Merge pull request #14938 from LaurentBerger:face_clip
[platform/upstream/opencv.git] / modules / dnn / src / layers / max_unpooling_layer.cpp
1 // This file is part of OpenCV project.
2 // It is subject to the license terms in the LICENSE file found in the top-level directory
3 // of this distribution and at http://opencv.org/license.html.
4
5 // Copyright (C) 2016, Intel Corporation, all rights reserved.
6 // Third party copyrights are property of their respective owners.
7
8 /*
9 Implementation of Batch Normalization layer.
10 */
11
12 #include "../precomp.hpp"
13 #include "layers_common.hpp"
14 #include "../op_halide.hpp"
15 #include <opencv2/dnn/shape_utils.hpp>
16
17 #include <iostream>
18
19 namespace cv
20 {
21 namespace dnn
22 {
23
24 class MaxUnpoolLayerImpl CV_FINAL : public MaxUnpoolLayer
25 {
26 public:
27     MaxUnpoolLayerImpl(const LayerParams& params)
28     {
29         setParamsFrom(params);
30         poolKernel = Size(params.get<int>("pool_k_w"), params.get<int>("pool_k_h"));
31         poolPad = Size(params.get<int>("pool_pad_w"), params.get<int>("pool_pad_h"));
32         poolStride = Size(params.get<int>("pool_stride_w"), params.get<int>("pool_stride_h"));
33     }
34
35     virtual bool supportBackend(int backendId) CV_OVERRIDE
36     {
37         return backendId == DNN_BACKEND_OPENCV ||
38                (backendId == DNN_BACKEND_HALIDE && haveHalide() && !poolPad.width && !poolPad.height);
39     }
40
41     bool getMemoryShapes(const std::vector<MatShape> &inputs,
42                          const int requiredOutputs,
43                          std::vector<MatShape> &outputs,
44                          std::vector<MatShape> &internals) const CV_OVERRIDE
45     {
46         CV_Assert(inputs.size() == 2 || inputs.size() == 3);
47         CV_Assert(total(inputs[0]) == total(inputs[1]));
48
49         MatShape outShape;
50         if (inputs.size() == 2)
51         {
52             outShape = inputs[0];
53             outShape[2] = (outShape[2] - 1) * poolStride.height + poolKernel.height - 2 * poolPad.height;
54             outShape[3] = (outShape[3] - 1) * poolStride.width + poolKernel.width - 2 * poolPad.width;
55         }
56         else
57             outShape = inputs[2];
58
59         outputs.clear();
60         outputs.push_back(outShape);
61
62         return false;
63     }
64
65     void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
66     {
67         CV_TRACE_FUNCTION();
68         CV_TRACE_ARG_VALUE(name, "name", name.c_str());
69
70         if (inputs_arr.depth() == CV_16S)
71         {
72             forward_fallback(inputs_arr, outputs_arr, internals_arr);
73             return;
74         }
75
76         std::vector<Mat> inputs, outputs;
77         inputs_arr.getMatVector(inputs);
78         outputs_arr.getMatVector(outputs);
79
80         CV_Assert(inputs.size() == 2 || inputs.size() == 3);
81         Mat& input = inputs[0];
82         Mat& indices = inputs[1];
83
84         CV_Assert(input.total() == indices.total());
85         CV_Assert(input.size[0] == 1);
86         CV_Assert(input.isContinuous());
87
88         for(int i_n = 0; i_n < outputs.size(); i_n++)
89         {
90             Mat& outBlob = outputs[i_n];
91             outBlob.setTo(0);
92             CV_Assert(input.size[1] == outBlob.size[1]);
93             int outPlaneTotal = outBlob.size[2]*outBlob.size[3];
94
95             for (int i_c = 0; i_c < input.size[1]; i_c++)
96             {
97                 Mat outPlane = getPlane(outBlob, 0, i_c);
98                 int wh_area = input.size[2]*input.size[3];
99                 const float* inptr = input.ptr<float>(0, i_c);
100                 const float* idxptr = indices.ptr<float>(0, i_c);
101                 float* outptr = outPlane.ptr<float>();
102
103                 for(int i_wh = 0; i_wh < wh_area; i_wh++)
104                 {
105                     int index = idxptr[i_wh];
106                     if (!(0 <= index && index < outPlaneTotal))
107                     {
108                         std::cerr
109                             << "i_n=" << i_n << std::endl
110                             << "i_c=" << i_c << std::endl
111                             << "i_wh=" << i_wh << std::endl
112                             << "index=" << index << std::endl
113                             << "maxval=" << inptr[i_wh] << std::endl
114                             << "outPlaneTotal=" << outPlaneTotal << std::endl
115                             << "input.size=" << input.size << std::endl
116                             << "indices.size=" << indices.size << std::endl
117                             << "outBlob=" << outBlob.size << std::endl
118                             ;
119                         CV_Assert(0 <= index && index < outPlaneTotal);
120                     }
121                     outptr[index] = inptr[i_wh];
122                 }
123             }
124         }
125     }
126
127     virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &input) CV_OVERRIDE
128     {
129 #ifdef HAVE_HALIDE
130         // Meaningless operation if false because if kernel > stride
131         // it is not deterministic and if kernel < stride we just
132         // skip a part of input data (you'd better change your model).
133         if (poolKernel.width != poolStride.width ||
134             poolKernel.height != poolStride.height)
135             CV_Error(cv::Error::StsNotImplemented,
136                      "Halide backend for maximum unpooling "
137                      "is not support cases when kernel != stride");
138
139         Halide::Var x("x"), y("y"), c("c"), n("n");
140         Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
141         Halide::Buffer<float> inputBuffer = halideBuffer(input[0]);
142         Halide::Buffer<float> indices = halideBuffer(input[1]);
143
144         Halide::Expr pooledX = x / poolKernel.width;
145         Halide::Expr pooledY = y / poolKernel.height;
146
147         const int outW = inputBuffer.width() * poolKernel.width;
148         top(x, y, c, n) = select(y * outW + x == indices(pooledX, pooledY, c, n),
149                                  inputBuffer(pooledX, pooledY, c, n), 0.0f);
150         return Ptr<BackendNode>(new HalideBackendNode(top));
151 #endif  // HAVE_HALIDE
152         return Ptr<BackendNode>();
153     }
154 };
155
156 Ptr<MaxUnpoolLayer> MaxUnpoolLayer::create(const LayerParams& params)
157 {
158     return Ptr<MaxUnpoolLayer>(new MaxUnpoolLayerImpl(params));
159 }
160
161 }
162 }