1 /*-------------------------------------------------------------------------
2 * drawElements Quality Program OpenGL (ES) Module
3 * -----------------------------------------------
5 * Copyright 2014 The Android Open Source Project
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 * you may not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
11 * http://www.apache.org/licenses/LICENSE-2.0
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS,
15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
21 * \brief Shader - render state interaction case.
22 *//*--------------------------------------------------------------------*/
24 #include "glsFragOpInteractionCase.hpp"
26 #include "glsRandomShaderProgram.hpp"
27 #include "glsFragmentOpUtil.hpp"
28 #include "glsInteractionTestUtil.hpp"
30 #include "gluRenderContext.hpp"
31 #include "gluContextInfo.hpp"
33 #include "rsgShader.hpp"
34 #include "rsgProgramGenerator.hpp"
35 #include "rsgUtils.hpp"
37 #include "sglrContext.hpp"
38 #include "sglrReferenceContext.hpp"
39 #include "sglrGLContext.hpp"
40 #include "sglrContextUtil.hpp"
42 #include "tcuRenderTarget.hpp"
43 #include "tcuImageCompare.hpp"
45 #include "deRandom.hpp"
47 #include "deStringUtil.hpp"
49 #include "glwEnums.hpp"
51 #include "gluDrawUtil.hpp"
65 using gls::InteractionTestUtil::RenderState;
66 using gls::InteractionTestUtil::StencilState;
71 NUM_COMMANDS_PER_ITERATION = 5,
79 static void computeVertexLayout (const vector<rsg::ShaderInput*>& attributes, int numVertices, vector<glu::VertexArrayBinding>* layout, int* stride)
81 DE_ASSERT(layout->empty());
85 for (vector<rsg::ShaderInput*>::const_iterator iter = attributes.begin(); iter != attributes.end(); ++iter)
87 const rsg::ShaderInput* attrib = *iter;
88 const rsg::Variable* var = attrib->getVariable();
89 const rsg::VariableType& type = var->getType();
90 const int numComps = type.getNumElements();
92 TCU_CHECK_INTERNAL(type.getBaseType() == rsg::VariableType::TYPE_FLOAT && de::inRange(type.getNumElements(), 1, 4));
94 layout->push_back(glu::va::Float(var->getName(), numComps, numVertices, 0 /* computed later */, (const float*)(deUintptr)curOffset));
96 curOffset += numComps * (int)sizeof(float);
99 for (vector<glu::VertexArrayBinding>::iterator vaIter = layout->begin(); vaIter != layout->end(); ++vaIter)
100 vaIter->pointer.stride = curOffset;
105 class VertexDataStorage
108 VertexDataStorage (const vector<rsg::ShaderInput*>& attributes, int numVertices);
110 int getDataSize (void) const { return (int)m_data.size(); }
111 void* getBasePtr (void) { return m_data.empty() ? DE_NULL : &m_data[0]; }
112 const void* getBasePtr (void) const { return m_data.empty() ? DE_NULL : &m_data[0]; }
114 const std::vector<glu::VertexArrayBinding>& getLayout (void) const { return m_layout; }
116 int getNumEntries (void) const { return (int)m_layout.size(); }
117 const glu::VertexArrayBinding& getLayoutEntry (int ndx) const { return m_layout[ndx]; }
120 std::vector<deUint8> m_data;
121 std::vector<glu::VertexArrayBinding> m_layout;
124 VertexDataStorage::VertexDataStorage (const vector<rsg::ShaderInput*>& attributes, int numVertices)
127 computeVertexLayout(attributes, numVertices, &m_layout, &stride);
128 m_data.resize(stride * numVertices);
131 static inline glu::VertexArrayBinding getEntryWithPointer (const VertexDataStorage& data, int ndx)
133 const glu::VertexArrayBinding& entry = data.getLayoutEntry(ndx);
134 return glu::VertexArrayBinding(entry.binding, glu::VertexArrayPointer(entry.pointer.componentType,
135 entry.pointer.convert,
136 entry.pointer.numComponents,
137 entry.pointer.numElements,
138 entry.pointer.stride,
139 (const void*)((deUintptr)entry.pointer.data+(deUintptr)data.getBasePtr())));
143 static void setVertex (const glu::VertexArrayPointer& pointer, int vertexNdx, const tcu::Vector<float, Size>& value)
145 // \todo [2013-12-14 pyry] Implement other modes.
