dac55d60b0e018032a938cb4bf632eaa976b3260
[platform/upstream/opencv.git] / modules / dnn / test / test_tf_importer.cpp
1 // This file is part of OpenCV project.
2 // It is subject to the license terms in the LICENSE file found in the top-level directory
3 // of this distribution and at http://opencv.org/license.html.
4
5 // Copyright (C) 2017-2019, Intel Corporation, all rights reserved.
6 // Third party copyrights are property of their respective owners.
7
8 /*
9 Test for Tensorflow models loading
10 */
11
12 #include "test_precomp.hpp"
13 #include "npy_blob.hpp"
14
15 #include <opencv2/dnn/layer.details.hpp>  // CV_DNN_REGISTER_LAYER_CLASS
16
17 namespace opencv_test
18 {
19
20 using namespace cv;
21 using namespace cv::dnn;
22
23 template<typename TString>
24 static std::string _tf(TString filename)
25 {
26     return (getOpenCVExtraDir() + "/dnn/") + filename;
27 }
28
29 TEST(Test_TensorFlow, read_inception)
30 {
31     Net net;
32     {
33         const string model = findDataFile("dnn/tensorflow_inception_graph.pb", false);
34         net = readNetFromTensorflow(model);
35         ASSERT_FALSE(net.empty());
36     }
37     net.setPreferableBackend(DNN_BACKEND_OPENCV);
38
39     Mat sample = imread(_tf("grace_hopper_227.png"));
40     ASSERT_TRUE(!sample.empty());
41     Mat input;
42     resize(sample, input, Size(224, 224));
43     input -= Scalar::all(117); // mean sub
44
45     Mat inputBlob = blobFromImage(input);
46
47     net.setInput(inputBlob, "input");
48     Mat out = net.forward("softmax2");
49
50     std::cout << out.dims << std::endl;
51 }
52
53 TEST(Test_TensorFlow, inception_accuracy)
54 {
55     Net net;
56     {
57         const string model = findDataFile("dnn/tensorflow_inception_graph.pb", false);
58         net = readNetFromTensorflow(model);
59         ASSERT_FALSE(net.empty());
60     }
61     net.setPreferableBackend(DNN_BACKEND_OPENCV);
62
63     Mat sample = imread(_tf("grace_hopper_227.png"));
64     ASSERT_TRUE(!sample.empty());
65     Mat inputBlob = blobFromImage(sample, 1.0, Size(224, 224), Scalar(), /*swapRB*/true);
66
67     net.setInput(inputBlob, "input");
68     Mat out = net.forward("softmax2");
69
70     Mat ref = blobFromNPY(_tf("tf_inception_prob.npy"));
71
72     normAssert(ref, out);
73 }
74
75 static std::string path(const std::string& file)
76 {
77     return findDataFile("dnn/tensorflow/" + file);
78 }
79
80 class Test_TensorFlow_layers : public DNNTestLayer
81 {
82 public:
83     void runTensorFlowNet(const std::string& prefix, bool hasText = false,
84                           double l1 = 0.0, double lInf = 0.0, bool memoryLoad = false)
85     {
86         std::string netPath = path(prefix + "_net.pb");
87         std::string netConfig = (hasText ? path(prefix + "_net.pbtxt") : "");
88         std::string inpPath = path(prefix + "_in.npy");
89         std::string outPath = path(prefix + "_out.npy");
90
91         cv::Mat input = blobFromNPY(inpPath);
92         cv::Mat ref = blobFromNPY(outPath);
93         checkBackend(&input, &ref);
94
95         Net net;
96         if (memoryLoad)
97         {
98             // Load files into a memory buffers
99             std::vector<char> dataModel;
100             readFileContent(netPath, dataModel);
101
102             std::vector<char> dataConfig;
103             if (hasText)
104             {
105                 readFileContent(netConfig, dataConfig);
106             }
107
108             net = readNetFromTensorflow(dataModel.data(), dataModel.size(),
109                                         dataConfig.data(), dataConfig.size());
110         }
111         else
112             net = readNetFromTensorflow(netPath, netConfig);
113
114         ASSERT_FALSE(net.empty());
115
