43896455e14c20703ef5a206feffa92f8533ce1f
[platform/upstream/opencv.git] / modules / core / src / split.cpp
1 // This file is part of OpenCV project.
2 // It is subject to the license terms in the LICENSE file found in the top-level directory
3 // of this distribution and at http://opencv.org/license.html
4
5
6 #include "precomp.hpp"
7 #include "opencl_kernels_core.hpp"
8
9 namespace cv { namespace hal {
10
11 #if CV_NEON
12 template<typename T> struct VSplit2;
13 template<typename T> struct VSplit3;
14 template<typename T> struct VSplit4;
15
16 #define SPLIT2_KERNEL_TEMPLATE(name, data_type, reg_type, load_func, store_func)  \
17     template<>                                                                    \
18     struct name<data_type>                                                        \
19     {                                                                             \
20         void operator()(const data_type* src, data_type* dst0,                    \
21                         data_type* dst1) const                                    \
22         {                                                                         \
23             reg_type r = load_func(src);                                          \
24             store_func(dst0, r.val[0]);                                           \
25             store_func(dst1, r.val[1]);                                           \
26         }                                                                         \
27     }
28
29 #define SPLIT3_KERNEL_TEMPLATE(name, data_type, reg_type, load_func, store_func)  \
30     template<>                                                                    \
31     struct name<data_type>                                                        \
32     {                                                                             \
33         void operator()(const data_type* src, data_type* dst0, data_type* dst1,   \
34                         data_type* dst2) const                                    \
35         {                                                                         \
36             reg_type r = load_func(src);                                          \
37             store_func(dst0, r.val[0]);                                           \
38             store_func(dst1, r.val[1]);                                           \
39             store_func(dst2, r.val[2]);                                           \
40         }                                                                         \
41     }
42
43 #define SPLIT4_KERNEL_TEMPLATE(name, data_type, reg_type, load_func, store_func)  \
44     template<>                                                                    \
45     struct name<data_type>                                                        \
46     {                                                                             \
47         void operator()(const data_type* src, data_type* dst0, data_type* dst1,   \
48                         data_type* dst2, data_type* dst3) const                   \
49         {                                                                         \
50             reg_type r = load_func(src);                                          \
51             store_func(dst0, r.val[0]);                                           \
52             store_func(dst1, r.val[1]);                                           \
53             store_func(dst2, r.val[2]);                                           \
54             store_func(dst3, r.val[3]);                                           \
55         }                                                                         \
56     }
57
58 SPLIT2_KERNEL_TEMPLATE(VSplit2, uchar ,  uint8x16x2_t, vld2q_u8 , vst1q_u8 );
59 SPLIT2_KERNEL_TEMPLATE(VSplit2, ushort,  uint16x8x2_t, vld2q_u16, vst1q_u16);
60 SPLIT2_KERNEL_TEMPLATE(VSplit2, int   ,   int32x4x2_t, vld2q_s32, vst1q_s32);
61 SPLIT2_KERNEL_TEMPLATE(VSplit2, int64 ,   int64x1x2_t, vld2_s64 , vst1_s64 );
62
63 SPLIT3_KERNEL_TEMPLATE(VSplit3, uchar ,  uint8x16x3_t, vld3q_u8 , vst1q_u8 );
64 SPLIT3_KERNEL_TEMPLATE(VSplit3, ushort,  uint16x8x3_t, vld3q_u16, vst1q_u16);
65 SPLIT3_KERNEL_TEMPLATE(VSplit3, int   ,   int32x4x3_t, vld3q_s32, vst1q_s32);
66 SPLIT3_KERNEL_TEMPLATE(VSplit3, int64 ,   int64x1x3_t, vld3_s64 , vst1_s64 );
67
68 SPLIT4_KERNEL_TEMPLATE(VSplit4, uchar ,  uint8x16x4_t, vld4q_u8 , vst1q_u8 );
69 SPLIT4_KERNEL_TEMPLATE(VSplit4, ushort,  uint16x8x4_t, vld4q_u16, vst1q_u16);
