1 /*M///////////////////////////////////////////////////////////////////////////////////////
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
11 // For Open Source Computer Vision Library
13 // Copyright (C) 2000-2015, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
15 // Copyright (C) 2015, OpenCV Foundation, all rights reserved.
16 // Copyright (C) 2015, Itseez Inc., all rights reserved.
17 // Third party copyrights are property of their respective owners.
19 // Redistribution and use in source and binary forms, with or without modification,
20 // are permitted provided that the following conditions are met:
22 // * Redistribution's of source code must retain the above copyright notice,
23 // this list of conditions and the following disclaimer.
25 // * Redistribution's in binary form must reproduce the above copyright notice,
26 // this list of conditions and the following disclaimer in the documentation
27 // and/or other materials provided with the distribution.
29 // * The name of the copyright holders may not be used to endorse or promote products
30 // derived from this software without specific prior written permission.
32 // This software is provided by the copyright holders and contributors "as is" and
33 // any express or implied warranties, including, but not limited to, the implied
34 // warranties of merchantability and fitness for a particular purpose are disclaimed.
35 // In no event shall the Intel Corporation or contributors be liable for any direct,
36 // indirect, incidental, special, exemplary, or consequential damages
37 // (including, but not limited to, procurement of substitute goods or services;
38 // loss of use, data, or profits; or business interruption) however caused
39 // and on any theory of liability, whether in contract, strict liability,
40 // or tort (including negligence or otherwise) arising in any way out of
41 // the use of this software, even if advised of the possibility of such damage.
45 #ifndef OPENCV_CORE_HPP
46 #define OPENCV_CORE_HPP
49 # error core.hpp header must be compiled as C++
52 #include "opencv2/core/cvdef.h"
53 #include "opencv2/core/version.hpp"
54 #include "opencv2/core/base.hpp"
55 #include "opencv2/core/cvstd.hpp"
56 #include "opencv2/core/traits.hpp"
57 #include "opencv2/core/matx.hpp"
58 #include "opencv2/core/types.hpp"
59 #include "opencv2/core/mat.hpp"
60 #include "opencv2/core/persistence.hpp"
63 @defgroup core Core functionality
65 @defgroup core_basic Basic structures
66 @defgroup core_c C structures and operations
68 @defgroup core_c_glue Connections with C++
70 @defgroup core_array Operations on arrays
71 @defgroup core_xml XML/YAML Persistence
72 @defgroup core_cluster Clustering
73 @defgroup core_utils Utility and system functions and macros
75 @defgroup core_utils_sse SSE utilities
76 @defgroup core_utils_neon NEON utilities
77 @defgroup core_utils_softfloat Softfloat support
79 @defgroup core_opengl OpenGL interoperability
80 @defgroup core_ipp Intel IPP Asynchronous C/C++ Converters
81 @defgroup core_optim Optimization Algorithms
82 @defgroup core_directx DirectX interoperability
83 @defgroup core_eigen Eigen support
84 @defgroup core_opencl OpenCL support
85 @defgroup core_va_intel Intel VA-API/OpenCL (CL-VA) interoperability
86 @defgroup core_hal Hardware Acceleration Layer
88 @defgroup core_hal_functions Functions
89 @defgroup core_hal_interface Interface
90 @defgroup core_hal_intrin Universal intrinsics
92 @defgroup core_hal_intrin_impl Private implementation helpers
100 //! @addtogroup core_utils
103 /*! @brief Class passed to an error.
105 This class encapsulates all or almost all necessary
106 information about the error happened in the program. The exception is
107 usually constructed and thrown implicitly via CV_Error and CV_Error_ macros.
110 class CV_EXPORTS Exception : public std::exception
118 Full constructor. Normally the constructor is not called explicitly.
119 Instead, the macros CV_Error(), CV_Error_() and CV_Assert() are used.
121 Exception(int _code, const String& _err, const String& _func, const String& _file, int _line);
122 virtual ~Exception() throw();
125 \return the error description and the context as a text string.
127 virtual const char *what() const throw();
128 void formatMessage();
130 String msg; ///< the formatted error message
132 int code; ///< error code @see CVStatus
133 String err; ///< error description
134 String func; ///< function name. Available only when the compiler supports getting it
135 String file; ///< source file name where the error has occurred
136 int line; ///< line number in the source file where the error has occurred
139 /*! @brief Signals an error and raises the exception.
141 By default the function prints information about the error to stderr,
142 then it either stops if cv::setBreakOnError() had been called before or raises the exception.
143 It is possible to alternate error processing by using cv::redirectError().
144 @param exc the exception raisen.
145 @deprecated drop this version
147 CV_EXPORTS void error( const Exception& exc );
149 enum SortFlags { SORT_EVERY_ROW = 0, //!< each matrix row is sorted independently
150 SORT_EVERY_COLUMN = 1, //!< each matrix column is sorted
151 //!< independently; this flag and the previous one are
152 //!< mutually exclusive.
153 SORT_ASCENDING = 0, //!< each matrix row is sorted in the ascending
155 SORT_DESCENDING = 16 //!< each matrix row is sorted in the
156 //!< descending order; this flag and the previous one are also
157 //!< mutually exclusive.
165 //! Covariation flags
167 /** The output covariance matrix is calculated as:
168 \f[\texttt{scale} \cdot [ \texttt{vects} [0]- \texttt{mean} , \texttt{vects} [1]- \texttt{mean} ,...]^T \cdot [ \texttt{vects} [0]- \texttt{mean} , \texttt{vects} [1]- \texttt{mean} ,...],\f]
169 The covariance matrix will be nsamples x nsamples. Such an unusual covariance matrix is used
170 for fast PCA of a set of very large vectors (see, for example, the EigenFaces technique for
171 face recognition). Eigenvalues of this "scrambled" matrix match the eigenvalues of the true
172 covariance matrix. The "true" eigenvectors can be easily calculated from the eigenvectors of
173 the "scrambled" covariance matrix. */
175 /**The output covariance matrix is calculated as:
176 \f[\texttt{scale} \cdot [ \texttt{vects} [0]- \texttt{mean} , \texttt{vects} [1]- \texttt{mean} ,...] \cdot [ \texttt{vects} [0]- \texttt{mean} , \texttt{vects} [1]- \texttt{mean} ,...]^T,\f]
177 covar will be a square matrix of the same size as the total number of elements in each input
178 vector. One and only one of COVAR_SCRAMBLED and COVAR_NORMAL must be specified.*/
180 /** If the flag is specified, the function does not calculate mean from
181 the input vectors but, instead, uses the passed mean vector. This is useful if mean has been
182 pre-calculated or known in advance, or if the covariance matrix is calculated by parts. In
183 this case, mean is not a mean vector of the input sub-set of vectors but rather the mean
184 vector of the whole set.*/
186 /** If the flag is specified, the covariance matrix is scaled. In the
187 "normal" mode, scale is 1./nsamples . In the "scrambled" mode, scale is the reciprocal of the
188 total number of elements in each input vector. By default (if the flag is not specified), the
189 covariance matrix is not scaled ( scale=1 ).*/
192 specified, all the input vectors are stored as rows of the samples matrix. mean should be a
193 single-row vector in this case.*/
196 specified, all the input vectors are stored as columns of the samples matrix. mean should be a
197 single-column vector in this case.*/
203 /** Select random initial centers in each attempt.*/
204 KMEANS_RANDOM_CENTERS = 0,
205 /** Use kmeans++ center initialization by Arthur and Vassilvitskii [Arthur2007].*/
206 KMEANS_PP_CENTERS = 2,
207 /** During the first (and possibly the only) attempt, use the
208 user-supplied labels instead of computing them from the initial centers. For the second and
209 further attempts, use the random or semi-random centers. Use one of KMEANS_\*_CENTERS flag
210 to specify the exact method.*/
211 KMEANS_USE_INITIAL_LABELS = 1
217 LINE_4 = 4, //!< 4-connected line
218 LINE_8 = 8, //!< 8-connected line
219 LINE_AA = 16 //!< antialiased line
222 //! Only a subset of Hershey fonts
223 //! <http://sources.isc.org/utils/misc/hershey-font.txt> are supported
225 FONT_HERSHEY_SIMPLEX = 0, //!< normal size sans-serif font
226 FONT_HERSHEY_PLAIN = 1, //!< small size sans-serif font
227 FONT_HERSHEY_DUPLEX = 2, //!< normal size sans-serif font (more complex than FONT_HERSHEY_SIMPLEX)
228 FONT_HERSHEY_COMPLEX = 3, //!< normal size serif font
229 FONT_HERSHEY_TRIPLEX = 4, //!< normal size serif font (more complex than FONT_HERSHEY_COMPLEX)
230 FONT_HERSHEY_COMPLEX_SMALL = 5, //!< smaller version of FONT_HERSHEY_COMPLEX
231 FONT_HERSHEY_SCRIPT_SIMPLEX = 6, //!< hand-writing style font
232 FONT_HERSHEY_SCRIPT_COMPLEX = 7, //!< more complex variant of FONT_HERSHEY_SCRIPT_SIMPLEX
233 FONT_ITALIC = 16 //!< flag for italic font
236 enum ReduceTypes { REDUCE_SUM = 0, //!< the output is the sum of all rows/columns of the matrix.
237 REDUCE_AVG = 1, //!< the output is the mean vector of all rows/columns of the matrix.
238 REDUCE_MAX = 2, //!< the output is the maximum (column/row-wise) of all rows/columns of the matrix.
239 REDUCE_MIN = 3 //!< the output is the minimum (column/row-wise) of all rows/columns of the matrix.
243 /** @brief Swaps two matrices
245 CV_EXPORTS void swap(Mat& a, Mat& b);
247 CV_EXPORTS void swap( UMat& a, UMat& b );
251 //! @addtogroup core_array
254 /** @brief Computes the source location of an extrapolated pixel.
256 The function computes and returns the coordinate of a donor pixel corresponding to the specified
257 extrapolated pixel when using the specified extrapolation border mode. For example, if you use
258 cv::BORDER_WRAP mode in the horizontal direction, cv::BORDER_REFLECT_101 in the vertical direction and
259 want to compute value of the "virtual" pixel Point(-5, 100) in a floating-point image img , it
262 float val = img.at<float>(borderInterpolate(100, img.rows, cv::BORDER_REFLECT_101),
263 borderInterpolate(-5, img.cols, cv::BORDER_WRAP));
265 Normally, the function is not called directly. It is used inside filtering functions and also in
267 @param p 0-based coordinate of the extrapolated pixel along one of the axes, likely \<0 or \>= len
268 @param len Length of the array along the corresponding axis.
269 @param borderType Border type, one of the cv::BorderTypes, except for cv::BORDER_TRANSPARENT and
270 cv::BORDER_ISOLATED . When borderType==cv::BORDER_CONSTANT , the function always returns -1, regardless
275 CV_EXPORTS_W int borderInterpolate(int p, int len, int borderType);
277 /** @example copyMakeBorder_demo.cpp
278 An example using copyMakeBorder function
280 /** @brief Forms a border around an image.
282 The function copies the source image into the middle of the destination image. The areas to the
283 left, to the right, above and below the copied source image will be filled with extrapolated
284 pixels. This is not what filtering functions based on it do (they extrapolate pixels on-fly), but
285 what other more complex functions, including your own, may do to simplify image boundary handling.
287 The function supports the mode when src is already in the middle of dst . In this case, the
288 function does not copy src itself but simply constructs the border, for example:
291 // let border be the same in all directions
293 // constructs a larger image to fit both the image and the border
294 Mat gray_buf(rgb.rows + border*2, rgb.cols + border*2, rgb.depth());
295 // select the middle part of it w/o copying data
296 Mat gray(gray_canvas, Rect(border, border, rgb.cols, rgb.rows));
297 // convert image from RGB to grayscale
298 cvtColor(rgb, gray, COLOR_RGB2GRAY);
299 // form a border in-place
300 copyMakeBorder(gray, gray_buf, border, border,
301 border, border, BORDER_REPLICATE);
302 // now do some custom filtering ...
305 @note When the source image is a part (ROI) of a bigger image, the function will try to use the
306 pixels outside of the ROI to form a border. To disable this feature and always do extrapolation, as
307 if src was not a ROI, use borderType | BORDER_ISOLATED.
309 @param src Source image.
310 @param dst Destination image of the same type as src and the size Size(src.cols+left+right,
311 src.rows+top+bottom) .
315 @param right Parameter specifying how many pixels in each direction from the source image rectangle
316 to extrapolate. For example, top=1, bottom=1, left=1, right=1 mean that 1 pixel-wide border needs
318 @param borderType Border type. See borderInterpolate for details.
319 @param value Border value if borderType==BORDER_CONSTANT .
321 @sa borderInterpolate
323 CV_EXPORTS_W void copyMakeBorder(InputArray src, OutputArray dst,
324 int top, int bottom, int left, int right,
325 int borderType, const Scalar& value = Scalar() );
327 /** @brief Calculates the per-element sum of two arrays or an array and a scalar.
329 The function add calculates:
330 - Sum of two arrays when both input arrays have the same size and the same number of channels:
331 \f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) + \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\f]
332 - Sum of an array and a scalar when src2 is constructed from Scalar or has the same number of
333 elements as `src1.channels()`:
334 \f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) + \texttt{src2} ) \quad \texttt{if mask}(I) \ne0\f]
335 - Sum of a scalar and an array when src1 is constructed from Scalar or has the same number of
336 elements as `src2.channels()`:
337 \f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1} + \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0\f]
338 where `I` is a multi-dimensional index of array elements. In case of multi-channel arrays, each
339 channel is processed independently.
341 The first function in the list above can be replaced with matrix expressions:
344 dst += src1; // equivalent to add(dst, src1, dst);
346 The input arrays and the output array can all have the same or different depths. For example, you
347 can add a 16-bit unsigned array to a 8-bit signed array and store the sum as a 32-bit
348 floating-point array. Depth of the output array is determined by the dtype parameter. In the second
349 and third cases above, as well as in the first case, when src1.depth() == src2.depth(), dtype can
350 be set to the default -1. In this case, the output array will have the same depth as the input
351 array, be it src1, src2 or both.
