgproc/imgproc.hpp"
52 #include "opencv2/objdetect/objdetect.hpp"
53 #include "opencv2/features2d/features2d.hpp"
54 #include "opencv2/ml/ml.hpp"
62 CVCL_DEVICE_TYPE_DEFAULT = (1 << 0),
63 CVCL_DEVICE_TYPE_CPU = (1 << 1),
64 CVCL_DEVICE_TYPE_GPU = (1 << 2),
65 CVCL_DEVICE_TYPE_ACCELERATOR = (1 << 3),
66 //CVCL_DEVICE_TYPE_CUSTOM = (1 << 4)
67 CVCL_DEVICE_TYPE_ALL = 0xFFFFFFFF
79 DEVICE_MEM_DEFAULT = 0,
80 DEVICE_MEM_AHP, //alloc host pointer
81 DEVICE_MEM_UHP, //use host pointer
82 DEVICE_MEM_CHP, //copy host pointer
83 DEVICE_MEM_PM //persistent memory
86 //Get the global device memory and read/write type
87 //return 1 if unified memory system supported, otherwise return 0
88 CV_EXPORTS int getDevMemType(DevMemRW& rw_type, DevMemType& mem_type);
90 //Set the global device memory and read/write type,
91 //the newly generated oclMat will all use this type
92 //return -1 if the target type is unsupported, otherwise return 0
93 CV_EXPORTS int setDevMemType(DevMemRW rw_type = DEVICE_MEM_R_W, DevMemType mem_type = DEVICE_MEM_DEFAULT);
95 // these classes contain OpenCL runtime information
101 int _id; // reserved, don't use it
103 DeviceType deviceType;
104 std::string deviceProfile;
105 std::string deviceVersion;
106 std::string deviceName;
107 std::string deviceVendor;
109 std::string deviceDriverVersion;
110 std::string deviceExtensions;
112 size_t maxWorkGroupSize;
113 std::vector<size_t> maxWorkItemSizes;
115 size_t localMemorySize;
117 int deviceVersionMajor;
118 int deviceVersionMinor;
120 bool haveDoubleSupport;
121 bool isUnifiedMemory; // 1 means integrated GPU, otherwise this value is 0
123 std::string compilationExtraOptions;
125 const PlatformInfo* platform;
132 int _id; // reserved, don't use it
134 std::string platformProfile;
135 std::string platformVersion;
136 std::string platformName;
137 std::string platformVendor;
138 std::string platformExtensons;
140 int platformVersionMajor;
141 int platformVersionMinor;
143 std::vector<const DeviceInfo*> devices;
148 //////////////////////////////// Initialization & Info ////////////////////////
149 typedef std::vector<const PlatformInfo*> PlatformsInfo;
151 CV_EXPORTS int getOpenCLPlatforms(PlatformsInfo& platforms);
153 typedef std::vector<const DeviceInfo*> DevicesInfo;
155 CV_EXPORTS int getOpenCLDevices(DevicesInfo& devices, int deviceType = CVCL_DEVICE_TYPE_GPU,
156 const PlatformInfo* platform = NULL);
158 // set device you want to use
159 CV_EXPORTS void setDevice(const DeviceInfo* info);
161 //////////////////////////////// Error handling ////////////////////////
162 CV_EXPORTS void error(const char *error_string, const char *file, const int line, const char *func);
166 FEATURE_CL_DOUBLE = 1,
167 FEATURE_CL_UNIFIED_MEM,
171 // Represents OpenCL context, interface
172 class CV_EXPORTS Context
178 static Context* getContext();
180 bool supportsFeature(FEATURE_TYPE featureType) const;
181 const DeviceInfo& getDeviceInfo() const;
183 const void* getOpenCLContextPtr() const;
184 const void* getOpenCLCommandQueuePtr() const;
185 const void* getOpenCLDeviceIDPtr() const;
188 inline const void *getClContextPtr()
190 return Context::getContext()->getOpenCLContextPtr();
193 inline const void *getClCommandQueuePtr()
195 return Context::getContext()->getOpenCLCommandQueuePtr();
198 bool CV_EXPORTS supportsFeature(FEATURE_TYPE featureType);
200 void CV_EXPORTS finish();
202 //! Enable or disable OpenCL program binary caching onto local disk
203 // After a program (*.cl files in opencl/ folder) is built at runtime, we allow the
204 // compiled OpenCL program to be cached to the path automatically as "path/*.clb"
205 // binary file, which will be reused when the OpenCV executable is started again.
207 // Caching mode is controlled by the following enums
209 // 1. the feature is by default enabled when OpenCV is built in release mode.
210 // 2. the CACHE_DEBUG / CACHE_RELEASE flags only effectively work with MSVC compiler;
211 // for GNU compilers, the function always treats the build as release mode (enabled by default).
214 CACHE_NONE = 0, // do not cache OpenCL binary
215 CACHE_DEBUG = 0x1 << 0, // cache OpenCL binary when built in debug mode (only work with MSVC)
216 CACHE_RELEASE = 0x1 << 1, // default behavior, only cache when built in release mode (only work with MSVC)
217 CACHE_ALL = CACHE_DEBUG | CACHE_RELEASE, // always cache opencl binary
219 CV_EXPORTS void setBinaryDiskCache(int mode = CACHE_RELEASE, cv::String path = "./");
221 //! set where binary cache to be saved to
222 CV_EXPORTS void setBinaryPath(const char *path);
224 class CV_EXPORTS oclMatExpr;
225 //////////////////////////////// oclMat ////////////////////////////////
226 class CV_EXPORTS oclMat
229 //! default constructor
231 //! constructs oclMatrix of the specified size and type (_type is CV_8UC1, CV_64FC3, CV_32SC(12) etc.)
232 oclMat(int rows, int cols, int type);
233 oclMat(Size size, int type);
234 //! constucts oclMatrix and fills it with the specified value _s.
235 oclMat(int rows, int cols, int type, const Scalar &s);
236 oclMat(Size size, int type, const Scalar &s);
238 oclMat(const oclMat &m);
240 //! constructor for oclMatrix headers pointing to user-allocated data
241 oclMat(int rows, int cols, int type, void *data, size_t step = Mat::AUTO_STEP);
242 oclMat(Size size, int type, void *data, size_t step = Mat::AUTO_STEP);
244 //! creates a matrix header for a part of the bigger matrix
245 oclMat(const oclMat &m, const Range &rowRange, const Range &colRange);
246 oclMat(const oclMat &m, const Rect &roi);
248 //! builds oclMat from Mat. Perfom blocking upload to device.
249 explicit oclMat (const Mat &m);
251 //! destructor - calls release()
254 //! assignment operators
255 oclMat &operator = (const oclMat &m);
256 //! assignment operator. Perfom blocking upload to device.
257 oclMat &operator = (const Mat &m);
258 oclMat &operator = (const oclMatExpr& expr);
260 //! pefroms blocking upload data to oclMat.
261 void upload(const cv::Mat &m);
264 //! downloads data from device to host memory. Blocking calls.
265 operator Mat() const;
266 void download(cv::Mat &m) const;
268 //! convert to _InputArray
269 operator _InputArray();
271 //! convert to _OutputArray
272 operator _OutputArray();
274 //! returns a new oclMatrix header for the specified row
275 oclMat row(int y) const;
276 //! returns a new oclMatrix header for the specified column
277 oclMat col(int x) const;
278 //! ... for the specified row span
279 oclMat rowRange(int startrow, int endrow) const;
280 oclMat rowRange(const Range &r) const;
281 //! ... for the specified column span
282 oclMat colRange(int startcol, int endcol) const;
283 oclMat colRange(const Range &r) const;
285 //! returns deep copy of the oclMatrix, i.e. the data is copied
286 oclMat clone() const;
288 //! copies those oclMatrix elements to "m" that are marked with non-zero mask elements.
289 // It calls m.create(this->size(), this->type()).
290 // It supports any data type
291 void copyTo( oclMat &m, const oclMat &mask = oclMat()) const;
293 //! converts oclMatrix to another datatype with optional scalng. See cvConvertScale.
294 //It supports 8UC1 8UC4 32SC1 32SC4 32FC1 32FC4
295 void convertTo( oclMat &m, int rtype, double alpha = 1, double beta = 0 ) const;
297 void assignTo( oclMat &m, int type = -1 ) const;
299 //! sets every oclMatrix element to s
300 //It supports 8UC1 8UC4 32SC1 32SC4 32FC1 32FC4
301 oclMat& operator = (const Scalar &s);
302 //! sets some of the oclMatrix elements to s, according to the mask
303 //It supports 8UC1 8UC4 32SC1 32SC4 32FC1 32FC4
304 oclMat& setTo(const Scalar &s, const oclMat &mask = oclMat());
305 //! creates alternative oclMatrix header for the same data, with different
306 // number of channels and/or different number of rows. see cvReshape.
307 oclMat reshape(int cn, int rows = 0) const;
309 //! allocates new oclMatrix data unless the oclMatrix already has specified size and type.
310 // previous data is unreferenced if needed.
311 void create(int rows, int cols, int type);
312 void create(Size size, int type);
314 //! allocates new oclMatrix with specified device memory type.
315 void createEx(int rows, int cols, int type, DevMemRW rw_type, DevMemType mem_type);
316 void createEx(Size size, int type, DevMemRW rw_type, DevMemType mem_type);
318 //! decreases reference counter;
319 // deallocate the data when reference counter reaches 0.
322 //! swaps with other smart pointer
323 void swap(oclMat &mat);
325 //! locates oclMatrix header within a parent oclMatrix. See below
326 void locateROI( Size &wholeSize, Point &ofs ) const;
327 //! moves/resizes the current oclMatrix ROI inside the parent oclMatrix.
328 oclMat& adjustROI( int dtop, int dbottom, int dleft, int dright );
329 //! extracts a rectangular sub-oclMatrix
330 // (this is a generalized form of row, rowRange etc.)