70 SPLIT4_KERNEL_TEMPLATE(VSplit4, int   ,   int32x4x4_t, vld4q_s32, vst1q_s32);
71 SPLIT4_KERNEL_TEMPLATE(VSplit4, int64 ,   int64x1x4_t, vld4_s64 , vst1_s64 );
72
73 #elif CV_SSE2
74
75 template <typename T>
76 struct VSplit2
77 {
78     VSplit2() : support(false) { }
79     void operator()(const T *, T *, T *) const { }
80
81     bool support;
82 };
83
84 template <typename T>
85 struct VSplit3
86 {
87     VSplit3() : support(false) { }
88     void operator()(const T *, T *, T *, T *) const { }
89
90     bool support;
91 };
92
93 template <typename T>
94 struct VSplit4
95 {
96     VSplit4() : support(false) { }
97     void operator()(const T *, T *, T *, T *, T *) const { }
98
99     bool support;
100 };
101
102 #define SPLIT2_KERNEL_TEMPLATE(data_type, reg_type, cast_type, _mm_deinterleave, flavor)   \
103 template <>                                                                                \
104 struct VSplit2<data_type>                                                                  \
105 {                                                                                          \
106     enum                                                                                   \
107     {                                                                                      \
108         ELEMS_IN_VEC = 16 / sizeof(data_type)                                              \
109     };                                                                                     \
110                                                                                            \
111     VSplit2()                                                                              \
112     {                                                                                      \
113         support = checkHardwareSupport(CV_CPU_SSE2);                                       \
114     }                                                                                      \
115                                                                                            \
116     void operator()(const data_type * src,                                                 \
117                     data_type * dst0, data_type * dst1) const                              \
118     {                                                                                      \
119         reg_type v_src0 = _mm_loadu_##flavor((cast_type const *)(src));                    \
120         reg_type v_src1 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC));     \
121         reg_type v_src2 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 2)); \
122         reg_type v_src3 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 3)); \
123                                                                                            \
124         _mm_deinterleave(v_src0, v_src1, v_src2, v_src3);                                  \
125                                                                                            \
126         _mm_storeu_##flavor((cast_type *)(dst0), v_src0);                                  \
127         _mm_storeu_##flavor((cast_type *)(dst0 + ELEMS_IN_VEC), v_src1);                   \
128         _mm_storeu_##flavor((cast_type *)(dst1), v_src2);                                  \
129         _mm_storeu_##flavor((cast_type *)(dst1 + ELEMS_IN_VEC), v_src3);                   \
130     }                                                                                      \
131                                                                                            \
132     bool support;                                                                          \
133 }
134
135 #define SPLIT3_KERNEL_TEMPLATE(data_type, reg_type, cast_type, _mm_deinterleave, flavor)   \
136 template <>                                                                                \
137 struct VSplit3<data_type>                                                                  \
138 {                                                                                          \
139     enum                                                                                   \
140     {                                                                                      \
141         ELEMS_IN_VEC = 16 / sizeof(data_type)                                              \
142     };                                                                                     \
143                                                                                            \