116         net.setPreferableBackend(backend);
117         net.setPreferableTarget(target);
118         net.setInput(input);
119         cv::Mat output = net.forward();
120         normAssert(ref, output, "", l1 ? l1 : default_l1, lInf ? lInf : default_lInf);
121     }
122 };
123
124 TEST_P(Test_TensorFlow_layers, conv)
125 {
126     runTensorFlowNet("single_conv");
127     runTensorFlowNet("atrous_conv2d_valid");
128     runTensorFlowNet("atrous_conv2d_same");
129     runTensorFlowNet("depthwise_conv2d");
130     runTensorFlowNet("keras_atrous_conv2d_same");
131     runTensorFlowNet("conv_pool_nchw");
132 }
133
134 TEST_P(Test_TensorFlow_layers, Convolution3D)
135 {
136 #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
137     throw SkipTestException("Test is enabled starts from 2019R1");
138 #endif
139     if (target != DNN_TARGET_CPU)
140         throw SkipTestException("Only CPU is supported");
141     runTensorFlowNet("conv3d");
142 }
143
144 TEST_P(Test_TensorFlow_layers, padding)
145 {
146     runTensorFlowNet("padding_valid");
147     runTensorFlowNet("spatial_padding");
148     runTensorFlowNet("keras_pad_concat");
149     runTensorFlowNet("mirror_pad");
150 }
151
152 TEST_P(Test_TensorFlow_layers, padding_same)
153 {
154     // Reference output values are in range [0.0006, 2.798]
155     runTensorFlowNet("padding_same");
156 }
157
158 TEST_P(Test_TensorFlow_layers, eltwise)
159 {
160     runTensorFlowNet("eltwise_add_mul");
161     runTensorFlowNet("eltwise_sub");
162 }
163
164 TEST_P(Test_TensorFlow_layers, pad_and_concat)
165 {
166     runTensorFlowNet("pad_and_concat");
167 }
168
169 TEST_P(Test_TensorFlow_layers, concat_axis_1)
170 {
171     runTensorFlowNet("concat_axis_1");
172 }
173
174 TEST_P(Test_TensorFlow_layers, batch_norm)
175 {
176     runTensorFlowNet("batch_norm");
177     runTensorFlowNet("batch_norm", false, 0.0, 0.0, true);
178     runTensorFlowNet("fused_batch_norm");
179     runTensorFlowNet("fused_batch_norm", false, 0.0, 0.0, true);
180     runTensorFlowNet("batch_norm_text", true);
181     runTensorFlowNet("batch_norm_text", true, 0.0, 0.0, true);
182     runTensorFlowNet("unfused_batch_norm");
183     runTensorFlowNet("fused_batch_norm_no_gamma");
184     runTensorFlowNet("unfused_batch_norm_no_gamma");
185     runTensorFlowNet("mvn_batch_norm");
186     runTensorFlowNet("mvn_batch_norm_1x1");
187     runTensorFlowNet("switch_identity");
188     runTensorFlowNet("keras_batch_norm_training");
189 }
190
191 TEST_P(Test_TensorFlow_layers, batch_norm3D)
192 {
193     if (backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU)
194     {
195         if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
196         if (target == DNN_TARGET_OPENCL)      applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL);
197         if (target == DNN_TARGET_MYRIAD)      applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
198         throw SkipTestException("");
199     }
200     runTensorFlowNet("batch_norm3d");
201 }
202
203 TEST_P(Test_TensorFlow_layers, slim_batch_norm)
204 {
205     if (backend == DNN_BACKEND_INFERENCE_ENGINE)
206         applyTestTag(CV_TEST_TAG_DNN_SKIP_IE);
207     // Output values range: [-40.0597, 207.827]
208     double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.041 : default_l1;
209     double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.33 : default_lInf;
210     runTensorFlowNet("slim_batch_norm", false, l1, lInf);
211 }
212
213 TEST_P(Test_TensorFlow_layers, pooling)
214 {
215     runTensorFlowNet("max_pool_even");
216     runTensorFlowNet("max_pool_odd_valid");
217     runTensorFlowNet("max_pool_odd_same");
218     runTensorFlowNet("reduce_mean");  // an average pooling over all spatial dimensions.
