1 /*M///////////////////////////////////////////////////////////////////////////////////////
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
11 // For Open Source Computer Vision Library
13 // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
14 // Copyright (C) 2017, Intel Corporation, all rights reserved.
15 // Third party copyrights are property of their respective owners.
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
20 // * Redistribution's of source code must retain the above copyright notice,
21 // this list of conditions and the following disclaimer.
23 // * Redistribution's in binary form must reproduce the above copyright notice,
24 // this list of conditions and the following disclaimer in the documentation
25 // and/or other materials provided with the distribution.
27 // * The name of the copyright holders may not be used to endorse or promote products
28 // derived from this software without specific prior written permission.
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
43 #include "../precomp.hpp"
44 #include "layers_common.hpp"
45 #include "../op_halide.hpp"
46 #include "../op_inf_engine.hpp"
47 #include "opencv2/core/hal/hal.hpp"
48 #include "opencv2/core/hal/intrin.hpp"
52 #include "opencl_kernels_dnn.hpp"
53 using namespace cv::dnn::ocl4dnn;
61 class BaseConvolutionLayerImpl : public ConvolutionLayer
64 bool newWeightAndBias;
65 std::vector<double> weightsMultipliers;
66 BaseConvolutionLayerImpl(const LayerParams ¶ms)
68 setParamsFrom(params);
69 getConvolutionKernelParams(params, kernel_size, pads_begin, pads_end, strides, dilations, padMode);
71 numOutput = params.get<int>("num_output");
72 int ngroups = params.get<int>("group", 1);
73 CV_Assert(numOutput % ngroups == 0);
75 if (kernel_size.size() == 2) {
76 kernel = Size(kernel_size[1], kernel_size[0]);
77 stride = Size(strides[1], strides[0]);
78 for (int i = 0; i < pads_begin.size(); i++) {
79 if (pads_begin[i] != pads_end[i])
80 CV_Error(Error::StsNotImplemented, "Unsupported asymmetric padding in convolution layer");
82 pad = Size(pads_begin[1], pads_begin[0]);
83 dilation = Size(dilations[1], dilations[0]);
85 adjust_pads.push_back(params.get<int>("adj_h", 0));
86 adjust_pads.push_back(params.get<int>("adj_w", 0));
88 adjustPad.height = adjust_pads[0];
89 adjustPad.width = adjust_pads[1];
90 CV_Assert(adjustPad.width < stride.width &&
91 adjustPad.height < stride.height);
93 newWeightAndBias = false;
96 virtual void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
98 std::vector<Mat> inputs, outputs;
99 inputs_arr.getMatVector(inputs);
100 outputs_arr.getMatVector(outputs);
102 CV_Assert(inputs.size() > 0);
104 CV_Assert(blobs.size() == 1 || blobs.size() == 2);
105 CV_Assert(inputs[0].dims == outputs[0].dims);
106 CV_Assert(blobs[0].dims == kernel_size.size() + 2);
107 for (int i = 0; i < kernel_size.size(); i++) {
108 CV_Assert(blobs[0].size[i + 2] == kernel_size[i]);
111 const Mat &input = inputs[0];
112 CV_Assert((input.dims == 4 || input.dims == 5) && (input.type() == CV_32F || input.type() == CV_16S));
113 for (size_t i = 0; i < inputs.size(); i++)
115 CV_Assert(inputs[i].type() == input.type());
116 CV_Assert((inputs[i].dims == 4 || inputs[i].dims == 5) && inputs[i].size[1] == input.size[1]);
117 for (int j = 0; j < inputs[i].dims; j++) {
118 CV_Assert(inputs[i].size[j] == input.size[j]);
122 std::vector<int> inpShape;
123 std::vector<int> outShape;
124 for (int i = 2; i < inputs[0].dims; i++) {
125 inpShape.push_back(inputs[0].size[i]);
126 outShape.push_back(outputs[0].size[i]);
128 getConvPoolPaddings(inpShape, outShape, kernel_size, strides, padMode, dilations, pads_begin, pads_end);
129 if (pads_begin.size() == 2) {
130 for (int i = 0; i < pads_begin.size(); i++) {
131 if (pads_begin[i] != pads_end[i])
132 CV_Error(Error::StsNotImplemented, "Unsupported asymmetric padding in convolution layer");
134 pad = Size(pads_begin[1], pads_begin[0]);
140 return blobs.size() >= 2;
143 virtual MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const = 0;
146 return (kernel.height == 1 && kernel.width == 1) &&
147 (stride.height == 1 && stride.width == 1) &&
148 (dilation.height == 1 && dilation.width == 1);
151 virtual bool tryFuse(Ptr<Layer>& top) CV_OVERRIDE
154 top->getScaleShift(w, b);
155 if (!w.empty() || !b.empty())
163 virtual void fuseWeights(const Mat& w_, const Mat& b_) = 0;
165 virtual void applyHalideScheduler(Ptr<BackendNode>& node,
166 const std::vector<Mat*> &inputs,
167 const std::vector<Mat> &outputs,
168 int targetId) const CV_OVERRIDE
171 if (targetId != DNN_TARGET_CPU)
173 Layer::applyHalideScheduler(node, inputs, outputs, targetId);
176 Halide::Var x("x"), y("y"), c("c"), n("n"), tile("tile"), yi("yi"), yo("yo"), co("co"), ci("ci");
177 Halide::Func& top = node.dynamicCast<HalideBackendNode>()->funcs[1];
178 Halide::Func& padded_input = node.dynamicCast<HalideBackendNode>()->funcs[0];
180 int outW, outH, outC, outN;
181 getCanonicalSize(outputs[0].size, &outW, &outH, &outC, &outN);
183 if (outW == 1 || outH <= 2)
186 if (is1x1() || outC <= 16)
192 .vectorize(x, outW >= 16 ? 16 : outW);
196 .split(c, co, ci, 16)
197 .fuse(yo, co, tile).fuse(n, tile, tile)
200 .vectorize(x, outW >= 16 ? 16 : outW);
201 padded_input.compute_at(top, yi);
202 #endif // HAVE_HALIDE
207 #define IS_POWER_LAYER(layer) \
208 (!layer.empty() && !layer->type.compare("Power"))
209 //TODO: simultaneously convolution and bias addition for cache optimization
210 class ConvolutionLayerImpl CV_FINAL : public BaseConvolutionLayerImpl
213 enum { VEC_ALIGN = 8, DFT_TYPE = CV_32F };
215 std::vector<float> biasvec;
216 std::vector<float> reluslope;
217 Ptr<ActivationLayer> activ;
221 Ptr<OCL4DNNConvSpatial<float> > convolutionOp;
222 std::vector<UMat> umat_blobs;
224 ocl4dnnFusedActiv_t activType;
227 ConvolutionLayerImpl(const LayerParams ¶ms) : BaseConvolutionLayerImpl(params)
232 activType = OCL4DNN_CONV_FUSED_ACTIV_NONE;
237 MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const CV_OVERRIDE
239 Size out(outShape[3], outShape[2]);
240 int inpGroupCn = blobs[0].size[1];
241 int ksize = inpGroupCn * kernel.height * kernel.width;
242 return shape(out.area(), ksize);
245 virtual bool supportBackend(int backendId) CV_OVERRIDE
247 #ifdef HAVE_INF_ENGINE
248 if (backendId == DNN_BACKEND_INFERENCE_ENGINE)
250 if (kernel_size.size() == 3)
251 return preferableTarget == DNN_TARGET_CPU;
252 return INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2018R4) ||
253 (preferableTarget != DNN_TARGET_MYRIAD || dilation.width == dilation.height);
257 return (kernel_size.size() == 2) && (backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_HALIDE);
260 bool getMemoryShapes(const std::vector<MatShape> &inputs,
261 const int requiredOutputs,
262 std::vector<MatShape> &outputs,
263 std::vector<MatShape> &internals) const CV_OVERRIDE
265 CV_Assert(blobs.size() != 0);
266 CV_Assert(!hasBias() || blobs[1].total() == (size_t)blobs[0].size[0]);
267 CV_Assert(inputs.size() == (size_t)1);
271 CV_Assert(inputs.size() != 0);