144     VSplit3()                                                                              \
145     {                                                                                      \
146         support = checkHardwareSupport(CV_CPU_SSE2);                                       \
147     }                                                                                      \
148                                                                                            \
149     void operator()(const data_type * src,                                                 \
150                     data_type * dst0, data_type * dst1, data_type * dst2) const            \
151     {                                                                                      \
152         reg_type v_src0 = _mm_loadu_##flavor((cast_type const *)(src));                    \
153         reg_type v_src1 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC));     \
154         reg_type v_src2 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 2)); \
155         reg_type v_src3 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 3)); \
156         reg_type v_src4 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 4)); \
157         reg_type v_src5 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 5)); \
158                                                                                            \
159         _mm_deinterleave(v_src0, v_src1, v_src2,                                           \
160                          v_src3, v_src4, v_src5);                                          \
161                                                                                            \
162         _mm_storeu_##flavor((cast_type *)(dst0), v_src0);                                  \
163         _mm_storeu_##flavor((cast_type *)(dst0 + ELEMS_IN_VEC), v_src1);                   \
164         _mm_storeu_##flavor((cast_type *)(dst1), v_src2);                                  \
165         _mm_storeu_##flavor((cast_type *)(dst1 + ELEMS_IN_VEC), v_src3);                   \
166         _mm_storeu_##flavor((cast_type *)(dst2), v_src4);                                  \
167         _mm_storeu_##flavor((cast_type *)(dst2 + ELEMS_IN_VEC), v_src5);                   \
168     }                                                                                      \
169                                                                                            \
170     bool support;                                                                          \
171 }
172
173 #define SPLIT4_KERNEL_TEMPLATE(data_type, reg_type, cast_type, _mm_deinterleave, flavor)   \
174 template <>                                                                                \
175 struct VSplit4<data_type>                                                                  \
176 {                                                                                          \
177     enum                                                                                   \
178     {                                                                                      \
179         ELEMS_IN_VEC = 16 / sizeof(data_type)                                              \
180     };                                                                                     \
181                                                                                            \
182     VSplit4()                                                                              \
183     {                                                                                      \
184         support = checkHardwareSupport(CV_CPU_SSE2);                                       \
185     }                                                                                      \
186                                                                                            \
187     void operator()(const data_type * src, data_type * dst0, data_type * dst1,             \
188                     data_type * dst2, data_type * dst3) const                              \
189     {                                                                                      \
190         reg_type v_src0 = _mm_loadu_##flavor((cast_type const *)(src));                    \
191         reg_type v_src1 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC));     \
192         reg_type v_src2 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 2)); \
193         reg_type v_src3 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 3)); \