219 }
220
221 TEST_P(Test_TensorFlow_layers, max_pool_grad)
222 {
223     if (backend == DNN_BACKEND_INFERENCE_ENGINE)
224         applyTestTag(CV_TEST_TAG_DNN_SKIP_IE);
225     runTensorFlowNet("max_pool_grad");
226 }
227
228 // TODO: fix tests and replace to pooling
229 TEST_P(Test_TensorFlow_layers, ave_pool_same)
230 {
231     // Reference output values are in range [-0.519531, 0.112976]
232 #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
233     if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
234             && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
235     )
236         applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
237 #endif
238     runTensorFlowNet("ave_pool_same");
239 }
240
241 TEST_P(Test_TensorFlow_layers, MaxPooling3D)
242 {
243 #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
244     throw SkipTestException("Test is enabled starts from 2019R1");
245 #endif
246     if (target != DNN_TARGET_CPU)
247         throw SkipTestException("Only CPU is supported");
248     runTensorFlowNet("max_pool3d");
249 }
250
251 TEST_P(Test_TensorFlow_layers, AvePooling3D)
252 {
253 #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
254     throw SkipTestException("Test is enabled starts from 2019R1");
255 #endif
256     if (target != DNN_TARGET_CPU)
257         throw SkipTestException("Only CPU is supported");
258     runTensorFlowNet("ave_pool3d");
259 }
260
261 TEST_P(Test_TensorFlow_layers, deconvolution)
262 {
263     runTensorFlowNet("deconvolution");
264     runTensorFlowNet("deconvolution_same");
265     runTensorFlowNet("deconvolution_stride_2_same");
266     runTensorFlowNet("deconvolution_adj_pad_valid");
267     runTensorFlowNet("deconvolution_adj_pad_same");
268     runTensorFlowNet("keras_deconv_valid");
269     runTensorFlowNet("keras_deconv_same");
270     runTensorFlowNet("keras_deconv_same_v2");
271 }
272
273 TEST_P(Test_TensorFlow_layers, matmul)
274 {
275     if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
276         applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
277     runTensorFlowNet("matmul");
278     runTensorFlowNet("nhwc_transpose_reshape_matmul");
279     // Reference output values are in range [-5.688, 4.484]
280     double l1 = target == DNN_TARGET_MYRIAD ? 6.1e-3 : default_l1;
281     runTensorFlowNet("nhwc_reshape_matmul", false, l1);
282     runTensorFlowNet("matmul_layout");
283 }
284
285 TEST_P(Test_TensorFlow_layers, reshape)
286 {
287     if (backend == DNN_BACKEND_INFERENCE_ENGINE)
288         applyTestTag(CV_TEST_TAG_DNN_SKIP_IE);
289     runTensorFlowNet("shift_reshape_no_reorder");
290     runTensorFlowNet("reshape_no_reorder");
291     runTensorFlowNet("reshape_reduce");
292     runTensorFlowNet("reshape_as_shape");
293 }
294
295 TEST_P(Test_TensorFlow_layers, flatten)
296 {
297 #if defined(INF_ENGINE_RELEASE)
298     if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
299             && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2
300     )
301         applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2);
302 #endif
303
304     runTensorFlowNet("flatten", true);
305 }
306
307 TEST_P(Test_TensorFlow_layers, unfused_flatten)
308 {
309     runTensorFlowNet("unfused_flatten");
310     runTensorFlowNet("unfused_flatten_unknown_batch");
311 }
312
313 TEST_P(Test_TensorFlow_layers, leaky_relu)
314 {
315 #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2018050000)
316     if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL)
317         applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_2018R5);
318 #endif
319     runTensorFlowNet("leaky_relu_order1");
320     runTensorFlowNet("leaky_relu_order2");
321     runTensorFlowNet("leaky_relu_order3");
322 }
323
324 TEST_P(Test_TensorFlow_layers, l2_normalize)
325 {
326 #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
327     if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
328             && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
329     )
330         applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
331 #endif
332
333     runTensorFlowNet("l2_normalize");
334 }
335
336 // TODO: fix it and add to l2_normalize
337 TEST_P(Test_TensorFlow_layers, l2_normalize_3d)
338 {
339 #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2018050000)
340     if (backend == DNN_BACKEND_INFERENCE_ENGINE
341             && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)
342     )