272 std::vector<int> inpShape(inputs[0].begin() + 2, inputs[0].end());
274 int outCn = blobs[0].size[0];
275 std::vector<int> outShape;
276 outShape.push_back(inputs[0][0]);
277 outShape.push_back(outCn);
279 int inpCn = inputs[0][1];
282 for (int i = 0; i < inpShape.size(); i++)
283 outShape.push_back((inpShape[i] + pads_begin[i] + pads_end[i] - dilations[i] * (kernel_size[i] - 1) - 1) / strides[i] + 1);
287 getConvPoolOutParams(inpShape, kernel_size, strides, padMode, dilations, outShape);
290 int ngroups = inpCn / blobs[0].size[1];
291 if (ngroups == 0 || ngroups * blobs[0].size[1] != inpCn)
292 CV_Error(Error::StsError, format("Number of input channels should "
293 "be multiple of %d but got %d", blobs[0].size[1], inpCn));
294 CV_Assert(ngroups > 0 && inpCn % ngroups == 0 && outCn % ngroups == 0);
296 outputs.resize(1, outShape);
301 virtual void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
303 BaseConvolutionLayerImpl::finalize(inputs_arr, outputs_arr);
305 CV_Assert(!blobs.empty());
306 const int outCn = blobs[0].size[0];
307 // prepare weightsMat where each row is aligned and has enough zero padding on the right to
308 // use vectorized (i.e. with intrinsics) loops without tail processing
309 Mat wm = blobs[0].reshape(1, outCn);
310 if( wm.step1() % VEC_ALIGN != 0 )
312 int newcols = (int)alignSize(wm.step1(), VEC_ALIGN);
313 Mat wm_buffer = Mat(outCn, newcols, wm.type());
314 Mat wm_padding = wm_buffer.colRange(wm.cols, newcols);
315 wm_padding.setTo(Scalar::all(0.));
316 Mat wm_aligned = wm_buffer.colRange(0, wm.cols);
317 wm.copyTo(wm_aligned);
321 weightsMultipliers.assign(outCn, 1.0);
323 Mat biasMat = hasBias() ? blobs[1].reshape(1, outCn) : Mat();
324 biasvec.resize(outCn+2);
325 if( biasMat.empty() )
327 for(int i = 0; i < outCn; i++ )
332 for(int i = 0; i < outCn; i++ )
333 biasvec[i] = biasMat.at<float>(i);
336 convolutionOp.release();
340 bool setActivation(const Ptr<ActivationLayer>& layer) CV_OVERRIDE
342 if (!activ.empty() && !layer.empty())
350 activType = OCL4DNN_CONV_FUSED_ACTIV_NONE;
352 if (IS_DNN_OPENCL_TARGET(preferableTarget))
354 Ptr<PowerLayer> activ_power = activ.dynamicCast<PowerLayer>();
355 if (!activ_power.empty())
357 if (activ_power->scale != 1.f || activ_power->shift != 0.f)
359 const int outCh = blobs[0].size[0];
360 fuseWeights(Mat(1, outCh, CV_32F, Scalar(activ_power->scale)),
361 Mat(1, outCh, CV_32F, Scalar(activ_power->shift)));
364 power = activ_power->power;
365 activType = OCL4DNN_CONV_FUSED_ACTIV_POWER;
367 Ptr<TanHLayer> activ_tanh = activ.dynamicCast<TanHLayer>();
368 if (!activ_tanh.empty())
370 activType = OCL4DNN_CONV_FUSED_ACTIV_TANH;
374 return !activ.empty();
377 void fuseWeights(const Mat& w_, const Mat& b_) CV_OVERRIDE
379 // Convolution weights have OIHW data layout. Parameters fusion in case of
380 // (conv(I) + b1 ) * w + b2
381 // means to replace convolution's weights to [w*conv(I)] and bias to [b1 * w + b2]
382 const int outCn = weightsMat.size[0];
383 Mat w = w_.total() == 1 ? Mat(1, outCn, CV_32F, Scalar(w_.at<float>(0))) : w_;
384 Mat b = b_.total() == 1 ? Mat(1, outCn, CV_32F, Scalar(b_.at<float>(0))) : b_;
385 CV_Assert_N(!weightsMat.empty(), biasvec.size() == outCn + 2,
386 w.empty() || outCn == w.total(), b.empty() || outCn == b.total());
390 // Keep origin weights unchanged.
391 if (weightsMat.data == blobs[0].data)
392 weightsMat = weightsMat.clone();
394 Mat originWeights = blobs[0].reshape(1, outCn);
395 for (int i = 0; i < outCn; ++i)
397 double wi = w.at<float>(i);
398 weightsMultipliers[i] *= wi;
399 cv::multiply(originWeights.row(i), weightsMultipliers[i], weightsMat.row(i));
406 for (int i = 0; i < outCn; ++i)
407 biasvec[i] += b.at<float>(i);
410 newWeightAndBias = !w.empty() || !b.empty();
411 fusedBias = hasBias() || !b.empty();
412 biasvec[outCn] = biasvec[outCn+1] = biasvec[outCn-1];
415 virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs) CV_OVERRIDE
418 Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);
420 const int inpCn = inputBuffer.channels();
421 const int outCn = blobs[0].size[0];
422 const int inpGroupCn = blobs[0].size[1];
423 const int group = inpCn / inpGroupCn;
424 const int outGroupCn = outCn / group;
426 Halide::Buffer<float> weights = wrapToHalideBuffer(blobs[0]);
428 Halide::Var x("x"), y("y"), c("c"), n("n");
429 Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
430 Halide::Func padded_input(name + "_constant_exterior");
431 if (pad.width || pad.height)
433 Halide::Func bounded =
434 Halide::BoundaryConditions::constant_exterior(inputBuffer, 0);
435 padded_input(x, y, c, n) = bounded(x, y, c, n);
439 padded_input(x, y, c, n) = inputBuffer(x, y, c, n);
442 Halide::RDom r(0, kernel.width, 0, kernel.height, 0, inpGroupCn);
443 Halide::Expr kx = x * stride.width - pad.width + r.x * dilation.width;
444 Halide::Expr ky = y * stride.height - pad.height + r.y * dilation.height;
445 Halide::Expr kc = r.z;
446 for (int i = 1; i < group; ++i)
448 kc = select(c < outGroupCn * i, kc, inpGroupCn * i + r.z);
450 Halide::Expr topExpr = sum(padded_input(kx, ky, kc, n) *
451 weights(r.x, r.y, r.z, c));
454 Halide::Buffer<float> bias = wrapToHalideBuffer(blobs[1], {outCn});
457 top(x, y, c, n) = topExpr;
458 return Ptr<BackendNode>(new HalideBackendNode({ padded_input, top }));
459 #endif // HAVE_HALIDE
460 return Ptr<BackendNode>();
463 virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> > &inputs) CV_OVERRIDE
465 #ifdef HAVE_INF_ENGINE
466 InferenceEngine::DataPtr input = infEngineDataNode(inputs[0]);
467 CV_Assert(input->dims.size() == 4 || input->dims.size() == 5);
469 const int inpCn = input->dims[input->dims.size() - 2]; // NOTE: input->dims are reversed (WHIO or WHDIO)
470 const int outCn = blobs[0].size[0];
471 const int inpGroupCn = blobs[0].size[1];
472 const int group = inpCn / inpGroupCn;
474 InferenceEngine::Layout layout = (input->dims.size() == 4) ? InferenceEngine::Layout::OIHW :
475 InferenceEngine::Layout::NCDHW;
477 auto ieWeights = wrapToInfEngineBlob(blobs[0], layout);
478 if (newWeightAndBias)
480 if (weightsMat.isContinuous())
482 Mat fusedWeights = weightsMat.reshape(1, blobs[0].dims, blobs[0].size);
483 ieWeights = wrapToInfEngineBlob(fusedWeights, layout);
487 ieWeights = InferenceEngine::make_shared_blob<float>(
488 InferenceEngine::Precision::FP32, layout,
490 ieWeights->allocate();
492 Mat newWeights = infEngineBlobToMat(ieWeights).reshape(1, outCn);
493 Mat fusedWeights = weightsMat.colRange(0, newWeights.cols);
494 fusedWeights.copyTo(newWeights);
497 InferenceEngine::Blob::Ptr ieBiases;
498 if (hasBias() || fusedBias)
500 Mat biasesMat({outCn}, CV_32F, &biasvec[0]);
501 ieBiases = wrapToInfEngineBlob(biasesMat, {(size_t)outCn}, InferenceEngine::Layout::C);
504 #if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2018R5)
505 InferenceEngine::Builder::ConvolutionLayer ieLayer(name);
507 ieLayer.setKernel(kernel_size);
508 ieLayer.setStrides(strides);
509 ieLayer.setDilation(dilations);
510 ieLayer.setPaddingsBegin(pads_begin);
511 ieLayer.setPaddingsEnd(pads_end);