146 DE_ASSERT(pointer.componentType == glu::VTX_COMP_FLOAT && pointer.convert == glu::VTX_COMP_CONVERT_NONE);
147 DE_ASSERT(pointer.numComponents == Size);
148 DE_ASSERT(de::inBounds(vertexNdx, 0, pointer.numElements));
150 float* dst = (float*)((deUint8*)pointer.data + pointer.stride*vertexNdx);
152 for (int ndx = 0; ndx < Size; ndx++)
153 dst[ndx] = value[ndx];
157 static tcu::Vector<float, Size> interpolateRange (const rsg::ConstValueRangeAccess& range, const tcu::Vector<float, Size>& t)
159 tcu::Vector<float, Size> result;
161 for (int ndx = 0; ndx < Size; ndx++)
162 result[ndx] = range.getMin().component(ndx).asFloat()*(1.0f - t[ndx]) + range.getMax().component(ndx).asFloat()*t[ndx];
179 RenderCommand (void) : depth(0.0f) {}
182 static Quad getRandomQuad (de::Random& rnd, int targetW, int targetH)
184 // \note In viewport coordinates.
185 // \todo [2012-12-18 pyry] Out-of-bounds values.
186 const int maxOutOfBounds = 0;
187 const float minSize = 0.5f;
189 const int minW = deCeilFloatToInt32(minSize * (float)targetW);
190 const int minH = deCeilFloatToInt32(minSize * (float)targetH);
191 const int maxW = targetW + 2*maxOutOfBounds;
192 const int maxH = targetH + 2*maxOutOfBounds;
194 const int width = rnd.getInt(minW, maxW);
195 const int height = rnd.getInt(minH, maxH);
196 const int x = rnd.getInt(-maxOutOfBounds, targetW+maxOutOfBounds-width);
197 const int y = rnd.getInt(-maxOutOfBounds, targetH+maxOutOfBounds-height);
199 const bool flipX = rnd.getBool();
200 const bool flipY = rnd.getBool();
204 quad.posA = tcu::IVec2(flipX ? (x+width-1) : x, flipY ? (y+height-1) : y);
205 quad.posB = tcu::IVec2(flipX ? x : (x+width-1), flipY ? y : (y+height-1));
210 static float getRandomDepth (de::Random& rnd)
212 // \note Not using depth 1.0 since clearing with 1.0 and rendering with 1.0 may not be same value.
213 static const float depthValues[] = { 0.0f, 0.2f, 0.4f, 0.5f, 0.51f, 0.6f, 0.8f, 0.95f };
214 return rnd.choose<float>(DE_ARRAY_BEGIN(depthValues), DE_ARRAY_END(depthValues));
217 static void computeRandomRenderCommand (de::Random& rnd, RenderCommand& command, glu::ApiType apiType, int targetW, int targetH)
219 command.quad = getRandomQuad(rnd, targetW, targetH);
220 command.depth = getRandomDepth(rnd);
221 gls::InteractionTestUtil::computeRandomRenderState(rnd, command.state, apiType, targetW, targetH);
224 static void setRenderState (sglr::Context& ctx, const RenderState& state)
226 if (state.scissorTestEnabled)
228 ctx.enable(GL_SCISSOR_TEST);
229 ctx.scissor(state.scissorRectangle.left, state.scissorRectangle.bottom,
230 state.scissorRectangle.width, state.scissorRectangle.height);
233 ctx.disable(GL_SCISSOR_TEST);
235 if (state.stencilTestEnabled)
237 ctx.enable(GL_STENCIL_TEST);
239 for (int face = 0; face < rr::FACETYPE_LAST; face++)
241 deUint32 glFace = face == rr::FACETYPE_BACK ? GL_BACK : GL_FRONT;
242 const StencilState& sParams = state.stencil[face];
244 ctx.stencilFuncSeparate(glFace, sParams.function, sParams.reference, sParams.compareMask);
245 ctx.stencilOpSeparate(glFace, sParams.stencilFailOp, sParams.depthFailOp, sParams.depthPassOp);
246 ctx.stencilMaskSeparate(glFace, sParams.writeMask);
250 ctx.disable(GL_STENCIL_TEST);
252 if (state.depthTestEnabled)
254 ctx.enable(GL_DEPTH_TEST);
255 ctx.depthFunc(state.depthFunc);
256 ctx.depthMask(state.depthWriteMask ? GL_TRUE : GL_FALSE);
259 ctx.disable(GL_DEPTH_TEST);
261 if (state.blendEnabled)
263 ctx.enable(GL_BLEND);