343         applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
344 #endif
345 #if defined(INF_ENGINE_RELEASE)
346     if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
347         applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
348 #endif
349
350     runTensorFlowNet("l2_normalize_3d");
351 }
352
353 class Test_TensorFlow_nets : public DNNTestLayer {};
354
355 TEST_P(Test_TensorFlow_nets, MobileNet_SSD)
356 {
357 #if defined(INF_ENGINE_RELEASE)
358     if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
359     {
360 #if INF_ENGINE_VER_MAJOR_GE(2019020000)
361         if (getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
362             applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
363 #endif
364     }
365 #endif
366
367     checkBackend();
368     std::string imgPath = findDataFile("dnn/street.png");
369     std::string netConfig = findDataFile("dnn/ssd_mobilenet_v1_coco.pbtxt");
370     std::string netPath = findDataFile("dnn/ssd_mobilenet_v1_coco.pb", false);
371
372     Mat inp;
373     resize(imread(imgPath), inp, Size(300, 300));
374     inp = blobFromImage(inp, 1.0f / 127.5, Size(), Scalar(127.5, 127.5, 127.5), true);
375
376     Mat ref = blobFromNPY(findDataFile("dnn/tensorflow/ssd_mobilenet_v1_coco.detection_out.npy"));
377
378     Net net = readNetFromTensorflow(netPath, netConfig);
379     net.setPreferableBackend(backend);
380     net.setPreferableTarget(target);
381
382     net.setInput(inp);
383     Mat out = net.forward();
384
385     double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.0043 : default_l1;
386     double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.037 : default_lInf;
387     normAssertDetections(ref, out, "", 0.2, scoreDiff, iouDiff);
388 #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE >= 2019010000
389     expectNoFallbacksFromIE(net);
390 #endif
391 }
392
393 TEST_P(Test_TensorFlow_nets, Inception_v2_SSD)
394 {
395     applyTestTag(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB);
396 #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2019010000)
397     if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD &&
398         getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
399         applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
400 #endif
401
402     checkBackend();
403     Mat img = imread(findDataFile("dnn/street.png"));
404     std::string proto = findDataFile("dnn/ssd_inception_v2_coco_2017_11_17.pbtxt");
405     std::string model = findDataFile("dnn/ssd_inception_v2_coco_2017_11_17.pb", false);
406
407     Net net = readNetFromTensorflow(model, proto);
408     Mat blob = blobFromImage(img, 1.0f, Size(300, 300), Scalar(), true, false);
409
410     net.setPreferableBackend(backend);
411     net.setPreferableTarget(target);
412
413     net.setInput(blob);
414     // Output has shape 1x1xNx7 where N - number of detections.
415     // An every detection is a vector of values [id, classId, confidence, left, top, right, bottom]
416     Mat out = net.forward();
417     Mat ref = (Mat_<float>(5, 7) << 0, 1, 0.90176028, 0.19872092, 0.36311883, 0.26461923, 0.63498729,
418                                     0, 3, 0.93569964, 0.64865261, 0.45906419, 0.80675775, 0.65708131,
419                                     0, 3, 0.75838411, 0.44668293, 0.45907149, 0.49459291, 0.52197015,
420                                     0, 10, 0.95932811, 0.38349164, 0.32528657, 0.40387636, 0.39165527,
421                                     0, 10, 0.93973452, 0.66561931, 0.37841269, 0.68074018, 0.42907384);
422
423     double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.0097 : default_l1;
424     double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.09 : default_lInf;
425     normAssertDetections(ref, out, "", 0.5, scoreDiff, iouDiff);
426     expectNoFallbacksFromIE(net);
427 }
428
429 TEST_P(Test_TensorFlow_nets, MobileNet_v1_SSD)
430 {
431     checkBackend();
432     std::string proto = findDataFile("dnn/ssd_mobilenet_v1_coco_2017_11_17.pbtxt");
433     std::string model = findDataFile("dnn/ssd_mobilenet_v1_coco_2017_11_17.pb", false);
434
435     Net net = readNetFromTensorflow(model, proto);
436     Mat img = imread(findDataFile("dnn/dog416.png"));
437     Mat blob = blobFromImage(img, 1.0f, Size(300, 300), Scalar(), true, false);
438
439     net.setPreferableBackend(backend);
440     net.setPreferableTarget(target);
441
442     net.setInput(blob);