512 ieLayer.setGroup((size_t)group);
513 ieLayer.setOutDepth((size_t)outCn);
515 InferenceEngine::Builder::Layer l = ieLayer;
516 addConstantData("weights", ieWeights, l);
518 addConstantData("biases", ieBiases, l);
520 if (!padMode.empty())
521 l.getParameters()["auto_pad"] = padMode == "VALID" ? std::string("valid") : std::string("same_upper");
523 return Ptr<BackendNode>(new InfEngineBackendNode(l));
525 InferenceEngine::LayerParams lp;
527 lp.type = "Convolution";
528 lp.precision = InferenceEngine::Precision::FP32;
529 std::shared_ptr<InferenceEngine::ConvolutionLayer> ieLayer(new InferenceEngine::ConvolutionLayer(lp));
531 #if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2018R3)
532 ieLayer->_kernel.insert(InferenceEngine::X_AXIS, kernel.width);
533 ieLayer->_kernel.insert(InferenceEngine::Y_AXIS, kernel.height);
534 ieLayer->_stride.insert(InferenceEngine::X_AXIS, stride.width);
535 ieLayer->_stride.insert(InferenceEngine::Y_AXIS, stride.height);
536 ieLayer->_padding.insert(InferenceEngine::X_AXIS, pad.width);
537 ieLayer->_padding.insert(InferenceEngine::Y_AXIS, pad.height);
538 ieLayer->_pads_end.insert(InferenceEngine::X_AXIS, pad.width);
539 ieLayer->_pads_end.insert(InferenceEngine::Y_AXIS, pad.height);
540 ieLayer->_dilation.insert(InferenceEngine::X_AXIS, dilation.width);
541 ieLayer->_dilation.insert(InferenceEngine::Y_AXIS, dilation.height);
542 ieLayer->params["output"] = format("%d", outCn);
543 ieLayer->params["kernel"] = format("%d,%d,%d,%d", outCn, inpGroupCn, kernel.height, kernel.width);
544 ieLayer->params["pads_begin"] = format("%d,%d", pad.height, pad.width);
545 ieLayer->params["pads_end"] = format("%d,%d", pad.height, pad.width);
546 ieLayer->params["strides"] = format("%d,%d", stride.height, stride.width);
547 ieLayer->params["dilations"] = format("%d,%d", dilation.height, dilation.width);
549 ieLayer->_kernel_x = kernel.width;
550 ieLayer->_kernel_y = kernel.height;
551 ieLayer->_stride_x = stride.width;
552 ieLayer->_stride_y = stride.height;
553 ieLayer->_padding_x = pad.width;
554 ieLayer->_padding_y = pad.height;
555 ieLayer->_dilation_x = dilation.width;
556 ieLayer->_dilation_y = dilation.height;
558 ieLayer->_out_depth = outCn;
559 ieLayer->_group = group;
561 ieLayer->_weights = ieWeights;
563 ieLayer->_biases = ieBiases;
564 return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
566 #endif // HAVE_INF_ENGINE
567 return Ptr<BackendNode>();
570 class ParallelConv : public cv::ParallelLoopBody
573 enum { BLK_SIZE = 32, BLK_SIZE_CN = 64 };
579 Size kernel_, pad_, stride_, dilation_;
580 int ngroups_, nstripes_;
581 std::vector<int> ofstab_;
582 const std::vector<float>* biasvec_;
583 const std::vector<float>* reluslope_;
584 const ActivationLayer* activ_;
591 : input_(0), weights_(0), output_(0), ngroups_(0), nstripes_(0),
592 biasvec_(0), reluslope_(0), activ_(0), is1x1_(false), useAVX(false), useAVX2(false), useAVX512(false)
595 static void run( const Mat& input, Mat& output, const Mat& weights,
596 const std::vector<float>& biasvec,
597 const std::vector<float>& reluslope,
598 Size kernel, Size pad, Size stride, Size dilation,
599 const ActivationLayer* activ, int ngroups, int nstripes )
602 input.dims == 4 && output.dims == 4,
603 input.size[0] == output.size[0],
604 weights.rows == output.size[1],
605 weights.cols == (input.size[1]/ngroups)*kernel.width*kernel.height,
606 input.type() == output.type(),
607 input.type() == weights.type(),
608 input.type() == CV_32FC1,
609 input.isContinuous(),
610 output.isContinuous(),
611 biasvec.size() == (size_t)output.size[1]+2);
615 p.weights_ = &weights;
617 for( int i = 0; i < 4; i++ ) p.outShape[i] = output.size[i];
618 p.outShape[1] /= ngroups;
619 p.kernel_ = kernel; p.pad_ = pad; p.stride_ = stride; p.dilation_ = dilation;
620 p.ngroups_ = ngroups;
621 p.nstripes_ = nstripes;
623 int inpCnAll = input.size[1], width = input.size[3], height = input.size[2];
624 int inpCn = inpCnAll / ngroups;
625 p.is1x1_ = kernel == Size(1,1) && pad == Size(0, 0);
626 p.useAVX = checkHardwareSupport(CPU_AVX);
627 p.useAVX2 = checkHardwareSupport(CPU_AVX2);
628 p.useAVX512 = CV_CPU_HAS_SUPPORT_AVX512_SKX;
630 int ncn = std::min(inpCn, (int)BLK_SIZE_CN);
631 p.ofstab_.resize(kernel.width*kernel.height*ncn);
632 int* ofstab = &p.ofstab_[0];
634 for( int k = 0; k < ncn; k++ )
635 for( int k_r = 0; k_r < kernel.height; k_r++ )
636 for( int k_c = 0; k_c < kernel.width; k_c++ )
637 ofstab[(k*kernel.height + k_r)*kernel.width + k_c] =
638 (k*height + k_r*dilation.height)*width + k_c*dilation.width;
640 p.biasvec_ = &biasvec;
641 p.reluslope_ = &reluslope;
642 p.activ_ = p.reluslope_->empty() ? activ : 0;
644 parallel_for_(Range(0, nstripes), p, nstripes);
647 virtual void operator ()(const Range &r0) const CV_OVERRIDE
649 const int valign = ConvolutionLayerImpl::VEC_ALIGN;
650 int ngroups = ngroups_, batchSize = input_->size[0]*ngroups;
651 int outW = output_->size[3], outH = output_->size[2], outCn = output_->size[1]/ngroups;
652 int width = input_->size[3], height = input_->size[2], inpCn = input_->size[1]/ngroups;
653 const int nstripes = nstripes_;
654 int kernel_w = kernel_.width, kernel_h = kernel_.height;
655 int pad_w = pad_.width, pad_h = pad_.height;
656 int stride_w = stride_.width, stride_h = stride_.height;
657 int dilation_w = dilation_.width, dilation_h = dilation_.height;
658 int karea = kernel_w*kernel_h;
660 size_t inpPlaneSize = width*height;
661 size_t outPlaneSize = outW*outH;
664 int stripesPerSample;
668 if( nstripes >= batchSize*2 )
670 stripesPerSample = nstripes/batchSize;
671 stripeSize = alignSize((outPlaneSize + stripesPerSample - 1)/stripesPerSample, valign);
672 stripeSize = std::min(stripeSize, outPlaneSize);
676 stripesPerSample = 1;
677 int samplesPerStripe = std::max((batchSize + nstripes - 1)/nstripes, 1);
678 r.start *= samplesPerStripe;
679 r.end *= samplesPerStripe;
680 stripeSize = outPlaneSize;
683 const float* data_inp0_ = input_->ptr<float>();
684 const int* ofstab = &ofstab_[0];
685 const float* wptr_orig_ = weights_->ptr<float>();
686 size_t wstep = weights_->step1();
687 const float* biasptr_ = &biasvec_->at(0);
688 const float* reluptr_ = reluslope_->empty() ? 0 : &reluslope_->at(0);
689 float* data_out0_ = output_->ptr<float>();
690 size_t rowbufsz = (size_t)karea*BLK_SIZE_CN*BLK_SIZE;
691 AutoBuffer<float> rowbuf0_(rowbufsz + valign);
692 float* rowbuf0 = alignPtr(rowbuf0_.data(), (int)(valign*sizeof(float)));
694 // we clear the buffer once; ultimately, it lets us to avoid
695 // tail processing after running the unrolled/vectorized loop.
696 // the main idea is to make sure that the tail (a.k.a. padding) of each row
697 // (i.e. the elements with indices between vsz=karea*ncn and vsz_a)
698 // does not contain NaNs or Infs. Because the padding in the weights
699 // matrix is explicitly initialized with 0's, we handle all other
700 // cases nicely, i.e. we can skip expliciting re-initialization
701 // of the padding - we just retain elements from the previous iteration
702 // of the loop over channels (cn0).