352 @note Saturation is not applied when the output array has the depth CV_32S. You may even get
353 result of an incorrect sign in the case of overflow.
354 @param src1 first input array or a scalar.
355 @param src2 second input array or a scalar.
356 @param dst output array that has the same size and number of channels as the input array(s); the
357 depth is defined by dtype or src1/src2.
358 @param mask optional operation mask - 8-bit single channel array, that specifies elements of the
359 output array to be changed.
360 @param dtype optional depth of the output array (see the discussion below).
361 @sa subtract, addWeighted, scaleAdd, Mat::convertTo
363 CV_EXPORTS_W void add(InputArray src1, InputArray src2, OutputArray dst,
364 InputArray mask = noArray(), int dtype = -1);
366 /** @brief Calculates the per-element difference between two arrays or array and a scalar.
368 The function subtract calculates:
369 - Difference between two arrays, when both input arrays have the same size and the same number of
371 \f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) - \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\f]
372 - Difference between an array and a scalar, when src2 is constructed from Scalar or has the same
373 number of elements as `src1.channels()`:
374 \f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) - \texttt{src2} ) \quad \texttt{if mask}(I) \ne0\f]
375 - Difference between a scalar and an array, when src1 is constructed from Scalar or has the same
376 number of elements as `src2.channels()`:
377 \f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1} - \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0\f]
378 - The reverse difference between a scalar and an array in the case of `SubRS`:
379 \f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src2} - \texttt{src1}(I) ) \quad \texttt{if mask}(I) \ne0\f]
380 where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each
381 channel is processed independently.
383 The first function in the list above can be replaced with matrix expressions:
386 dst -= src1; // equivalent to subtract(dst, src1, dst);
388 The input arrays and the output array can all have the same or different depths. For example, you
389 can subtract to 8-bit unsigned arrays and store the difference in a 16-bit signed array. Depth of
390 the output array is determined by dtype parameter. In the second and third cases above, as well as
391 in the first case, when src1.depth() == src2.depth(), dtype can be set to the default -1. In this
392 case the output array will have the same depth as the input array, be it src1, src2 or both.
393 @note Saturation is not applied when the output array has the depth CV_32S. You may even get
394 result of an incorrect sign in the case of overflow.
395 @param src1 first input array or a scalar.
396 @param src2 second input array or a scalar.
397 @param dst output array of the same size and the same number of channels as the input array.
398 @param mask optional operation mask; this is an 8-bit single channel array that specifies elements
399 of the output array to be changed.
400 @param dtype optional depth of the output array
401 @sa add, addWeighted, scaleAdd, Mat::convertTo
403 CV_EXPORTS_W void subtract(InputArray src1, InputArray src2, OutputArray dst,
404 InputArray mask = noArray(), int dtype = -1);
407 /** @brief Calculates the per-element scaled product of two arrays.
409 The function multiply calculates the per-element product of two arrays:
411 \f[\texttt{dst} (I)= \texttt{saturate} ( \texttt{scale} \cdot \texttt{src1} (I) \cdot \texttt{src2} (I))\f]
413 There is also a @ref MatrixExpressions -friendly variant of the first function. See Mat::mul .
415 For a not-per-element matrix product, see gemm .
417 @note Saturation is not applied when the output array has the depth
418 CV_32S. You may even get result of an incorrect sign in the case of
420 @param src1 first input array.
421 @param src2 second input array of the same size and the same type as src1.
422 @param dst output array of the same size and type as src1.
423 @param scale optional scale factor.
424 @param dtype optional depth of the output array
425 @sa add, subtract, divide, scaleAdd, addWeighted, accumulate, accumulateProduct, accumulateSquare,
428 CV_EXPORTS_W void multiply(InputArray src1, InputArray src2,
429 OutputArray dst, double scale = 1, int dtype = -1);
431 /** @brief Performs per-element division of two arrays or a scalar by an array.
433 The function cv::divide divides one array by another:
434 \f[\texttt{dst(I) = saturate(src1(I)*scale/src2(I))}\f]
435 or a scalar by an array when there is no src1 :
436 \f[\texttt{dst(I) = saturate(scale/src2(I))}\f]
438 When src2(I) is zero, dst(I) will also be zero. Different channels of
439 multi-channel arrays are processed independently.
441 @note Saturation is not applied when the output array has the depth CV_32S. You may even get
442 result of an incorrect sign in the case of overflow.
443 @param src1 first input array.
444 @param src2 second input array of the same size and type as src1.
445 @param scale scalar factor.
446 @param dst output array of the same size and type as src2.
447 @param dtype optional depth of the output array; if -1, dst will have depth src2.depth(), but in
448 case of an array-by-array division, you can only pass -1 when src1.depth()==src2.depth().
449 @sa multiply, add, subtract
451 CV_EXPORTS_W void divide(InputArray src1, InputArray src2, OutputArray dst,
452 double scale = 1, int dtype = -1);
455 CV_EXPORTS_W void divide(double scale, InputArray src2,
456 OutputArray dst, int dtype = -1);
458 /** @brief Calculates the sum of a scaled array and another array.
460 The function scaleAdd is one of the classical primitive linear algebra operations, known as DAXPY
461 or SAXPY in [BLAS](http://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms). It calculates
462 the sum of a scaled array and another array:
463 \f[\texttt{dst} (I)= \texttt{scale} \cdot \texttt{src1} (I) + \texttt{src2} (I)\f]
464 The function can also be emulated with a matrix expression, for example:
468 A.row(0) = A.row(1)*2 + A.row(2);
470 @param src1 first input array.
471 @param alpha scale factor for the first array.
472 @param src2 second input array of the same size and type as src1.
473 @param dst output array of the same size and type as src1.
474 @sa add, addWeighted, subtract, Mat::dot, Mat::convertTo
476 CV_EXPORTS_W void scaleAdd(InputArray src1, double alpha, InputArray src2, OutputArray dst);
478 /** @example AddingImagesTrackbar.cpp
481 /** @brief Calculates the weighted sum of two arrays.
483 The function addWeighted calculates the weighted sum of two arrays as follows:
484 \f[\texttt{dst} (I)= \texttt{saturate} ( \texttt{src1} (I)* \texttt{alpha} + \texttt{src2} (I)* \texttt{beta} + \texttt{gamma} )\f]
485 where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each
486 channel is processed independently.
487 The function can be replaced with a matrix expression:
489 dst = src1*alpha + src2*beta + gamma;
491 @note Saturation is not applied when the output array has the depth CV_32S. You may even get
492 result of an incorrect sign in the case of overflow.
493 @param src1 first input array.
494 @param alpha weight of the first array elements.
495 @param src2 second input array of the same size and channel number as src1.
496 @param beta weight of the second array elements.
497 @param gamma scalar added to each sum.
498 @param dst output array that has the same size and number of channels as the input arrays.
499 @param dtype optional depth of the output array; when both input arrays have the same depth, dtype
500 can be set to -1, which will be equivalent to src1.depth().
501 @sa add, subtract, scaleAdd, Mat::convertTo
503 CV_EXPORTS_W void addWeighted(InputArray src1, double alpha, InputArray src2,
504 double beta, double gamma, OutputArray dst, int dtype = -1);
506 /** @brief Scales, calculates absolute values, and converts the result to 8-bit.
508 On each element of the input array, the function convertScaleAbs
509 performs three operations sequentially: scaling, taking an absolute
510 value, conversion to an unsigned 8-bit type:
511 \f[\texttt{dst} (I)= \texttt{saturate\_cast<uchar>} (| \texttt{src} (I)* \texttt{alpha} + \texttt{beta} |)\f]
512 In case of multi-channel arrays, the function processes each channel
513 independently. When the output is not 8-bit, the operation can be
514 emulated by calling the Mat::convertTo method (or by using matrix
515 expressions) and then by calculating an absolute value of the result.
518 Mat_<float> A(30,30);
519 randu(A, Scalar(-100), Scalar(100));
520 Mat_<float> B = A*5 + 3;
522 // Mat_<float> B = abs(A*5+3) will also do the job,
523 // but it will allocate a temporary matrix
525 @param src input array.
526 @param dst output array.
527 @param alpha optional scale factor.
528 @param beta optional delta added to the scaled values.
529 @sa Mat::convertTo, cv::abs(const Mat&)
531 CV_EXPORTS_W void convertScaleAbs(InputArray src, OutputArray dst,
532 double alpha = 1, double beta = 0);
534 /** @brief Converts an array to half precision floating number.
536 This function converts FP32 (single precision floating point) from/to FP16 (half precision floating point). The input array has to have type of CV_32F or
537 CV_16S to represent the bit depth. If the input array is neither of them, the function will raise an error.
538 The format of half precision floating point is defined in IEEE 754-2008.
540 @param src input array.
541 @param dst output array.
543 CV_EXPORTS_W void convertFp16(InputArray src, OutputArray dst);
545 /** @brief Performs a look-up table transform of an array.
547 The function LUT fills the output array with values from the look-up table. Indices of the entries
548 are taken from the input array. That is, the function processes each element of src as follows:
549 \f[\texttt{dst} (I) \leftarrow \texttt{lut(src(I) + d)}\f]
551 \f[d = \fork{0}{if \(\texttt{src}\) has depth \(\texttt{CV_8U}\)}{128}{if \(\texttt{src}\) has depth \(\texttt{CV_8S}\)}\f]
552 @param src input array of 8-bit elements.
553 @param lut look-up table of 256 elements; in case of multi-channel input array, the table should
554 either have a single channel (in this case the same table is used for all channels) or the same
555 number of channels as in the input array.
556 @param dst output array of the same size and number of channels as src, and the same depth as lut.
557 @sa convertScaleAbs, Mat::convertTo
559 CV_EXPORTS_W void LUT(InputArray src, InputArray lut, OutputArray dst);
561 /** @brief Calculates the sum of array elements.
563 The function cv::sum calculates and returns the sum of array elements,
564 independently for each channel.
565 @param src input array that must have from 1 to 4 channels.
566 @sa countNonZero, mean, meanStdDev, norm, minMaxLoc, reduce
568 CV_EXPORTS_AS(sumElems) Scalar sum(InputArray src);
570 /** @brief Counts non-zero array elements.
572 The function returns the number of non-zero elements in src :
573 \f[\sum _{I: \; \texttt{src} (I) \ne0 } 1\f]
574 @param src single-channel array.
575 @sa mean, meanStdDev, norm, minMaxLoc, calcCovarMatrix
577 CV_EXPORTS_W int countNonZero( InputArray src );
579 /** @brief Returns the list of locations of non-zero pixels
581 Given a binary matrix (likely returned from an operation such
582 as threshold(), compare(), >, ==, etc, return all of
583 the non-zero indices as a cv::Mat or std::vector<cv::Point> (x,y)
586 cv::Mat binaryImage; // input, binary image
587 cv::Mat locations; // output, locations of non-zero pixels
588 cv::findNonZero(binaryImage, locations);
590 // access pixel coordinates
591 Point pnt = locations.at<Point>(i);
595 cv::Mat binaryImage; // input, binary image
596 vector<Point> locations; // output, locations of non-zero pixels
597 cv::findNonZero(binaryImage, locations);
599 // access pixel coordinates
600 Point pnt = locations[i];
602 @param src single-channel array (type CV_8UC1)
603 @param idx the output array, type of cv::Mat or std::vector<Point>, corresponding to non-zero indices in the input
605 CV_EXPORTS_W void findNonZero( InputArray src, OutputArray idx );
607 /** @brief Calculates an average (mean) of array elements.
609 The function cv::mean calculates the mean value M of array elements,
610 independently for each channel, and return it:
611 \f[\begin{array}{l} N = \sum _{I: \; \texttt{mask} (I) \ne 0} 1 \\ M_c = \left ( \sum _{I: \; \texttt{mask} (I) \ne 0}{ \texttt{mtx} (I)_c} \right )/N \end{array}\f]
612 When all the mask elements are 0's, the function returns Scalar::all(0)
613 @param src input array that should have from 1 to 4 channels so that the result can be stored in
615 @param mask optional operation mask.
616 @sa countNonZero, meanStdDev, norm, minMaxLoc
618 CV_EXPORTS_W Scalar mean(InputArray src, InputArray mask = noArray());
620 /** Calculates a mean and standard deviation of array elements.
622 The function cv::meanStdDev calculates the mean and the standard deviation M
623 of array elements independently for each channel and returns it via the
625 \f[\begin{array}{l} N = \sum _{I, \texttt{mask} (I) \ne 0} 1 \\ \texttt{mean} _c = \frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \texttt{src} (I)_c}{N} \\ \texttt{stddev} _c = \sqrt{\frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \left ( \texttt{src} (I)_c - \texttt{mean} _c \right )^2}{N}} \end{array}\f]
626 When all the mask elements are 0's, the function returns
627 mean=stddev=Scalar::all(0).
628 @note The calculated standard deviation is only the diagonal of the
629 complete normalized covariance matrix. If the full matrix is needed, you
630 can reshape the multi-channel array M x N to the single-channel array
631 M\*N x mtx.channels() (only possible when the matrix is continuous) and
632 then pass the matrix to calcCovarMatrix .
633 @param src input array that should have from 1 to 4 channels so that the results can be stored in
635 @param mean output parameter: calculated mean value.
636 @param stddev output parameter: calculated standard deviation.
637 @param mask optional operation mask.
638 @sa countNonZero, mean, norm, minMaxLoc, calcCovarMatrix
640 CV_EXPORTS_W void meanStdDev(InputArray src, OutputArray mean, OutputArray stddev,
641 InputArray mask=noArray());
643 /** @brief Calculates the absolute norm of an array.
645 This version of cv::norm calculates the absolute norm of src1. The type of norm to calculate is specified using cv::NormTypes.
