Merge pull request #14673 from janstarzy:hidden-vis-with-java7
[platform/upstream/opencv.git] / modules / dnn / test / test_common.impl.hpp
1 // This file is part of OpenCV project.
2 // It is subject to the license terms in the LICENSE file found in the top-level directory
3 // of this distribution and at http://opencv.org/license.html.
4
5 // Used in accuracy and perf tests as a content of .cpp file
6 // Note: don't use "precomp.hpp" here
7 #include "opencv2/ts.hpp"
8 #include "opencv2/ts/ts_perf.hpp"
9 #include "opencv2/core/utility.hpp"
10 #include "opencv2/core/ocl.hpp"
11
12 #include "opencv2/dnn.hpp"
13 #include "test_common.hpp"
14
15 #include <opencv2/core/utils/configuration.private.hpp>
16 #include <opencv2/core/utils/logger.hpp>
17
18 namespace cv { namespace dnn {
19 CV__DNN_EXPERIMENTAL_NS_BEGIN
20
21 void PrintTo(const cv::dnn::Backend& v, std::ostream* os)
22 {
23     switch (v) {
24     case DNN_BACKEND_DEFAULT: *os << "DEFAULT"; return;
25     case DNN_BACKEND_HALIDE: *os << "HALIDE"; return;
26     case DNN_BACKEND_INFERENCE_ENGINE: *os << "DLIE"; return;
27     case DNN_BACKEND_OPENCV: *os << "OCV"; return;
28     } // don't use "default:" to emit compiler warnings
29     *os << "DNN_BACKEND_UNKNOWN(" << (int)v << ")";
30 }
31
32 void PrintTo(const cv::dnn::Target& v, std::ostream* os)
33 {
34     switch (v) {
35     case DNN_TARGET_CPU: *os << "CPU"; return;
36     case DNN_TARGET_OPENCL: *os << "OCL"; return;
37     case DNN_TARGET_OPENCL_FP16: *os << "OCL_FP16"; return;
38     case DNN_TARGET_MYRIAD: *os << "MYRIAD"; return;
39     case DNN_TARGET_FPGA: *os << "FPGA"; return;
40     } // don't use "default:" to emit compiler warnings
41     *os << "DNN_TARGET_UNKNOWN(" << (int)v << ")";
42 }
43
44 void PrintTo(const tuple<cv::dnn::Backend, cv::dnn::Target> v, std::ostream* os)
45 {
46     PrintTo(get<0>(v), os);
47     *os << "/";
48     PrintTo(get<1>(v), os);
49 }
50
51 CV__DNN_EXPERIMENTAL_NS_END
52 }} // namespace
53
54
55
56 namespace opencv_test {
57
58 void normAssert(
59         cv::InputArray ref, cv::InputArray test, const char *comment /*= ""*/,
60         double l1 /*= 0.00001*/, double lInf /*= 0.0001*/)
61 {
62     double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total();
63     EXPECT_LE(normL1, l1) << comment;
64
65     double normInf = cvtest::norm(ref, test, cv::NORM_INF);
66     EXPECT_LE(normInf, lInf) << comment;
67 }
68
69 std::vector<cv::Rect2d> matToBoxes(const cv::Mat& m)
70 {
71     EXPECT_EQ(m.type(), CV_32FC1);
72     EXPECT_EQ(m.dims, 2);
73     EXPECT_EQ(m.cols, 4);
74
75     std::vector<cv::Rect2d> boxes(m.rows);
76     for (int i = 0; i < m.rows; ++i)
77     {
78         CV_Assert(m.row(i).isContinuous());
79         const float* data = m.ptr<float>(i);
80         double l = data[0], t = data[1], r = data[2], b = data[3];
81         boxes[i] = cv::Rect2d(l, t, r - l, b - t);
82     }
83     return boxes;
84 }
85
86 void normAssertDetections(
87         const std::vector<int>& refClassIds,
88         const std::vector<float>& refScores,
89         const std::vector<cv::Rect2d>& refBoxes,
90         const std::vector<int>& testClassIds,
91         const std::vector<float>& testScores,
92         const std::vector<cv::Rect2d>& testBoxes,
93         const char *comment /*= ""*/, double confThreshold /*= 0.0*/,
94         double scores_diff /*= 1e-5*/, double boxes_iou_diff /*= 1e-4*/)
95 {
96     std::vector<bool> matchedRefBoxes(refBoxes.size(), false);
97     for (int i = 0; i < testBoxes.size(); ++i)