703 memset(rowbuf0, 0, rowbufsz*sizeof(rowbuf0[0]) );
705 for( int stripe = r.start; stripe < r.end; stripe++ )
707 int subsampleIdx = stripe/stripesPerSample;
708 if( subsampleIdx >= batchSize )
710 int stripeStart = (int)((stripe - subsampleIdx*stripesPerSample)*stripeSize);
711 int stripeEnd = (int)std::min(stripeStart + stripeSize, outPlaneSize);
712 const float* data_inp0 = data_inp0_ + subsampleIdx*inpPlaneSize*inpCn;
713 float* data_out0 = data_out0_ + subsampleIdx*outPlaneSize*outCn;
714 int startOutCn = (subsampleIdx % ngroups)*outCn;
715 const float* wptr_orig = wptr_orig_ + wstep*startOutCn;
716 const float* biasptr = biasptr_ + startOutCn;
718 for( int cn0 = 0; cn0 < inpCn; cn0 += BLK_SIZE_CN )
720 int cn1 = std::min(cn0 + BLK_SIZE_CN, inpCn);
721 int ncn = cn1 - cn0, vsz = karea*ncn;
722 int vsz_a = (int)alignSize(vsz, valign);
723 const float* wptr = wptr_orig + cn0*karea;
724 // we apply [Channels][P]ReLU (if any) during the final pass only.
725 const float* relu = cn1 == inpCn && reluptr_ ? reluptr_ + startOutCn : 0;
727 for( int ofs0 = stripeStart; ofs0 < stripeEnd; ofs0 += BLK_SIZE )
729 int ofs, ofs1 = std::min(ofs0 + BLK_SIZE, stripeEnd);
730 int out_i = ofs0 / outW;
731 int out_j = ofs0 - out_i * outW;
733 // do im2row for a part of input tensor
734 float* rowbuf = rowbuf0;
735 for( ofs = ofs0; ofs < ofs1; out_j = 0, ++out_i )
737 int delta = std::min(ofs1 - ofs, outW - out_j);
738 int out_j1 = out_j + delta;
739 int in_i = out_i * stride_h - pad_h;
740 int in_j = out_j * stride_w - pad_w;
741 const float* imgptr = data_inp0 + (cn0*height + in_i)*width + in_j;
744 // do im2row for a part of input tensor
747 for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w )
749 for( k = 0; k < vsz; k++ )
750 rowbuf[k] = imgptr[k*inpPlaneSize];
755 bool ok_i = 0 <= in_i && in_i < height - (kernel_h-1)*dilation_h;
756 int i0 = std::max(0, (-in_i + dilation_h-1)/dilation_h);
757 int i1 = std::min(kernel_h, (height - in_i + dilation_h-1)/dilation_h);
759 for( ; out_j < out_j1; out_j++, rowbuf += vsz_a, imgptr += stride_w, in_j += stride_w )
761 // this condition should be true for most of the tensor elements, i.e.
762 // most of the time the kernel aperture is inside the tensor X-Y plane.
763 if( ok_i && out_j + 2 <= out_j1 && 0 <= in_j && in_j + stride_w*2 <= width - (kernel_w-1)*dilation_w )
765 for( k = 0; k < vsz; k++ )
768 float v0 = imgptr[k1];
769 float v1 = imgptr[k1 + stride_w];
771 rowbuf[k+vsz_a] = v1;
780 int j0 = std::max(0, (-in_j + dilation_w-1)/dilation_w);
781 int j1 = std::min(kernel_w, (width - in_j + dilation_w-1)/dilation_w);
783 // here some non-continuous sub-row of the row will not be
784 // filled from the tensor; we need to make sure that the uncovered
785 // elements are explicitly set to 0's. the easiest way is to
786 // set all the elements to 0's before the loop.
787 memset(rowbuf, 0, vsz*sizeof(rowbuf[0]));
788 for( k = 0; k < ncn; k++ )
790 for( i = i0; i < i1; i++ )
792 for( j = j0; j < j1; j++ )
794 int imgofs = k*(width*height) + i*(dilation_h*width) + j*dilation_w;
795 rowbuf[(k*kernel_h + i)*kernel_w + j] = imgptr[imgofs];
804 // now compute dot product of the weights
805 // and im2row-transformed part of the tensor
806 int bsz = ofs1 - ofs0;
807 #if CV_TRY_AVX512_SKX
808 /* AVX512 convolution requires an alignment of 16, and ROI is only there for larger vector sizes */
810 opt_AVX512_SKX::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0,
811 outShape, bsz, vsz, vsz_a, relu, cn0 == 0);
816 opt_AVX2::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0,
817 outShape, bsz, vsz, vsz_a, relu, cn0 == 0);
822 opt_AVX::fastConv(wptr, wstep, biasptr, rowbuf0, data_out0 + ofs0,
823 outShape, bsz, vsz, vsz_a, relu, cn0 == 0);
826 for( int i = 0; i < outCn; i += 2 )
828 const float* wptr0 = wptr + i*wstep;
829 const float* wptr1 = wptr0 + wstep;
830 float* outptr0 = data_out0 + ofs0 + i*outPlaneSize;
831 float* outptr1 = outptr0 + outPlaneSize;
832 float bias0 = biasptr[i], bias1 = biasptr[i+1];
833 float r0 = 1.f, r1 = 1.f;
844 r0 = relu[i]; r1 = relu[i+1];
851 v_float32x4 vr0 = v_setall_f32(r0), vr1 = v_setall_f32(r1), z = v_setzero_f32();
853 for( ; j <= bsz - 4; j += 4 )
855 const float* rptr = rowbuf0 + j*vsz_a;
860 s0 = v_setall_f32(bias0);
861 s1 = v_setall_f32(bias1);
865 s0 = v_load(outptr0 + j);
866 s1 = v_load(outptr1 + j);
869 v_float32x4 vs00 = v_setzero_f32(), vs01 = v_setzero_f32(),
870 vs02 = v_setzero_f32(), vs03 = v_setzero_f32(),
871 vs10 = v_setzero_f32(), vs11 = v_setzero_f32(),
872 vs12 = v_setzero_f32(), vs13 = v_setzero_f32();
873 for( k = 0; k < vsz; k += 4, rptr += 4 )
875 v_float32x4 w0 = v_load_aligned(wptr0 + k), w1 = v_load_aligned(wptr1 + k);
876 v_float32x4 r0 = v_load_aligned(rptr), r1 = v_load_aligned(rptr + vsz_a),
877 r2 = v_load_aligned(rptr + vsz_a*2), r3 = v_load_aligned(rptr + vsz_a*3);
889 s0 += v_reduce_sum4(vs00, vs01, vs02, vs03);
890 s1 += v_reduce_sum4(vs10, vs11, vs12, vs13);
893 s0 = v_select(s0 > z, s0, s0*vr0);
894 s1 = v_select(s1 > z, s1, s1*vr1);
897 v_store(outptr0 + j, s0);
898 v_store(outptr1 + j, s1);
901 for( ; j < bsz; j++ )
903 const float* rptr = rowbuf0 + j*vsz_a;
917 for( k = 0; k < vsz; k++ )
925 s00 = s00 > 0.f ? s00 : s00*r0;
926 s10 = s10 > 0.f ? s10 : s10*r1;
937 activ_->forwardSlice(data_out0 + stripeStart, data_out0 + stripeStart,
938 (int)(stripeEnd - stripeStart),
939 outPlaneSize, startOutCn, startOutCn + outCn);
945 bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
947 std::vector<UMat> inputs;
948 std::vector<UMat> outputs;
950 bool use_half = (inps.depth() == CV_16S);
951 inps.getUMatVector(inputs);
952 outs.getUMatVector(outputs);
954 CV_Assert(outputs.size() == 1);
955 for (int i = 0; i < inputs.size(); ++i)
956 CV_Assert(inputs[i].u != outputs[0].u);
958 if (umat_blobs.empty())
960 size_t n = blobs.size();
961 umat_blobs.resize(n);
962 for (size_t i = 0; i < n; i++)
964 blobs[i].copyTo(umat_blobs[i]);
968 if (convolutionOp.empty())
970 OCL4DNNConvConfig config;
971 config.in_shape = shape(inputs[0]);
972 config.out_shape = shape(outputs[0]);
973 config.kernel = kernel;
975 config.stride = stride;
976 config.dilation = dilation;
977 config.group = inputs[0].size[1] / umat_blobs[0].size[1];
978 config.bias_term = (hasBias()) ? true : false;
979 config.use_half = use_half;
981 convolutionOp = Ptr<OCL4DNNConvSpatial<float> >(new OCL4DNNConvSpatial<float>(config));
984 int outCn = umat_blobs[0].size[0];