647 As example for one array consider the function \f$r(x)= \begin{pmatrix} x \\ 1-x \end{pmatrix}, x \in [-1;1]\f$.
648 The \f$ L_{1}, L_{2} \f$ and \f$ L_{\infty} \f$ norm for the sample value \f$r(-1) = \begin{pmatrix} -1 \\ 2 \end{pmatrix}\f$
649 is calculated as follows
651 \| r(-1) \|_{L_1} &= |-1| + |2| = 3 \\
652 \| r(-1) \|_{L_2} &= \sqrt{(-1)^{2} + (2)^{2}} = \sqrt{5} \\
653 \| r(-1) \|_{L_\infty} &= \max(|-1|,|2|) = 2
655 and for \f$r(0.5) = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}\f$ the calculation is
657 \| r(0.5) \|_{L_1} &= |0.5| + |0.5| = 1 \\
658 \| r(0.5) \|_{L_2} &= \sqrt{(0.5)^{2} + (0.5)^{2}} = \sqrt{0.5} \\
659 \| r(0.5) \|_{L_\infty} &= \max(|0.5|,|0.5|) = 0.5.
661 The following graphic shows all values for the three norm functions \f$\| r(x) \|_{L_1}, \| r(x) \|_{L_2}\f$ and \f$\| r(x) \|_{L_\infty}\f$.
662 It is notable that the \f$ L_{1} \f$ norm forms the upper and the \f$ L_{\infty} \f$ norm forms the lower border for the example function \f$ r(x) \f$.
663 ![Graphs for the different norm functions from the above example](pics/NormTypes_OneArray_1-2-INF.png)
665 When the mask parameter is specified and it is not empty, the norm is
667 If normType is not specified, NORM_L2 is used.
668 calculated only over the region specified by the mask.
670 Multi-channel input arrays are treated as single-channel arrays, that is,
671 the results for all channels are combined.
673 Hamming norms can only be calculated with CV_8U depth arrays.
675 @param src1 first input array.
676 @param normType type of the norm (see cv::NormTypes).
677 @param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type.
679 CV_EXPORTS_W double norm(InputArray src1, int normType = NORM_L2, InputArray mask = noArray());
681 /** @brief Calculates an absolute difference norm or a relative difference norm.
683 This version of cv::norm calculates the absolute difference norm
684 or the relative difference norm of arrays src1 and src2.
685 The type of norm to calculate is specified using cv::NormTypes.
687 @param src1 first input array.
688 @param src2 second input array of the same size and the same type as src1.
689 @param normType type of the norm (cv::NormTypes).
690 @param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type.
692 CV_EXPORTS_W double norm(InputArray src1, InputArray src2,
693 int normType = NORM_L2, InputArray mask = noArray());
695 @param src first input array.
696 @param normType type of the norm (see cv::NormTypes).
698 CV_EXPORTS double norm( const SparseMat& src, int normType );
700 /** @brief Computes the Peak Signal-to-Noise Ratio (PSNR) image quality metric.
702 This function calculates the Peak Signal-to-Noise Ratio (PSNR) image quality metric in decibels (dB), between two input arrays src1 and src2. Arrays must have depth CV_8U.
704 The PSNR is calculated as follows:
707 \texttt{PSNR} = 10 \cdot \log_{10}{\left( \frac{R^2}{MSE} \right) }
710 where R is the maximum integer value of depth CV_8U (255) and MSE is the mean squared error between the two arrays.
712 @param src1 first input array.
713 @param src2 second input array of the same size as src1.
716 CV_EXPORTS_W double PSNR(InputArray src1, InputArray src2);
718 /** @brief naive nearest neighbor finder
720 see http://en.wikipedia.org/wiki/Nearest_neighbor_search
723 CV_EXPORTS_W void batchDistance(InputArray src1, InputArray src2,
724 OutputArray dist, int dtype, OutputArray nidx,
725 int normType = NORM_L2, int K = 0,
726 InputArray mask = noArray(), int update = 0,
727 bool crosscheck = false);
729 /** @brief Normalizes the norm or value range of an array.
731 The function cv::normalize normalizes scale and shift the input array elements so that
732 \f[\| \texttt{dst} \| _{L_p}= \texttt{alpha}\f]
733 (where p=Inf, 1 or 2) when normType=NORM_INF, NORM_L1, or NORM_L2, respectively; or so that
734 \f[\min _I \texttt{dst} (I)= \texttt{alpha} , \, \, \max _I \texttt{dst} (I)= \texttt{beta}\f]
736 when normType=NORM_MINMAX (for dense arrays only). The optional mask specifies a sub-array to be
737 normalized. This means that the norm or min-n-max are calculated over the sub-array, and then this
738 sub-array is modified to be normalized. If you want to only use the mask to calculate the norm or
739 min-max but modify the whole array, you can use norm and Mat::convertTo.
741 In case of sparse matrices, only the non-zero values are analyzed and transformed. Because of this,
742 the range transformation for sparse matrices is not allowed since it can shift the zero level.
744 Possible usage with some positive example data:
746 vector<double> positiveData = { 2.0, 8.0, 10.0 };
747 vector<double> normalizedData_l1, normalizedData_l2, normalizedData_inf, normalizedData_minmax;
749 // Norm to probability (total count)
750 // sum(numbers) = 20.0
751 // 2.0 0.1 (2.0/20.0)
752 // 8.0 0.4 (8.0/20.0)
753 // 10.0 0.5 (10.0/20.0)
754 normalize(positiveData, normalizedData_l1, 1.0, 0.0, NORM_L1);
756 // Norm to unit vector: ||positiveData|| = 1.0
760 normalize(positiveData, normalizedData_l2, 1.0, 0.0, NORM_L2);
762 // Norm to max element
763 // 2.0 0.2 (2.0/10.0)
764 // 8.0 0.8 (8.0/10.0)
765 // 10.0 1.0 (10.0/10.0)
766 normalize(positiveData, normalizedData_inf, 1.0, 0.0, NORM_INF);
768 // Norm to range [0.0;1.0]
769 // 2.0 0.0 (shift to left border)
770 // 8.0 0.75 (6.0/8.0)
771 // 10.0 1.0 (shift to right border)
772 normalize(positiveData, normalizedData_minmax, 1.0, 0.0, NORM_MINMAX);
775 @param src input array.
776 @param dst output array of the same size as src .
777 @param alpha norm value to normalize to or the lower range boundary in case of the range
779 @param beta upper range boundary in case of the range normalization; it is not used for the norm
781 @param norm_type normalization type (see cv::NormTypes).
782 @param dtype when negative, the output array has the same type as src; otherwise, it has the same
783 number of channels as src and the depth =CV_MAT_DEPTH(dtype).
784 @param mask optional operation mask.
785 @sa norm, Mat::convertTo, SparseMat::convertTo
787 CV_EXPORTS_W void normalize( InputArray src, InputOutputArray dst, double alpha = 1, double beta = 0,
788 int norm_type = NORM_L2, int dtype = -1, InputArray mask = noArray());
791 @param src input array.
792 @param dst output array of the same size as src .
793 @param alpha norm value to normalize to or the lower range boundary in case of the range
795 @param normType normalization type (see cv::NormTypes).
797 CV_EXPORTS void normalize( const SparseMat& src, SparseMat& dst, double alpha, int normType );
799 /** @brief Finds the global minimum and maximum in an array.
801 The function cv::minMaxLoc finds the minimum and maximum element values and their positions. The
802 extremums are searched across the whole array or, if mask is not an empty array, in the specified
805 The function do not work with multi-channel arrays. If you need to find minimum or maximum
806 elements across all the channels, use Mat::reshape first to reinterpret the array as
807 single-channel. Or you may extract the particular channel using either extractImageCOI , or
808 mixChannels , or split .
809 @param src input single-channel array.
810 @param minVal pointer to the returned minimum value; NULL is used if not required.
811 @param maxVal pointer to the returned maximum value; NULL is used if not required.
812 @param minLoc pointer to the returned minimum location (in 2D case); NULL is used if not required.
813 @param maxLoc pointer to the returned maximum location (in 2D case); NULL is used if not required.
814 @param mask optional mask used to select a sub-array.
815 @sa max, min, compare, inRange, extractImageCOI, mixChannels, split, Mat::reshape
817 CV_EXPORTS_W void minMaxLoc(InputArray src, CV_OUT double* minVal,
818 CV_OUT double* maxVal = 0, CV_OUT Point* minLoc = 0,
819 CV_OUT Point* maxLoc = 0, InputArray mask = noArray());
822 /** @brief Finds the global minimum and maximum in an array
824 The function cv::minMaxIdx finds the minimum and maximum element values and their positions. The
825 extremums are searched across the whole array or, if mask is not an empty array, in the specified
826 array region. The function does not work with multi-channel arrays. If you need to find minimum or
827 maximum elements across all the channels, use Mat::reshape first to reinterpret the array as
828 single-channel. Or you may extract the particular channel using either extractImageCOI , or
829 mixChannels , or split . In case of a sparse matrix, the minimum is found among non-zero elements
831 @note When minIdx is not NULL, it must have at least 2 elements (as well as maxIdx), even if src is
832 a single-row or single-column matrix. In OpenCV (following MATLAB) each array has at least 2
833 dimensions, i.e. single-column matrix is Mx1 matrix (and therefore minIdx/maxIdx will be
834 (i1,0)/(i2,0)) and single-row matrix is 1xN matrix (and therefore minIdx/maxIdx will be
836 @param src input single-channel array.
837 @param minVal pointer to the returned minimum value; NULL is used if not required.
838 @param maxVal pointer to the returned maximum value; NULL is used if not required.
839 @param minIdx pointer to the returned minimum location (in nD case); NULL is used if not required;
840 Otherwise, it must point to an array of src.dims elements, the coordinates of the minimum element
841 in each dimension are stored there sequentially.
842 @param maxIdx pointer to the returned maximum location (in nD case). NULL is used if not required.
843 @param mask specified array region
845 CV_EXPORTS void minMaxIdx(InputArray src, double* minVal, double* maxVal = 0,
846 int* minIdx = 0, int* maxIdx = 0, InputArray mask = noArray());
849 @param a input single-channel array.
850 @param minVal pointer to the returned minimum value; NULL is used if not required.
851 @param maxVal pointer to the returned maximum value; NULL is used if not required.
852 @param minIdx pointer to the returned minimum location (in nD case); NULL is used if not required;
853 Otherwise, it must point to an array of src.dims elements, the coordinates of the minimum element
854 in each dimension are stored there sequentially.
855 @param maxIdx pointer to the returned maximum location (in nD case). NULL is used if not required.
857 CV_EXPORTS void minMaxLoc(const SparseMat& a, double* minVal,
858 double* maxVal, int* minIdx = 0, int* maxIdx = 0);
860 /** @brief Reduces a matrix to a vector.
862 The function cv::reduce reduces the matrix to a vector by treating the matrix rows/columns as a set of
863 1D vectors and performing the specified operation on the vectors until a single row/column is
864 obtained. For example, the function can be used to compute horizontal and vertical projections of a
865 raster image. In case of REDUCE_MAX and REDUCE_MIN , the output image should have the same type as the source one.
866 In case of REDUCE_SUM and REDUCE_AVG , the output may have a larger element bit-depth to preserve accuracy.
867 And multi-channel arrays are also supported in these two reduction modes.
869 The following code demonstrates its usage for a single channel matrix.
870 @snippet snippets/core_reduce.cpp example
872 And the following code demonstrates its usage for a two-channel matrix.
873 @snippet snippets/core_reduce.cpp example2
875 @param src input 2D matrix.
876 @param dst output vector. Its size and type is defined by dim and dtype parameters.
877 @param dim dimension index along which the matrix is reduced. 0 means that the matrix is reduced to
878 a single row. 1 means that the matrix is reduced to a single column.
879 @param rtype reduction operation that could be one of cv::ReduceTypes
880 @param dtype when negative, the output vector will have the same type as the input matrix,
881 otherwise, its type will be CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), src.channels()).
884 CV_EXPORTS_W void reduce(InputArray src, OutputArray dst, int dim, int rtype, int dtype = -1);
886 /** @brief Creates one multi-channel array out of several single-channel ones.
888 The function cv::merge merges several arrays to make a single multi-channel array. That is, each
889 element of the output array will be a concatenation of the elements of the input arrays, where
890 elements of i-th input array are treated as mv[i].channels()-element vectors.
892 The function cv::split does the reverse operation. If you need to shuffle channels in some other
893 advanced way, use cv::mixChannels.
895 The following example shows how to merge 3 single channel matrices into a single 3-channel matrix.
896 @snippet snippets/core_merge.cpp example
898 @param mv input array of matrices to be merged; all the matrices in mv must have the same
899 size and the same depth.
900 @param count number of input matrices when mv is a plain C array; it must be greater than zero.
901 @param dst output array of the same size and the same depth as mv[0]; The number of channels will
902 be equal to the parameter count.
903 @sa mixChannels, split, Mat::reshape
905 CV_EXPORTS void merge(const Mat* mv, size_t count, OutputArray dst);
908 @param mv input vector of matrices to be merged; all the matrices in mv must have the same
909 size and the same depth.
910 @param dst output array of the same size and the same depth as mv[0]; The number of channels will
911 be the total number of channels in the matrix array.
913 CV_EXPORTS_W void merge(InputArrayOfArrays mv, OutputArray dst);
915 /** @brief Divides a multi-channel array into several single-channel arrays.
917 The function cv::split splits a multi-channel array into separate single-channel arrays:
918 \f[\texttt{mv} [c](I) = \texttt{src} (I)_c\f]
919 If you need to extract a single channel or do some other sophisticated channel permutation, use
922 The following example demonstrates how to split a 3-channel matrix into 3 single channel matrices.
923 @snippet snippets/core_split.cpp example
925 @param src input multi-channel array.
926 @param mvbegin output array; the number of arrays must match src.channels(); the arrays themselves are
927 reallocated, if needed.
928 @sa merge, mixChannels, cvtColor
930 CV_EXPORTS void split(const Mat& src, Mat* mvbegin);
933 @param m input multi-channel array.
934 @param mv output vector of arrays; the arrays themselves are reallocated, if needed.
936 CV_EXPORTS_W void split(InputArray m, OutputArrayOfArrays mv);
938 /** @brief Copies specified channels from input arrays to the specified channels of
941 The function cv::mixChannels provides an advanced mechanism for shuffling image channels.
943 cv::split,cv::merge,cv::extractChannel,cv::insertChannel and some forms of cv::cvtColor are partial cases of cv::mixChannels.