443     Mat out = net.forward();
444
445     Mat ref = blobFromNPY(findDataFile("dnn/tensorflow/ssd_mobilenet_v1_coco_2017_11_17.detection_out.npy"));
446     float scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.011 : 1.5e-5;
447     float iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.012 : 1e-3;
448     float detectionConfThresh = (target == DNN_TARGET_MYRIAD) ? 0.35 : 0.3;
449
450 #if defined(INF_ENGINE_RELEASE)
451     if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD &&
452         getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
453     {
454         scoreDiff = 0.061;
455         iouDiff = 0.12;
456         detectionConfThresh = 0.36;
457     }
458 #endif
459     normAssertDetections(ref, out, "", detectionConfThresh, scoreDiff, iouDiff);
460     expectNoFallbacksFromIE(net);
461 }
462
463 TEST_P(Test_TensorFlow_nets, Faster_RCNN)
464 {
465     // FIXIT split test
466     applyTestTag(
467         (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB),
468         CV_TEST_TAG_LONG,
469         CV_TEST_TAG_DEBUG_VERYLONG
470     );
471     static std::string names[] = {"faster_rcnn_inception_v2_coco_2018_01_28",
472                                   "faster_rcnn_resnet50_coco_2018_01_28"};
473
474     checkBackend();
475     if (backend == DNN_BACKEND_INFERENCE_ENGINE)
476         applyTestTag(CV_TEST_TAG_DNN_SKIP_IE);
477     if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
478         applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
479
480     double scoresDiff = backend == DNN_BACKEND_INFERENCE_ENGINE ? 2.9e-5 : 1e-5;
481     for (int i = 0; i < 2; ++i)
482     {
483         std::string proto = findDataFile("dnn/" + names[i] + ".pbtxt");
484         std::string model = findDataFile("dnn/" + names[i] + ".pb", false);
485
486         Net net = readNetFromTensorflow(model, proto);
487         net.setPreferableBackend(backend);
488         net.setPreferableTarget(target);
489         Mat img = imread(findDataFile("dnn/dog416.png"));
490         Mat blob = blobFromImage(img, 1.0f, Size(800, 600), Scalar(), true, false);
491
492         net.setInput(blob);
493         Mat out = net.forward();
494
495         Mat ref = blobFromNPY(findDataFile("dnn/tensorflow/" + names[i] + ".detection_out.npy"));
496         normAssertDetections(ref, out, names[i].c_str(), 0.3, scoresDiff);
497     }
498 }
499
500 TEST_P(Test_TensorFlow_nets, MobileNet_v1_SSD_PPN)
501 {
502 #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2018050000)
503     if (backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
504         applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
505 #endif
506     checkBackend();
507     std::string proto = findDataFile("dnn/ssd_mobilenet_v1_ppn_coco.pbtxt");
508     std::string model = findDataFile("dnn/ssd_mobilenet_v1_ppn_coco.pb", false);
509
510     Net net = readNetFromTensorflow(model, proto);
511     Mat img = imread(findDataFile("dnn/dog416.png"));
512     Mat ref = blobFromNPY(findDataFile("dnn/tensorflow/ssd_mobilenet_v1_ppn_coco.detection_out.npy"));
513     Mat blob = blobFromImage(img, 1.0f, Size(300, 300), Scalar(), true, false);
514
515     net.setPreferableBackend(backend);
516     net.setPreferableTarget(target);
517
518     net.setInput(blob);
519     Mat out = net.forward();
520
521     double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.048 : 1.1e-5;
522     double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.058 : default_lInf;
523     normAssertDetections(ref, out, "", 0.45, scoreDiff, iouDiff);
524     expectNoFallbacksFromIE(net);
525 }
526
527 TEST_P(Test_TensorFlow_nets, opencv_face_detector_uint8)
528 {
529     checkBackend();
530     std::string proto = findDataFile("dnn/opencv_face_detector.pbtxt");
531     std::string model = findDataFile("dnn/opencv_face_detector_uint8.pb", false);
532
533     Net net = readNetFromTensorflow(model, proto);
534     Mat img = imread(findDataFile("gpu/lbpcascade/er.png"));
535     Mat blob = blobFromImage(img, 1.0, Size(), Scalar(104.0, 177.0, 123.0), false, false);
536
537     net.setPreferableBackend(backend);
538     net.setPreferableTarget(target);
539     net.setInput(blob);
540     // Output has shape 1x1xNx7 where N - number of detections.
541     // An every detection is a vector of values [id, classId, confidence, left, top, right, bottom]
542     Mat out = net.forward();
543
544     // References are from test for Caffe model.