989 Ptr<ReLULayer> activ_relu = activ.dynamicCast<ReLULayer>();
990 if( !activ_relu.empty() )
992 reluslope.assign(outCn+2, activ_relu->negativeSlope);
993 activType = OCL4DNN_CONV_FUSED_ACTIV_RELU;
996 Ptr<ReLU6Layer> activ_relu6 = activ.dynamicCast<ReLU6Layer>();
997 if( !activ_relu6.empty() )
1000 reluslope[0] = activ_relu6->minValue;
1001 reluslope[1] = activ_relu6->maxValue;
1002 activType = OCL4DNN_CONV_FUSED_ACTIV_RELU6;
1005 Ptr<ChannelsPReLULayer> activ_chprelu = activ.dynamicCast<ChannelsPReLULayer>();
1006 if( !activ_chprelu.empty() )
1008 const Mat& m = activ_chprelu->blobs[0];
1009 CV_Assert(m.isContinuous() && m.type() == CV_32F && (int)m.total() == outCn);
1010 const float* mdata = m.ptr<float>();
1011 reluslope.resize(outCn+2);
1012 std::copy(mdata, mdata + outCn, reluslope.begin());
1013 reluslope[outCn] = reluslope[outCn+1] = reluslope[outCn-1];
1014 activType = OCL4DNN_CONV_FUSED_ACTIV_PRELU;
1018 if ( newWeightAndBias )
1020 weightsMat.copyTo(umat_blobs[0]);
1023 if ( umat_blobs.size() < 2 )
1024 umat_blobs.resize(2);
1025 umat_blobs[1] = UMat(biasvec, true);
1027 convolutionOp->setBias(fusedBias || hasBias());
1028 newWeightAndBias = false;
1033 if ( activType == OCL4DNN_CONV_FUSED_ACTIV_RELU )
1035 CV_Assert(!reluslope.empty());
1036 convolutionOp->setActivReLU(true, reluslope[0]);
1038 else if ( activType == OCL4DNN_CONV_FUSED_ACTIV_PRELU)
1040 CV_Assert(!reluslope.empty());
1041 convolutionOp->setActivPReLU(true, reluslope);
1043 else if ( activType == OCL4DNN_CONV_FUSED_ACTIV_POWER)
1045 convolutionOp->setActivPower(true, power);
1047 else if ( activType == OCL4DNN_CONV_FUSED_ACTIV_TANH)
1049 convolutionOp->setActivTanh(true);
1051 else if ( activType == OCL4DNN_CONV_FUSED_ACTIV_RELU6)
1053 convolutionOp->setActivReLU6(true, reluslope[0], reluslope[1]);
1057 convolutionOp->setActivReLU(false, 0);
1058 convolutionOp->setActivPReLU(false, reluslope);
1059 convolutionOp->setActivPower(false, 1.f);
1060 convolutionOp->setActivTanh(false);
1061 convolutionOp->setActivReLU6(false, 0, 0);
1066 UMat& inpMat = inputs[0];
1067 UMat& outMat = outputs[0];
1068 int batch_size = inpMat.size[0];
1070 return convolutionOp->Forward(inpMat,
1071 inputs.size() == 2 ? inputs[1] : UMat(),
1073 (hasBias() || fusedBias) ? umat_blobs[1] : UMat(),
1079 void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
1081 CV_TRACE_FUNCTION();
1082 CV_TRACE_ARG_VALUE(name, "name", name.c_str());
1084 CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
1085 forward_ocl(inputs_arr, outputs_arr, internals_arr))
1087 if (inputs_arr.depth() == CV_16S)
1089 forward_fallback(inputs_arr, outputs_arr, internals_arr);
1093 std::vector<Mat> inputs, outputs;
1094 inputs_arr.getMatVector(inputs);
1095 outputs_arr.getMatVector(outputs);
1097 /*printf("conv %s: input (%d x %d x %d x %d), kernel (%d x %d), pad (%d x %d), stride (%d x %d), dilation (%d x %d)\n",
1098 name.c_str(), inputs[0].size[0], inputs[0].size[1], inputs[0].size[2], inputs[0].size[3],
1099 kernel.width, kernel.height, pad.width, pad.height,
1100 stride.width, stride.height, dilation.width, dilation.height);*/
1101 CV_Assert_N(inputs.size() == (size_t)1, inputs[0].size[1] % blobs[0].size[1] == 0,
1102 outputs.size() == 1, inputs[0].data != outputs[0].data);
1104 if (inputs[0].dims == 5) {
1105 CV_Error(Error::StsNotImplemented, "Convolution3D layer is not supported on OCV backend");
1108 int ngroups = inputs[0].size[1]/blobs[0].size[1];
1109 CV_Assert(outputs[0].size[1] % ngroups == 0);
1110 int outCn = blobs[0].size[0];
1115 Ptr<ReLULayer> activ_relu = activ.dynamicCast<ReLULayer>();
1116 if( !activ_relu.empty() )
1118 reluslope.assign(outCn+2, activ_relu->negativeSlope);
1121 Ptr<ChannelsPReLULayer> activ_chprelu = activ.dynamicCast<ChannelsPReLULayer>();
1122 if( !activ_chprelu.empty() )
1124 const Mat& m = activ_chprelu->blobs[0];
1125 CV_Assert(m.isContinuous() && m.type() == CV_32F && (int)m.total() == outCn);
1126 const float* mdata = m.ptr<float>();
1127 reluslope.resize(outCn+2);
1128 std::copy(mdata, mdata + outCn, reluslope.begin());
1129 reluslope[outCn] = reluslope[outCn+1] = reluslope[outCn-1];
1133 int nstripes = std::max(getNumThreads(), 1);
1135 ParallelConv::run(inputs[0], outputs[0], weightsMat, biasvec, reluslope,
1136 kernel, pad, stride, dilation, activ.get(), ngroups, nstripes);
1139 virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
1140 const std::vector<MatShape> &outputs) const CV_OVERRIDE
1142 CV_Assert(inputs.size() == outputs.size());
1145 for (int i = 0; i < inputs.size(); i++)
1147 flops += total(outputs[i])*(CV_BIG_INT(2)*kernel.area()*inputs[i][1] + 1);
1154 class DeConvolutionLayerImpl CV_FINAL : public BaseConvolutionLayerImpl
1157 Mat weightsMat, biasesMat;
1161 DeConvolutionLayerImpl(const LayerParams& params) : BaseConvolutionLayerImpl(params) {}
1163 MatShape computeColRowShape(const MatShape &inpShape, const MatShape &outShape) const CV_OVERRIDE
1165 int inpCn = inpShape[1];
1166 int inpH = inpShape[2];
1167 int inpW = inpShape[3];
1168 int outCn = outShape[1];
1169 int ngroups = inpCn / blobs[0].size[0];
1170 int outGroupCn = outCn / ngroups;
1171 int ksize = outGroupCn * kernel.height * kernel.width;
1172 return shape(ksize, inpH * inpW);
1175 virtual bool supportBackend(int backendId) CV_OVERRIDE
1177 #ifdef HAVE_INF_ENGINE
1178 if (backendId == DNN_BACKEND_INFERENCE_ENGINE)
1180 if (kernel_size.size() == 3)
1181 CV_Error(Error::StsNotImplemented, "Unsupported deconvolution3D layer");
1183 if (INF_ENGINE_RELEASE >= 2018050000 && (adjustPad.height || adjustPad.width))
1186 const int outGroupCn = blobs[0].size[1]; // Weights are in IOHW layout
1187 const int group = numOutput / outGroupCn;
1190 return preferableTarget == DNN_TARGET_CPU;
1192 if (preferableTarget == DNN_TARGET_OPENCL || preferableTarget == DNN_TARGET_OPENCL_FP16)
1193 return dilation.width == 1 && dilation.height == 1;
1197 #endif // HAVE_INF_ENGINE
1198 return kernel_size.size() == 2 && (backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_HALIDE);
1201 bool getMemoryShapes(const std::vector<MatShape> &inputs,
1202 const int requiredOutputs,
1203 std::vector<MatShape> &outputs,
1204 std::vector<MatShape> &internals) const CV_OVERRIDE
1206 CV_Assert(!hasBias() || blobs[1].total() == (size_t)numOutput);
1207 CV_Assert(inputs.size() != 0);
1209 int outCn = numOutput;
1210 std::vector<int> outShape;
1211 outShape.push_back(inputs[0][0]); // batch
1212 outShape.push_back(outCn);
1213 if (padMode.empty())