194         reg_type v_src4 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 4)); \
195         reg_type v_src5 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 5)); \
196         reg_type v_src6 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 6)); \
197         reg_type v_src7 = _mm_loadu_##flavor((cast_type const *)(src + ELEMS_IN_VEC * 7)); \
198                                                                                            \
199         _mm_deinterleave(v_src0, v_src1, v_src2, v_src3,                                   \
200                          v_src4, v_src5, v_src6, v_src7);                                  \
201                                                                                            \
202         _mm_storeu_##flavor((cast_type *)(dst0), v_src0);                                  \
203         _mm_storeu_##flavor((cast_type *)(dst0 + ELEMS_IN_VEC), v_src1);                   \
204         _mm_storeu_##flavor((cast_type *)(dst1), v_src2);                                  \
205         _mm_storeu_##flavor((cast_type *)(dst1 + ELEMS_IN_VEC), v_src3);                   \
206         _mm_storeu_##flavor((cast_type *)(dst2), v_src4);                                  \
207         _mm_storeu_##flavor((cast_type *)(dst2 + ELEMS_IN_VEC), v_src5);                   \
208         _mm_storeu_##flavor((cast_type *)(dst3), v_src6);                                  \
209         _mm_storeu_##flavor((cast_type *)(dst3 + ELEMS_IN_VEC), v_src7);                   \
210     }                                                                                      \
211                                                                                            \
212     bool support;                                                                          \
213 }
214
215 SPLIT2_KERNEL_TEMPLATE( uchar, __m128i, __m128i, _mm_deinterleave_epi8, si128);
216 SPLIT2_KERNEL_TEMPLATE(ushort, __m128i, __m128i, _mm_deinterleave_epi16, si128);
217 SPLIT2_KERNEL_TEMPLATE(   int,  __m128,   float, _mm_deinterleave_ps, ps);
218
219 SPLIT3_KERNEL_TEMPLATE( uchar, __m128i, __m128i, _mm_deinterleave_epi8, si128);
220 SPLIT3_KERNEL_TEMPLATE(ushort, __m128i, __m128i, _mm_deinterleave_epi16, si128);
221 SPLIT3_KERNEL_TEMPLATE(   int,  __m128,   float, _mm_deinterleave_ps, ps);
222
223 SPLIT4_KERNEL_TEMPLATE( uchar, __m128i, __m128i, _mm_deinterleave_epi8, si128);
224 SPLIT4_KERNEL_TEMPLATE(ushort, __m128i, __m128i, _mm_deinterleave_epi16, si128);
225 SPLIT4_KERNEL_TEMPLATE(   int,  __m128,   float, _mm_deinterleave_ps, ps);
226
227 #endif
228
229 template<typename T> static void
230 split_( const T* src, T** dst, int len, int cn )
231 {
232     int k = cn % 4 ? cn % 4 : 4;
233     int i, j;
234     if( k == 1 )
235     {
236         T* dst0 = dst[0];
237
238         if(cn == 1)
239         {
240             memcpy(dst0, src, len * sizeof(T));
241         }
242         else
243         {
244             for( i = 0, j = 0 ; i < len; i++, j += cn )
245                 dst0[i] = src[j];
246         }
247     }
248     else if( k == 2 )
249     {
250         T *dst0 = dst[0], *dst1 = dst[1];
251         i = j = 0;
252
253 #if CV_NEON
254         if(cn == 2)
255         {
256             int inc_i = (sizeof(T) == 8)? 1: 16/sizeof(T);
257             int inc_j = 2 * inc_i;
258
259             VSplit2<T> vsplit;
260             for( ; i < len - inc_i; i += inc_i, j += inc_j)
261                 vsplit(src + j, dst0 + i, dst1 + i);
262         }
263 #elif CV_SSE2
264         if (cn == 2)
265         {
266             int inc_i = 32/sizeof(T);
267             int inc_j = 2 * inc_i;
268
269             VSplit2<T> vsplit;
270             if (vsplit.support)
271             {
272                 for( ; i <= len - inc_i; i += inc_i, j += inc_j)
273                     vsplit(src + j, dst0 + i, dst1 + i);
274             }
275         }
276 #endif
277         for( ; i < len; i++, j += cn )
278         {
279             dst0[i] = src[j];
280             dst1[i] = src[j+1];
281         }
282     }
283     else if( k == 3 )
284     {
285         T *dst0 = dst[0], *dst1 = dst[1], *dst2 = dst[2];
286         i = j = 0;
287
288 #if CV_NEON
289         if(cn == 3)
290         {
291             int inc_i = (sizeof(T) == 8)? 1: 16/sizeof(T);
292             int inc_j = 3 * inc_i;
293
294             VSplit3<T> vsplit;
295             for( ; i <= len - inc_i; i += inc_i, j += inc_j)
296                 vsplit(src + j, dst0 + i, dst1 + i, dst2 + i);
297         }
298 #elif CV_SSE2