545     Mat ref = (Mat_<float>(6, 7) << 0, 1, 0.99520785, 0.80997437, 0.16379407, 0.87996572, 0.26685631,
546                                     0, 1, 0.9934696, 0.2831718, 0.50738752, 0.345781, 0.5985168,
547                                     0, 1, 0.99096733, 0.13629119, 0.24892329, 0.19756334, 0.3310290,
548                                     0, 1, 0.98977017, 0.23901358, 0.09084064, 0.29902688, 0.1769477,
549                                     0, 1, 0.97203469, 0.67965847, 0.06876482, 0.73999709, 0.1513494,
550                                     0, 1, 0.95097077, 0.51901293, 0.45863652, 0.5777427, 0.5347801);
551     double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 4e-3 : 3.4e-3;
552     double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.024 : 1e-2;
553     normAssertDetections(ref, out, "", 0.9, scoreDiff, iouDiff);
554     expectNoFallbacksFromIE(net);
555 }
556
557 // inp = cv.imread('opencv_extra/testdata/cv/ximgproc/sources/08.png')
558 // inp = inp[:,:,[2, 1, 0]].astype(np.float32).reshape(1, 512, 512, 3)
559 // outs = sess.run([sess.graph.get_tensor_by_name('feature_fusion/Conv_7/Sigmoid:0'),
560 //                  sess.graph.get_tensor_by_name('feature_fusion/concat_3:0')],
561 //                 feed_dict={'input_images:0': inp})
562 // scores = np.ascontiguousarray(outs[0].transpose(0, 3, 1, 2))
563 // geometry = np.ascontiguousarray(outs[1].transpose(0, 3, 1, 2))
564 // np.save('east_text_detection.scores.npy', scores)
565 // np.save('east_text_detection.geometry.npy', geometry)
566 TEST_P(Test_TensorFlow_nets, EAST_text_detection)
567 {
568     applyTestTag(
569         (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB),
570         CV_TEST_TAG_DEBUG_LONG
571     );
572
573 #if defined(INF_ENGINE_RELEASE)
574     if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
575         applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
576 #endif
577
578     checkBackend();
579
580     std::string netPath = findDataFile("dnn/frozen_east_text_detection.pb", false);
581     std::string imgPath = findDataFile("cv/ximgproc/sources/08.png");
582     std::string refScoresPath = findDataFile("dnn/east_text_detection.scores.npy");
583     std::string refGeometryPath = findDataFile("dnn/east_text_detection.geometry.npy");
584
585     Net net = readNet(netPath);
586
587     net.setPreferableBackend(backend);
588     net.setPreferableTarget(target);
589
590     Mat img = imread(imgPath);
591     Mat inp = blobFromImage(img, 1.0, Size(), Scalar(123.68, 116.78, 103.94), true, false);
592     net.setInput(inp);
593
594     std::vector<Mat> outs;
595     std::vector<String> outNames(2);
596     outNames[0] = "feature_fusion/Conv_7/Sigmoid";
597     outNames[1] = "feature_fusion/concat_3";
598     net.forward(outs, outNames);
599
600     Mat scores = outs[0];
601     Mat geometry = outs[1];
602
603     // Scores are in range [0, 1]. Geometry values are in range [-0.23, 290]
604     double l1_scores = default_l1, lInf_scores = default_lInf;
605     double l1_geometry = default_l1, lInf_geometry = default_lInf;
606     if (target == DNN_TARGET_OPENCL_FP16)
607     {
608         lInf_scores = backend == DNN_BACKEND_INFERENCE_ENGINE ? 0.16 : 0.11;
609         l1_geometry = 0.28; lInf_geometry = 5.94;
610     }
611     else if (target == DNN_TARGET_MYRIAD)
612     {
613         lInf_scores = 0.41;
614         l1_geometry = 0.28; lInf_geometry = 5.94;
615     }
616     else
617     {
618         l1_geometry = 1e-4, lInf_geometry = 3e-3;
619     }
620     normAssert(scores, blobFromNPY(refScoresPath), "scores", l1_scores, lInf_scores);
621     normAssert(geometry, blobFromNPY(refGeometryPath), "geometry", l1_geometry, lInf_geometry);
622     expectNoFallbacksFromIE(net);
623 }
624
625 INSTANTIATE_TEST_CASE_P(/**/, Test_TensorFlow_nets, dnnBackendsAndTargets());
626
627 TEST_P(Test_TensorFlow_layers, fp16_weights)
628 {
629     float l1 = 0.00078;
630     float lInf = 0.012;
631     runTensorFlowNet("fp16_single_conv", false, l1, lInf);
632     runTensorFlowNet("fp16_max_pool_odd_same", false, l1, lInf);
633     runTensorFlowNet("fp16_eltwise_add_mul", false, l1, lInf);