264 ctx.blendEquationSeparate(state.blendRGBState.equation, state.blendAState.equation);
265 ctx.blendFuncSeparate(state.blendRGBState.srcFunc, state.blendRGBState.dstFunc, state.blendAState.srcFunc, state.blendAState.dstFunc);
266 ctx.blendColor(state.blendColor.x(), state.blendColor.y(), state.blendColor.z(), state.blendColor.w());
269 ctx.disable(GL_BLEND);
271 if (state.ditherEnabled)
272 ctx.enable(GL_DITHER);
274 ctx.disable(GL_DITHER);
276 ctx.colorMask(state.colorMask[0] ? GL_TRUE : GL_FALSE,
277 state.colorMask[1] ? GL_TRUE : GL_FALSE,
278 state.colorMask[2] ? GL_TRUE : GL_FALSE,
279 state.colorMask[3] ? GL_TRUE : GL_FALSE);
282 static void renderQuad (sglr::Context& ctx, const glu::VertexArrayPointer& posPtr, const Quad& quad, const float depth)
284 const deUint16 indices[] = { 0, 1, 2, 2, 1, 3 };
286 const bool flipX = quad.posB.x() < quad.posA.x();
287 const bool flipY = quad.posB.y() < quad.posA.y();
288 const int viewportX = de::min(quad.posA.x(), quad.posB.x());
289 const int viewportY = de::min(quad.posA.y(), quad.posB.y());
290 const int viewportW = de::abs(quad.posA.x()-quad.posB.x())+1;
291 const int viewportH = de::abs(quad.posA.y()-quad.posB.y())+1;
293 const Vec2 pA (flipX ? 1.0f : -1.0f, flipY ? 1.0f : -1.0f);
294 const Vec2 pB (flipX ? -1.0f : 1.0f, flipY ? -1.0f : 1.0f);
296 setVertex(posPtr, 0, Vec4(pA.x(), pA.y(), depth, 1.0f));
297 setVertex(posPtr, 1, Vec4(pB.x(), pA.y(), depth, 1.0f));
298 setVertex(posPtr, 2, Vec4(pA.x(), pB.y(), depth, 1.0f));
299 setVertex(posPtr, 3, Vec4(pB.x(), pB.y(), depth, 1.0f));
301 ctx.viewport(viewportX, viewportY, viewportW, viewportH);
302 ctx.drawElements(GL_TRIANGLES, DE_LENGTH_OF_ARRAY(indices), GL_UNSIGNED_SHORT, &indices[0]);
305 static void render (sglr::Context& ctx, const glu::VertexArrayPointer& posPtr, const RenderCommand& cmd)
307 setRenderState(ctx, cmd.state);
308 renderQuad(ctx, posPtr, cmd.quad, cmd.depth);
311 static void setupAttributes (sglr::Context& ctx, const VertexDataStorage& vertexData, deUint32 program)
313 for (int attribNdx = 0; attribNdx < vertexData.getNumEntries(); ++attribNdx)
315 const glu::VertexArrayBinding bindingPtr = getEntryWithPointer(vertexData, attribNdx);
316 const int attribLoc = bindingPtr.binding.type == glu::BindingPoint::TYPE_NAME ? ctx.getAttribLocation(program, bindingPtr.binding.name.c_str()) : bindingPtr.binding.location;
318 DE_ASSERT(bindingPtr.pointer.componentType == glu::VTX_COMP_FLOAT);
322 ctx.enableVertexAttribArray(attribLoc);
323 ctx.vertexAttribPointer(attribLoc, bindingPtr.pointer.numComponents, GL_FLOAT, GL_FALSE, bindingPtr.pointer.stride, bindingPtr.pointer.data);
328 void setUniformValue (sglr::Context& ctx, int location, rsg::ConstValueAccess value)
330 DE_STATIC_ASSERT(sizeof(rsg::Scalar) == sizeof(float));
331 DE_STATIC_ASSERT(sizeof(rsg::Scalar) == sizeof(int));
333 switch (value.getType().getBaseType())
335 case rsg::VariableType::TYPE_FLOAT:
336 switch (value.getType().getNumElements())
338 case 1: ctx.uniform1fv(location, 1, (float*)value.value().getValuePtr()); break;
339 case 2: ctx.uniform2fv(location, 1, (float*)value.value().getValuePtr()); break;
340 case 3: ctx.uniform3fv(location, 1, (float*)value.value().getValuePtr()); break;
341 case 4: ctx.uniform4fv(location, 1, (float*)value.value().getValuePtr()); break;
342 default: TCU_FAIL("Unsupported type"); break;
346 case rsg::VariableType::TYPE_INT:
347 case rsg::VariableType::TYPE_BOOL:
348 case rsg::VariableType::TYPE_SAMPLER_2D:
349 case rsg::VariableType::TYPE_SAMPLER_CUBE:
350 switch (value.getType().getNumElements())
352 case 1: ctx.uniform1iv(location, 1, (int*)value.value().getValuePtr()); break;
353 case 2: ctx.uniform2iv(location, 1, (int*)value.value().getValuePtr()); break;
354 case 3: ctx.uniform3iv(location, 1, (int*)value.value().getValuePtr()); break;
355 case 4: ctx.uniform4iv(location, 1, (int*)value.value().getValuePtr()); break;
356 default: TCU_FAIL("Unsupported type"); break;
361 throw tcu::InternalError("Unsupported type", "", __FILE__, __LINE__);
365 static int findShaderInputIndex (const vector<rsg::ShaderInput*>& vars, const char* name)
367 for (int ndx = 0; ndx < (int)vars.size(); ++ndx)
369 if (deStringEqual(vars[ndx]->getVariable()->getName(), name))
373 throw tcu::InternalError(string(name) + " not found in shader inputs");
376 static float getWellBehavingChannelColor (float v, int numBits)
378 DE_ASSERT(de::inRange(numBits, 0, 32));
380 // clear color may not be accurately representable in the target format. If the clear color is
381 // on a representable value mapping range border, it could be rounded differently by the GL and in
382 // SGLR adding an unexpected error source. However, selecting an accurately representable background
383 // color would effectively disable dithering. To allow dithering and to prevent undefined rounding
384 // direction from affecting results, round accurate color to target color format with 8 sub-units
385 // (3 bits). If the selected sub-unit value is 3 or 4 (bordering 0.5), replace it with 2 and 5,
388 if (numBits == 0 || v <= 0.0f || v >= 1.0f)
390 // already accurately representable
395 const deUint64 numSubBits = 3;
396 const deUint64 subUnitBorderLo = (1u << (numSubBits - 1u)) - 1u;
397 const deUint64 subUnitBorderHi = 1u << (numSubBits - 1u);
398 const deUint64 maxFixedValue = (1u << (numBits + numSubBits)) - 1u;
399 const deUint64 fixedValue = deRoundFloatToInt64(v * (float)maxFixedValue);
401 const deUint64 units = fixedValue >> numSubBits;
402 const deUint64 subUnits = fixedValue & ((1u << numSubBits) - 1u);
404 const deUint64 tweakedSubUnits = (subUnits == subUnitBorderLo) ? (subUnitBorderLo - 1)
405 : (subUnits == subUnitBorderHi) ? (subUnitBorderHi + 1)
407 const deUint64 tweakedValue = (units << numSubBits) | (tweakedSubUnits);
409 return float(tweakedValue) / float(maxFixedValue);
413 static tcu::Vec4 getWellBehavingColor (const tcu::Vec4& accurateColor, const tcu::PixelFormat& format)
415 return tcu::Vec4(getWellBehavingChannelColor(accurateColor[0], format.redBits),
416 getWellBehavingChannelColor(accurateColor[1], format.greenBits),
417 getWellBehavingChannelColor(accurateColor[2], format.blueBits),
418 getWellBehavingChannelColor(accurateColor[3], format.alphaBits));
423 struct FragOpInteractionCase::ReferenceContext
425 const sglr::ReferenceContextLimits limits;
426 sglr::ReferenceContextBuffers buffers;
427 sglr::ReferenceContext context;
429 ReferenceContext (glu::RenderContext& renderCtx, int width, int height)
431 , buffers (renderCtx.getRenderTarget().getPixelFormat(), renderCtx.getRenderTarget().getDepthBits(), renderCtx.getRenderTarget().getStencilBits(), width, height)
432 , context (limits, buffers.getColorbuffer(), buffers.getDepthbuffer(), buffers.getStencilbuffer())
437 FragOpInteractionCase::FragOpInteractionCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const glu::ContextInfo& ctxInfo, const char* name, const rsg::ProgramParameters& params)