331 oclMat operator()( Range rowRange, Range colRange ) const;
332 oclMat operator()( const Rect &roi ) const;
334 oclMat& operator+=( const oclMat& m );
335 oclMat& operator-=( const oclMat& m );
336 oclMat& operator*=( const oclMat& m );
337 oclMat& operator/=( const oclMat& m );
339 //! returns true if the oclMatrix data is continuous
340 // (i.e. when there are no gaps between successive rows).
341 // similar to CV_IS_oclMat_CONT(cvoclMat->type)
342 bool isContinuous() const;
343 //! returns element size in bytes,
344 // similar to CV_ELEM_SIZE(cvMat->type)
345 size_t elemSize() const;
346 //! returns the size of element channel in bytes.
347 size_t elemSize1() const;
348 //! returns element type, similar to CV_MAT_TYPE(cvMat->type)
350 //! returns element type, i.e. 8UC3 returns 8UC4 because in ocl
351 //! 3 channels element actually use 4 channel space
353 //! returns element type, similar to CV_MAT_DEPTH(cvMat->type)
355 //! returns element type, similar to CV_MAT_CN(cvMat->type)
356 int channels() const;
357 //! returns element type, return 4 for 3 channels element,
358 //!becuase 3 channels element actually use 4 channel space
359 int oclchannels() const;
360 //! returns step/elemSize1()
361 size_t step1() const;
362 //! returns oclMatrix size:
363 // width == number of columns, height == number of rows
365 //! returns true if oclMatrix data is NULL
368 //! returns pointer to y-th row
369 uchar* ptr(int y = 0);
370 const uchar *ptr(int y = 0) const;
372 //! template version of the above method
373 template<typename _Tp> _Tp *ptr(int y = 0);
374 template<typename _Tp> const _Tp *ptr(int y = 0) const;
376 //! matrix transposition
379 /*! includes several bit-fields:
380 - the magic signature
386 //! the number of rows and columns
388 //! a distance between successive rows in bytes; includes the gap if any
390 //! pointer to the data(OCL memory object)
393 //! pointer to the reference counter;
394 // when oclMatrix points to user-allocated data, the pointer is NULL
397 //! helper fields used in locateROI and adjustROI
398 //datastart and dataend are not used in current version
402 //! OpenCL context associated with the oclMat object.
403 Context *clCxt; // TODO clCtx
404 //add offset for handle ROI, calculated in byte
406 //add wholerows and wholecols for the whole matrix, datastart and dataend are no longer used
411 // convert InputArray/OutputArray to oclMat references
412 CV_EXPORTS oclMat& getOclMatRef(InputArray src);
413 CV_EXPORTS oclMat& getOclMatRef(OutputArray src);
415 ///////////////////// mat split and merge /////////////////////////////////
416 //! Compose a multi-channel array from several single-channel arrays
418 CV_EXPORTS void merge(const oclMat *src, size_t n, oclMat &dst);
419 CV_EXPORTS void merge(const vector<oclMat> &src, oclMat &dst);
421 //! Divides multi-channel array into several single-channel arrays
423 CV_EXPORTS void split(const oclMat &src, oclMat *dst);
424 CV_EXPORTS void split(const oclMat &src, vector<oclMat> &dst);
426 ////////////////////////////// Arithmetics ///////////////////////////////////
428 //! adds one matrix to another with scale (dst = src1 * alpha + src2 * beta + gama)
429 // supports all data types
430 CV_EXPORTS void addWeighted(const oclMat &src1, double alpha, const oclMat &src2, double beta, double gama, oclMat &dst);
432 //! adds one matrix to another (dst = src1 + src2)
433 // supports all data types
434 CV_EXPORTS void add(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask = oclMat());
435 //! adds scalar to a matrix (dst = src1 + s)
436 // supports all data types
437 CV_EXPORTS void add(const oclMat &src1, const Scalar &s, oclMat &dst, const oclMat &mask = oclMat());
439 //! subtracts one matrix from another (dst = src1 - src2)
440 // supports all data types
441 CV_EXPORTS void subtract(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask = oclMat());
442 //! subtracts scalar from a matrix (dst = src1 - s)
443 // supports all data types
444 CV_EXPORTS void subtract(const oclMat &src1, const Scalar &s, oclMat &dst, const oclMat &mask = oclMat());
446 //! computes element-wise product of the two arrays (dst = src1 * scale * src2)
447 // supports all data types
448 CV_EXPORTS void multiply(const oclMat &src1, const oclMat &src2, oclMat &dst, double scale = 1);
449 //! multiplies matrix to a number (dst = scalar * src)
450 // supports all data types
451 CV_EXPORTS void multiply(double scalar, const oclMat &src, oclMat &dst);
453 //! computes element-wise quotient of the two arrays (dst = src1 * scale / src2)
454 // supports all data types
455 CV_EXPORTS void divide(const oclMat &src1, const oclMat &src2, oclMat &dst, double scale = 1);
456 //! computes element-wise quotient of the two arrays (dst = scale / src)
457 // supports all data types
458 CV_EXPORTS void divide(double scale, const oclMat &src1, oclMat &dst);
460 //! computes element-wise minimum of the two arrays (dst = min(src1, src2))
461 // supports all data types
462 CV_EXPORTS void min(const oclMat &src1, const oclMat &src2, oclMat &dst);
464 //! computes element-wise maximum of the two arrays (dst = max(src1, src2))
465 // supports all data types
466 CV_EXPORTS void max(const oclMat &src1, const oclMat &src2, oclMat &dst);
468 //! compares elements of two arrays (dst = src1 <cmpop> src2)
469 // supports all data types
470 CV_EXPORTS void compare(const oclMat &src1, const oclMat &src2, oclMat &dst, int cmpop);
472 //! transposes the matrix
473 // supports all data types
474 CV_EXPORTS void transpose(const oclMat &src, oclMat &dst);
476 //! computes element-wise absolute values of an array (dst = abs(src))
477 // supports all data types
478 CV_EXPORTS void abs(const oclMat &src, oclMat &dst);
480 //! computes element-wise absolute difference of two arrays (dst = abs(src1 - src2))
481 // supports all data types
482 CV_EXPORTS void absdiff(const oclMat &src1, const oclMat &src2, oclMat &dst);
483 //! computes element-wise absolute difference of array and scalar (dst = abs(src1 - s))
484 // supports all data types
485 CV_EXPORTS void absdiff(const oclMat &src1, const Scalar &s, oclMat &dst);
487 //! computes mean value and standard deviation of all or selected array elements
488 // supports all data types
489 CV_EXPORTS void meanStdDev(const oclMat &mtx, Scalar &mean, Scalar &stddev);
491 //! computes norm of array
492 // supports NORM_INF, NORM_L1, NORM_L2
493 // supports all data types
494 CV_EXPORTS double norm(const oclMat &src1, int normType = NORM_L2);
496 //! computes norm of the difference between two arrays
497 // supports NORM_INF, NORM_L1, NORM_L2
498 // supports all data types
499 CV_EXPORTS double norm(const oclMat &src1, const oclMat &src2, int normType = NORM_L2);
501 //! reverses the order of the rows, columns or both in a matrix
502 // supports all types
503 CV_EXPORTS void flip(const oclMat &src, oclMat &dst, int flipCode);
505 //! computes sum of array elements
507 CV_EXPORTS Scalar sum(const oclMat &m);
508 CV_EXPORTS Scalar absSum(const oclMat &m);
509 CV_EXPORTS Scalar sqrSum(const oclMat &m);
511 //! finds global minimum and maximum array elements and returns their values
512 // support all C1 types
513 CV_EXPORTS void minMax(const oclMat &src, double *minVal, double *maxVal = 0, const oclMat &mask = oclMat());
515 //! finds global minimum and maximum array elements and returns their values with locations
516 // support all C1 types
517 CV_EXPORTS void minMaxLoc(const oclMat &src, double *minVal, double *maxVal = 0, Point *minLoc = 0, Point *maxLoc = 0,
518 const oclMat &mask = oclMat());
520 //! counts non-zero array elements
522 CV_EXPORTS int countNonZero(const oclMat &src);
524 //! transforms 8-bit unsigned integers using lookup table: dst(i)=lut(src(i))
525 // destination array will have the depth type as lut and the same channels number as source
526 //It supports 8UC1 8UC4 only
527 CV_EXPORTS void LUT(const oclMat &src, const oclMat &lut, oclMat &dst);
529 //! only 8UC1 and 256 bins is supported now
530 CV_EXPORTS void calcHist(const oclMat &mat_src, oclMat &mat_hist);
531 //! only 8UC1 and 256 bins is supported now
532 CV_EXPORTS void equalizeHist(const oclMat &mat_src, oclMat &mat_dst);
534 //! only 8UC1 is supported now
535 CV_EXPORTS Ptr<cv::CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8));
538 // supports 8UC1 8UC4
539 CV_EXPORTS void bilateralFilter(const oclMat& src, oclMat& dst, int d, double sigmaColor, double sigmaSpace, int borderType=BORDER_DEFAULT);
541 //! Applies an adaptive bilateral filter to the input image
542 // This is not truly a bilateral filter. Instead of using user provided fixed parameters,
543 // the function calculates a constant at each window based on local standard deviation,
544 // and use this constant to do filtering.