945 In the example below, the code splits a 4-channel BGRA image into a 3-channel BGR (with B and R
946 channels swapped) and a separate alpha-channel image:
948 Mat bgra( 100, 100, CV_8UC4, Scalar(255,0,0,255) );
949 Mat bgr( bgra.rows, bgra.cols, CV_8UC3 );
950 Mat alpha( bgra.rows, bgra.cols, CV_8UC1 );
952 // forming an array of matrices is a quite efficient operation,
953 // because the matrix data is not copied, only the headers
954 Mat out[] = { bgr, alpha };
955 // bgra[0] -> bgr[2], bgra[1] -> bgr[1],
956 // bgra[2] -> bgr[0], bgra[3] -> alpha[0]
957 int from_to[] = { 0,2, 1,1, 2,0, 3,3 };
958 mixChannels( &bgra, 1, out, 2, from_to, 4 );
960 @note Unlike many other new-style C++ functions in OpenCV (see the introduction section and
961 Mat::create ), cv::mixChannels requires the output arrays to be pre-allocated before calling the
963 @param src input array or vector of matrices; all of the matrices must have the same size and the
965 @param nsrcs number of matrices in `src`.
966 @param dst output array or vector of matrices; all the matrices **must be allocated**; their size and
967 depth must be the same as in `src[0]`.
968 @param ndsts number of matrices in `dst`.
969 @param fromTo array of index pairs specifying which channels are copied and where; fromTo[k\*2] is
970 a 0-based index of the input channel in src, fromTo[k\*2+1] is an index of the output channel in
971 dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to
972 src[0].channels()-1, the second input image channels are indexed from src[0].channels() to
973 src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image
974 channels; as a special case, when fromTo[k\*2] is negative, the corresponding output channel is
976 @param npairs number of index pairs in `fromTo`.
977 @sa split, merge, extractChannel, insertChannel, cvtColor
979 CV_EXPORTS void mixChannels(const Mat* src, size_t nsrcs, Mat* dst, size_t ndsts,
980 const int* fromTo, size_t npairs);
983 @param src input array or vector of matrices; all of the matrices must have the same size and the
985 @param dst output array or vector of matrices; all the matrices **must be allocated**; their size and
986 depth must be the same as in src[0].
987 @param fromTo array of index pairs specifying which channels are copied and where; fromTo[k\*2] is
988 a 0-based index of the input channel in src, fromTo[k\*2+1] is an index of the output channel in
989 dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to
990 src[0].channels()-1, the second input image channels are indexed from src[0].channels() to
991 src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image
992 channels; as a special case, when fromTo[k\*2] is negative, the corresponding output channel is
994 @param npairs number of index pairs in fromTo.
996 CV_EXPORTS void mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst,
997 const int* fromTo, size_t npairs);
1000 @param src input array or vector of matrices; all of the matrices must have the same size and the
1002 @param dst output array or vector of matrices; all the matrices **must be allocated**; their size and
1003 depth must be the same as in src[0].
1004 @param fromTo array of index pairs specifying which channels are copied and where; fromTo[k\*2] is
1005 a 0-based index of the input channel in src, fromTo[k\*2+1] is an index of the output channel in
1006 dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to
1007 src[0].channels()-1, the second input image channels are indexed from src[0].channels() to
1008 src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image
1009 channels; as a special case, when fromTo[k\*2] is negative, the corresponding output channel is
1012 CV_EXPORTS_W void mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst,
1013 const std::vector<int>& fromTo);
1015 /** @brief Extracts a single channel from src (coi is 0-based index)
1016 @param src input array
1017 @param dst output array
1018 @param coi index of channel to extract
1019 @sa mixChannels, split
1021 CV_EXPORTS_W void extractChannel(InputArray src, OutputArray dst, int coi);
1023 /** @brief Inserts a single channel to dst (coi is 0-based index)
1024 @param src input array
1025 @param dst output array
1026 @param coi index of channel for insertion
1027 @sa mixChannels, merge
1029 CV_EXPORTS_W void insertChannel(InputArray src, InputOutputArray dst, int coi);
1031 /** @brief Flips a 2D array around vertical, horizontal, or both axes.
1033 The function cv::flip flips the array in one of three different ways (row
1034 and column indices are 0-based):
1035 \f[\texttt{dst} _{ij} =
1038 \texttt{src} _{\texttt{src.rows}-i-1,j} & if\; \texttt{flipCode} = 0 \\
1039 \texttt{src} _{i, \texttt{src.cols} -j-1} & if\; \texttt{flipCode} > 0 \\
1040 \texttt{src} _{ \texttt{src.rows} -i-1, \texttt{src.cols} -j-1} & if\; \texttt{flipCode} < 0 \\
1043 The example scenarios of using the function are the following:
1044 * Vertical flipping of the image (flipCode == 0) to switch between
1045 top-left and bottom-left image origin. This is a typical operation
1046 in video processing on Microsoft Windows\* OS.
1047 * Horizontal flipping of the image with the subsequent horizontal
1048 shift and absolute difference calculation to check for a
1049 vertical-axis symmetry (flipCode \> 0).
1050 * Simultaneous horizontal and vertical flipping of the image with
1051 the subsequent shift and absolute difference calculation to check
1052 for a central symmetry (flipCode \< 0).
1053 * Reversing the order of point arrays (flipCode \> 0 or
1055 @param src input array.
1056 @param dst output array of the same size and type as src.
1057 @param flipCode a flag to specify how to flip the array; 0 means
1058 flipping around the x-axis and positive value (for example, 1) means
1059 flipping around y-axis. Negative value (for example, -1) means flipping
1061 @sa transpose , repeat , completeSymm
1063 CV_EXPORTS_W void flip(InputArray src, OutputArray dst, int flipCode);
1066 ROTATE_90_CLOCKWISE = 0, //Rotate 90 degrees clockwise
1067 ROTATE_180 = 1, //Rotate 180 degrees clockwise
1068 ROTATE_90_COUNTERCLOCKWISE = 2, //Rotate 270 degrees clockwise
1070 /** @brief Rotates a 2D array in multiples of 90 degrees.
1071 The function rotate rotates the array in one of three different ways:
1072 * Rotate by 90 degrees clockwise (rotateCode = ROTATE_90).
1073 * Rotate by 180 degrees clockwise (rotateCode = ROTATE_180).
1074 * Rotate by 270 degrees clockwise (rotateCode = ROTATE_270).
1075 @param src input array.
1076 @param dst output array of the same type as src. The size is the same with ROTATE_180,
1077 and the rows and cols are switched for ROTATE_90 and ROTATE_270.
1078 @param rotateCode an enum to specify how to rotate the array; see the enum RotateFlags
1079 @sa transpose , repeat , completeSymm, flip, RotateFlags
1081 CV_EXPORTS_W void rotate(InputArray src, OutputArray dst, int rotateCode);
1083 /** @brief Fills the output array with repeated copies of the input array.
1085 The function cv::repeat duplicates the input array one or more times along each of the two axes:
1086 \f[\texttt{dst} _{ij}= \texttt{src} _{i\mod src.rows, \; j\mod src.cols }\f]
1087 The second variant of the function is more convenient to use with @ref MatrixExpressions.
1088 @param src input array to replicate.
1089 @param ny Flag to specify how many times the `src` is repeated along the
1091 @param nx Flag to specify how many times the `src` is repeated along the
1093 @param dst output array of the same type as `src`.
1096 CV_EXPORTS_W void repeat(InputArray src, int ny, int nx, OutputArray dst);
1099 @param src input array to replicate.
1100 @param ny Flag to specify how many times the `src` is repeated along the
1102 @param nx Flag to specify how many times the `src` is repeated along the
1105 CV_EXPORTS Mat repeat(const Mat& src, int ny, int nx);
1107 /** @brief Applies horizontal concatenation to given matrices.
1109 The function horizontally concatenates two or more cv::Mat matrices (with the same number of rows).
1111 cv::Mat matArray[] = { cv::Mat(4, 1, CV_8UC1, cv::Scalar(1)),
1112 cv::Mat(4, 1, CV_8UC1, cv::Scalar(2)),
1113 cv::Mat(4, 1, CV_8UC1, cv::Scalar(3)),};
1116 cv::hconcat( matArray, 3, out );
1123 @param src input array or vector of matrices. all of the matrices must have the same number of rows and the same depth.
1124 @param nsrc number of matrices in src.
1125 @param dst output array. It has the same number of rows and depth as the src, and the sum of cols of the src.
1126 @sa cv::vconcat(const Mat*, size_t, OutputArray), @sa cv::vconcat(InputArrayOfArrays, OutputArray) and @sa cv::vconcat(InputArray, InputArray, OutputArray)
1128 CV_EXPORTS void hconcat(const Mat* src, size_t nsrc, OutputArray dst);
1131 cv::Mat_<float> A = (cv::Mat_<float>(3, 2) << 1, 4,
1134 cv::Mat_<float> B = (cv::Mat_<float>(3, 2) << 7, 10,
1139 cv::hconcat(A, B, C);
1145 @param src1 first input array to be considered for horizontal concatenation.
1146 @param src2 second input array to be considered for horizontal concatenation.
1147 @param dst output array. It has the same number of rows and depth as the src1 and src2, and the sum of cols of the src1 and src2.
1149 CV_EXPORTS void hconcat(InputArray src1, InputArray src2, OutputArray dst);
1152 std::vector<cv::Mat> matrices = { cv::Mat(4, 1, CV_8UC1, cv::Scalar(1)),
1153 cv::Mat(4, 1, CV_8UC1, cv::Scalar(2)),
1154 cv::Mat(4, 1, CV_8UC1, cv::Scalar(3)),};
1157 cv::hconcat( matrices, out );
1164 @param src input array or vector of matrices. all of the matrices must have the same number of rows and the same depth.
1165 @param dst output array. It has the same number of rows and depth as the src, and the sum of cols of the src.
1168 CV_EXPORTS_W void hconcat(InputArrayOfArrays src, OutputArray dst);
1170 /** @brief Applies vertical concatenation to given matrices.
1172 The function vertically concatenates two or more cv::Mat matrices (with the same number of cols).
1174 cv::Mat matArray[] = { cv::Mat(1, 4, CV_8UC1, cv::Scalar(1)),
1175 cv::Mat(1, 4, CV_8UC1, cv::Scalar(2)),
1176 cv::Mat(1, 4, CV_8UC1, cv::Scalar(3)),};
1179 cv::vconcat( matArray, 3, out );
1185 @param src input array or vector of matrices. all of the matrices must have the same number of cols and the same depth.
1186 @param nsrc number of matrices in src.
1187 @param dst output array. It has the same number of cols and depth as the src, and the sum of rows of the src.
1188 @sa cv::hconcat(const Mat*, size_t, OutputArray), @sa cv::hconcat(InputArrayOfArrays, OutputArray) and @sa cv::hconcat(InputArray, InputArray, OutputArray)
1190 CV_EXPORTS void vconcat(const Mat* src, size_t nsrc, OutputArray dst);
1193 cv::Mat_<float> A = (cv::Mat_<float>(3, 2) << 1, 7,
1196 cv::Mat_<float> B = (cv::Mat_<float>(3, 2) << 4, 10,
1201 cv::vconcat(A, B, C);
1210 @param src1 first input array to be considered for vertical concatenation.
1211 @param src2 second input array to be considered for vertical concatenation.
1212 @param dst output array. It has the same number of cols and depth as the src1 and src2, and the sum of rows of the src1 and src2.
1214 CV_EXPORTS void vconcat(InputArray src1, InputArray src2, OutputArray dst);
1217 std::vector<cv::Mat> matrices = { cv::Mat(1, 4, CV_8UC1, cv::Scalar(1)),
1218 cv::Mat(1, 4, CV_8UC1, cv::Scalar(2)),
1219 cv::Mat(1, 4, CV_8UC1, cv::Scalar(3)),};
1222 cv::vconcat( matrices, out );
1228 @param src input array or vector of matrices. all of the matrices must have the same number of cols and the same depth
1229 @param dst output array. It has the same number of cols and depth as the src, and the sum of rows of the src.
1232 CV_EXPORTS_W void vconcat(InputArrayOfArrays src, OutputArray dst);
1234 /** @brief computes bitwise conjunction of the two arrays (dst = src1 & src2)
1235 Calculates the per-element bit-wise conjunction of two arrays or an
1238 The function cv::bitwise_and calculates the per-element bit-wise logical conjunction for:
1239 * Two arrays when src1 and src2 have the same size:
1240 \f[\texttt{dst} (I) = \texttt{src1} (I) \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
1241 * An array and a scalar when src2 is constructed from Scalar or has
1242 the same number of elements as `src1.channels()`:
1243 \f[\texttt{dst} (I) = \texttt{src1} (I) \wedge \texttt{src2} \quad \texttt{if mask} (I) \ne0\f]
1244 * A scalar and an array when src1 is constructed from Scalar or has
1245 the same number of elements as `src2.channels()`:
1246 \f[\texttt{dst} (I) = \texttt{src1} \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
1247 In case of floating-point arrays, their machine-specific bit
1248 representations (usually IEEE754-compliant) are used for the operation.
1249 In case of multi-channel arrays, each channel is processed
1250 independently. In the second and third cases above, the scalar is first
1251 converted to the array type.
1252 @param src1 first input array or a scalar.
1253 @param src2 second input array or a scalar.
1254 @param dst output array that has the same size and type as the input
1256 @param mask optional operation mask, 8-bit single channel array, that
1257 specifies elements of the output array to be changed.
1259 CV_EXPORTS_W void bitwise_and(InputArray src1, InputArray src2,
1260 OutputArray dst, InputArray mask = noArray());
1262 /** @brief Calculates the per-element bit-wise disjunction of two arrays or an
1265 The function cv::bitwise_or calculates the per-element bit-wise logical disjunction for:
1266 * Two arrays when src1 and src2 have the same size:
1267 \f[\texttt{dst} (I) = \texttt{src1} (I) \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
1268 * An array and a scalar when src2 is constructed from Scalar or has
1269 the same number of elements as `src1.channels()`:
1270 \f[\texttt{dst} (I) = \texttt{src1} (I) \vee \texttt{src2} \quad \texttt{if mask} (I) \ne0\f]
1271 * A scalar and an array when src1 is constructed from Scalar or has
1272 the same number of elements as `src2.channels()`:
1273 \f[\texttt{dst} (I) = \texttt{src1} \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
1274 In case of floating-point arrays, their machine-specific bit
1275 representations (usually IEEE754-compliant) are used for the operation.