1215 for (int i = 0; i < kernel_size.size(); i++)
1216 outShape.push_back(strides[i] * (inputs[0][2 + i] - 1) + kernel_size[i] - pads_begin[i] - pads_end[i] + adjust_pads[i]);
1218 else if (padMode == "VALID")
1220 for (int i = 0; i < kernel_size.size(); i++)
1221 outShape.push_back(strides[i] * (inputs[0][2 + i] - 1) + kernel_size[i] + adjust_pads[i]);
1223 else if (padMode == "SAME")
1225 for (int i = 0; i < kernel_size.size(); i++)
1226 outShape.push_back(strides[i] * (inputs[0][2 + i] - 1) + 1 + adjust_pads[i]);
1229 CV_Error(Error::StsError, "Unsupported padding mode " + padMode);
1231 CV_Assert(outCn % blobs[0].size[1] == 0);
1232 int ngroups = outCn / blobs[0].size[1];
1234 int inpCn = inputs[0][1];
1235 CV_Assert(inpCn % ngroups == 0 && outCn % ngroups == 0);
1236 CV_Assert(blobs[0].size[0] == inpCn);
1238 outputs.resize(1, outShape);
1241 internals.push_back(computeColRowShape(inputs[0], outputs[0]));
1246 void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
1248 BaseConvolutionLayerImpl::finalize(inputs_arr, outputs_arr);
1250 std::vector<Mat> inputs, outputs;
1251 inputs_arr.getMatVector(inputs);
1252 outputs_arr.getMatVector(outputs);
1254 std::vector<int> inpShape;
1255 std::vector<int> outShape;
1256 for (int i = 2; i < inputs[0].dims; i++) {
1257 inpShape.push_back(inputs[0].size[i]);
1258 outShape.push_back(outputs[0].size[i]);
1260 getConvPoolPaddings(outShape, inpShape, kernel_size, strides, padMode, dilations, pads_begin, pads_end);
1261 if (pads_begin.size() == 2) {
1262 for (int i = 0; i < pads_begin.size(); i++) {
1263 if (pads_begin[i] != pads_end[i])
1264 CV_Error(Error::StsNotImplemented, "Unsupported asymmetric padding in deconvolution layer");
1266 pad = Size(pads_begin[1], pads_begin[0]);
1269 weightsMultipliers.assign(numOutput, 1.0);
1270 if (weightsMat.empty())
1272 transpose(blobs[0].reshape(1, blobs[0].size[0]), weightsMat);
1273 biasesMat = hasBias() ? blobs[1].reshape(1, numOutput)
1274 : Mat::zeros(numOutput, 1, CV_32F);
1278 void fuseWeights(const Mat& w_, const Mat& b_) CV_OVERRIDE
1280 Mat w = w_.total() == 1 ? Mat(1, numOutput, CV_32F, Scalar(w_.at<float>(0))) : w_;
1281 Mat b = b_.total() == 1 ? Mat(1, numOutput, CV_32F, Scalar(b_.at<float>(0))) : b_;
1283 CV_Assert_N(!weightsMat.empty(),
1284 w.empty() || numOutput == w.total(),
1285 b.empty() || numOutput == b.total());
1289 transpose(blobs[0].reshape(1, blobs[0].size[0]), weightsMat);
1290 weightsMat = weightsMat.reshape(1, numOutput);
1291 for (int i = 0; i < numOutput; ++i)
1293 double wi = w.at<float>(i);
1294 weightsMultipliers[i] *= wi;
1295 cv::multiply(weightsMat.row(i), weightsMultipliers[i], weightsMat.row(i));
1296 biasesMat.at<float>(i) *= wi;
1298 weightsMat = weightsMat.reshape(1, weightsMat.total() / blobs[0].size[0]);
1303 cv::add(biasesMat, b.reshape(1, numOutput), biasesMat);
1306 newWeightAndBias = !w.empty() || !b.empty();
1309 class MatMulInvoker : public ParallelLoopBody
1312 MatMulInvoker(const Mat& a, const Mat& b, Mat& c, int nstripes)
1317 nstripes_ = nstripes;
1318 useAVX = checkHardwareSupport(CPU_AVX);
1319 useAVX2 = checkHardwareSupport(CPU_AVX2);
1320 useAVX512 = CV_CPU_HAS_SUPPORT_AVX512_SKX;
1323 void operator()(const Range& range_) const CV_OVERRIDE
1325 int stripeSize = (int)alignSize((b_->cols + nstripes_ - 1)/nstripes_, 16);
1326 Range range(range_.start*stripeSize, std::min(range_.end*stripeSize, b_->cols));
1327 int mmax = a_->rows;
1328 int nmax = range.end - range.start;
1329 int kmax = a_->cols;
1331 const float* aptr = a_->ptr<float>();
1332 const float* bptr = b_->ptr<float>() + range.start;
1333 float* cptr = c_->ptr<float>() + range.start;
1334 size_t astep = a_->step1();
1335 size_t bstep = b_->step1();
1336 size_t cstep = c_->step1();
1338 #if CV_TRY_AVX512_SKX
1340 opt_AVX512_SKX::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax );
1345 opt_AVX2::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax );
1350 opt_AVX::fastGEMM( aptr, astep, bptr, bstep, cptr, cstep, mmax, kmax, nmax );
1353 for( m = 0; m < mmax; m += 2 )
1355 float* dst0 = cptr + cstep*m;
1356 float* dst1 = cptr + cstep*std::min(m+1, mmax-1);
1357 const float* aptr0 = aptr + astep*m;
1358 const float* aptr1 = aptr + astep*std::min(m+1, mmax-1);
1360 for( n = 0; n < nmax; n++ )
1366 for( k = 0; k < kmax; k += 4 )
1368 float alpha00 = aptr0[k];
1369 float alpha01 = aptr1[k];
1370 float alpha10 = 0.f, alpha11 = 0.f;
1371 float alpha20 = 0.f, alpha21 = 0.f;
1372 float alpha30 = 0.f, alpha31 = 0.f;
1373 const float* bptr0 = bptr + k*bstep;
1374 const float* bptr1 = bptr0;
1375 const float* bptr2 = bptr0;
1376 const float* bptr3 = bptr0;
1380 alpha10 = aptr0[k+1];
1381 alpha11 = aptr1[k+1];
1382 bptr1 = bptr0 + bstep;
1385 alpha20 = aptr0[k+2];
1386 alpha21 = aptr1[k+2];
1387 bptr2 = bptr1 + bstep;
1390 alpha30 = aptr0[k+3];
1391 alpha31 = aptr1[k+3];
1392 bptr3 = bptr2 + bstep;
1399 v_float32x4 a00 = v_setall_f32(alpha00);
1400 v_float32x4 a01 = v_setall_f32(alpha01);
1401 v_float32x4 a10 = v_setall_f32(alpha10);
1402 v_float32x4 a11 = v_setall_f32(alpha11);
1403 v_float32x4 a20 = v_setall_f32(alpha20);
1404 v_float32x4 a21 = v_setall_f32(alpha21);
1405 v_float32x4 a30 = v_setall_f32(alpha30);
1406 v_float32x4 a31 = v_setall_f32(alpha31);
1408 for( ; n <= nmax - 4; n += 4 )
1410 v_float32x4 b0 = v_load(bptr0 + n);
1411 v_float32x4 b1 = v_load(bptr1 + n);
1412 v_float32x4 b2 = v_load(bptr2 + n);
1413 v_float32x4 b3 = v_load(bptr3 + n);
1414 v_float32x4 d0 = v_load(dst0 + n);
1415 v_float32x4 d1 = v_load(dst1 + n);
1424 v_store(dst0 + n, d0);
1425 v_store(dst1 + n, d1);
1429 for( ; n < nmax; n++ )
1431 float b0 = bptr0[n], b1 = bptr1[n];
1432 float b2 = bptr2[n], b3 = bptr3[n];
1433 float d0 = dst0[n] + alpha00*b0 + alpha10*b1 + alpha20*b2 + alpha30*b3;
1434 float d1 = dst1[n] + alpha01*b0 + alpha11*b1 + alpha21*b2 + alpha31*b3;
1450 class Col2ImInvoker : public cv::ParallelLoopBody
1453 const float* data_col;
1454 const float* biasvec;
1455 int channels, height, width;
1456 int kernel_h, kernel_w;
1458 int stride_h, stride_w;
1460 int height_col, width_col;
1465 : data_col(0), biasvec(0), channels(0), height(0), width(0),
1466 kernel_h(0), kernel_w(0), pad_h(0), pad_w(0), stride_h(0), stride_w(0), data_im(0),
1467 height_col(0), width_col(0), nstripes(0), is1x1(0)
1470 static void run(const float* data_col,
1471 int channels, int height, int width,
1472 int kernel_h, int kernel_w,
1473 int pad_h, int pad_w,
1474 int stride_h, int stride_w,