299         if (cn == 3)
300         {
301             int inc_i = 32/sizeof(T);
302             int inc_j = 3 * inc_i;
303
304             VSplit3<T> vsplit;
305
306             if (vsplit.support)
307             {
308                 for( ; i <= len - inc_i; i += inc_i, j += inc_j)
309                     vsplit(src + j, dst0 + i, dst1 + i, dst2 + i);
310             }
311         }
312 #endif
313         for( ; i < len; i++, j += cn )
314         {
315             dst0[i] = src[j];
316             dst1[i] = src[j+1];
317             dst2[i] = src[j+2];
318         }
319     }
320     else
321     {
322         T *dst0 = dst[0], *dst1 = dst[1], *dst2 = dst[2], *dst3 = dst[3];
323         i = j = 0;
324
325 #if CV_NEON
326         if(cn == 4)
327         {
328             int inc_i = (sizeof(T) == 8)? 1: 16/sizeof(T);
329             int inc_j = 4 * inc_i;
330
331             VSplit4<T> vsplit;
332             for( ; i <= len - inc_i; i += inc_i, j += inc_j)
333                 vsplit(src + j, dst0 + i, dst1 + i, dst2 + i, dst3 + i);
334         }
335 #elif CV_SSE2
336         if (cn == 4)
337         {
338             int inc_i = 32/sizeof(T);
339             int inc_j = 4 * inc_i;
340
341             VSplit4<T> vsplit;
342             if (vsplit.support)
343             {
344                 for( ; i <= len - inc_i; i += inc_i, j += inc_j)
345                     vsplit(src + j, dst0 + i, dst1 + i, dst2 + i, dst3 + i);
346             }
347         }
348 #endif
349         for( ; i < len; i++, j += cn )
350         {
351             dst0[i] = src[j]; dst1[i] = src[j+1];
352             dst2[i] = src[j+2]; dst3[i] = src[j+3];
353         }
354     }
355
356     for( ; k < cn; k += 4 )
357     {
358         T *dst0 = dst[k], *dst1 = dst[k+1], *dst2 = dst[k+2], *dst3 = dst[k+3];
359         for( i = 0, j = k; i < len; i++, j += cn )
360         {
361             dst0[i] = src[j]; dst1[i] = src[j+1];
362             dst2[i] = src[j+2]; dst3[i] = src[j+3];
363         }
364     }
365 }
366
367 void split8u(const uchar* src, uchar** dst, int len, int cn )
368 {
369     CALL_HAL(split8u, cv_hal_split8u, src,dst, len, cn)
370     split_(src, dst, len, cn);
371 }
372
373 void split16u(const ushort* src, ushort** dst, int len, int cn )
374 {
375     CALL_HAL(split16u, cv_hal_split16u, src,dst, len, cn)
376     split_(src, dst, len, cn);
377 }
378
379 void split32s(const int* src, int** dst, int len, int cn )
380 {
381     CALL_HAL(split32s, cv_hal_split32s, src,dst, len, cn)
382     split_(src, dst, len, cn);
383 }
384
385 void split64s(const int64* src, int64** dst, int len, int cn )
386 {
387     CALL_HAL(split64s, cv_hal_split64s, src,dst, len, cn)
388     split_(src, dst, len, cn);
389 }
390
391 }} // cv::hal::
392
393 /****************************************************************************************\
394 *                                       split & merge                                    *
395 \****************************************************************************************/
396
397 typedef void (*SplitFunc)(const uchar* src, uchar** dst, int len, int cn);
398
399 static SplitFunc getSplitFunc(int depth)
400 {
401     static SplitFunc splitTab[] =
402     {
403         (SplitFunc)GET_OPTIMIZED(cv::hal::split8u), (SplitFunc)GET_OPTIMIZED(cv::hal::split8u), (SplitFunc)GET_OPTIMIZED(cv::hal::split16u), (SplitFunc)GET_OPTIMIZED(cv::hal::split16u),
404         (SplitFunc)GET_OPTIMIZED(cv::hal::split32s), (SplitFunc)GET_OPTIMIZED(cv::hal::split32s), (SplitFunc)GET_OPTIMIZED(cv::hal::split64s), 0
405     };
406
407     return splitTab[depth];
408 }
409
410 #ifdef HAVE_IPP
411
412 namespace cv {
413 static bool ipp_split(const Mat& src, Mat* mv, int channels)
414 {
415 #ifdef HAVE_IPP_IW
416     CV_INSTRUMENT_REGION_IPP()
417
418     if(channels != 3 && channels != 4)
419         return false;
420
421     if(src.dims <= 2)
422     {
423         IppiSize size       = ippiSize(src.size());
424         void    *dstPtrs[4] = {NULL};
425         size_t   dstStep    = mv[0].step;
426         for(int i = 0; i < channels; i++)
427         {
428             dstPtrs[i] = mv[i].ptr();
429             if(dstStep != mv[i].step)
430                 return false;
431         }
432
433         return CV_INSTRUMENT_FUN_IPP(llwiCopySplit, src.ptr(), (int)src.step, dstPtrs, (int)dstStep, size, (int)src.elemSize1(), channels, 0) >= 0;
434     }
435     else
436     {
437         const Mat *arrays[5] = {NULL};
438         uchar     *ptrs[5]   = {NULL};
439         arrays[0] = &src;
440