1276 In case of multi-channel arrays, each channel is processed
1277 independently. In the second and third cases above, the scalar is first
1278 converted to the array type.
1279 @param src1 first input array or a scalar.
1280 @param src2 second input array or a scalar.
1281 @param dst output array that has the same size and type as the input
1283 @param mask optional operation mask, 8-bit single channel array, that
1284 specifies elements of the output array to be changed.
1286 CV_EXPORTS_W void bitwise_or(InputArray src1, InputArray src2,
1287 OutputArray dst, InputArray mask = noArray());
1289 /** @brief Calculates the per-element bit-wise "exclusive or" operation on two
1290 arrays or an array and a scalar.
1292 The function cv::bitwise_xor calculates the per-element bit-wise logical "exclusive-or"
1294 * Two arrays when src1 and src2 have the same size:
1295 \f[\texttt{dst} (I) = \texttt{src1} (I) \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
1296 * An array and a scalar when src2 is constructed from Scalar or has
1297 the same number of elements as `src1.channels()`:
1298 \f[\texttt{dst} (I) = \texttt{src1} (I) \oplus \texttt{src2} \quad \texttt{if mask} (I) \ne0\f]
1299 * A scalar and an array when src1 is constructed from Scalar or has
1300 the same number of elements as `src2.channels()`:
1301 \f[\texttt{dst} (I) = \texttt{src1} \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
1302 In case of floating-point arrays, their machine-specific bit
1303 representations (usually IEEE754-compliant) are used for the operation.
1304 In case of multi-channel arrays, each channel is processed
1305 independently. In the 2nd and 3rd cases above, the scalar is first
1306 converted to the array type.
1307 @param src1 first input array or a scalar.
1308 @param src2 second input array or a scalar.
1309 @param dst output array that has the same size and type as the input
1311 @param mask optional operation mask, 8-bit single channel array, that
1312 specifies elements of the output array to be changed.
1314 CV_EXPORTS_W void bitwise_xor(InputArray src1, InputArray src2,
1315 OutputArray dst, InputArray mask = noArray());
1317 /** @brief Inverts every bit of an array.
1319 The function cv::bitwise_not calculates per-element bit-wise inversion of the input
1321 \f[\texttt{dst} (I) = \neg \texttt{src} (I)\f]
1322 In case of a floating-point input array, its machine-specific bit
1323 representation (usually IEEE754-compliant) is used for the operation. In
1324 case of multi-channel arrays, each channel is processed independently.
1325 @param src input array.
1326 @param dst output array that has the same size and type as the input
1328 @param mask optional operation mask, 8-bit single channel array, that
1329 specifies elements of the output array to be changed.
1331 CV_EXPORTS_W void bitwise_not(InputArray src, OutputArray dst,
1332 InputArray mask = noArray());
1334 /** @brief Calculates the per-element absolute difference between two arrays or between an array and a scalar.
1336 The function cv::absdiff calculates:
1337 * Absolute difference between two arrays when they have the same
1339 \f[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1}(I) - \texttt{src2}(I)|)\f]
1340 * Absolute difference between an array and a scalar when the second
1341 array is constructed from Scalar or has as many elements as the
1342 number of channels in `src1`:
1343 \f[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1}(I) - \texttt{src2} |)\f]
1344 * Absolute difference between a scalar and an array when the first
1345 array is constructed from Scalar or has as many elements as the
1346 number of channels in `src2`:
1347 \f[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1} - \texttt{src2}(I) |)\f]
1348 where I is a multi-dimensional index of array elements. In case of
1349 multi-channel arrays, each channel is processed independently.
1350 @note Saturation is not applied when the arrays have the depth CV_32S.
1351 You may even get a negative value in the case of overflow.
1352 @param src1 first input array or a scalar.
1353 @param src2 second input array or a scalar.
1354 @param dst output array that has the same size and type as input arrays.
1355 @sa cv::abs(const Mat&)
1357 CV_EXPORTS_W void absdiff(InputArray src1, InputArray src2, OutputArray dst);
1359 /** @brief Checks if array elements lie between the elements of two other arrays.
1361 The function checks the range as follows:
1362 - For every element of a single-channel input array:
1363 \f[\texttt{dst} (I)= \texttt{lowerb} (I)_0 \leq \texttt{src} (I)_0 \leq \texttt{upperb} (I)_0\f]
1364 - For two-channel arrays:
1365 \f[\texttt{dst} (I)= \texttt{lowerb} (I)_0 \leq \texttt{src} (I)_0 \leq \texttt{upperb} (I)_0 \land \texttt{lowerb} (I)_1 \leq \texttt{src} (I)_1 \leq \texttt{upperb} (I)_1\f]
1368 That is, dst (I) is set to 255 (all 1 -bits) if src (I) is within the
1369 specified 1D, 2D, 3D, ... box and 0 otherwise.
1371 When the lower and/or upper boundary parameters are scalars, the indexes
1372 (I) at lowerb and upperb in the above formulas should be omitted.
1373 @param src first input array.
1374 @param lowerb inclusive lower boundary array or a scalar.
1375 @param upperb inclusive upper boundary array or a scalar.
1376 @param dst output array of the same size as src and CV_8U type.
1378 CV_EXPORTS_W void inRange(InputArray src, InputArray lowerb,
1379 InputArray upperb, OutputArray dst);
1381 /** @brief Performs the per-element comparison of two arrays or an array and scalar value.
1383 The function compares:
1384 * Elements of two arrays when src1 and src2 have the same size:
1385 \f[\texttt{dst} (I) = \texttt{src1} (I) \,\texttt{cmpop}\, \texttt{src2} (I)\f]
1386 * Elements of src1 with a scalar src2 when src2 is constructed from
1387 Scalar or has a single element:
1388 \f[\texttt{dst} (I) = \texttt{src1}(I) \,\texttt{cmpop}\, \texttt{src2}\f]
1389 * src1 with elements of src2 when src1 is constructed from Scalar or
1390 has a single element:
1391 \f[\texttt{dst} (I) = \texttt{src1} \,\texttt{cmpop}\, \texttt{src2} (I)\f]
1392 When the comparison result is true, the corresponding element of output
1393 array is set to 255. The comparison operations can be replaced with the
1394 equivalent matrix expressions:
1396 Mat dst1 = src1 >= src2;
1397 Mat dst2 = src1 < 8;
1400 @param src1 first input array or a scalar; when it is an array, it must have a single channel.
1401 @param src2 second input array or a scalar; when it is an array, it must have a single channel.
1402 @param dst output array of type ref CV_8U that has the same size and the same number of channels as
1404 @param cmpop a flag, that specifies correspondence between the arrays (cv::CmpTypes)
1405 @sa checkRange, min, max, threshold
1407 CV_EXPORTS_W void compare(InputArray src1, InputArray src2, OutputArray dst, int cmpop);
1409 /** @brief Calculates per-element minimum of two arrays or an array and a scalar.
1411 The function cv::min calculates the per-element minimum of two arrays:
1412 \f[\texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{src2} (I))\f]
1413 or array and a scalar:
1414 \f[\texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{value} )\f]
1415 @param src1 first input array.
1416 @param src2 second input array of the same size and type as src1.
1417 @param dst output array of the same size and type as src1.
1418 @sa max, compare, inRange, minMaxLoc
1420 CV_EXPORTS_W void min(InputArray src1, InputArray src2, OutputArray dst);
1422 needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare)
1424 CV_EXPORTS void min(const Mat& src1, const Mat& src2, Mat& dst);
1426 needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare)
1428 CV_EXPORTS void min(const UMat& src1, const UMat& src2, UMat& dst);
1430 /** @brief Calculates per-element maximum of two arrays or an array and a scalar.
1432 The function cv::max calculates the per-element maximum of two arrays:
1433 \f[\texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{src2} (I))\f]
1434 or array and a scalar:
1435 \f[\texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{value} )\f]
1436 @param src1 first input array.
1437 @param src2 second input array of the same size and type as src1 .
1438 @param dst output array of the same size and type as src1.
1439 @sa min, compare, inRange, minMaxLoc, @ref MatrixExpressions
1441 CV_EXPORTS_W void max(InputArray src1, InputArray src2, OutputArray dst);
1443 needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare)
1445 CV_EXPORTS void max(const Mat& src1, const Mat& src2, Mat& dst);
1447 needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare)
1449 CV_EXPORTS void max(const UMat& src1, const UMat& src2, UMat& dst);
1451 /** @brief Calculates a square root of array elements.
1453 The function cv::sqrt calculates a square root of each input array element.
1454 In case of multi-channel arrays, each channel is processed
1455 independently. The accuracy is approximately the same as of the built-in
1457 @param src input floating-point array.
1458 @param dst output array of the same size and type as src.
1460 CV_EXPORTS_W void sqrt(InputArray src, OutputArray dst);
1462 /** @brief Raises every array element to a power.
1464 The function cv::pow raises every element of the input array to power :
1465 \f[\texttt{dst} (I) = \fork{\texttt{src}(I)^{power}}{if \(\texttt{power}\) is integer}{|\texttt{src}(I)|^{power}}{otherwise}\f]
1467 So, for a non-integer power exponent, the absolute values of input array
1468 elements are used. However, it is possible to get true values for
1469 negative values using some extra operations. In the example below,
1470 computing the 5th root of array src shows:
1473 pow(src, 1./5, dst);
1474 subtract(Scalar::all(0), dst, dst, mask);
1476 For some values of power, such as integer values, 0.5 and -0.5,
1477 specialized faster algorithms are used.
1479 Special values (NaN, Inf) are not handled.
1480 @param src input array.
1481 @param power exponent of power.
1482 @param dst output array of the same size and type as src.
1483 @sa sqrt, exp, log, cartToPolar, polarToCart
1485 CV_EXPORTS_W void pow(InputArray src, double power, OutputArray dst);
1487 /** @brief Calculates the exponent of every array element.
1489 The function cv::exp calculates the exponent of every element of the input
1491 \f[\texttt{dst} [I] = e^{ src(I) }\f]
1493 The maximum relative error is about 7e-6 for single-precision input and
1494 less than 1e-10 for double-precision input. Currently, the function
1495 converts denormalized values to zeros on output. Special values (NaN,
1496 Inf) are not handled.
1497 @param src input array.
1498 @param dst output array of the same size and type as src.
1499 @sa log , cartToPolar , polarToCart , phase , pow , sqrt , magnitude
1501 CV_EXPORTS_W void exp(InputArray src, OutputArray dst);
1503 /** @brief Calculates the natural logarithm of every array element.
1505 The function cv::log calculates the natural logarithm of every element of the input array:
1506 \f[\texttt{dst} (I) = \log (\texttt{src}(I)) \f]
1508 Output on zero, negative and special (NaN, Inf) values is undefined.
1510 @param src input array.
1511 @param dst output array of the same size and type as src .
1512 @sa exp, cartToPolar, polarToCart, phase, pow, sqrt, magnitude
1514 CV_EXPORTS_W void log(InputArray src, OutputArray dst);
1516 /** @brief Calculates x and y coordinates of 2D vectors from their magnitude and angle.
1518 The function cv::polarToCart calculates the Cartesian coordinates of each 2D
1519 vector represented by the corresponding elements of magnitude and angle:
1520 \f[\begin{array}{l} \texttt{x} (I) = \texttt{magnitude} (I) \cos ( \texttt{angle} (I)) \\ \texttt{y} (I) = \texttt{magnitude} (I) \sin ( \texttt{angle} (I)) \\ \end{array}\f]
1522 The relative accuracy of the estimated coordinates is about 1e-6.
1523 @param magnitude input floating-point array of magnitudes of 2D vectors;
1524 it can be an empty matrix (=Mat()), in this case, the function assumes
1525 that all the magnitudes are =1; if it is not empty, it must have the
1526 same size and type as angle.
1527 @param angle input floating-point array of angles of 2D vectors.
1528 @param x output array of x-coordinates of 2D vectors; it has the same
1529 size and type as angle.
1530 @param y output array of y-coordinates of 2D vectors; it has the same
1531 size and type as angle.
1532 @param angleInDegrees when true, the input angles are measured in
1533 degrees, otherwise, they are measured in radians.
1534 @sa cartToPolar, magnitude, phase, exp, log, pow, sqrt
1536 CV_EXPORTS_W void polarToCart(InputArray magnitude, InputArray angle,
1537 OutputArray x, OutputArray y, bool angleInDegrees = false);
1539 /** @brief Calculates the magnitude and angle of 2D vectors.
1541 The function cv::cartToPolar calculates either the magnitude, angle, or both
1542 for every 2D vector (x(I),y(I)):
1543 \f[\begin{array}{l} \texttt{magnitude} (I)= \sqrt{\texttt{x}(I)^2+\texttt{y}(I)^2} , \\ \texttt{angle} (I)= \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))[ \cdot180 / \pi ] \end{array}\f]
1545 The angles are calculated with accuracy about 0.3 degrees. For the point
1546 (0,0), the angle is set to 0.
1547 @param x array of x-coordinates; this must be a single-precision or
1548 double-precision floating-point array.
1549 @param y array of y-coordinates, that must have the same size and same type as x.
1550 @param magnitude output array of magnitudes of the same size and type as x.
1551 @param angle output array of angles that has the same size and type as
1552 x; the angles are measured in radians (from 0 to 2\*Pi) or in degrees (0 to 360 degrees).
1553 @param angleInDegrees a flag, indicating whether the angles are measured
1554 in radians (which is by default), or in degrees.
1557 CV_EXPORTS_W void cartToPolar(InputArray x, InputArray y,
1558 OutputArray magnitude, OutputArray angle,
1559 bool angleInDegrees = false);
1561 /** @brief Calculates the rotation angle of 2D vectors.