1475 int height_col, int width_col,
1477 const float* biasvec,
1480 const int nstripes = getNumThreads();
1483 t.data_col = data_col;
1484 t.data_im = data_im;
1485 t.channels = channels; t.height = height; t.width = width;
1486 t.kernel_h = kernel_h; t.kernel_w = kernel_w;
1487 t.pad_h = pad_h; t.pad_w = pad_w;
1488 t.stride_h = stride_h; t.stride_w = stride_w;
1489 t.height_col = height_col;
1490 t.width_col = width_col;
1491 t.nstripes = nstripes;
1493 t.biasvec = biasvec;
1495 parallel_for_(Range(0, nstripes), t, nstripes);
1498 virtual void operator ()(const Range &r) const CV_OVERRIDE
1500 const float* data_col_ = data_col;
1501 float* data_im_ = data_im;
1502 int coeff_h = (1 - stride_h * kernel_w * height_col) * width_col;
1503 int coeff_w = (1 - stride_w * height_col * width_col);
1504 size_t total = (size_t)channels * height * width;
1505 size_t stripeSize = (total + nstripes - 1)/nstripes;
1506 size_t startIndex = r.start*stripeSize;
1507 size_t endIndex = std::min(r.end*stripeSize, total);
1508 int w = (int)(startIndex % width + pad_w);
1509 int h = (int)((startIndex / width) % height + pad_h);
1510 int c = (int)(startIndex / (width * height));
1511 int h_col_start = (h < kernel_h) ? 0 : (h - kernel_h) / stride_h + 1;
1512 int h_col_end = std::min(h / stride_h + 1, height_col);
1513 int plane_size_col = height_col * width_col;
1514 int offset = (c * kernel_h * kernel_w + h * kernel_w + w) * plane_size_col;
1515 bool is1x1_ = is1x1;
1516 const float* biasvec_ = biasvec;
1518 for (size_t index = startIndex; index < endIndex; index++)
1520 // compute the start and end of the output
1521 int w_col_start = (w < kernel_w) ? 0 : (w - kernel_w) / stride_w + 1;
1522 int w_col_end = std::min(w / stride_w + 1, width_col);
1526 val = data_im_[index];
1530 for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
1531 for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
1532 val += data_col_[offset + h_col * coeff_h + w_col * coeff_w];
1536 data_im_[index] = val + biasvec_[c];
1538 offset += plane_size_col;
1539 if( ++w >= width + pad_w )
1541 w = (int)((index + 1)% width + pad_w);
1542 h = (int)(((index + 1) / width) % height + pad_h);
1543 c = (int)((index + 1) / (width * height));
1544 h_col_start = (h < kernel_h) ? 0 : (h - kernel_h) / stride_h + 1;
1545 h_col_end = std::min(h / stride_h + 1, height_col);
1546 offset = (c * kernel_h * kernel_w + h * kernel_w + w) * plane_size_col;
1553 bool forward_ocl(InputArrayOfArrays inputs_, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_)
1555 std::vector<UMat> inputs;
1556 std::vector<UMat> outputs;
1557 std::vector<UMat> internals;
1559 if (inputs_.depth() == CV_16S)
1562 inputs_.getUMatVector(inputs);
1563 outputs_.getUMatVector(outputs);
1564 internals_.getUMatVector(internals);
1566 int outCn = numOutput;
1567 int inpCn = inputs[0].size[1];
1572 if (umat_weights.empty())
1574 if (newWeightAndBias)
1576 weightsMat.copyTo(umat_weights);
1577 biasesMat.copyTo(umat_biases);
1581 transpose(blobs[0].reshape(1, inpCn), umat_weights);
1583 blobs[1].reshape(1, outCn).copyTo(umat_biases);
1585 umat_biases = UMat::zeros(outCn, 1, CV_32F);
1589 String buildopt = format("-DT=%s ", ocl::typeToStr(inputs[0].type()));
1590 buildopt += format("-DPAD_H=%d -DPAD_W=%d -DKERNEL_H=%d -DKERNEL_W=%d -DSTRIDE_H=%d -DSTRIDE_W=%d ",
1591 pad.height, pad.width, kernel.height, kernel.width, stride.height, stride.width);
1593 for (size_t ii = 0; ii < outputs.size(); ii++)
1595 int ngroups = outCn / blobs[0].size[1];
1596 int inpGroupCn = inpCn / ngroups;
1597 int outGroupCn = blobs[0].size[1];
1598 const UMat& inp = inputs[ii];
1599 UMat& out = outputs[ii];
1600 int numImg = inp.size[0];
1601 int inpH = inp.size[2], inpW = inp.size[3];
1602 int outH = out.size[2], outW = out.size[3];
1604 MatShape inpshape = shape(numImg*inpCn, inpH*inpW);
1605 MatShape outshape = shape(numImg*outCn, outH*outW);
1606 UMat convBlob = inputs[ii].reshape(1, inpshape.size(), &inpshape[0]);
1607 UMat decnBlob = out.reshape(1, outshape.size(), &outshape[0]);
1608 int rows = internals[0].rows / ngroups;
1610 for (int n = 0; n < numImg; n++)
1612 for (int g = 0; g < ngroups; g++)
1614 UMat colMat = internals[0].rowRange(_Range(g * rows, rows));
1615 UMat convMat = convBlob.rowRange(_Range((g + n * ngroups) * inpGroupCn, inpGroupCn));
1616 UMat wghtMat = umat_weights.colRange(_Range(g * inpGroupCn, inpGroupCn));
1617 gemm(wghtMat, convMat, 1, noArray(), 0, colMat, 0);
1620 for (int g = 0; g < ngroups; g++)
1622 int total = outGroupCn * decnBlob.cols;
1624 int height_col = inpH;
1625 int width_col = inpW;
1626 int coeff_h = (1 - stride.height * kernel.width * height_col) * width_col;
1627 int coeff_w = (1 - stride.width * height_col * width_col);
1629 ocl::Kernel k("col2im", ocl::dnn::col2im_oclsrc, buildopt);
1630 k.set(index++, total);
1631 k.set(index++, ocl::KernelArg::PtrReadOnly(internals[0]));
1632 k.set(index++, (int)(g * rows * internals[0].cols));
1633 k.set(index++, outGroupCn);
1634 k.set(index++, outH);
1635 k.set(index++, outW);
1636 k.set(index++, height_col);
1637 k.set(index++, width_col);
1638 k.set(index++, coeff_h);
1639 k.set(index++, coeff_w);
1640 k.set(index++, ocl::KernelArg::PtrReadOnly(umat_biases));
1641 k.set(index++, (int)(g * outGroupCn * umat_biases.cols));
1642 k.set(index++, ocl::KernelArg::PtrWriteOnly(decnBlob));
1643 k.set(index++, (int)((g + n * ngroups) * outGroupCn * decnBlob.cols));
1645 size_t global[] = { (size_t)total };
1646 bool ret = k.run(1, global, NULL, false);
1657 void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
1659 CV_TRACE_FUNCTION();
1660 CV_TRACE_ARG_VALUE(name, "name", name.c_str());
1662 CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
1663 forward_ocl(inputs_arr, outputs_arr, internals_arr));
1665 if (inputs_arr.depth() == CV_16S)
1667 forward_fallback(inputs_arr, outputs_arr, internals_arr);
1671 std::vector<Mat> inputs, outputs, internals;
1672 inputs_arr.getMatVector(inputs);
1673 outputs_arr.getMatVector(outputs);
1674 internals_arr.getMatVector(internals);
1676 int outCn = numOutput;
1677 int inpCn = inputs[0].size[1];
1678 bool is1x1flag = is1x1();
1679 int nstripes = getNumThreads();
1681 if( weightsMat.empty() )
1683 transpose(blobs[0].reshape(1, inpCn), weightsMat);
1684 biasesMat = hasBias() ? blobs[1].reshape(1, outCn) : Mat::zeros(outCn, 1, CV_32F);
1687 for (size_t ii = 0; ii < outputs.size(); ii++)
1689 int ngroups = outCn / blobs[0].size[1];
1690 int inpGroupCn = inpCn / ngroups;