634     runTensorFlowNet("fp16_pad_and_concat", false, l1, lInf);
635     runTensorFlowNet("fp16_padding_valid", false, l1, lInf);
636     // Reference output values are in range [0.0889, 1.651]
637     runTensorFlowNet("fp16_max_pool_even", false, (target == DNN_TARGET_MYRIAD) ? 0.003 : l1, lInf);
638     if (target == DNN_TARGET_MYRIAD) {
639         l1 = 0.0041;
640         lInf = 0.024;
641     }
642     // Reference output values are in range [0, 10.75]
643     runTensorFlowNet("fp16_deconvolution", false, l1, lInf);
644     // Reference output values are in range [0.418, 2.297]
645     runTensorFlowNet("fp16_max_pool_odd_valid", false, l1, lInf);
646 }
647
648 TEST_P(Test_TensorFlow_layers, fp16_padding_same)
649 {
650     // Reference output values are in range [-3.504, -0.002]
651     runTensorFlowNet("fp16_padding_same", false, 7e-4, 4e-3);
652 }
653
654 TEST_P(Test_TensorFlow_layers, defun)
655 {
656     runTensorFlowNet("defun_dropout");
657 }
658
659 TEST_P(Test_TensorFlow_layers, quantized)
660 {
661     runTensorFlowNet("uint8_single_conv");
662 }
663
664 TEST_P(Test_TensorFlow_layers, lstm)
665 {
666     if (backend == DNN_BACKEND_INFERENCE_ENGINE)
667         applyTestTag(CV_TEST_TAG_DNN_SKIP_IE);
668     if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
669         applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
670     runTensorFlowNet("lstm", true);
671     runTensorFlowNet("lstm", true, 0.0, 0.0, true);
672 }
673
674 TEST_P(Test_TensorFlow_layers, split)
675 {
676     if (backend == DNN_BACKEND_INFERENCE_ENGINE)
677         applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2);
678     runTensorFlowNet("split");
679     if (backend == DNN_BACKEND_INFERENCE_ENGINE)
680         applyTestTag(CV_TEST_TAG_DNN_SKIP_IE);
681     runTensorFlowNet("split_equals");
682 }
683
684 TEST_P(Test_TensorFlow_layers, resize_nearest_neighbor)
685 {
686     runTensorFlowNet("resize_nearest_neighbor");
687     runTensorFlowNet("keras_upsampling2d");
688 }
689
690 TEST_P(Test_TensorFlow_layers, slice)
691 {
692     if (backend == DNN_BACKEND_INFERENCE_ENGINE &&
693         (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
694         applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
695     runTensorFlowNet("slice_4d");
696     runTensorFlowNet("strided_slice");
697 }
698
699 TEST_P(Test_TensorFlow_layers, softmax)
700 {
701     runTensorFlowNet("keras_softmax");
702     runTensorFlowNet("slim_softmax");
703 }
704
705 TEST_P(Test_TensorFlow_layers, slim_softmax_v2)
706 {
707 #if defined(INF_ENGINE_RELEASE)
708     if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD &&
709         getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2
710     )
711         applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2);
712 #endif
713     runTensorFlowNet("slim_softmax_v2");
714 }
715
716 TEST_P(Test_TensorFlow_layers, relu6)
717 {
718     runTensorFlowNet("keras_relu6");
719     runTensorFlowNet("keras_relu6", /*hasText*/ true);
720 }
721
722 TEST_P(Test_TensorFlow_layers, subpixel)
723 {
724     if (backend == DNN_BACKEND_INFERENCE_ENGINE)
725         applyTestTag(CV_TEST_TAG_DNN_SKIP_IE);
726     runTensorFlowNet("subpixel");
727 }
728
729 TEST_P(Test_TensorFlow_layers, keras_mobilenet_head)
730 {
731     runTensorFlowNet("keras_mobilenet_head");
732 }
733
734 TEST_P(Test_TensorFlow_layers, resize_bilinear)
735 {
736     runTensorFlowNet("resize_bilinear");
737     runTensorFlowNet("resize_bilinear_factor");
738 }
739
740 TEST_P(Test_TensorFlow_layers, squeeze)
741 {
742 #if defined(INF_ENGINE_RELEASE)
743     if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
744             && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2
745     )
746         applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2);
747 #endif
748     int inpShapes[][4] = {{1, 3, 4, 2}, {1, 3, 1, 2}, {1, 3, 4, 1}, {1, 3, 4, 1}};  // TensorFlow's shape (NHWC)
749     int outShapes[][3] = {{3, 4, 2}, {1, 3, 2}, {1, 3, 4}, {1, 3, 4}};
750     int squeeze_dims[] = {0, 2, 3, -1};
751     for (int i = 0; i < 4; ++i)
752     {
753         SCOPED_TRACE(format("i=%d", i));