1563 The function cv::phase calculates the rotation angle of each 2D vector that
1564 is formed from the corresponding elements of x and y :
1565 \f[\texttt{angle} (I) = \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))\f]
1567 The angle estimation accuracy is about 0.3 degrees. When x(I)=y(I)=0 ,
1568 the corresponding angle(I) is set to 0.
1569 @param x input floating-point array of x-coordinates of 2D vectors.
1570 @param y input array of y-coordinates of 2D vectors; it must have the
1571 same size and the same type as x.
1572 @param angle output array of vector angles; it has the same size and
1574 @param angleInDegrees when true, the function calculates the angle in
1575 degrees, otherwise, they are measured in radians.
1577 CV_EXPORTS_W void phase(InputArray x, InputArray y, OutputArray angle,
1578 bool angleInDegrees = false);
1580 /** @brief Calculates the magnitude of 2D vectors.
1582 The function cv::magnitude calculates the magnitude of 2D vectors formed
1583 from the corresponding elements of x and y arrays:
1584 \f[\texttt{dst} (I) = \sqrt{\texttt{x}(I)^2 + \texttt{y}(I)^2}\f]
1585 @param x floating-point array of x-coordinates of the vectors.
1586 @param y floating-point array of y-coordinates of the vectors; it must
1587 have the same size as x.
1588 @param magnitude output array of the same size and type as x.
1589 @sa cartToPolar, polarToCart, phase, sqrt
1591 CV_EXPORTS_W void magnitude(InputArray x, InputArray y, OutputArray magnitude);
1593 /** @brief Checks every element of an input array for invalid values.
1595 The function cv::checkRange checks that every array element is neither NaN nor infinite. When minVal \>
1596 -DBL_MAX and maxVal \< DBL_MAX, the function also checks that each value is between minVal and
1597 maxVal. In case of multi-channel arrays, each channel is processed independently. If some values
1598 are out of range, position of the first outlier is stored in pos (when pos != NULL). Then, the
1599 function either returns false (when quiet=true) or throws an exception.
1600 @param a input array.
1601 @param quiet a flag, indicating whether the functions quietly return false when the array elements
1602 are out of range or they throw an exception.
1603 @param pos optional output parameter, when not NULL, must be a pointer to array of src.dims
1605 @param minVal inclusive lower boundary of valid values range.
1606 @param maxVal exclusive upper boundary of valid values range.
1608 CV_EXPORTS_W bool checkRange(InputArray a, bool quiet = true, CV_OUT Point* pos = 0,
1609 double minVal = -DBL_MAX, double maxVal = DBL_MAX);
1611 /** @brief converts NaN's to the given number
1613 CV_EXPORTS_W void patchNaNs(InputOutputArray a, double val = 0);
1615 /** @brief Performs generalized matrix multiplication.
1617 The function cv::gemm performs generalized matrix multiplication similar to the
1618 gemm functions in BLAS level 3. For example,
1619 `gemm(src1, src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T)`
1621 \f[\texttt{dst} = \texttt{alpha} \cdot \texttt{src1} ^T \cdot \texttt{src2} + \texttt{beta} \cdot \texttt{src3} ^T\f]
1623 In case of complex (two-channel) data, performed a complex matrix
1626 The function can be replaced with a matrix expression. For example, the
1627 above call can be replaced with:
1629 dst = alpha*src1.t()*src2 + beta*src3.t();
1631 @param src1 first multiplied input matrix that could be real(CV_32FC1,
1632 CV_64FC1) or complex(CV_32FC2, CV_64FC2).
1633 @param src2 second multiplied input matrix of the same type as src1.
1634 @param alpha weight of the matrix product.
1635 @param src3 third optional delta matrix added to the matrix product; it
1636 should have the same type as src1 and src2.
1637 @param beta weight of src3.
1638 @param dst output matrix; it has the proper size and the same type as
1640 @param flags operation flags (cv::GemmFlags)
1641 @sa mulTransposed , transform
1643 CV_EXPORTS_W void gemm(InputArray src1, InputArray src2, double alpha,
1644 InputArray src3, double beta, OutputArray dst, int flags = 0);
1646 /** @brief Calculates the product of a matrix and its transposition.
1648 The function cv::mulTransposed calculates the product of src and its
1650 \f[\texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} )^T ( \texttt{src} - \texttt{delta} )\f]
1652 \f[\texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} ) ( \texttt{src} - \texttt{delta} )^T\f]
1653 otherwise. The function is used to calculate the covariance matrix. With
1654 zero delta, it can be used as a faster substitute for general matrix
1655 product A\*B when B=A'
1656 @param src input single-channel matrix. Note that unlike gemm, the
1657 function can multiply not only floating-point matrices.
1658 @param dst output square matrix.
1659 @param aTa Flag specifying the multiplication ordering. See the
1661 @param delta Optional delta matrix subtracted from src before the
1662 multiplication. When the matrix is empty ( delta=noArray() ), it is
1663 assumed to be zero, that is, nothing is subtracted. If it has the same
1664 size as src , it is simply subtracted. Otherwise, it is "repeated" (see
1665 repeat ) to cover the full src and then subtracted. Type of the delta
1666 matrix, when it is not empty, must be the same as the type of created
1667 output matrix. See the dtype parameter description below.
1668 @param scale Optional scale factor for the matrix product.
1669 @param dtype Optional type of the output matrix. When it is negative,
1670 the output matrix will have the same type as src . Otherwise, it will be
1671 type=CV_MAT_DEPTH(dtype) that should be either CV_32F or CV_64F .
1672 @sa calcCovarMatrix, gemm, repeat, reduce
1674 CV_EXPORTS_W void mulTransposed( InputArray src, OutputArray dst, bool aTa,
1675 InputArray delta = noArray(),
1676 double scale = 1, int dtype = -1 );
1678 /** @brief Transposes a matrix.
1680 The function cv::transpose transposes the matrix src :
1681 \f[\texttt{dst} (i,j) = \texttt{src} (j,i)\f]
1682 @note No complex conjugation is done in case of a complex matrix. It
1683 should be done separately if needed.
1684 @param src input array.
1685 @param dst output array of the same type as src.
1687 CV_EXPORTS_W void transpose(InputArray src, OutputArray dst);
1689 /** @brief Performs the matrix transformation of every array element.
1691 The function cv::transform performs the matrix transformation of every
1692 element of the array src and stores the results in dst :
1693 \f[\texttt{dst} (I) = \texttt{m} \cdot \texttt{src} (I)\f]
1694 (when m.cols=src.channels() ), or
1695 \f[\texttt{dst} (I) = \texttt{m} \cdot [ \texttt{src} (I); 1]\f]
1696 (when m.cols=src.channels()+1 )
1698 Every element of the N -channel array src is interpreted as N -element
1699 vector that is transformed using the M x N or M x (N+1) matrix m to
1700 M-element vector - the corresponding element of the output array dst .
1702 The function may be used for geometrical transformation of
1703 N -dimensional points, arbitrary linear color space transformation (such
1704 as various kinds of RGB to YUV transforms), shuffling the image
1705 channels, and so forth.
1706 @param src input array that must have as many channels (1 to 4) as
1708 @param dst output array of the same size and depth as src; it has as
1709 many channels as m.rows.
1710 @param m transformation 2x2 or 2x3 floating-point matrix.
1711 @sa perspectiveTransform, getAffineTransform, estimateAffine2D, warpAffine, warpPerspective
1713 CV_EXPORTS_W void transform(InputArray src, OutputArray dst, InputArray m );
1715 /** @brief Performs the perspective matrix transformation of vectors.
1717 The function cv::perspectiveTransform transforms every element of src by
1718 treating it as a 2D or 3D vector, in the following way:
1719 \f[(x, y, z) \rightarrow (x'/w, y'/w, z'/w)\f]
1721 \f[(x', y', z', w') = \texttt{mat} \cdot \begin{bmatrix} x & y & z & 1 \end{bmatrix}\f]
1723 \f[w = \fork{w'}{if \(w' \ne 0\)}{\infty}{otherwise}\f]
1725 Here a 3D vector transformation is shown. In case of a 2D vector
1726 transformation, the z component is omitted.
1728 @note The function transforms a sparse set of 2D or 3D vectors. If you
1729 want to transform an image using perspective transformation, use
1730 warpPerspective . If you have an inverse problem, that is, you want to
1731 compute the most probable perspective transformation out of several
1732 pairs of corresponding points, you can use getPerspectiveTransform or
1734 @param src input two-channel or three-channel floating-point array; each
1735 element is a 2D/3D vector to be transformed.
1736 @param dst output array of the same size and type as src.
1737 @param m 3x3 or 4x4 floating-point transformation matrix.
1738 @sa transform, warpPerspective, getPerspectiveTransform, findHomography
1740 CV_EXPORTS_W void perspectiveTransform(InputArray src, OutputArray dst, InputArray m );
1742 /** @brief Copies the lower or the upper half of a square matrix to another half.
1744 The function cv::completeSymm copies the lower half of a square matrix to
1745 its another half. The matrix diagonal remains unchanged:
1746 * \f$\texttt{mtx}_{ij}=\texttt{mtx}_{ji}\f$ for \f$i > j\f$ if
1748 * \f$\texttt{mtx}_{ij}=\texttt{mtx}_{ji}\f$ for \f$i < j\f$ if
1750 @param mtx input-output floating-point square matrix.
1751 @param lowerToUpper operation flag; if true, the lower half is copied to
1752 the upper half. Otherwise, the upper half is copied to the lower half.
1755 CV_EXPORTS_W void completeSymm(InputOutputArray mtx, bool lowerToUpper = false);
1757 /** @brief Initializes a scaled identity matrix.
1759 The function cv::setIdentity initializes a scaled identity matrix:
1760 \f[\texttt{mtx} (i,j)= \fork{\texttt{value}}{ if \(i=j\)}{0}{otherwise}\f]
1762 The function can also be emulated using the matrix initializers and the
1765 Mat A = Mat::eye(4, 3, CV_32F)*5;
1766 // A will be set to [[5, 0, 0], [0, 5, 0], [0, 0, 5], [0, 0, 0]]
1768 @param mtx matrix to initialize (not necessarily square).
1769 @param s value to assign to diagonal elements.
1770 @sa Mat::zeros, Mat::ones, Mat::setTo, Mat::operator=
1772 CV_EXPORTS_W void setIdentity(InputOutputArray mtx, const Scalar& s = Scalar(1));
1774 /** @brief Returns the determinant of a square floating-point matrix.
1776 The function cv::determinant calculates and returns the determinant of the
1777 specified matrix. For small matrices ( mtx.cols=mtx.rows\<=3 ), the
1778 direct method is used. For larger matrices, the function uses LU
1779 factorization with partial pivoting.
1781 For symmetric positively-determined matrices, it is also possible to use
1782 eigen decomposition to calculate the determinant.
1783 @param mtx input matrix that must have CV_32FC1 or CV_64FC1 type and
1785 @sa trace, invert, solve, eigen, @ref MatrixExpressions
1787 CV_EXPORTS_W double determinant(InputArray mtx);
1789 /** @brief Returns the trace of a matrix.
1791 The function cv::trace returns the sum of the diagonal elements of the
1793 \f[\mathrm{tr} ( \texttt{mtx} ) = \sum _i \texttt{mtx} (i,i)\f]
1794 @param mtx input matrix.
1796 CV_EXPORTS_W Scalar trace(InputArray mtx);
1798 /** @brief Finds the inverse or pseudo-inverse of a matrix.
1800 The function cv::invert inverts the matrix src and stores the result in dst
1801 . When the matrix src is singular or non-square, the function calculates
1802 the pseudo-inverse matrix (the dst matrix) so that norm(src\*dst - I) is
1803 minimal, where I is an identity matrix.
1805 In case of the DECOMP_LU method, the function returns non-zero value if
1806 the inverse has been successfully calculated and 0 if src is singular.
1808 In case of the DECOMP_SVD method, the function returns the inverse
1809 condition number of src (the ratio of the smallest singular value to the
1810 largest singular value) and 0 if src is singular. The SVD method
1811 calculates a pseudo-inverse matrix if src is singular.
1813 Similarly to DECOMP_LU, the method DECOMP_CHOLESKY works only with
1814 non-singular square matrices that should also be symmetrical and
1815 positively defined. In this case, the function stores the inverted
1816 matrix in dst and returns non-zero. Otherwise, it returns 0.
1818 @param src input floating-point M x N matrix.
1819 @param dst output matrix of N x M size and the same type as src.
1820 @param flags inversion method (cv::DecompTypes)
1823 CV_EXPORTS_W double invert(InputArray src, OutputArray dst, int flags = DECOMP_LU);
1825 /** @brief Solves one or more linear systems or least-squares problems.
1827 The function cv::solve solves a linear system or least-squares problem (the
1828 latter is possible with SVD or QR methods, or by specifying the flag
1830 \f[\texttt{dst} = \arg \min _X \| \texttt{src1} \cdot \texttt{X} - \texttt{src2} \|\f]
1832 If DECOMP_LU or DECOMP_CHOLESKY method is used, the function returns 1
1833 if src1 (or \f$\texttt{src1}^T\texttt{src1}\f$ ) is non-singular. Otherwise,
1834 it returns 0. In the latter case, dst is not valid. Other methods find a
1835 pseudo-solution in case of a singular left-hand side part.
1837 @note If you want to find a unity-norm solution of an under-defined
1838 singular system \f$\texttt{src1}\cdot\texttt{dst}=0\f$ , the function solve
1839 will not do the work. Use SVD::solveZ instead.
1841 @param src1 input matrix on the left-hand side of the system.
1842 @param src2 input matrix on the right-hand side of the system.
1843 @param dst output solution.
1844 @param flags solution (matrix inversion) method (cv::DecompTypes)
1845 @sa invert, SVD, eigen
1847 CV_EXPORTS_W bool solve(InputArray src1, InputArray src2,
1848 OutputArray dst, int flags = DECOMP_LU);
1850 /** @brief Sorts each row or each column of a matrix.
1852 The function cv::sort sorts each matrix row or each matrix column in
1853 ascending or descending order. So you should pass two operation flags to
1854 get desired behaviour. If you want to sort matrix rows or columns
1855 lexicographically, you can use STL std::sort generic function with the
1856 proper comparison predicate.
