1 // This file is part of OpenCV project.
2 // It is subject to the license terms in the LICENSE file found in the top-level directory
3 // of this distribution and at http://opencv.org/license.html.
5 // Copyright (C) 2016, Intel Corporation, all rights reserved.
6 // Third party copyrights are property of their respective owners.
9 Implementation of Batch Normalization layer.
12 #include "../precomp.hpp"
13 #include "layers_common.hpp"
14 #include "op_halide.hpp"
15 #include <opencv2/dnn/shape_utils.hpp>
22 class MaxUnpoolLayerImpl : public MaxUnpoolLayer
25 MaxUnpoolLayerImpl(const LayerParams& params)
27 setParamsFrom(params);
28 poolKernel = Size(params.get<int>("pool_k_w"), params.get<int>("pool_k_h"));
29 poolPad = Size(params.get<int>("pool_pad_w"), params.get<int>("pool_pad_h"));
30 poolStride = Size(params.get<int>("pool_stride_w"), params.get<int>("pool_stride_h"));
33 virtual bool supportBackend(int backendId)
35 return backendId == DNN_BACKEND_DEFAULT ||
36 backendId == DNN_BACKEND_HALIDE && haveHalide() &&
37 !poolPad.width && !poolPad.height;
40 bool getMemoryShapes(const std::vector<MatShape> &inputs,
41 const int requiredOutputs,
42 std::vector<MatShape> &outputs,
43 std::vector<MatShape> &internals) const
45 CV_Assert(inputs.size() == 2);
46 CV_Assert(total(inputs[0]) == total(inputs[1]));
48 MatShape outShape = inputs[0];
49 outShape[2] = (outShape[2] - 1) * poolStride.height + poolKernel.height - 2 * poolPad.height;
50 outShape[3] = (outShape[3] - 1) * poolStride.width + poolKernel.width - 2 * poolPad.width;
53 outputs.push_back(outShape);
58 void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
61 CV_TRACE_ARG_VALUE(name, "name", name.c_str());
63 Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
66 void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
69 CV_TRACE_ARG_VALUE(name, "name", name.c_str());
71 CV_Assert(inputs.size() == 2);
72 Mat& input = *inputs[0];
73 Mat& indices = *inputs[1];
75 CV_Assert(input.total() == indices.total());
76 CV_Assert(input.size[0] == 1);
77 CV_Assert(input.isContinuous());
79 for(int i_n = 0; i_n < outputs.size(); i_n++)
81 Mat& outBlob = outputs[i_n];
83 CV_Assert(input.size[1] == outBlob.size[1]);
84 int outPlaneTotal = outBlob.size[2]*outBlob.size[3];
86 for (int i_c = 0; i_c < input.size[1]; i_c++)
88 Mat outPlane = getPlane(outBlob, 0, i_c);
89 int wh_area = input.size[2]*input.size[3];
90 const float* inptr = input.ptr<float>(0, i_c);
91 const float* idxptr = indices.ptr<float>(0, i_c);
92 float* outptr = outPlane.ptr<float>();
94 for(int i_wh = 0; i_wh < wh_area; i_wh++)
96 int index = idxptr[i_wh];
97 CV_Assert(0 <= index && index < outPlaneTotal);
98 outptr[index] = inptr[i_wh];
104 virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &input)
107 // Meaningless operation if false because if kernel > stride
108 // it is not deterministic and if kernel < stride we just
109 // skip a part of input data (you'd better change your model).
110 if (poolKernel.width != poolStride.width ||
111 poolKernel.height != poolStride.height)
112 CV_Error(cv::Error::StsNotImplemented,
113 "Halide backend for maximum unpooling "
114 "is not support cases when kernel != stride");
116 Halide::Var x("x"), y("y"), c("c"), n("n");
117 Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
118 Halide::Buffer<float> inputBuffer = halideBuffer(input[0]);
119 Halide::Buffer<float> indices = halideBuffer(input[1]);
121 Halide::Expr pooledX = x / poolKernel.width;
122 Halide::Expr pooledY = y / poolKernel.height;
124 const int outW = inputBuffer.width() * poolKernel.width;
125 top(x, y, c, n) = select(y * outW + x == indices(pooledX, pooledY, c, n),
126 inputBuffer(pooledX, pooledY, c, n), 0.0f);
127 return Ptr<BackendNode>(new HalideBackendNode(top));
128 #endif // HAVE_HALIDE
129 return Ptr<BackendNode>();
133 Ptr<MaxUnpoolLayer> MaxUnpoolLayer::create(const LayerParams& params)
135 return Ptr<MaxUnpoolLayer>(new MaxUnpoolLayerImpl(params));