438 : TestCase (testCtx, name, "")
439 , m_renderCtx (renderCtx)
440 , m_ctxInfo (ctxInfo)
442 , m_vertexShader (rsg::Shader::TYPE_VERTEX)
443 , m_fragmentShader (rsg::Shader::TYPE_FRAGMENT)
444 , m_program (DE_NULL)
446 , m_referenceCtx (DE_NULL)
453 FragOpInteractionCase::~FragOpInteractionCase (void)
455 FragOpInteractionCase::deinit();
458 void FragOpInteractionCase::init (void)
460 de::Random rnd (m_params.seed ^ 0x232faac);
461 const int viewportW = de::min<int>(m_renderCtx.getRenderTarget().getWidth(), VIEWPORT_WIDTH);
462 const int viewportH = de::min<int>(m_renderCtx.getRenderTarget().getHeight(), VIEWPORT_HEIGHT);
463 const int viewportX = rnd.getInt(0, m_renderCtx.getRenderTarget().getWidth() - viewportW);
464 const int viewportY = rnd.getInt(0, m_renderCtx.getRenderTarget().getHeight() - viewportH);
466 rsg::ProgramGenerator generator;
468 generator.generate(m_params, m_vertexShader, m_fragmentShader);
469 rsg::computeUnifiedUniforms(m_vertexShader, m_fragmentShader, m_unifiedUniforms);
473 DE_ASSERT(!m_program);
474 m_program = new gls::RandomShaderProgram(m_vertexShader, m_fragmentShader, (int)m_unifiedUniforms.size(), m_unifiedUniforms.empty() ? DE_NULL : &m_unifiedUniforms[0]);
476 DE_ASSERT(!m_referenceCtx);
477 m_referenceCtx = new ReferenceContext(m_renderCtx, viewportW, viewportH);
480 m_glCtx = new sglr::GLContext(m_renderCtx, m_testCtx.getLog(), sglr::GLCONTEXT_LOG_CALLS|sglr::GLCONTEXT_LOG_PROGRAMS, IVec4(viewportX, viewportY, viewportW, viewportH));
482 m_refProgram = m_referenceCtx->context.createProgram(m_program);
483 m_glProgram = m_glCtx->createProgram(m_program);
485 m_viewportSize = tcu::IVec2(viewportW, viewportH);
487 m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
491 // Save some memory by cleaning up stuff.
492 FragOpInteractionCase::deinit();
497 void FragOpInteractionCase::deinit (void)
499 delete m_referenceCtx;
500 m_referenceCtx = DE_NULL;
509 FragOpInteractionCase::IterateResult FragOpInteractionCase::iterate (void)
511 de::Random rnd (m_params.seed ^ deInt32Hash(m_iterNdx));
512 const tcu::ScopedLogSection section (m_testCtx.getLog(), string("Iter") + de::toString(m_iterNdx), string("Iteration ") + de::toString(m_iterNdx));
514 const int positionNdx = findShaderInputIndex(m_vertexShader.getInputs(), "dEQP_Position");
516 const int numVertices = 4;
517 VertexDataStorage vertexData (m_vertexShader.getInputs(), numVertices);
518 std::vector<rsg::VariableValue> uniformValues;
519 std::vector<RenderCommand> renderCmds (NUM_COMMANDS_PER_ITERATION);
521 tcu::Surface rendered (m_viewportSize.x(), m_viewportSize.y());
522 tcu::Surface reference (m_viewportSize.x(), m_viewportSize.y());
524 const tcu::Vec4 vtxInterpFactors[] =
526 tcu::Vec4(0.0f, 0.0f, 0.0f, 1.0f),
527 tcu::Vec4(1.0f, 0.0f, 0.5f, 0.5f),
528 tcu::Vec4(0.0f, 1.0f, 0.5f, 0.5f),
529 tcu::Vec4(1.0f, 1.0f, 1.0f, 0.0f)
532 rsg::computeUniformValues(rnd, uniformValues, m_unifiedUniforms);
534 for (int attribNdx = 0; attribNdx < (int)m_vertexShader.getInputs().size(); ++attribNdx)
536 if (attribNdx == positionNdx)
539 const rsg::ShaderInput* shaderIn = m_vertexShader.getInputs()[attribNdx];
540 const rsg::VariableType& varType = shaderIn->getVariable()->getType();
541 const rsg::ConstValueRangeAccess valueRange = shaderIn->getValueRange();
542 const int numComponents = varType.getNumElements();
543 const glu::VertexArrayBinding layoutEntry = getEntryWithPointer(vertexData, attribNdx);