1858 @param src input single-channel array.
1859 @param dst output array of the same size and type as src.
1860 @param flags operation flags, a combination of cv::SortFlags
1861 @sa sortIdx, randShuffle
1863 CV_EXPORTS_W void sort(InputArray src, OutputArray dst, int flags);
1865 /** @brief Sorts each row or each column of a matrix.
1867 The function cv::sortIdx sorts each matrix row or each matrix column in the
1868 ascending or descending order. So you should pass two operation flags to
1869 get desired behaviour. Instead of reordering the elements themselves, it
1870 stores the indices of sorted elements in the output array. For example:
1872 Mat A = Mat::eye(3,3,CV_32F), B;
1873 sortIdx(A, B, SORT_EVERY_ROW + SORT_ASCENDING);
1874 // B will probably contain
1875 // (because of equal elements in A some permutations are possible):
1876 // [[1, 2, 0], [0, 2, 1], [0, 1, 2]]
1878 @param src input single-channel array.
1879 @param dst output integer array of the same size as src.
1880 @param flags operation flags that could be a combination of cv::SortFlags
1881 @sa sort, randShuffle
1883 CV_EXPORTS_W void sortIdx(InputArray src, OutputArray dst, int flags);
1885 /** @brief Finds the real roots of a cubic equation.
1887 The function solveCubic finds the real roots of a cubic equation:
1888 - if coeffs is a 4-element vector:
1889 \f[\texttt{coeffs} [0] x^3 + \texttt{coeffs} [1] x^2 + \texttt{coeffs} [2] x + \texttt{coeffs} [3] = 0\f]
1890 - if coeffs is a 3-element vector:
1891 \f[x^3 + \texttt{coeffs} [0] x^2 + \texttt{coeffs} [1] x + \texttt{coeffs} [2] = 0\f]
1893 The roots are stored in the roots array.
1894 @param coeffs equation coefficients, an array of 3 or 4 elements.
1895 @param roots output array of real roots that has 1 or 3 elements.
1897 CV_EXPORTS_W int solveCubic(InputArray coeffs, OutputArray roots);
1899 /** @brief Finds the real or complex roots of a polynomial equation.
1901 The function cv::solvePoly finds real and complex roots of a polynomial equation:
1902 \f[\texttt{coeffs} [n] x^{n} + \texttt{coeffs} [n-1] x^{n-1} + ... + \texttt{coeffs} [1] x + \texttt{coeffs} [0] = 0\f]
1903 @param coeffs array of polynomial coefficients.
1904 @param roots output (complex) array of roots.
1905 @param maxIters maximum number of iterations the algorithm does.
1907 CV_EXPORTS_W double solvePoly(InputArray coeffs, OutputArray roots, int maxIters = 300);
1909 /** @brief Calculates eigenvalues and eigenvectors of a symmetric matrix.
1911 The function cv::eigen calculates just eigenvalues, or eigenvalues and eigenvectors of the symmetric
1914 src*eigenvectors.row(i).t() = eigenvalues.at<srcType>(i)*eigenvectors.row(i).t()
1917 @note Use cv::eigenNonSymmetric for calculation of real eigenvalues and eigenvectors of non-symmetric matrix.
1919 @param src input matrix that must have CV_32FC1 or CV_64FC1 type, square size and be symmetrical
1921 @param eigenvalues output vector of eigenvalues of the same type as src; the eigenvalues are stored
1922 in the descending order.
1923 @param eigenvectors output matrix of eigenvectors; it has the same size and type as src; the
1924 eigenvectors are stored as subsequent matrix rows, in the same order as the corresponding
1926 @sa eigenNonSymmetric, completeSymm , PCA
1928 CV_EXPORTS_W bool eigen(InputArray src, OutputArray eigenvalues,
1929 OutputArray eigenvectors = noArray());
1931 /** @brief Calculates eigenvalues and eigenvectors of a non-symmetric matrix (real eigenvalues only).
1933 @note Assumes real eigenvalues.
1935 The function calculates eigenvalues and eigenvectors (optional) of the square matrix src:
1937 src*eigenvectors.row(i).t() = eigenvalues.at<srcType>(i)*eigenvectors.row(i).t()
1940 @param src input matrix (CV_32FC1 or CV_64FC1 type).
1941 @param eigenvalues output vector of eigenvalues (type is the same type as src).
1942 @param eigenvectors output matrix of eigenvectors (type is the same type as src). The eigenvectors are stored as subsequent matrix rows, in the same order as the corresponding eigenvalues.
1945 CV_EXPORTS_W void eigenNonSymmetric(InputArray src, OutputArray eigenvalues,
1946 OutputArray eigenvectors);
1948 /** @brief Calculates the covariance matrix of a set of vectors.
1950 The function cv::calcCovarMatrix calculates the covariance matrix and, optionally, the mean vector of
1951 the set of input vectors.
1952 @param samples samples stored as separate matrices
1953 @param nsamples number of samples
1954 @param covar output covariance matrix of the type ctype and square size.
1955 @param mean input or output (depending on the flags) array as the average value of the input vectors.
1956 @param flags operation flags as a combination of cv::CovarFlags
1957 @param ctype type of the matrixl; it equals 'CV_64F' by default.
1958 @sa PCA, mulTransposed, Mahalanobis
1959 @todo InputArrayOfArrays
1961 CV_EXPORTS void calcCovarMatrix( const Mat* samples, int nsamples, Mat& covar, Mat& mean,
1962 int flags, int ctype = CV_64F);
1965 @note use cv::COVAR_ROWS or cv::COVAR_COLS flag
1966 @param samples samples stored as rows/columns of a single matrix.
1967 @param covar output covariance matrix of the type ctype and square size.
1968 @param mean input or output (depending on the flags) array as the average value of the input vectors.
1969 @param flags operation flags as a combination of cv::CovarFlags
1970 @param ctype type of the matrixl; it equals 'CV_64F' by default.
1972 CV_EXPORTS_W void calcCovarMatrix( InputArray samples, OutputArray covar,
1973 InputOutputArray mean, int flags, int ctype = CV_64F);
1975 /** wrap PCA::operator() */
1976 CV_EXPORTS_W void PCACompute(InputArray data, InputOutputArray mean,
1977 OutputArray eigenvectors, int maxComponents = 0);
1979 /** wrap PCA::operator() */
1980 CV_EXPORTS_W void PCACompute(InputArray data, InputOutputArray mean,
1981 OutputArray eigenvectors, double retainedVariance);
1983 /** wrap PCA::project */
1984 CV_EXPORTS_W void PCAProject(InputArray data, InputArray mean,
1985 InputArray eigenvectors, OutputArray result);
1987 /** wrap PCA::backProject */
1988 CV_EXPORTS_W void PCABackProject(InputArray data, InputArray mean,
1989 InputArray eigenvectors, OutputArray result);
1991 /** wrap SVD::compute */
1992 CV_EXPORTS_W void SVDecomp( InputArray src, OutputArray w, OutputArray u, OutputArray vt, int flags = 0 );
1994 /** wrap SVD::backSubst */
1995 CV_EXPORTS_W void SVBackSubst( InputArray w, InputArray u, InputArray vt,
1996 InputArray rhs, OutputArray dst );
1998 /** @brief Calculates the Mahalanobis distance between two vectors.
2000 The function cv::Mahalanobis calculates and returns the weighted distance between two vectors:
2001 \f[d( \texttt{vec1} , \texttt{vec2} )= \sqrt{\sum_{i,j}{\texttt{icovar(i,j)}\cdot(\texttt{vec1}(I)-\texttt{vec2}(I))\cdot(\texttt{vec1(j)}-\texttt{vec2(j)})} }\f]
2002 The covariance matrix may be calculated using the cv::calcCovarMatrix function and then inverted using
2003 the invert function (preferably using the cv::DECOMP_SVD method, as the most accurate).
2004 @param v1 first 1D input vector.
2005 @param v2 second 1D input vector.
2006 @param icovar inverse covariance matrix.
2008 CV_EXPORTS_W double Mahalanobis(InputArray v1, InputArray v2, InputArray icovar);
2010 /** @brief Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array.
2012 The function cv::dft performs one of the following:
2013 - Forward the Fourier transform of a 1D vector of N elements:
2014 \f[Y = F^{(N)} \cdot X,\f]
2015 where \f$F^{(N)}_{jk}=\exp(-2\pi i j k/N)\f$ and \f$i=\sqrt{-1}\f$
2016 - Inverse the Fourier transform of a 1D vector of N elements:
2017 \f[\begin{array}{l} X'= \left (F^{(N)} \right )^{-1} \cdot Y = \left (F^{(N)} \right )^* \cdot y \\ X = (1/N) \cdot X, \end{array}\f]
2018 where \f$F^*=\left(\textrm{Re}(F^{(N)})-\textrm{Im}(F^{(N)})\right)^T\f$
2019 - Forward the 2D Fourier transform of a M x N matrix:
2020 \f[Y = F^{(M)} \cdot X \cdot F^{(N)}\f]
2021 - Inverse the 2D Fourier transform of a M x N matrix:
2022 \f[\begin{array}{l} X'= \left (F^{(M)} \right )^* \cdot Y \cdot \left (F^{(N)} \right )^* \\ X = \frac{1}{M \cdot N} \cdot X' \end{array}\f]
2024 In case of real (single-channel) data, the output spectrum of the forward Fourier transform or input
2025 spectrum of the inverse Fourier transform can be represented in a packed format called *CCS*
2026 (complex-conjugate-symmetrical). It was borrowed from IPL (Intel\* Image Processing Library). Here
2027 is how 2D *CCS* spectrum looks:
2028 \f[\begin{bmatrix} Re Y_{0,0} & Re Y_{0,1} & Im Y_{0,1} & Re Y_{0,2} & Im Y_{0,2} & \cdots & Re Y_{0,N/2-1} & Im Y_{0,N/2-1} & Re Y_{0,N/2} \\ Re Y_{1,0} & Re Y_{1,1} & Im Y_{1,1} & Re Y_{1,2} & Im Y_{1,2} & \cdots & Re Y_{1,N/2-1} & Im Y_{1,N/2-1} & Re Y_{1,N/2} \\ Im Y_{1,0} & Re Y_{2,1} & Im Y_{2,1} & Re Y_{2,2} & Im Y_{2,2} & \cdots & Re Y_{2,N/2-1} & Im Y_{2,N/2-1} & Im Y_{1,N/2} \\ \hdotsfor{9} \\ Re Y_{M/2-1,0} & Re Y_{M-3,1} & Im Y_{M-3,1} & \hdotsfor{3} & Re Y_{M-3,N/2-1} & Im Y_{M-3,N/2-1}& Re Y_{M/2-1,N/2} \\ Im Y_{M/2-1,0} & Re Y_{M-2,1} & Im Y_{M-2,1} & \hdotsfor{3} & Re Y_{M-2,N/2-1} & Im Y_{M-2,N/2-1}& Im Y_{M/2-1,N/2} \\ Re Y_{M/2,0} & Re Y_{M-1,1} & Im Y_{M-1,1} & \hdotsfor{3} & Re Y_{M-1,N/2-1} & Im Y_{M-1,N/2-1}& Re Y_{M/2,N/2} \end{bmatrix}\f]
2030 In case of 1D transform of a real vector, the output looks like the first row of the matrix above.
2032 So, the function chooses an operation mode depending on the flags and size of the input array:
2033 - If DFT_ROWS is set or the input array has a single row or single column, the function
2034 performs a 1D forward or inverse transform of each row of a matrix when DFT_ROWS is set.
2035 Otherwise, it performs a 2D transform.
2036 - If the input array is real and DFT_INVERSE is not set, the function performs a forward 1D or
2038 - When DFT_COMPLEX_OUTPUT is set, the output is a complex matrix of the same size as
2040 - When DFT_COMPLEX_OUTPUT is not set, the output is a real matrix of the same size as
2041 input. In case of 2D transform, it uses the packed format as shown above. In case of a
2042 single 1D transform, it looks like the first row of the matrix above. In case of
2043 multiple 1D transforms (when using the DFT_ROWS flag), each row of the output matrix
2044 looks like the first row of the matrix above.
2045 - If the input array is complex and either DFT_INVERSE or DFT_REAL_OUTPUT are not set, the
2046 output is a complex array of the same size as input. The function performs a forward or
2047 inverse 1D or 2D transform of the whole input array or each row of the input array
2048 independently, depending on the flags DFT_INVERSE and DFT_ROWS.
2049 - When DFT_INVERSE is set and the input array is real, or it is complex but DFT_REAL_OUTPUT
2050 is set, the output is a real array of the same size as input. The function performs a 1D or 2D
2051 inverse transformation of the whole input array or each individual row, depending on the flags
2052 DFT_INVERSE and DFT_ROWS.
2054 If DFT_SCALE is set, the scaling is done after the transformation.
2056 Unlike dct , the function supports arrays of arbitrary size. But only those arrays are processed
2057 efficiently, whose sizes can be factorized in a product of small prime numbers (2, 3, and 5 in the
2058 current implementation). Such an efficient DFT size can be calculated using the getOptimalDFTSize
2061 The sample below illustrates how to calculate a DFT-based convolution of two 2D real arrays:
2063 void convolveDFT(InputArray A, InputArray B, OutputArray C)
2065 // reallocate the output array if needed
2066 C.create(abs(A.rows - B.rows)+1, abs(A.cols - B.cols)+1, A.type());
2068 // calculate the size of DFT transform
2069 dftSize.width = getOptimalDFTSize(A.cols + B.cols - 1);
2070 dftSize.height = getOptimalDFTSize(A.rows + B.rows - 1);
2072 // allocate temporary buffers and initialize them with 0's
2073 Mat tempA(dftSize, A.type(), Scalar::all(0));
2074 Mat tempB(dftSize, B.type(), Scalar::all(0));
2076 // copy A and B to the top-left corners of tempA and tempB, respectively
2077 Mat roiA(tempA, Rect(0,0,A.cols,A.rows));
2079 Mat roiB(tempB, Rect(0,0,B.cols,B.rows));
2082 // now transform the padded A & B in-place;
2083 // use "nonzeroRows" hint for faster processing
2084 dft(tempA, tempA, 0, A.rows);
2085 dft(tempB, tempB, 0, B.rows);
2087 // multiply the spectrums;
2088 // the function handles packed spectrum representations well
2089 mulSpectrums(tempA, tempB, tempA);
2091 // transform the product back from the frequency domain.