545 // supports 8UC1, 8UC3
546 CV_EXPORTS void adaptiveBilateralFilter(const oclMat& src, oclMat& dst, Size ksize, double sigmaSpace, Point anchor = Point(-1, -1), int borderType=BORDER_DEFAULT);
548 //! computes exponent of each matrix element (dst = e**src)
549 // supports only CV_32FC1, CV_64FC1 type
550 CV_EXPORTS void exp(const oclMat &src, oclMat &dst);
552 //! computes natural logarithm of absolute value of each matrix element: dst = log(abs(src))
553 // supports only CV_32FC1, CV_64FC1 type
554 CV_EXPORTS void log(const oclMat &src, oclMat &dst);
556 //! computes magnitude of each (x(i), y(i)) vector
557 // supports only CV_32F, CV_64F type
558 CV_EXPORTS void magnitude(const oclMat &x, const oclMat &y, oclMat &magnitude);
560 //! computes angle (angle(i)) of each (x(i), y(i)) vector
561 // supports only CV_32F, CV_64F type
562 CV_EXPORTS void phase(const oclMat &x, const oclMat &y, oclMat &angle, bool angleInDegrees = false);
564 //! the function raises every element of tne input array to p
565 // support only CV_32F, CV_64F type
566 CV_EXPORTS void pow(const oclMat &x, double p, oclMat &y);
568 //! converts Cartesian coordinates to polar
569 // supports only CV_32F CV_64F type
570 CV_EXPORTS void cartToPolar(const oclMat &x, const oclMat &y, oclMat &magnitude, oclMat &angle, bool angleInDegrees = false);
572 //! converts polar coordinates to Cartesian
573 // supports only CV_32F CV_64F type
574 CV_EXPORTS void polarToCart(const oclMat &magnitude, const oclMat &angle, oclMat &x, oclMat &y, bool angleInDegrees = false);
576 //! perfroms per-elements bit-wise inversion
577 // supports all types
578 CV_EXPORTS void bitwise_not(const oclMat &src, oclMat &dst);
580 //! calculates per-element bit-wise disjunction of two arrays
581 // supports all types
582 CV_EXPORTS void bitwise_or(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask = oclMat());
583 CV_EXPORTS void bitwise_or(const oclMat &src1, const Scalar &s, oclMat &dst, const oclMat &mask = oclMat());
585 //! calculates per-element bit-wise conjunction of two arrays
586 // supports all types
587 CV_EXPORTS void bitwise_and(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask = oclMat());
588 CV_EXPORTS void bitwise_and(const oclMat &src1, const Scalar &s, oclMat &dst, const oclMat &mask = oclMat());
590 //! calculates per-element bit-wise "exclusive or" operation
591 // supports all types
592 CV_EXPORTS void bitwise_xor(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask = oclMat());
593 CV_EXPORTS void bitwise_xor(const oclMat &src1, const Scalar &s, oclMat &dst, const oclMat &mask = oclMat());
595 //! Logical operators
596 CV_EXPORTS oclMat operator ~ (const oclMat &);
597 CV_EXPORTS oclMat operator | (const oclMat &, const oclMat &);
598 CV_EXPORTS oclMat operator & (const oclMat &, const oclMat &);
599 CV_EXPORTS oclMat operator ^ (const oclMat &, const oclMat &);
602 //! Mathematics operators
603 CV_EXPORTS oclMatExpr operator + (const oclMat &src1, const oclMat &src2);
604 CV_EXPORTS oclMatExpr operator - (const oclMat &src1, const oclMat &src2);
605 CV_EXPORTS oclMatExpr operator * (const oclMat &src1, const oclMat &src2);
606 CV_EXPORTS oclMatExpr operator / (const oclMat &src1, const oclMat &src2);
608 //! computes convolution of two images
609 // support only CV_32FC1 type
610 CV_EXPORTS void convolve(const oclMat &image, const oclMat &temp1, oclMat &result);
612 CV_EXPORTS void cvtColor(const oclMat &src, oclMat &dst, int code, int dcn = 0);
614 //! initializes a scaled identity matrix
615 CV_EXPORTS void setIdentity(oclMat& src, const Scalar & val = Scalar(1));
617 //////////////////////////////// Filter Engine ////////////////////////////////
620 The Base Class for 1D or Row-wise Filters
622 This is the base class for linear or non-linear filters that process 1D data.
623 In particular, such filters are used for the "horizontal" filtering parts in separable filters.
625 class CV_EXPORTS BaseRowFilter_GPU
628 BaseRowFilter_GPU(int ksize_, int anchor_, int bordertype_) : ksize(ksize_), anchor(anchor_), bordertype(bordertype_) {}
629 virtual ~BaseRowFilter_GPU() {}
630 virtual void operator()(const oclMat &src, oclMat &dst) = 0;
631 int ksize, anchor, bordertype;
635 The Base Class for Column-wise Filters
637 This is the base class for linear or non-linear filters that process columns of 2D arrays.
638 Such filters are used for the "vertical" filtering parts in separable filters.
640 class CV_EXPORTS BaseColumnFilter_GPU
643 BaseColumnFilter_GPU(int ksize_, int anchor_, int bordertype_) : ksize(ksize_), anchor(anchor_), bordertype(bordertype_) {}
644 virtual ~BaseColumnFilter_GPU() {}
645 virtual void operator()(const oclMat &src, oclMat &dst) = 0;
646 int ksize, anchor, bordertype;
650 The Base Class for Non-Separable 2D Filters.
652 This is the base class for linear or non-linear 2D filters.
654 class CV_EXPORTS BaseFilter_GPU
657 BaseFilter_GPU(const Size &ksize_, const Point &anchor_, const int &borderType_)
658 : ksize(ksize_), anchor(anchor_), borderType(borderType_) {}
659 virtual ~BaseFilter_GPU() {}
660 virtual void operator()(const oclMat &src, oclMat &dst) = 0;
667 The Base Class for Filter Engine.
669 The class can be used to apply an arbitrary filtering operation to an image.
670 It contains all the necessary intermediate buffers.
672 class CV_EXPORTS FilterEngine_GPU
675 virtual ~FilterEngine_GPU() {}
677 virtual void apply(const oclMat &src, oclMat &dst, Rect roi = Rect(0, 0, -1, -1)) = 0;
680 //! returns the non-separable filter engine with the specified filter
681 CV_EXPORTS Ptr<FilterEngine_GPU> createFilter2D_GPU(const Ptr<BaseFilter_GPU> filter2D);
683 //! returns the primitive row filter with the specified kernel
684 CV_EXPORTS Ptr<BaseRowFilter_GPU> getLinearRowFilter_GPU(int srcType, int bufType, const Mat &rowKernel,
685 int anchor = -1, int bordertype = BORDER_DEFAULT);
687 //! returns the primitive column filter with the specified kernel
688 CV_EXPORTS Ptr<BaseColumnFilter_GPU> getLinearColumnFilter_GPU(int bufType, int dstType, const Mat &columnKernel,
689 int anchor = -1, int bordertype = BORDER_DEFAULT, double delta = 0.0);
691 //! returns the separable linear filter engine
692 CV_EXPORTS Ptr<FilterEngine_GPU> createSeparableLinearFilter_GPU(int srcType, int dstType, const Mat &rowKernel,
693 const Mat &columnKernel, const Point &anchor = Point(-1, -1), double delta = 0.0, int bordertype = BORDER_DEFAULT);
695 //! returns the separable filter engine with the specified filters
696 CV_EXPORTS Ptr<FilterEngine_GPU> createSeparableFilter_GPU(const Ptr<BaseRowFilter_GPU> &rowFilter,
697 const Ptr<BaseColumnFilter_GPU> &columnFilter);
699 //! returns the Gaussian filter engine
700 CV_EXPORTS Ptr<FilterEngine_GPU> createGaussianFilter_GPU(int type, Size ksize, double sigma1, double sigma2 = 0, int bordertype = BORDER_DEFAULT);
702 //! returns filter engine for the generalized Sobel operator
703 CV_EXPORTS Ptr<FilterEngine_GPU> createDerivFilter_GPU( int srcType, int dstType, int dx, int dy, int ksize, int borderType = BORDER_DEFAULT );
705 //! applies Laplacian operator to the image
706 // supports only ksize = 1 and ksize = 3 8UC1 8UC4 32FC1 32FC4 data type
707 CV_EXPORTS void Laplacian(const oclMat &src, oclMat &dst, int ddepth, int ksize = 1, double scale = 1);
709 //! returns 2D box filter
710 // supports CV_8UC1 and CV_8UC4 source type, dst type must be the same as source type
711 CV_EXPORTS Ptr<BaseFilter_GPU> getBoxFilter_GPU(int srcType, int dstType,
712 const Size &ksize, Point anchor = Point(-1, -1), int borderType = BORDER_DEFAULT);
714 //! returns box filter engine
715 CV_EXPORTS Ptr<FilterEngine_GPU> createBoxFilter_GPU(int srcType, int dstType, const Size &ksize,
716 const Point &anchor = Point(-1, -1), int borderType = BORDER_DEFAULT);
718 //! returns 2D filter with the specified kernel
719 // supports CV_8UC1 and CV_8UC4 types
720 CV_EXPORTS Ptr<BaseFilter_GPU> getLinearFilter_GPU(int srcType, int dstType, const Mat &kernel, const Size &ksize,
721 const Point &anchor = Point(-1, -1), int borderType = BORDER_DEFAULT);
723 //! returns the non-separable linear filter engine
724 CV_EXPORTS Ptr<FilterEngine_GPU> createLinearFilter_GPU(int srcType, int dstType, const Mat &kernel,
725 const Point &anchor = Point(-1, -1), int borderType = BORDER_DEFAULT);
727 //! smooths the image using the normalized box filter
728 // supports data type: CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4
729 // supports border type: BORDER_CONSTANT, BORDER_REPLICATE, BORDER_REFLECT,BORDER_REFLECT_101,BORDER_WRAP
730 CV_EXPORTS void boxFilter(const oclMat &src, oclMat &dst, int ddepth, Size ksize,
731 Point anchor = Point(-1, -1), int borderType = BORDER_DEFAULT);
733 //! returns 2D morphological filter
734 //! only MORPH_ERODE and MORPH_DILATE are supported
735 // supports CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4 types
736 // kernel must have CV_8UC1 type, one rows and cols == ksize.width * ksize.height
737 CV_EXPORTS Ptr<BaseFilter_GPU> getMorphologyFilter_GPU(int op, int type, const Mat &kernel, const Size &ksize,
738 Point anchor = Point(-1, -1));
740 //! returns morphological filter engine. Only MORPH_ERODE and MORPH_DILATE are supported.