441         for(int i = 1; i < channels; i++)
442         {
443             arrays[i] = &mv[i-1];
444         }
445
446         NAryMatIterator it(arrays, ptrs);
447         IppiSize size = { (int)it.size, 1 };
448
449         for( size_t i = 0; i < it.nplanes; i++, ++it )
450         {
451             if(CV_INSTRUMENT_FUN_IPP(llwiCopySplit, ptrs[0], 0, (void**)&ptrs[1], 0, size, (int)src.elemSize1(), channels, 0) < 0)
452                 return false;
453         }
454         return true;
455     }
456 #else
457     CV_UNUSED(src); CV_UNUSED(mv); CV_UNUSED(channels);
458     return false;
459 #endif
460 }
461 }
462 #endif
463
464 void cv::split(const Mat& src, Mat* mv)
465 {
466     CV_INSTRUMENT_REGION()
467
468     int k, depth = src.depth(), cn = src.channels();
469     if( cn == 1 )
470     {
471         src.copyTo(mv[0]);
472         return;
473     }
474
475     for( k = 0; k < cn; k++ )
476     {
477         mv[k].create(src.dims, src.size, depth);
478     }
479
480     CV_IPP_RUN_FAST(ipp_split(src, mv, cn));
481
482     SplitFunc func = getSplitFunc(depth);
483     CV_Assert( func != 0 );
484
485     size_t esz = src.elemSize(), esz1 = src.elemSize1();
486     size_t blocksize0 = (BLOCK_SIZE + esz-1)/esz;
487     AutoBuffer<uchar> _buf((cn+1)*(sizeof(Mat*) + sizeof(uchar*)) + 16);
488     const Mat** arrays = (const Mat**)_buf.data();
489     uchar** ptrs = (uchar**)alignPtr(arrays + cn + 1, 16);
490
491     arrays[0] = &src;
492     for( k = 0; k < cn; k++ )
493     {
494         arrays[k+1] = &mv[k];
495     }
496
497     NAryMatIterator it(arrays, ptrs, cn+1);
498     size_t total = it.size;
499     size_t blocksize = std::min((size_t)CV_SPLIT_MERGE_MAX_BLOCK_SIZE(cn), cn <= 4 ? total : std::min(total, blocksize0));
500
501     for( size_t i = 0; i < it.nplanes; i++, ++it )
502     {
503         for( size_t j = 0; j < total; j += blocksize )
504         {
505             size_t bsz = std::min(total - j, blocksize);
506             func( ptrs[0], &ptrs[1], (int)bsz, cn );
507
508             if( j + blocksize < total )
509             {
510                 ptrs[0] += bsz*esz;
511                 for( k = 0; k < cn; k++ )
512                     ptrs[k+1] += bsz*esz1;
513             }
514         }
515     }
516 }
517
518 #ifdef HAVE_OPENCL
519
520 namespace cv {
521
522 static bool ocl_split( InputArray _m, OutputArrayOfArrays _mv )
523 {
524     int type = _m.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type),
525             rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1;
526
527     String dstargs, processelem, indexdecl;
528     for (int i = 0; i < cn; ++i)
529     {
530         dstargs += format("DECLARE_DST_PARAM(%d)", i);
531         indexdecl += format("DECLARE_INDEX(%d)", i);
532         processelem += format("PROCESS_ELEM(%d)", i);
533     }
534
535     ocl::Kernel k("split", ocl::core::split_merge_oclsrc,
536                   format("-D T=%s -D OP_SPLIT -D cn=%d -D DECLARE_DST_PARAMS=%s"
537                          " -D PROCESS_ELEMS_N=%s -D DECLARE_INDEX_N=%s",
538                          ocl::memopTypeToStr(depth), cn, dstargs.c_str(),
539                          processelem.c_str(), indexdecl.c_str()));
540     if (k.empty())
541         return false;
542
543     Size size = _m.size();
544     _mv.create(cn, 1, depth);
545     for (int i = 0; i < cn; ++i)
546         _mv.create(size, depth, i);
547
548     std::vector<UMat> dst;
549     _mv.getUMatVector(dst);
550
551     int argidx = k.set(0, ocl::KernelArg::ReadOnly(_m.getUMat()));
552     for (int i = 0; i < cn; ++i)
553         argidx = k.set(argidx, ocl::KernelArg::WriteOnlyNoSize(dst[i]));
554     k.set(argidx, rowsPerWI);
555
556     size_t globalsize[2] = { (size_t)size.width, ((size_t)size.height + rowsPerWI - 1) / rowsPerWI };
557     return k.run(2, globalsize, NULL, false);
558 }
559
560 }
561
562 #endif
563
564 void cv::split(InputArray _m, OutputArrayOfArrays _mv)
565 {
566     CV_INSTRUMENT_REGION()
567
568     CV_OCL_RUN(_m.dims() <= 2 && _mv.isUMatVector(),
569                ocl_split(_m, _mv))
570
571     Mat m = _m.getMat();
572     if( m.empty() )
573     {
574         _mv.release();
575         return;
576     }
577
578     CV_Assert( !_mv.fixedType() || _mv.empty() || _mv.type() == m.depth() );
579
580     int depth = m.depth(), cn = m.channels();
581     _mv.create(cn, 1, depth);
582     for (int i = 0; i < cn; ++i)
583         _mv.create(m.dims, m.size.p, depth, i);
584
585     std::vector<Mat> dst;
586     _mv.getMatVector(dst);
587
588     split(m, &dst[0]);
589 }