98     {
99         double testScore = testScores[i];
100         if (testScore < confThreshold)
101             continue;
102
103         int testClassId = testClassIds[i];
104         const cv::Rect2d& testBox = testBoxes[i];
105         bool matched = false;
106         for (int j = 0; j < refBoxes.size() && !matched; ++j)
107         {
108             if (!matchedRefBoxes[j] && testClassId == refClassIds[j] &&
109                 std::abs(testScore - refScores[j]) < scores_diff)
110             {
111                 double interArea = (testBox & refBoxes[j]).area();
112                 double iou = interArea / (testBox.area() + refBoxes[j].area() - interArea);
113                 if (std::abs(iou - 1.0) < boxes_iou_diff)
114                 {
115                     matched = true;
116                     matchedRefBoxes[j] = true;
117                 }
118             }
119         }
120         if (!matched)
121             std::cout << cv::format("Unmatched prediction: class %d score %f box ",
122                                     testClassId, testScore) << testBox << std::endl;
123         EXPECT_TRUE(matched) << comment;
124     }
125
126     // Check unmatched reference detections.
127     for (int i = 0; i < refBoxes.size(); ++i)
128     {
129         if (!matchedRefBoxes[i] && refScores[i] > confThreshold)
130         {
131             std::cout << cv::format("Unmatched reference: class %d score %f box ",
132                                     refClassIds[i], refScores[i]) << refBoxes[i] << std::endl;
133             EXPECT_LE(refScores[i], confThreshold) << comment;
134         }
135     }
136 }
137
138 // For SSD-based object detection networks which produce output of shape 1x1xNx7
139 // where N is a number of detections and an every detection is represented by
140 // a vector [batchId, classId, confidence, left, top, right, bottom].
141 void normAssertDetections(
142         cv::Mat ref, cv::Mat out, const char *comment /*= ""*/,
143         double confThreshold /*= 0.0*/, double scores_diff /*= 1e-5*/,
144         double boxes_iou_diff /*= 1e-4*/)
145 {
146     CV_Assert(ref.total() % 7 == 0);
147     CV_Assert(out.total() % 7 == 0);
148     ref = ref.reshape(1, ref.total() / 7);
149     out = out.reshape(1, out.total() / 7);
150
151     cv::Mat refClassIds, testClassIds;
152     ref.col(1).convertTo(refClassIds, CV_32SC1);
153     out.col(1).convertTo(testClassIds, CV_32SC1);
154     std::vector<float> refScores(ref.col(2)), testScores(out.col(2));
155     std::vector<cv::Rect2d> refBoxes = matToBoxes(ref.colRange(3, 7));
156     std::vector<cv::Rect2d> testBoxes = matToBoxes(out.colRange(3, 7));
157     normAssertDetections(refClassIds, refScores, refBoxes, testClassIds, testScores,
158                          testBoxes, comment, confThreshold, scores_diff, boxes_iou_diff);
159 }
160
161 void readFileContent(const std::string& filename, CV_OUT std::vector<char>& content)
162 {
163     const std::ios::openmode mode = std::ios::in | std::ios::binary;
164     std::ifstream ifs(filename.c_str(), mode);
165     ASSERT_TRUE(ifs.is_open());
166
167     content.clear();
168
169     ifs.seekg(0, std::ios::end);
170     const size_t sz = ifs.tellg();
171     content.resize(sz);
172     ifs.seekg(0, std::ios::beg);
173
174     ifs.read((char*)content.data(), sz);
175     ASSERT_FALSE(ifs.fail());
176 }
177
178
179 testing::internal::ParamGenerator< tuple<Backend, Target> > dnnBackendsAndTargets(
180         bool withInferenceEngine /*= true*/,