741 CV_EXPORTS Ptr<FilterEngine_GPU> createMorphologyFilter_GPU(int op, int type, const Mat &kernel,
742 const Point &anchor = Point(-1, -1), int iterations = 1);
744 //! a synonym for normalized box filter
745 // supports data type: CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4
746 // supports border type: BORDER_CONSTANT, BORDER_REPLICATE, BORDER_REFLECT,BORDER_REFLECT_101
747 static inline void blur(const oclMat &src, oclMat &dst, Size ksize, Point anchor = Point(-1, -1),
748 int borderType = BORDER_CONSTANT)
750 boxFilter(src, dst, -1, ksize, anchor, borderType);
753 //! applies non-separable 2D linear filter to the image
754 // Note, at the moment this function only works when anchor point is in the kernel center
755 // and kernel size supported is either 3x3 or 5x5; otherwise the function will fail to output valid result
756 CV_EXPORTS void filter2D(const oclMat &src, oclMat &dst, int ddepth, const Mat &kernel,
757 Point anchor = Point(-1, -1), int borderType = BORDER_DEFAULT);
759 //! applies separable 2D linear filter to the image
760 CV_EXPORTS void sepFilter2D(const oclMat &src, oclMat &dst, int ddepth, const Mat &kernelX, const Mat &kernelY,
761 Point anchor = Point(-1, -1), double delta = 0.0, int bordertype = BORDER_DEFAULT);
763 //! applies generalized Sobel operator to the image
764 // dst.type must equalize src.type
765 // supports data type: CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4
766 // supports border type: BORDER_CONSTANT, BORDER_REPLICATE, BORDER_REFLECT,BORDER_REFLECT_101
767 CV_EXPORTS void Sobel(const oclMat &src, oclMat &dst, int ddepth, int dx, int dy, int ksize = 3, double scale = 1, double delta = 0.0, int bordertype = BORDER_DEFAULT);
769 //! applies the vertical or horizontal Scharr operator to the image
770 // dst.type must equalize src.type
771 // supports data type: CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4
772 // supports border type: BORDER_CONSTANT, BORDER_REPLICATE, BORDER_REFLECT,BORDER_REFLECT_101
773 CV_EXPORTS void Scharr(const oclMat &src, oclMat &dst, int ddepth, int dx, int dy, double scale = 1, double delta = 0.0, int bordertype = BORDER_DEFAULT);
775 //! smooths the image using Gaussian filter.
776 // dst.type must equalize src.type
777 // supports data type: CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4
778 // supports border type: BORDER_CONSTANT, BORDER_REPLICATE, BORDER_REFLECT,BORDER_REFLECT_101
779 CV_EXPORTS void GaussianBlur(const oclMat &src, oclMat &dst, Size ksize, double sigma1, double sigma2 = 0, int bordertype = BORDER_DEFAULT);
781 //! erodes the image (applies the local minimum operator)
782 // supports data type: CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4
783 CV_EXPORTS void erode( const oclMat &src, oclMat &dst, const Mat &kernel, Point anchor = Point(-1, -1), int iterations = 1,
785 int borderType = BORDER_CONSTANT, const Scalar &borderValue = morphologyDefaultBorderValue());
788 //! dilates the image (applies the local maximum operator)
789 // supports data type: CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4
790 CV_EXPORTS void dilate( const oclMat &src, oclMat &dst, const Mat &kernel, Point anchor = Point(-1, -1), int iterations = 1,
792 int borderType = BORDER_CONSTANT, const Scalar &borderValue = morphologyDefaultBorderValue());
795 //! applies an advanced morphological operation to the image
796 CV_EXPORTS void morphologyEx( const oclMat &src, oclMat &dst, int op, const Mat &kernel, Point anchor = Point(-1, -1), int iterations = 1,
798 int borderType = BORDER_CONSTANT, const Scalar &borderValue = morphologyDefaultBorderValue());
801 ////////////////////////////// Image processing //////////////////////////////
802 //! Does mean shift filtering on GPU.
803 CV_EXPORTS void meanShiftFiltering(const oclMat &src, oclMat &dst, int sp, int sr,
804 TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1));
806 //! Does mean shift procedure on GPU.
807 CV_EXPORTS void meanShiftProc(const oclMat &src, oclMat &dstr, oclMat &dstsp, int sp, int sr,
808 TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1));
810 //! Does mean shift segmentation with elimiation of small regions.
811 CV_EXPORTS void meanShiftSegmentation(const oclMat &src, Mat &dst, int sp, int sr, int minsize,
812 TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1));
814 //! applies fixed threshold to the image.
815 // supports CV_8UC1 and CV_32FC1 data type
816 // supports threshold type: THRESH_BINARY, THRESH_BINARY_INV, THRESH_TRUNC, THRESH_TOZERO, THRESH_TOZERO_INV
817 CV_EXPORTS double threshold(const oclMat &src, oclMat &dst, double thresh, double maxVal, int type = THRESH_TRUNC);
819 //! resizes the image
820 // Supports INTER_NEAREST, INTER_LINEAR
821 // supports CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4 types
822 CV_EXPORTS void resize(const oclMat &src, oclMat &dst, Size dsize, double fx = 0, double fy = 0, int interpolation = INTER_LINEAR);
824 //! Applies a generic geometrical transformation to an image.
826 // Supports INTER_NEAREST, INTER_LINEAR.
828 // Map1 supports CV_16SC2, CV_32FC2 types.
830 // Src supports CV_8UC1, CV_8UC2, CV_8UC4.
832 CV_EXPORTS void remap(const oclMat &src, oclMat &dst, oclMat &map1, oclMat &map2, int interpolation, int bordertype, const Scalar &value = Scalar());
834 //! copies 2D array to a larger destination array and pads borders with user-specifiable constant
835 // supports CV_8UC1, CV_8UC4, CV_32SC1 types
836 CV_EXPORTS void copyMakeBorder(const oclMat &src, oclMat &dst, int top, int bottom, int left, int right, int boardtype, const Scalar &value = Scalar());
838 //! Smoothes image using median filter
839 // The source 1- or 4-channel image. When m is 3 or 5, the image depth should be CV 8U or CV 32F.
840 CV_EXPORTS void medianFilter(const oclMat &src, oclMat &dst, int m);
842 //! warps the image using affine transformation
843 // Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
844 // supports CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4 types
845 CV_EXPORTS void warpAffine(const oclMat &src, oclMat &dst, const Mat &M, Size dsize, int flags = INTER_LINEAR);
847 //! warps the image using perspective transformation
848 // Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
849 // supports CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4 types
850 CV_EXPORTS void warpPerspective(const oclMat &src, oclMat &dst, const Mat &M, Size dsize, int flags = INTER_LINEAR);
852 //! computes the integral image and integral for the squared image
853 // sum will have CV_32S type, sqsum - CV32F type
854 // supports only CV_8UC1 source type
855 CV_EXPORTS void integral(const oclMat &src, oclMat &sum, oclMat &sqsum);
856 CV_EXPORTS void integral(const oclMat &src, oclMat &sum);
857 CV_EXPORTS void cornerHarris(const oclMat &src, oclMat &dst, int blockSize, int ksize, double k, int bordertype = cv::BORDER_DEFAULT);
858 CV_EXPORTS void cornerHarris_dxdy(const oclMat &src, oclMat &dst, oclMat &Dx, oclMat &Dy,
859 int blockSize, int ksize, double k, int bordertype = cv::BORDER_DEFAULT);
860 CV_EXPORTS void cornerMinEigenVal(const oclMat &src, oclMat &dst, int blockSize, int ksize, int bordertype = cv::BORDER_DEFAULT);
861 CV_EXPORTS void cornerMinEigenVal_dxdy(const oclMat &src, oclMat &dst, oclMat &Dx, oclMat &Dy,
862 int blockSize, int ksize, int bordertype = cv::BORDER_DEFAULT);
864 /////////////////////////////////// ML ///////////////////////////////////////////
866 //! Compute closest centers for each lines in source and lable it after center's index
867 // supports CV_32FC1/CV_32FC2/CV_32FC4 data type
868 CV_EXPORTS void distanceToCenters(oclMat &dists, oclMat &labels, const oclMat &src, const oclMat ¢ers);
870 //!Does k-means procedure on GPU
871 // supports CV_32FC1/CV_32FC2/CV_32FC4 data type
872 CV_EXPORTS double kmeans(const oclMat &src, int K, oclMat &bestLabels,
873 TermCriteria criteria, int attemps, int flags, oclMat ¢ers);
876 ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
877 ///////////////////////////////////////////CascadeClassifier//////////////////////////////////////////////////////////////////
878 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
880 class CV_EXPORTS_W OclCascadeClassifier : public cv::CascadeClassifier
883 OclCascadeClassifier() {};
884 ~OclCascadeClassifier() {};
886 CvSeq* oclHaarDetectObjects(oclMat &gimg, CvMemStorage *storage, double scaleFactor,
887 int minNeighbors, int flags, CvSize minSize = cvSize(0, 0), CvSize maxSize = cvSize(0, 0));
890 class CV_EXPORTS OclCascadeClassifierBuf : public cv::CascadeClassifier
893 OclCascadeClassifierBuf() :
894 m_flags(0), initialized(false), m_scaleFactor(0), buffers(NULL) {}
896 ~OclCascadeClassifierBuf() { release(); }
898 void detectMultiScale(oclMat &image, CV_OUT std::vector<cv::Rect>& faces,
899 double scaleFactor = 1.1, int minNeighbors = 3, int flags = 0,
900 Size minSize = Size(), Size maxSize = Size());
904 void Init(const int rows, const int cols, double scaleFactor, int flags,
905 const int outputsz, const size_t localThreads[],
906 CvSize minSize, CvSize maxSize);
907 void CreateBaseBufs(const int datasize, const int totalclassifier, const int flags, const int outputsz);
908 void CreateFactorRelatedBufs(const int rows, const int cols, const int flags,
909 const double scaleFactor, const size_t localThreads[],
910 CvSize minSize, CvSize maxSize);
911 void GenResult(CV_OUT std::vector<cv::Rect>& faces, const std::vector<cv::Rect> &rectList, const std::vector<int> &rweights);
918 bool findBiggestObject;
920 double m_scaleFactor;
923 vector<CvSize> sizev;
924 vector<float> scalev;
925 oclMat gimg1, gsum, gsqsum;
930 /////////////////////////////// Pyramid /////////////////////////////////////
931 CV_EXPORTS void pyrDown(const oclMat &src, oclMat &dst);
933 //! upsamples the source image and then smoothes it
934 CV_EXPORTS void pyrUp(const oclMat &src, oclMat &dst);
936 //! performs linear blending of two images
937 //! to avoid accuracy errors sum of weigths shouldn't be very close to zero