545 DE_ASSERT(varType.getBaseType() == rsg::VariableType::TYPE_FLOAT);
547 for (int vtxNdx = 0; vtxNdx < 4; vtxNdx++)
549 const int fNdx = (attribNdx+vtxNdx+m_iterNdx)%DE_LENGTH_OF_ARRAY(vtxInterpFactors);
550 const tcu::Vec4& f = vtxInterpFactors[fNdx];
552 switch (numComponents)
554 case 1: setVertex(layoutEntry.pointer, vtxNdx, interpolateRange(valueRange, f.toWidth<1>())); break;
555 case 2: setVertex(layoutEntry.pointer, vtxNdx, interpolateRange(valueRange, f.toWidth<2>())); break;
556 case 3: setVertex(layoutEntry.pointer, vtxNdx, interpolateRange(valueRange, f.toWidth<3>())); break;
557 case 4: setVertex(layoutEntry.pointer, vtxNdx, interpolateRange(valueRange, f.toWidth<4>())); break;
564 for (vector<RenderCommand>::iterator cmdIter = renderCmds.begin(); cmdIter != renderCmds.end(); ++cmdIter)
565 computeRandomRenderCommand(rnd, *cmdIter, m_renderCtx.getType().getAPI(), m_viewportSize.x(), m_viewportSize.y());
567 // Workaround for inaccurate barycentric/depth computation in current reference renderer:
568 // Small bias is added to the draw call depths, in increasing order, to avoid accuracy issues in depth comparison.
569 for (int cmdNdx = 0; cmdNdx < (int)renderCmds.size(); cmdNdx++)
570 renderCmds[cmdNdx].depth += 0.0231725f * float(cmdNdx);
573 const glu::VertexArrayPointer posPtr = getEntryWithPointer(vertexData, positionNdx).pointer;
575 sglr::Context* const contexts[] = { m_glCtx, &m_referenceCtx->context };
576 const deUint32 programs[] = { m_glProgram, m_refProgram };
577 tcu::PixelBufferAccess readDst[] = { rendered.getAccess(), reference.getAccess() };
579 const tcu::Vec4 accurateClearColor = tcu::Vec4(0.0f, 0.25f, 0.5f, 1.0f);
580 const tcu::Vec4 clearColor = getWellBehavingColor(accurateClearColor, m_renderCtx.getRenderTarget().getPixelFormat());
582 for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(contexts); ndx++)
584 sglr::Context& ctx = *contexts[ndx];
585 const deUint32 program = programs[ndx];
587 setupAttributes(ctx, vertexData, program);
589 ctx.disable (GL_SCISSOR_TEST);
590 ctx.colorMask (GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
591 ctx.depthMask (GL_TRUE);
592 ctx.stencilMask (~0u);
593 ctx.clearColor (clearColor.x(), clearColor.y(), clearColor.z(), clearColor.w());
594 ctx.clear (GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT|GL_STENCIL_BUFFER_BIT);
596 ctx.useProgram (program);
598 for (vector<rsg::VariableValue>::const_iterator uniformIter = uniformValues.begin(); uniformIter != uniformValues.end(); ++uniformIter)
599 setUniformValue(ctx, ctx.getUniformLocation(program, uniformIter->getVariable()->getName()), uniformIter->getValue());
601 for (vector<RenderCommand>::const_iterator cmdIter = renderCmds.begin(); cmdIter != renderCmds.end(); ++cmdIter)
602 render(ctx, posPtr, *cmdIter);
604 GLU_EXPECT_NO_ERROR(ctx.getError(), "Rendering failed");
606 ctx.readPixels(0, 0, m_viewportSize.x(), m_viewportSize.y(), GL_RGBA, GL_UNSIGNED_BYTE, readDst[ndx].getDataPtr());
611 const tcu::RGBA threshold = m_renderCtx.getRenderTarget().getPixelFormat().getColorThreshold()+tcu::RGBA(3,3,3,3);
612 const bool compareOk = tcu::bilinearCompare(m_testCtx.getLog(), "CompareResult", "Image comparison result", reference.getAccess(), rendered.getAccess(), threshold, tcu::COMPARE_LOG_RESULT);
616 m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Image comparison failed");
622 return (m_iterNdx < NUM_ITERATIONS) ? CONTINUE : STOP;