754         std::string pbtxt =
755             "node { name: \"input\" op: \"Placeholder\""
756             "attr { key: \"data_format\" value { s: \"NHWC\" } } }"
757             "node { name: \"squeeze\" op: \"Squeeze\" input: \"input\""
758               "attr { key: \"squeeze_dims\" value { list { i:" + format("%d", squeeze_dims[i]) + "}}}}";
759         Net net = readNetFromTensorflow(0, 0, pbtxt.c_str(), pbtxt.size());
760         net.setPreferableBackend(backend);
761         net.setPreferableTarget(target);
762         Mat tfInp(4, &inpShapes[i][0], CV_32F);
763         randu(tfInp, -1, 1);
764
765         // NHWC to NCHW
766         CV_Assert(inpShapes[i][0] == 1);
767         std::swap(inpShapes[i][2], inpShapes[i][3]);
768         std::swap(inpShapes[i][1], inpShapes[i][2]);
769         Mat cvInp = tfInp.reshape(1, tfInp.total() / inpShapes[i][1]).t();
770         cvInp = cvInp.reshape(1, 4, &inpShapes[i][0]);
771
772         net.setInput(cvInp);
773         Mat out = net.forward();
774         normAssert(tfInp.reshape(1, 3, &outShapes[i][0]), out, "", default_l1, default_lInf);
775     }
776 }
777
778 INSTANTIATE_TEST_CASE_P(/**/, Test_TensorFlow_layers, dnnBackendsAndTargets());
779
780 TEST(Test_TensorFlow, two_inputs)
781 {
782     Net net = readNet(path("two_inputs_net.pbtxt"));
783     net.setPreferableBackend(DNN_BACKEND_OPENCV);
784
785     Mat firstInput(2, 3, CV_32FC1), secondInput(2, 3, CV_32FC1);
786     randu(firstInput, -1, 1);
787     randu(secondInput, -1, 1);
788
789     net.setInput(firstInput, "first_input");
790     net.setInput(secondInput, "second_input");
791     Mat out = net.forward();
792
793     normAssert(out, firstInput + secondInput);
794 }
795
796 TEST(Test_TensorFlow, Mask_RCNN)
797 {
798     applyTestTag(CV_TEST_TAG_MEMORY_1GB, CV_TEST_TAG_DEBUG_VERYLONG);
799     Mat img = imread(findDataFile("dnn/street.png"));
800     std::string proto = findDataFile("dnn/mask_rcnn_inception_v2_coco_2018_01_28.pbtxt");
801     std::string model = findDataFile("dnn/mask_rcnn_inception_v2_coco_2018_01_28.pb", false);
802
803     Net net = readNetFromTensorflow(model, proto);
804     Mat refDetections = blobFromNPY(path("mask_rcnn_inception_v2_coco_2018_01_28.detection_out.npy"));
805     Mat refMasks = blobFromNPY(path("mask_rcnn_inception_v2_coco_2018_01_28.detection_masks.npy"));
806     Mat blob = blobFromImage(img, 1.0f, Size(800, 800), Scalar(), true, false);
807
808     net.setPreferableBackend(DNN_BACKEND_OPENCV);
809
810     net.setInput(blob);
811
812     // Mask-RCNN predicts bounding boxes and segmentation masks.
813     std::vector<String> outNames(2);
814     outNames[0] = "detection_out_final";
815     outNames[1] = "detection_masks";
816
817     std::vector<Mat> outs;
818     net.forward(outs, outNames);
819
820     Mat outDetections = outs[0];
821     Mat outMasks = outs[1];
822     normAssertDetections(refDetections, outDetections, "", /*threshold for zero confidence*/1e-5);
823
824     // Output size of masks is NxCxHxW where
825     // N - number of detected boxes
826     // C - number of classes (excluding background)
827     // HxW - segmentation shape
828     const int numDetections = outDetections.size[2];
829
830     int masksSize[] = {1, numDetections, outMasks.size[2], outMasks.size[3]};
831     Mat masks(4, &masksSize[0], CV_32F);
832
833     std::vector<cv::Range> srcRanges(4, cv::Range::all());
834     std::vector<cv::Range> dstRanges(4, cv::Range::all());
835
836     outDetections = outDetections.reshape(1, outDetections.total() / 7);
837     for (int i = 0; i < numDetections; ++i)
838     {
839         // Get a class id for this bounding box and copy mask only for that class.
840         int classId = static_cast<int>(outDetections.at<float>(i, 1));
841         srcRanges[0] = dstRanges[1] = cv::Range(i, i + 1);
842         srcRanges[1] = cv::Range(classId, classId + 1);
843         outMasks(srcRanges).copyTo(masks(dstRanges));
844     }
845     cv::Range topRefMasks[] = {Range::all(), Range(0, numDetections), Range::all(), Range::all()};
846     normAssert(masks, refMasks(&topRefMasks[0]));
847 }
848
849 }