938 // supports only CV_8UC1 source type
939 CV_EXPORTS void blendLinear(const oclMat &img1, const oclMat &img2, const oclMat &weights1, const oclMat &weights2, oclMat &result);
941 //! computes vertical sum, supports only CV_32FC1 images
942 CV_EXPORTS void columnSum(const oclMat &src, oclMat &sum);
944 ///////////////////////////////////////// match_template /////////////////////////////////////////////////////////////
945 struct CV_EXPORTS MatchTemplateBuf
947 Size user_block_size;
948 oclMat imagef, templf;
949 std::vector<oclMat> images;
950 std::vector<oclMat> image_sums;
951 std::vector<oclMat> image_sqsums;
954 //! computes the proximity map for the raster template and the image where the template is searched for
955 // Supports TM_SQDIFF, TM_SQDIFF_NORMED, TM_CCORR, TM_CCORR_NORMED, TM_CCOEFF, TM_CCOEFF_NORMED for type 8UC1 and 8UC4
956 // Supports TM_SQDIFF, TM_CCORR for type 32FC1 and 32FC4
957 CV_EXPORTS void matchTemplate(const oclMat &image, const oclMat &templ, oclMat &result, int method);
959 //! computes the proximity map for the raster template and the image where the template is searched for
960 // Supports TM_SQDIFF, TM_SQDIFF_NORMED, TM_CCORR, TM_CCORR_NORMED, TM_CCOEFF, TM_CCOEFF_NORMED for type 8UC1 and 8UC4
961 // Supports TM_SQDIFF, TM_CCORR for type 32FC1 and 32FC4
962 CV_EXPORTS void matchTemplate(const oclMat &image, const oclMat &templ, oclMat &result, int method, MatchTemplateBuf &buf);
964 ///////////////////////////////////////////// Canny /////////////////////////////////////////////
965 struct CV_EXPORTS CannyBuf;
966 //! compute edges of the input image using Canny operator
967 // Support CV_8UC1 only
968 CV_EXPORTS void Canny(const oclMat &image, oclMat &edges, double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false);
969 CV_EXPORTS void Canny(const oclMat &image, CannyBuf &buf, oclMat &edges, double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false);
970 CV_EXPORTS void Canny(const oclMat &dx, const oclMat &dy, oclMat &edges, double low_thresh, double high_thresh, bool L2gradient = false);
971 CV_EXPORTS void Canny(const oclMat &dx, const oclMat &dy, CannyBuf &buf, oclMat &edges, double low_thresh, double high_thresh, bool L2gradient = false);
973 struct CV_EXPORTS CannyBuf
975 CannyBuf() : counter(NULL) {}
980 explicit CannyBuf(const Size &image_size, int apperture_size = 3) : counter(NULL)
982 create(image_size, apperture_size);
984 CannyBuf(const oclMat &dx_, const oclMat &dy_);
986 void create(const Size &image_size, int apperture_size = 3);
989 oclMat dx_buf, dy_buf;
991 oclMat trackBuf1, trackBuf2;
993 Ptr<FilterEngine_GPU> filterDX, filterDY;
996 ///////////////////////////////////////// clAmdFft related /////////////////////////////////////////
997 //! Performs a forward or inverse discrete Fourier transform (1D or 2D) of floating point matrix.
998 //! Param dft_size is the size of DFT transform.
1000 //! For complex-to-real transform it is assumed that the source matrix is packed in CLFFT's format.
1001 // support src type of CV32FC1, CV32FC2
1002 // support flags: DFT_INVERSE, DFT_REAL_OUTPUT, DFT_COMPLEX_OUTPUT, DFT_ROWS
1003 // dft_size is the size of original input, which is used for transformation from complex to real.
1004 // dft_size must be powers of 2, 3 and 5
1005 // real to complex dft requires at least v1.8 clAmdFft
1006 // real to complex dft output is not the same with cpu version
1007 // real to complex and complex to real does not support DFT_ROWS
1008 CV_EXPORTS void dft(const oclMat &src, oclMat &dst, Size dft_size = Size(), int flags = 0);
1010 //! implements generalized matrix product algorithm GEMM from BLAS
1011 // The functionality requires clAmdBlas library
1012 // only support type CV_32FC1
1013 // flag GEMM_3_T is not supported
1014 CV_EXPORTS void gemm(const oclMat &src1, const oclMat &src2, double alpha,
1015 const oclMat &src3, double beta, oclMat &dst, int flags = 0);
1017 //////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////
1018 struct CV_EXPORTS HOGDescriptor
1020 enum { DEFAULT_WIN_SIGMA = -1 };
1021 enum { DEFAULT_NLEVELS = 64 };
1022 enum { DESCR_FORMAT_ROW_BY_ROW, DESCR_FORMAT_COL_BY_COL };
1023 HOGDescriptor(Size win_size = Size(64, 128), Size block_size = Size(16, 16),
1024 Size block_stride = Size(8, 8), Size cell_size = Size(8, 8),
1025 int nbins = 9, double win_sigma = DEFAULT_WIN_SIGMA,
1026 double threshold_L2hys = 0.2, bool gamma_correction = true,
1027 int nlevels = DEFAULT_NLEVELS);
1029 size_t getDescriptorSize() const;
1030 size_t getBlockHistogramSize() const;
1031 void setSVMDetector(const vector<float> &detector);
1032 static vector<float> getDefaultPeopleDetector();
1033 static vector<float> getPeopleDetector48x96();
1034 static vector<float> getPeopleDetector64x128();
1035 void detect(const oclMat &img, vector<Point> &found_locations,
1036 double hit_threshold = 0, Size win_stride = Size(),
1037 Size padding = Size());
1038 void detectMultiScale(const oclMat &img, vector<Rect> &found_locations,
1039 double hit_threshold = 0, Size win_stride = Size(),
1040 Size padding = Size(), double scale0 = 1.05,
1041 int group_threshold = 2);
1042 void getDescriptors(const oclMat &img, Size win_stride,
1043 oclMat &descriptors,
1044 int descr_format = DESCR_FORMAT_COL_BY_COL);
1052 double threshold_L2hys;
1053 bool gamma_correction;
1057 // initialize buffers; only need to do once in case of multiscale detection
1058 void init_buffer(const oclMat &img, Size win_stride);
1059 void computeBlockHistograms(const oclMat &img);
1060 void computeGradient(const oclMat &img, oclMat &grad, oclMat &qangle);
1061 double getWinSigma() const;
1062 bool checkDetectorSize() const;
1064 static int numPartsWithin(int size, int part_size, int stride);
1065 static Size numPartsWithin(Size size, Size part_size, Size stride);
1067 // Coefficients of the separating plane
1070 // Results of the last classification step
1073 // Results of the last histogram evaluation step
1075 // Gradients conputation results
1076 oclMat grad, qangle;
1079 // effect size of input image (might be different from original size after scaling)
1084 ////////////////////////feature2d_ocl/////////////////
1085 /****************************************************************************************\
1087 \****************************************************************************************/
1088 template<typename T>
1089 struct CV_EXPORTS Accumulator
1093 template<> struct Accumulator<unsigned char>
1097 template<> struct Accumulator<unsigned short>
1101 template<> struct Accumulator<char>
1105 template<> struct Accumulator<short>
1111 * Manhattan distance (city block distance) functor
1114 struct CV_EXPORTS L1
1116 enum { normType = NORM_L1 };
1117 typedef T ValueType;
1118 typedef typename Accumulator<T>::Type ResultType;
1120 ResultType operator()( const T *a, const T *b, int size ) const
1122 return normL1<ValueType, ResultType>(a, b, size);
1127 * Euclidean distance functor
1130 struct CV_EXPORTS L2
1132 enum { normType = NORM_L2 };
1133 typedef T ValueType;
1134 typedef typename Accumulator<T>::Type ResultType;
1136 ResultType operator()( const T *a, const T *b, int size ) const
1138 return (ResultType)sqrt((double)normL2Sqr<ValueType, ResultType>(a, b, size));
1143 * Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor
1144 * bit count of A exclusive XOR'ed with B
1146 struct CV_EXPORTS Hamming
1148 enum { normType = NORM_HAMMING };
1149 typedef unsigned char ValueType;
1150 typedef int ResultType;
1152 /** this will count the bits in a ^ b
1154 ResultType operator()( const unsigned char *a, const unsigned char *b, int size ) const
1156 return normHamming(a, b, size);
1160 ////////////////////////////////// BruteForceMatcher //////////////////////////////////
1162 class CV_EXPORTS BruteForceMatcher_OCL_base
1165 enum DistType {L1Dist = 0, L2Dist, HammingDist};
1166 explicit BruteForceMatcher_OCL_base(DistType distType = L2Dist);
1167 // Add descriptors to train descriptor collection
1168 void add(const std::vector<oclMat> &descCollection);
1169 // Get train descriptors collection
1170 const std::vector<oclMat> &getTrainDescriptors() const;
1171 // Clear train descriptors collection
1173 // Return true if there are not train descriptors in collection
1176 // Return true if the matcher supports mask in match methods
1177 bool isMaskSupported() const;
1179 // Find one best match for each query descriptor
1180 void matchSingle(const oclMat &query, const oclMat &train,
1181 oclMat &trainIdx, oclMat &distance,
1182 const oclMat &mask = oclMat());
1184 // Download trainIdx and distance and convert it to CPU vector with DMatch
1185 static void matchDownload(const oclMat &trainIdx, const oclMat &distance, std::vector<DMatch> &matches);
1186 // Convert trainIdx and distance to vector with DMatch
1187 static void matchConvert(const Mat &trainIdx, const Mat &distance, std::vector<DMatch> &matches);
1189 // Find one best match for each query descriptor
1190 void match(const oclMat &query, const oclMat &train, std::vector<DMatch> &matches, const oclMat &mask = oclMat());
1192 // Make gpu collection of trains and masks in suitable format for matchCollection function
1193 void makeGpuCollection(oclMat &trainCollection, oclMat &maskCollection, const std::vector<oclMat> &masks = std::vector<oclMat>());
1196 // Find one best match from train collection for each query descriptor
1197 void matchCollection(const oclMat &query, const oclMat &trainCollection,
1198 oclMat &trainIdx, oclMat &imgIdx, oclMat &distance,
1199 const oclMat &masks = oclMat());
1201 // Download trainIdx, imgIdx and distance and convert it to vector with DMatch
1202 static void matchDownload(const oclMat &trainIdx, const oclMat &imgIdx, const oclMat &distance, std::vector<DMatch> &matches);
1203 // Convert trainIdx, imgIdx and distance to vector with DMatch
1204 static void matchConvert(const Mat &trainIdx, const Mat &imgIdx, const Mat &distance, std::vector<DMatch> &matches);
1206 // Find one best match from train collection for each query descriptor.