1691 int outGroupCn = blobs[0].size[1];
1692 const Mat& inp = inputs[ii];
1693 Mat& out = outputs[ii];
1694 int numImg = inp.size[0];
1695 int inpH = inp.size[2], inpW = inp.size[3];
1696 int outH = out.size[2], outW = out.size[3];
1698 Mat convBlob = inputs[ii].reshape(1, numImg*inpCn);
1699 Mat decnBlob = out.reshape(1, numImg*outCn);
1701 for (int n = 0; n < numImg; n++)
1703 for (int g = 0; g < ngroups; g++)
1705 Mat dstMat = decnBlob.rowRange(_Range((g + n * ngroups) * outGroupCn, outGroupCn));
1706 Mat &colMat = is1x1flag ? dstMat : internals[0];
1708 Mat convMat = convBlob.rowRange(_Range((g + n * ngroups) * inpGroupCn, inpGroupCn));
1709 Mat wghtMat = weightsMat.colRange(_Range(g * inpGroupCn, inpGroupCn));
1710 Mat curBiasMat = biasesMat.rowRange(_Range(g * outGroupCn, outGroupCn));
1712 //gemm(wghtMat, convMat, 1, colMat, 0, colMat, 0);
1713 MatMulInvoker mminvoker(wghtMat, convMat, colMat, nstripes);
1714 parallel_for_(Range(0, nstripes), mminvoker, nstripes);
1716 Col2ImInvoker::run(colMat.ptr<float>(), outGroupCn, outH, outW,
1717 kernel.height, kernel.width, pad.height, pad.width,
1718 stride.height, stride.width, inpH, inpW, dstMat.ptr<float>(),
1719 curBiasMat.ptr<float>(), is1x1flag);
1725 virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs) CV_OVERRIDE
1728 Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);
1730 int inW, inH, inC, inN;
1731 getCanonicalSize(inputBuffer, &inW, &inH, &inC, &inN);
1732 const int outGroupCn = blobs[0].size[1];
1733 const int group = numOutput / outGroupCn;
1734 const int inpGroupCn = blobs[0].size[0] / group;
1736 Halide::Var x("x"), y("y"), c("c"), n("n");
1737 Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
1738 Halide::Func padded_input(name + "_constant_exterior");
1739 auto weights = wrapToHalideBuffer(blobs[0]);
1741 Halide::Func dilated_input("dilated_input");
1742 dilated_input(x, y, c, n) = 0.0f;
1743 Halide::RDom r1(0, inW, 0, inH);
1744 dilated_input(r1.x * stride.width, r1.y * stride.height, c, n) =
1745 inputBuffer(r1.x, r1.y, c, n);
1746 dilated_input.compute_root();
1748 Halide::Func bounded =
1749 Halide::BoundaryConditions::constant_exterior(dilated_input, 0,
1750 0, (inW - 1) * stride.width + 1,
1751 0, (inH - 1) * stride.height + 1,
1753 padded_input(x, y, c, n) = bounded(x, y, c, n);
1755 Halide::RDom r(0, kernel.width, 0, kernel.height, 0, inpGroupCn);
1756 Halide::Expr kx = x + pad.width - r.x;
1757 Halide::Expr ky = y + pad.height - r.y;
1758 Halide::Expr kInC = r.z;
1759 Halide::Expr kOutC = c;
1760 for (int i = 1; i < group; ++i)
1762 kInC = select(c < outGroupCn * i, kInC, inpGroupCn * i + r.z);
1763 kOutC = select(c < outGroupCn * i, kOutC, c - outGroupCn * i);
1765 Halide::Expr topExpr = sum(padded_input(kx, ky, kInC, n) *
1766 weights(r.x, r.y, kOutC, kInC));
1769 auto bias = wrapToHalideBuffer(blobs[1], {numOutput});
1772 top(x, y, c, n) = topExpr;
1773 return Ptr<BackendNode>(new HalideBackendNode({ padded_input, top }));
1774 #endif // HAVE_HALIDE
1775 return Ptr<BackendNode>();
1778 virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> > &) CV_OVERRIDE
1780 #ifdef HAVE_INF_ENGINE
1781 #if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2018R5)
1782 const int outGroupCn = blobs[0].size[1]; // Weights are in IOHW layout
1783 const int group = numOutput / outGroupCn;
1785 InferenceEngine::Builder::DeconvolutionLayer ieLayer(name);
1787 ieLayer.setKernel(kernel_size);
1788 ieLayer.setStrides(strides);
1789 ieLayer.setDilation(dilations);
1790 ieLayer.setPaddingsBegin(pads_begin);
1791 ieLayer.setPaddingsEnd(pads_end);
1792 ieLayer.setGroup((size_t)group);
1793 ieLayer.setOutDepth((size_t)numOutput);
1795 InferenceEngine::Builder::Layer l = ieLayer;
1796 addConstantData("weights", wrapToInfEngineBlob(blobs[0], InferenceEngine::Layout::OIHW), l);
1798 addConstantData("biases", wrapToInfEngineBlob(blobs[1], {(size_t)numOutput}, InferenceEngine::Layout::C), l);
1799 return Ptr<BackendNode>(new InfEngineBackendNode(l));
1801 const int outGroupCn = blobs[0].size[1]; // Weights are in IOHW layout
1802 const int group = numOutput / outGroupCn;
1804 InferenceEngine::LayerParams lp;
1806 lp.type = "Deconvolution";
1807 lp.precision = InferenceEngine::Precision::FP32;
1808 std::shared_ptr<InferenceEngine::DeconvolutionLayer> ieLayer(new InferenceEngine::DeconvolutionLayer(lp));
1810 #if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2018R3)
1811 ieLayer->_kernel.insert(InferenceEngine::X_AXIS, kernel.width);
1812 ieLayer->_kernel.insert(InferenceEngine::Y_AXIS, kernel.height);
1813 ieLayer->_stride.insert(InferenceEngine::X_AXIS, stride.width);
1814 ieLayer->_stride.insert(InferenceEngine::Y_AXIS, stride.height);
1815 ieLayer->_padding.insert(InferenceEngine::X_AXIS, pad.width);
1816 ieLayer->_padding.insert(InferenceEngine::Y_AXIS, pad.height);
1817 ieLayer->_pads_end.insert(InferenceEngine::X_AXIS, pad.width);
1818 ieLayer->_pads_end.insert(InferenceEngine::Y_AXIS, pad.height);
1819 ieLayer->_dilation.insert(InferenceEngine::X_AXIS, dilation.width);
1820 ieLayer->_dilation.insert(InferenceEngine::Y_AXIS, dilation.height);
1822 ieLayer->_kernel_x = kernel.width;
1823 ieLayer->_kernel_y = kernel.height;
1824 ieLayer->_stride_x = stride.width;
1825 ieLayer->_stride_y = stride.height;
1826 ieLayer->_padding_x = pad.width;
1827 ieLayer->_padding_y = pad.height;
1828 ieLayer->_dilation_x = dilation.width;
1829 ieLayer->_dilation_y = dilation.height;
1831 ieLayer->_out_depth = numOutput;
1832 ieLayer->_group = group;
1834 ieLayer->_weights = wrapToInfEngineBlob(blobs[0], InferenceEngine::Layout::OIHW);
1837 ieLayer->_biases = wrapToInfEngineBlob(blobs[1], {(size_t)numOutput}, InferenceEngine::Layout::C);
1839 return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
1841 #endif // HAVE_INF_ENGINE
1842 return Ptr<BackendNode>();
1845 virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
1846 const std::vector<MatShape> &outputs) const CV_OVERRIDE
1848 CV_Assert(inputs.size() == outputs.size());
1851 int outChannels = blobs[0].size[0];
1853 for (int i = 0; i < inputs.size(); i++)
1855 flops += CV_BIG_INT(2)*outChannels*kernel.area()*total(inputs[i]);
1862 Ptr<BaseConvolutionLayer> ConvolutionLayer::create(const LayerParams ¶ms)
1864 Ptr<ConvolutionLayerImpl> l(new ConvolutionLayerImpl(params));
1868 Ptr<BaseConvolutionLayer> DeconvolutionLayer::create(const LayerParams ¶ms)
1870 return Ptr<BaseConvolutionLayer>(new DeConvolutionLayerImpl(params));