181         bool withHalide /*= false*/,
182         bool withCpuOCV /*= true*/
183 )
184 {
185 #ifdef HAVE_INF_ENGINE
186     bool withVPU = validateVPUType();
187 #endif
188
189     std::vector< tuple<Backend, Target> > targets;
190     std::vector< Target > available;
191     if (withHalide)
192     {
193         available = getAvailableTargets(DNN_BACKEND_HALIDE);
194         for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
195             targets.push_back(make_tuple(DNN_BACKEND_HALIDE, *i));
196     }
197 #ifdef HAVE_INF_ENGINE
198     if (withInferenceEngine)
199     {
200         available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE);
201         for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
202         {
203             if (*i == DNN_TARGET_MYRIAD && !withVPU)
204                 continue;
205             targets.push_back(make_tuple(DNN_BACKEND_INFERENCE_ENGINE, *i));
206         }
207     }
208 #else
209     CV_UNUSED(withInferenceEngine);
210 #endif
211     {
212         available = getAvailableTargets(DNN_BACKEND_OPENCV);
213         for (std::vector< Target >::const_iterator i = available.begin(); i != available.end(); ++i)
214         {
215             if (!withCpuOCV && *i == DNN_TARGET_CPU)
216                 continue;
217             targets.push_back(make_tuple(DNN_BACKEND_OPENCV, *i));
218         }
219     }
220     if (targets.empty())  // validate at least CPU mode
221         targets.push_back(make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU));
222     return testing::ValuesIn(targets);
223 }
224
225
226 #ifdef HAVE_INF_ENGINE
227 static std::string getTestInferenceEngineVPUType()
228 {
229     static std::string param_vpu_type = utils::getConfigurationParameterString("OPENCV_TEST_DNN_IE_VPU_TYPE", "");
230     return param_vpu_type;
231 }
232
233 static bool validateVPUType_()
234 {
235     std::string test_vpu_type = getTestInferenceEngineVPUType();
236     if (test_vpu_type == "DISABLED" || test_vpu_type == "disabled")
237     {
238         return false;
239     }
240
241     std::vector<Target> available = getAvailableTargets(DNN_BACKEND_INFERENCE_ENGINE);
242     bool have_vpu_target = false;
243     for (std::vector<Target>::const_iterator i = available.begin(); i != available.end(); ++i)
244     {
245         if (*i == DNN_TARGET_MYRIAD)
246         {
247             have_vpu_target = true;
248             break;
249         }
250     }
251
252     if (test_vpu_type.empty())
253     {
254         if (have_vpu_target)
255         {
256             CV_LOG_INFO(NULL, "OpenCV-DNN-Test: VPU type for testing is not specified via 'OPENCV_TEST_DNN_IE_VPU_TYPE' parameter.")
257         }
258     }
259     else
260     {
261         if (!have_vpu_target)
262         {
263             CV_LOG_FATAL(NULL, "OpenCV-DNN-Test: 'OPENCV_TEST_DNN_IE_VPU_TYPE' parameter requires VPU of type = '" << test_vpu_type << "', but VPU is not detected. STOP.");
264             exit(1);
265         }
266         std::string dnn_vpu_type = getInferenceEngineVPUType();
267         if (dnn_vpu_type != test_vpu_type)
268         {
269             CV_LOG_FATAL(NULL, "OpenCV-DNN-Test: 'testing' and 'detected' VPU types mismatch: '" << test_vpu_type << "' vs '" << dnn_vpu_type << "'. STOP.");
270             exit(1);
271         }
272     }
273     return true;
274 }
275
276 bool validateVPUType()
277 {
278     static bool result = validateVPUType_();
279     return result;
280 }
281 #endif // HAVE_INF_ENGINE
282
283 } // namespace