1207 void match(const oclMat &query, std::vector<DMatch> &matches, const std::vector<oclMat> &masks = std::vector<oclMat>());
1209 // Find k best matches for each query descriptor (in increasing order of distances)
1210 void knnMatchSingle(const oclMat &query, const oclMat &train,
1211 oclMat &trainIdx, oclMat &distance, oclMat &allDist, int k,
1212 const oclMat &mask = oclMat());
1214 // Download trainIdx and distance and convert it to vector with DMatch
1215 // compactResult is used when mask is not empty. If compactResult is false matches
1216 // vector will have the same size as queryDescriptors rows. If compactResult is true
1217 // matches vector will not contain matches for fully masked out query descriptors.
1218 static void knnMatchDownload(const oclMat &trainIdx, const oclMat &distance,
1219 std::vector< std::vector<DMatch> > &matches, bool compactResult = false);
1221 // Convert trainIdx and distance to vector with DMatch
1222 static void knnMatchConvert(const Mat &trainIdx, const Mat &distance,
1223 std::vector< std::vector<DMatch> > &matches, bool compactResult = false);
1225 // Find k best matches for each query descriptor (in increasing order of distances).
1226 // compactResult is used when mask is not empty. If compactResult is false matches
1227 // vector will have the same size as queryDescriptors rows. If compactResult is true
1228 // matches vector will not contain matches for fully masked out query descriptors.
1229 void knnMatch(const oclMat &query, const oclMat &train,
1230 std::vector< std::vector<DMatch> > &matches, int k, const oclMat &mask = oclMat(),
1231 bool compactResult = false);
1233 // Find k best matches from train collection for each query descriptor (in increasing order of distances)
1234 void knnMatch2Collection(const oclMat &query, const oclMat &trainCollection,
1235 oclMat &trainIdx, oclMat &imgIdx, oclMat &distance,
1236 const oclMat &maskCollection = oclMat());
1238 // Download trainIdx and distance and convert it to vector with DMatch
1239 // compactResult is used when mask is not empty. If compactResult is false matches
1240 // vector will have the same size as queryDescriptors rows. If compactResult is true
1241 // matches vector will not contain matches for fully masked out query descriptors.
1242 static void knnMatch2Download(const oclMat &trainIdx, const oclMat &imgIdx, const oclMat &distance,
1243 std::vector< std::vector<DMatch> > &matches, bool compactResult = false);
1245 // Convert trainIdx and distance to vector with DMatch
1246 static void knnMatch2Convert(const Mat &trainIdx, const Mat &imgIdx, const Mat &distance,
1247 std::vector< std::vector<DMatch> > &matches, bool compactResult = false);
1249 // Find k best matches for each query descriptor (in increasing order of distances).
1250 // compactResult is used when mask is not empty. If compactResult is false matches
1251 // vector will have the same size as queryDescriptors rows. If compactResult is true
1252 // matches vector will not contain matches for fully masked out query descriptors.
1253 void knnMatch(const oclMat &query, std::vector< std::vector<DMatch> > &matches, int k,
1254 const std::vector<oclMat> &masks = std::vector<oclMat>(), bool compactResult = false);
1256 // Find best matches for each query descriptor which have distance less than maxDistance.
1257 // nMatches.at<int>(0, queryIdx) will contain matches count for queryIdx.
1258 // carefully nMatches can be greater than trainIdx.cols - it means that matcher didn't find all matches,
1259 // because it didn't have enough memory.
1260 // If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nTrain / 100), 10),
1261 // otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches
1262 // Matches doesn't sorted.
1263 void radiusMatchSingle(const oclMat &query, const oclMat &train,
1264 oclMat &trainIdx, oclMat &distance, oclMat &nMatches, float maxDistance,
1265 const oclMat &mask = oclMat());
1267 // Download trainIdx, nMatches and distance and convert it to vector with DMatch.
1268 // matches will be sorted in increasing order of distances.
1269 // compactResult is used when mask is not empty. If compactResult is false matches
1270 // vector will have the same size as queryDescriptors rows. If compactResult is true
1271 // matches vector will not contain matches for fully masked out query descriptors.
1272 static void radiusMatchDownload(const oclMat &trainIdx, const oclMat &distance, const oclMat &nMatches,
1273 std::vector< std::vector<DMatch> > &matches, bool compactResult = false);
1274 // Convert trainIdx, nMatches and distance to vector with DMatch.
1275 static void radiusMatchConvert(const Mat &trainIdx, const Mat &distance, const Mat &nMatches,
1276 std::vector< std::vector<DMatch> > &matches, bool compactResult = false);
1277 // Find best matches for each query descriptor which have distance less than maxDistance
1278 // in increasing order of distances).
1279 void radiusMatch(const oclMat &query, const oclMat &train,
1280 std::vector< std::vector<DMatch> > &matches, float maxDistance,
1281 const oclMat &mask = oclMat(), bool compactResult = false);
1282 // Find best matches for each query descriptor which have distance less than maxDistance.
1283 // If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nQuery / 100), 10),
1284 // otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches
1285 // Matches doesn't sorted.
1286 void radiusMatchCollection(const oclMat &query, oclMat &trainIdx, oclMat &imgIdx, oclMat &distance, oclMat &nMatches, float maxDistance,
1287 const std::vector<oclMat> &masks = std::vector<oclMat>());
1288 // Download trainIdx, imgIdx, nMatches and distance and convert it to vector with DMatch.
1289 // matches will be sorted in increasing order of distances.
1290 // compactResult is used when mask is not empty. If compactResult is false matches
1291 // vector will have the same size as queryDescriptors rows. If compactResult is true
1292 // matches vector will not contain matches for fully masked out query descriptors.
1293 static void radiusMatchDownload(const oclMat &trainIdx, const oclMat &imgIdx, const oclMat &distance, const oclMat &nMatches,
1294 std::vector< std::vector<DMatch> > &matches, bool compactResult = false);
1295 // Convert trainIdx, nMatches and distance to vector with DMatch.
1296 static void radiusMatchConvert(const Mat &trainIdx, const Mat &imgIdx, const Mat &distance, const Mat &nMatches,
1297 std::vector< std::vector<DMatch> > &matches, bool compactResult = false);
1298 // Find best matches from train collection for each query descriptor which have distance less than
1299 // maxDistance (in increasing order of distances).
1300 void radiusMatch(const oclMat &query, std::vector< std::vector<DMatch> > &matches, float maxDistance,
1301 const std::vector<oclMat> &masks = std::vector<oclMat>(), bool compactResult = false);
1304 std::vector<oclMat> trainDescCollection;
1307 template <class Distance>
1308 class CV_EXPORTS BruteForceMatcher_OCL;
1310 template <typename T>
1311 class CV_EXPORTS BruteForceMatcher_OCL< L1<T> > : public BruteForceMatcher_OCL_base
1314 explicit BruteForceMatcher_OCL() : BruteForceMatcher_OCL_base(L1Dist) {}
1315 explicit BruteForceMatcher_OCL(L1<T> /*d*/) : BruteForceMatcher_OCL_base(L1Dist) {}
1318 template <typename T>
1319 class CV_EXPORTS BruteForceMatcher_OCL< L2<T> > : public BruteForceMatcher_OCL_base
1322 explicit BruteForceMatcher_OCL() : BruteForceMatcher_OCL_base(L2Dist) {}
1323 explicit BruteForceMatcher_OCL(L2<T> /*d*/) : BruteForceMatcher_OCL_base(L2Dist) {}
1326 template <> class CV_EXPORTS BruteForceMatcher_OCL< Hamming > : public BruteForceMatcher_OCL_base
1329 explicit BruteForceMatcher_OCL() : BruteForceMatcher_OCL_base(HammingDist) {}
1330 explicit BruteForceMatcher_OCL(Hamming /*d*/) : BruteForceMatcher_OCL_base(HammingDist) {}
1333 class CV_EXPORTS BFMatcher_OCL : public BruteForceMatcher_OCL_base
1336 explicit BFMatcher_OCL(int norm = NORM_L2) : BruteForceMatcher_OCL_base(norm == NORM_L1 ? L1Dist : norm == NORM_L2 ? L2Dist : HammingDist) {}
1339 class CV_EXPORTS GoodFeaturesToTrackDetector_OCL
1342 explicit GoodFeaturesToTrackDetector_OCL(int maxCorners = 1000, double qualityLevel = 0.01, double minDistance = 0.0,
1343 int blockSize = 3, bool useHarrisDetector = false, double harrisK = 0.04);
1345 //! return 1 rows matrix with CV_32FC2 type
1346 void operator ()(const oclMat& image, oclMat& corners, const oclMat& mask = oclMat());
1347 //! download points of type Point2f to a vector. the vector's content will be erased
1348 void downloadPoints(const oclMat &points, vector<Point2f> &points_v);
1351 double qualityLevel;
1355 bool useHarrisDetector;
1357 void releaseMemory()
1362 minMaxbuf_.release();
1363 tmpCorners_.release();
1373 inline GoodFeaturesToTrackDetector_OCL::GoodFeaturesToTrackDetector_OCL(int maxCorners_, double qualityLevel_, double minDistance_,
1374 int blockSize_, bool useHarrisDetector_, double harrisK_)
1376 maxCorners = maxCorners_;
1377 qualityLevel = qualityLevel_;
1378 minDistance = minDistance_;
1379 blockSize = blockSize_;
1380 useHarrisDetector = useHarrisDetector_;
1384 /////////////////////////////// PyrLKOpticalFlow /////////////////////////////////////
1385 class CV_EXPORTS PyrLKOpticalFlow
1390 winSize = Size(21, 21);
1394 useInitialFlow = false;
1395 minEigThreshold = 1e-4f;
1396 getMinEigenVals = false;
1397 isDeviceArch11_ = false;
1400 void sparse(const oclMat &prevImg, const oclMat &nextImg, const oclMat &prevPts, oclMat &nextPts,
1401 oclMat &status, oclMat *err = 0);
1402 void dense(const oclMat &prevImg, const oclMat &nextImg, oclMat &u, oclMat &v, oclMat *err = 0);
1407 bool useInitialFlow;
1408 float minEigThreshold;
1409 bool getMinEigenVals;
1410 void releaseMemory()
1412 dx_calcBuf_.release();
1413 dy_calcBuf_.release();
1422 void calcSharrDeriv(const oclMat &src, oclMat &dx, oclMat &dy);
1423 void buildImagePyramid(const oclMat &img0, vector<oclMat> &pyr, bool withBorder);
1428 vector<oclMat> prevPyr_;
1429 vector<oclMat> nextPyr_;
1435 bool isDeviceArch11_;
1438 class CV_EXPORTS FarnebackOpticalFlow
1441 FarnebackOpticalFlow();
1452 void operator ()(const oclMat &frame0, const oclMat &frame1, oclMat &flowx, oclMat &flowy);
1454 void releaseMemory();
1457 void prepareGaussian(
1458 int n, double sigma, float *g, float *xg, float *xxg,
1459 double &ig11, double &ig03, double &ig33, double &ig55);
1461 void setPolynomialExpansionConsts(int n, double sigma);
1463 void updateFlow_boxFilter(
1464 const oclMat& R0, const oclMat& R1, oclMat& flowx, oclMat &flowy,
1465 oclMat& M, oclMat &bufM, int blockSize, bool updateMatrices);
1467 void updateFlow_gaussianBlur(
1468 const oclMat& R0, const oclMat& R1, oclMat& flowx, oclMat& flowy,
1469 oclMat& M, oclMat &bufM, int blockSize, bool updateMatrices);
1472 oclMat pyrLevel_[2], M_, bufM_, R_[2], blurredFrame_[2];
1473 std::vector<oclMat> pyramid0_, pyramid1_;
1476 //////////////// build warping maps ////////////////////
1477 //! builds plane warping maps
1478 CV_EXPORTS void buildWarpPlaneMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat &R, const Mat &T, float scale, oclMat &map_x, oclMat &map_y);
1479 //! builds cylindrical warping maps
1480 CV_EXPORTS void buildWarpCylindricalMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat &R, float scale, oclMat &map_x, oclMat &map_y);
1481 //! builds spherical warping maps
1482 CV_EXPORTS void buildWarpSphericalMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat &R, float scale, oclMat &map_x, oclMat &map_y);
1483 //! builds Affine warping maps
1484 CV_EXPORTS void buildWarpAffineMaps(const Mat &M, bool inverse, Size dsize, oclMat &xmap, oclMat &ymap);
1486 //! builds Perspective warping maps
1487 CV_EXPORTS void buildWarpPerspectiveMaps(const Mat &M, bool inverse, Size dsize, oclMat &xmap, oclMat &ymap);
1489 ///////////////////////////////////// interpolate frames //////////////////////////////////////////////
1490 //! Interpolate frames (images) using provided optical flow (displacement field).
1491 //! frame0 - frame 0 (32-bit floating point images, single channel)
1492 //! frame1 - frame 1 (the same type and size)
1493 //! fu - forward horizontal displacement
1494 //! fv - forward vertical displacement
1495 //! bu - backward horizontal displacement
1496 //! bv - backward vertical displacement
1497 //! pos - new frame position
1498 //! newFrame - new frame
1499 //! buf - temporary buffer, will have width x 6*height size, CV_32FC1 type and contain 6 oclMat;
1500 //! occlusion masks 0, occlusion masks 1,
1501 //! interpolated forward flow 0, interpolated forward flow 1,
1502 //! interpolated backward flow 0, interpolated backward flow 1
1504 CV_EXPORTS void interpolateFrames(const oclMat &frame0, const oclMat &frame1,
1505 const oclMat &fu, const oclMat &fv,
1506 const oclMat &bu, const oclMat &bv,
1507 float pos, oclMat &newFrame, oclMat &buf);
1509 //! computes moments of the rasterized shape or a vector of points
1510 CV_EXPORTS Moments ocl_moments(InputArray _array, bool binaryImage);
1512 class CV_EXPORTS StereoBM_OCL
1515 enum { BASIC_PRESET = 0, PREFILTER_XSOBEL = 1 };
1517 enum { DEFAULT_NDISP = 64, DEFAULT_WINSZ = 19 };
1519 //! the default constructor
1521 //! the full constructor taking the camera-specific preset, number of disparities and the SAD window size. ndisparities must be multiple of 8.
1522 StereoBM_OCL(int preset, int ndisparities = DEFAULT_NDISP, int winSize = DEFAULT_WINSZ);
1524 //! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair
1525 //! Output disparity has CV_8U type.
1526 void operator() ( const oclMat &left, const oclMat &right, oclMat &disparity);
1528 //! Some heuristics that tries to estmate
1529 // if current GPU will be faster then CPU in this algorithm.
1530 // It queries current active device.
1531 static bool checkIfGpuCallReasonable();
1537 // If avergeTexThreshold == 0 => post procesing is disabled
1538 // If avergeTexThreshold != 0 then disparity is set 0 in each point (x,y) where for left image
1539 // SumOfHorizontalGradiensInWindow(x, y, winSize) < (winSize * winSize) * avergeTexThreshold
1540 // i.e. input left image is low textured.
1541 float avergeTexThreshold;
1543 oclMat minSSD, leBuf, riBuf;
1546 class CV_EXPORTS StereoBeliefPropagation
1549 enum { DEFAULT_NDISP = 64 };
1550 enum { DEFAULT_ITERS = 5 };
1551 enum { DEFAULT_LEVELS = 5 };
1552 static void estimateRecommendedParams(int width, int height, int &ndisp, int &iters, int &levels);
1553 explicit StereoBeliefPropagation(int ndisp = DEFAULT_NDISP,
1554 int iters = DEFAULT_ITERS,
1555 int levels = DEFAULT_LEVELS,
1556 int msg_type = CV_16S);
1557 StereoBeliefPropagation(int ndisp, int iters, int levels,
1558 float max_data_term, float data_weight,
1559 float max_disc_term, float disc_single_jump,
1560 int msg_type = CV_32F);
1561 void operator()(const oclMat &left, const oclMat &right, oclMat &disparity);
1562 void operator()(const oclMat &data, oclMat &disparity);
1566 float max_data_term;
1568 float max_disc_term;
1569 float disc_single_jump;
1572 oclMat u, d, l, r, u2, d2, l2, r2;
1573 std::vector<oclMat> datas;
1577 class CV_EXPORTS StereoConstantSpaceBP
1580 enum { DEFAULT_NDISP = 128 };
1581 enum { DEFAULT_ITERS = 8 };
1582 enum { DEFAULT_LEVELS = 4 };
1583 enum { DEFAULT_NR_PLANE = 4 };
1584 static void estimateRecommendedParams(int width, int height, int &ndisp, int &iters, int &levels, int &nr_plane);
1585 explicit StereoConstantSpaceBP(
1586 int ndisp = DEFAULT_NDISP,
1587 int iters = DEFAULT_ITERS,
1588 int levels = DEFAULT_LEVELS,
1589 int nr_plane = DEFAULT_NR_PLANE,
1590 int msg_type = CV_32F);
1591 StereoConstantSpaceBP(int ndisp, int iters, int levels, int nr_plane,
1592 float max_data_term, float data_weight, float max_disc_term, float disc_single_jump,
1593 int min_disp_th = 0,
1594 int msg_type = CV_32F);
1595 void operator()(const oclMat &left, const oclMat &right, oclMat &disparity);
1600 float max_data_term;
1602 float max_disc_term;
1603 float disc_single_jump;
1606 bool use_local_init_data_cost;
1608 oclMat u[2], d[2], l[2], r[2];
1609 oclMat disp_selected_pyr[2];
1611 oclMat data_cost_selected;
1616 // Implementation of the Zach, Pock and Bischof Dual TV-L1 Optical Flow method
1619 // [1] C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow".
1620 // [2] Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
1621 class CV_EXPORTS OpticalFlowDual_TVL1_OCL
1624 OpticalFlowDual_TVL1_OCL();
1626 void operator ()(const oclMat& I0, const oclMat& I1, oclMat& flowx, oclMat& flowy);
1628 void collectGarbage();
1631 * Time step of the numerical scheme.
1636 * Weight parameter for the data term, attachment parameter.
1637 * This is the most relevant parameter, which determines the smoothness of the output.
1638 * The smaller this parameter is, the smoother the solutions we obtain.
1639 * It depends on the range of motions of the images, so its value should be adapted to each image sequence.
1644 * Weight parameter for (u - v)^2, tightness parameter.
1645 * It serves as a link between the attachment and the regularization terms.
1646 * In theory, it should have a small value in order to maintain both parts in correspondence.
1647 * The method is stable for a large range of values of this parameter.
1652 * Number of scales used to create the pyramid of images.
1657 * Number of warpings per scale.
1658 * Represents the number of times that I1(x+u0) and grad( I1(x+u0) ) are computed per scale.
1659 * This is a parameter that assures the stability of the method.
1660 * It also affects the running time, so it is a compromise between speed and accuracy.
1665 * Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time.
1666 * A small value will yield more accurate solutions at the expense of a slower convergence.
1671 * Stopping criterion iterations number used in the numerical scheme.
1675 bool useInitialFlow;
1678 void procOneScale(const oclMat& I0, const oclMat& I1, oclMat& u1, oclMat& u2);
1680 std::vector<oclMat> I0s;
1681 std::vector<oclMat> I1s;
1682 std::vector<oclMat> u1s;
1683 std::vector<oclMat> u2s;
1703 // current supported sorting methods
1706 SORT_BITONIC, // only support power-of-2 buffer size
1707 SORT_SELECTION, // cannot sort duplicate keys
1709 SORT_RADIX // only support signed int/float keys(CV_32S/CV_32F)
1711 //! Returns the sorted result of all the elements in input based on equivalent keys.
1713 // The element unit in the values to be sorted is determined from the data type,
1714 // i.e., a CV_32FC2 input {a1a2, b1b2} will be considered as two elements, regardless its
1715 // matrix dimension.
1716 // both keys and values will be sorted inplace
1717 // Key needs to be single channel oclMat.
1721 // keys = {2, 3, 1} (CV_8UC1)
1722 // values = {10,5, 4,3, 6,2} (CV_8UC2)
1723 // sortByKey(keys, values, SORT_SELECTION, false);
1725 // keys = {1, 2, 3} (CV_8UC1)
1726 // values = {6,2, 10,5, 4,3} (CV_8UC2)
1727 void CV_EXPORTS sortByKey(oclMat& keys, oclMat& values, int method, bool isGreaterThan = false);
1728 /*!Base class for MOG and MOG2!*/
1729 class CV_EXPORTS BackgroundSubtractor
1732 //! the virtual destructor
1733 virtual ~BackgroundSubtractor();
1734 //! the update operator that takes the next video frame and returns the current foreground mask as 8-bit binary image.
1735 virtual void operator()(const oclMat& image, oclMat& fgmask, float learningRate);
1737 //! computes a background image
1738 virtual void getBackgroundImage(oclMat& backgroundImage) const = 0;
1741 Gaussian Mixture-based Backbround/Foreground Segmentation Algorithm
1743 The class implements the following algorithm:
1744 "An improved adaptive background mixture model for real-time tracking with shadow detection"
1745 P. KadewTraKuPong and R. Bowden,
1746 Proc. 2nd European Workshp on Advanced Video-Based Surveillance Systems, 2001."
1747 http://personal.ee.surrey.ac.uk/Personal/R.Bowden/publications/avbs01/avbs01.pdf
1749 class CV_EXPORTS MOG: public cv::ocl::BackgroundSubtractor
1752 //! the default constructor
1753 MOG(int nmixtures = -1);
1755 //! re-initiaization method
1756 void initialize(Size frameSize, int frameType);
1758 //! the update operator
1759 void operator()(const oclMat& frame, oclMat& fgmask, float learningRate = 0.f);
1761 //! computes a background image which are the mean of all background gaussians
1762 void getBackgroundImage(oclMat& backgroundImage) const;
1764 //! releases all inner buffers
1769 float backgroundRatio;
1786 The class implements the following algorithm:
1787 "Improved adaptive Gausian mixture model for background subtraction"
1789 International Conference Pattern Recognition, UK, August, 2004.
1790 http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf
1792 class CV_EXPORTS MOG2: public cv::ocl::BackgroundSubtractor
1795 //! the default constructor
1796 MOG2(int nmixtures = -1);
1798 //! re-initiaization method
1799 void initialize(Size frameSize, int frameType);
1801 //! the update operator
1802 void operator()(const oclMat& frame, oclMat& fgmask, float learningRate = -1.0f);
1804 //! computes a background image which are the mean of all background gaussians
1805 void getBackgroundImage(oclMat& backgroundImage) const;
1807 //! releases all inner buffers
1811 // you should call initialize after parameters changes
1815 //! here it is the maximum allowed number of mixture components.
1816 //! Actual number is determined dynamically per pixel
1818 // threshold on the squared Mahalanobis distance to decide if it is well described
1819 // by the background model or not. Related to Cthr from the paper.
1820 // This does not influence the update of the background. A typical value could be 4 sigma
1821 // and that is varThreshold=4*4=16; Corresponds to Tb in the paper.
1823 /////////////////////////
1824 // less important parameters - things you might change but be carefull
1825 ////////////////////////
1827 float backgroundRatio;
1828 // corresponds to fTB=1-cf from the paper
1829 // TB - threshold when the component becomes significant enough to be included into
1830 // the background model. It is the TB=1-cf from the paper. So I use cf=0.1 => TB=0.
1831 // For alpha=0.001 it means that the mode should exist for approximately 105 frames before
1832 // it is considered foreground
1833 // float noiseSigma;
1834 float varThresholdGen;
1836 //correspondts to Tg - threshold on the squared Mahalan. dist. to decide
1837 //when a sample is close to the existing components. If it is not close
1838 //to any a new component will be generated. I use 3 sigma => Tg=3*3=9.
1839 //Smaller Tg leads to more generated components and higher Tg might make
1840 //lead to small number of components but they can grow too large
1845 //initial variance for the newly generated components.
1846 //It will will influence the speed of adaptation. A good guess should be made.
1847 //A simple way is to estimate the typical standard deviation from the images.
1848 //I used here 10 as a reasonable value
1849 // min and max can be used to further control the variance
1850 float fCT; //CT - complexity reduction prior
1851 //this is related to the number of samples needed to accept that a component
1852 //actually exists. We use CT=0.05 of all the samples. By setting CT=0 you get
1853 //the standard Stauffer&Grimson algorithm (maybe not exact but very similar)
1855 //shadow detection parameters
1856 bool bShadowDetection; //default 1 - do shadow detection
1857 unsigned char nShadowDetection; //do shadow detection - insert this value as the detection result - 127 default value
1859 // Tau - shadow threshold. The shadow is detected if the pixel is darker
1860 //version of the background. Tau is a threshold on how much darker the shadow can be.
1861 //Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow
1862 //See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
1875 oclMat bgmodelUsedModes_; //keep track of number of modes per pixel
1878 /*!***************Kalman Filter*************!*/
1879 class CV_EXPORTS KalmanFilter
1883 //! the full constructor taking the dimensionality of the state, of the measurement and of the control vector
1884 KalmanFilter(int dynamParams, int measureParams, int controlParams=0, int type=CV_32F);
1885 //! re-initializes Kalman filter. The previous content is destroyed.
1886 void init(int dynamParams, int measureParams, int controlParams=0, int type=CV_32F);
1888 const oclMat& predict(const oclMat& control=oclMat());
1889 const oclMat& correct(const oclMat& measurement);
1891 oclMat statePre; //!< predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
1892 oclMat statePost; //!< corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
1893 oclMat transitionMatrix; //!< state transition matrix (A)
1894 oclMat controlMatrix; //!< control matrix (B) (not used if there is no control)
1895 oclMat measurementMatrix; //!< measurement matrix (H)
1896 oclMat processNoiseCov; //!< process noise covariance matrix (Q)
1897 oclMat measurementNoiseCov;//!< measurement noise covariance matrix (R)
1898 oclMat errorCovPre; //!< priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)*/
1899 oclMat gain; //!< Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)
1900 oclMat errorCovPost; //!< posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k)
1909 /*!***************K Nearest Neighbour*************!*/
1910 class CV_EXPORTS KNearestNeighbour: public CvKNearest
1913 KNearestNeighbour();
1914 ~KNearestNeighbour();
1916 bool train(const Mat& trainData, Mat& labels, Mat& sampleIdx = Mat().setTo(Scalar::all(0)),
1917 bool isRegression = false, int max_k = 32, bool updateBase = false);
1921 void find_nearest(const oclMat& samples, int k, oclMat& lables);
1926 /*!*************** SVM *************!*/
1927 class CV_EXPORTS CvSVM_OCL : public CvSVM
1932 CvSVM_OCL(const cv::Mat& trainData, const cv::Mat& responses,
1933 const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(),
1934 CvSVMParams params=CvSVMParams());
1935 CV_WRAP float predict( const int row_index, Mat& src, bool returnDFVal=false ) const;
1936 CV_WRAP void predict( cv::InputArray samples, cv::OutputArray results ) const;
1937 CV_WRAP float predict( const cv::Mat& sample, bool returnDFVal=false ) const;
1938 float predict( const CvMat* samples, CV_OUT CvMat* results ) const;
1941 float predict( const int row_index, int row_len, Mat& src, bool returnDFVal=false ) const;
1942 void create_kernel();
1943 void create_solver();
1945 /*!*************** END *************!*/
1948 #if defined _MSC_VER && _MSC_VER >= 1200
1949 # pragma warning( push)
1950 # pragma warning( disable: 4267)
1952 #include "opencv2/ocl/matrix_operations.hpp"
1953 #if defined _MSC_VER && _MSC_VER >= 1200
1954 # pragma warning( pop)
1957 #endif /* __OPENCV_OCL_HPP__ */