2092 // Even though all the result rows will be non-zero,
2093 // you need only the first C.rows of them, and thus you
2094 // pass nonzeroRows == C.rows
2095 dft(tempA, tempA, DFT_INVERSE + DFT_SCALE, C.rows);
2097 // now copy the result back to C.
2098 tempA(Rect(0, 0, C.cols, C.rows)).copyTo(C);
2100 // all the temporary buffers will be deallocated automatically
2103 To optimize this sample, consider the following approaches:
2104 - Since nonzeroRows != 0 is passed to the forward transform calls and since A and B are copied to
2105 the top-left corners of tempA and tempB, respectively, it is not necessary to clear the whole
2106 tempA and tempB. It is only necessary to clear the tempA.cols - A.cols ( tempB.cols - B.cols)
2107 rightmost columns of the matrices.
2108 - This DFT-based convolution does not have to be applied to the whole big arrays, especially if B
2109 is significantly smaller than A or vice versa. Instead, you can calculate convolution by parts.
2110 To do this, you need to split the output array C into multiple tiles. For each tile, estimate
2111 which parts of A and B are required to calculate convolution in this tile. If the tiles in C are
2112 too small, the speed will decrease a lot because of repeated work. In the ultimate case, when
2113 each tile in C is a single pixel, the algorithm becomes equivalent to the naive convolution
2114 algorithm. If the tiles are too big, the temporary arrays tempA and tempB become too big and
2115 there is also a slowdown because of bad cache locality. So, there is an optimal tile size
2116 somewhere in the middle.
2117 - If different tiles in C can be calculated in parallel and, thus, the convolution is done by
2118 parts, the loop can be threaded.
2120 All of the above improvements have been implemented in matchTemplate and filter2D . Therefore, by
2121 using them, you can get the performance even better than with the above theoretically optimal
2122 implementation. Though, those two functions actually calculate cross-correlation, not convolution,
2123 so you need to "flip" the second convolution operand B vertically and horizontally using flip .
2125 - An example using the discrete fourier transform can be found at
2126 opencv_source_code/samples/cpp/dft.cpp
2127 - (Python) An example using the dft functionality to perform Wiener deconvolution can be found
2128 at opencv_source/samples/python/deconvolution.py
2129 - (Python) An example rearranging the quadrants of a Fourier image can be found at
2130 opencv_source/samples/python/dft.py
2131 @param src input array that could be real or complex.
2132 @param dst output array whose size and type depends on the flags .
2133 @param flags transformation flags, representing a combination of the cv::DftFlags
2134 @param nonzeroRows when the parameter is not zero, the function assumes that only the first
2135 nonzeroRows rows of the input array (DFT_INVERSE is not set) or only the first nonzeroRows of the
2136 output array (DFT_INVERSE is set) contain non-zeros, thus, the function can handle the rest of the
2137 rows more efficiently and save some time; this technique is very useful for calculating array
2138 cross-correlation or convolution using DFT.
2139 @sa dct , getOptimalDFTSize , mulSpectrums, filter2D , matchTemplate , flip , cartToPolar ,
2142 CV_EXPORTS_W void dft(InputArray src, OutputArray dst, int flags = 0, int nonzeroRows = 0);
2144 /** @brief Calculates the inverse Discrete Fourier Transform of a 1D or 2D array.
2146 idft(src, dst, flags) is equivalent to dft(src, dst, flags | DFT_INVERSE) .
2147 @note None of dft and idft scales the result by default. So, you should pass DFT_SCALE to one of
2148 dft or idft explicitly to make these transforms mutually inverse.
2149 @sa dft, dct, idct, mulSpectrums, getOptimalDFTSize
2150 @param src input floating-point real or complex array.
2151 @param dst output array whose size and type depend on the flags.
2152 @param flags operation flags (see dft and cv::DftFlags).
2153 @param nonzeroRows number of dst rows to process; the rest of the rows have undefined content (see
2154 the convolution sample in dft description.
2156 CV_EXPORTS_W void idft(InputArray src, OutputArray dst, int flags = 0, int nonzeroRows = 0);
2158 /** @brief Performs a forward or inverse discrete Cosine transform of 1D or 2D array.
2160 The function cv::dct performs a forward or inverse discrete Cosine transform (DCT) of a 1D or 2D
2161 floating-point array:
2162 - Forward Cosine transform of a 1D vector of N elements:
2163 \f[Y = C^{(N)} \cdot X\f]
2165 \f[C^{(N)}_{jk}= \sqrt{\alpha_j/N} \cos \left ( \frac{\pi(2k+1)j}{2N} \right )\f]
2167 \f$\alpha_0=1\f$, \f$\alpha_j=2\f$ for *j \> 0*.
2168 - Inverse Cosine transform of a 1D vector of N elements:
2169 \f[X = \left (C^{(N)} \right )^{-1} \cdot Y = \left (C^{(N)} \right )^T \cdot Y\f]
2170 (since \f$C^{(N)}\f$ is an orthogonal matrix, \f$C^{(N)} \cdot \left(C^{(N)}\right)^T = I\f$ )
2171 - Forward 2D Cosine transform of M x N matrix:
2172 \f[Y = C^{(N)} \cdot X \cdot \left (C^{(N)} \right )^T\f]
2173 - Inverse 2D Cosine transform of M x N matrix:
2174 \f[X = \left (C^{(N)} \right )^T \cdot X \cdot C^{(N)}\f]
2176 The function chooses the mode of operation by looking at the flags and size of the input array:
2177 - If (flags & DCT_INVERSE) == 0 , the function does a forward 1D or 2D transform. Otherwise, it
2178 is an inverse 1D or 2D transform.
2179 - If (flags & DCT_ROWS) != 0 , the function performs a 1D transform of each row.
2180 - If the array is a single column or a single row, the function performs a 1D transform.
2181 - If none of the above is true, the function performs a 2D transform.
2183 @note Currently dct supports even-size arrays (2, 4, 6 ...). For data analysis and approximation, you
2184 can pad the array when necessary.
2185 Also, the function performance depends very much, and not monotonically, on the array size (see
2186 getOptimalDFTSize ). In the current implementation DCT of a vector of size N is calculated via DFT
2187 of a vector of size N/2 . Thus, the optimal DCT size N1 \>= N can be calculated as:
2189 size_t getOptimalDCTSize(size_t N) { return 2*getOptimalDFTSize((N+1)/2); }
2190 N1 = getOptimalDCTSize(N);
2192 @param src input floating-point array.
2193 @param dst output array of the same size and type as src .
2194 @param flags transformation flags as a combination of cv::DftFlags (DCT_*)
2195 @sa dft , getOptimalDFTSize , idct
2197 CV_EXPORTS_W void dct(InputArray src, OutputArray dst, int flags = 0);
2199 /** @brief Calculates the inverse Discrete Cosine Transform of a 1D or 2D array.
2201 idct(src, dst, flags) is equivalent to dct(src, dst, flags | DCT_INVERSE).
2202 @param src input floating-point single-channel array.
2203 @param dst output array of the same size and type as src.
2204 @param flags operation flags.
2205 @sa dct, dft, idft, getOptimalDFTSize
2207 CV_EXPORTS_W void idct(InputArray src, OutputArray dst, int flags = 0);
2209 /** @brief Performs the per-element multiplication of two Fourier spectrums.
2211 The function cv::mulSpectrums performs the per-element multiplication of the two CCS-packed or complex
2212 matrices that are results of a real or complex Fourier transform.
2214 The function, together with dft and idft , may be used to calculate convolution (pass conjB=false )
2215 or correlation (pass conjB=true ) of two arrays rapidly. When the arrays are complex, they are
2216 simply multiplied (per element) with an optional conjugation of the second-array elements. When the
2217 arrays are real, they are assumed to be CCS-packed (see dft for details).
2218 @param a first input array.
2219 @param b second input array of the same size and type as src1 .
2220 @param c output array of the same size and type as src1 .
2221 @param flags operation flags; currently, the only supported flag is cv::DFT_ROWS, which indicates that
2222 each row of src1 and src2 is an independent 1D Fourier spectrum. If you do not want to use this flag, then simply add a `0` as value.
2223 @param conjB optional flag that conjugates the second input array before the multiplication (true)
2226 CV_EXPORTS_W void mulSpectrums(InputArray a, InputArray b, OutputArray c,
2227 int flags, bool conjB = false);
2229 /** @brief Returns the optimal DFT size for a given vector size.
2231 DFT performance is not a monotonic function of a vector size. Therefore, when you calculate
2232 convolution of two arrays or perform the spectral analysis of an array, it usually makes sense to
2233 pad the input data with zeros to get a bit larger array that can be transformed much faster than the
2234 original one. Arrays whose size is a power-of-two (2, 4, 8, 16, 32, ...) are the fastest to process.
2235 Though, the arrays whose size is a product of 2's, 3's, and 5's (for example, 300 = 5\*5\*3\*2\*2)
2236 are also processed quite efficiently.
2238 The function cv::getOptimalDFTSize returns the minimum number N that is greater than or equal to vecsize
2239 so that the DFT of a vector of size N can be processed efficiently. In the current implementation N
2240 = 2 ^p^ \* 3 ^q^ \* 5 ^r^ for some integer p, q, r.
2242 The function returns a negative number if vecsize is too large (very close to INT_MAX ).
2244 While the function cannot be used directly to estimate the optimal vector size for DCT transform
2245 (since the current DCT implementation supports only even-size vectors), it can be easily processed
2246 as getOptimalDFTSize((vecsize+1)/2)\*2.
2247 @param vecsize vector size.
2248 @sa dft , dct , idft , idct , mulSpectrums
2250 CV_EXPORTS_W int getOptimalDFTSize(int vecsize);
2252 /** @brief Returns the default random number generator.
2254 The function cv::theRNG returns the default random number generator. For each thread, there is a
2255 separate random number generator, so you can use the function safely in multi-thread environments.
2256 If you just need to get a single random number using this generator or initialize an array, you can
2257 use randu or randn instead. But if you are going to generate many random numbers inside a loop, it
2258 is much faster to use this function to retrieve the generator and then use RNG::operator _Tp() .
2259 @sa RNG, randu, randn
2261 CV_EXPORTS RNG& theRNG();
2263 /** @brief Sets state of default random number generator.
2265 The function cv::setRNGSeed sets state of default random number generator to custom value.
2266 @param seed new state for default random number generator
2267 @sa RNG, randu, randn
2269 CV_EXPORTS_W void setRNGSeed(int seed);
2271 /** @brief Generates a single uniformly-distributed random number or an array of random numbers.
2273 Non-template variant of the function fills the matrix dst with uniformly-distributed
2274 random numbers from the specified range:
2275 \f[\texttt{low} _c \leq \texttt{dst} (I)_c < \texttt{high} _c\f]
2276 @param dst output array of random numbers; the array must be pre-allocated.
2277 @param low inclusive lower boundary of the generated random numbers.
2278 @param high exclusive upper boundary of the generated random numbers.
2279 @sa RNG, randn, theRNG
2281 CV_EXPORTS_W void randu(InputOutputArray dst, InputArray low, InputArray high);
2283 /** @brief Fills the array with normally distributed random numbers.
2285 The function cv::randn fills the matrix dst with normally distributed random numbers with the specified
2286 mean vector and the standard deviation matrix. The generated random numbers are clipped to fit the
2287 value range of the output array data type.
2288 @param dst output array of random numbers; the array must be pre-allocated and have 1 to 4 channels.
2289 @param mean mean value (expectation) of the generated random numbers.
2290 @param stddev standard deviation of the generated random numbers; it can be either a vector (in
2291 which case a diagonal standard deviation matrix is assumed) or a square matrix.
2294 CV_EXPORTS_W void randn(InputOutputArray dst, InputArray mean, InputArray stddev);
2296 /** @brief Shuffles the array elements randomly.
2298 The function cv::randShuffle shuffles the specified 1D array by randomly choosing pairs of elements and
2299 swapping them. The number of such swap operations will be dst.rows\*dst.cols\*iterFactor .
2300 @param dst input/output numerical 1D array.
2301 @param iterFactor scale factor that determines the number of random swap operations (see the details
2303 @param rng optional random number generator used for shuffling; if it is zero, theRNG () is used
2307 CV_EXPORTS_W void randShuffle(InputOutputArray dst, double iterFactor = 1., RNG* rng = 0);
2309 /** @brief Principal Component Analysis
2311 The class is used to calculate a special basis for a set of vectors. The
2312 basis will consist of eigenvectors of the covariance matrix calculated
2313 from the input set of vectors. The class %PCA can also transform
2314 vectors to/from the new coordinate space defined by the basis. Usually,
2315 in this new coordinate system, each vector from the original set (and
2316 any linear combination of such vectors) can be quite accurately
2317 approximated by taking its first few components, corresponding to the
2318 eigenvectors of the largest eigenvalues of the covariance matrix.
2319 Geometrically it means that you calculate a projection of the vector to
2320 a subspace formed by a few eigenvectors corresponding to the dominant
2321 eigenvalues of the covariance matrix. And usually such a projection is
2322 very close to the original vector. So, you can represent the original
2323 vector from a high-dimensional space with a much shorter vector
2324 consisting of the projected vector's coordinates in the subspace. Such a
2325 transformation is also known as Karhunen-Loeve Transform, or KLT.
2326 See http://en.wikipedia.org/wiki/Principal_component_analysis
2328 The sample below is the function that takes two matrices. The first
2329 function stores a set of vectors (a row per vector) that is used to
2330 calculate PCA. The second function stores another "test" set of vectors
2331 (a row per vector). First, these vectors are compressed with PCA, then
2332 reconstructed back, and then the reconstruction error norm is computed
2333 and printed for each vector. :
2338 PCA compressPCA(const Mat& pcaset, int maxComponents,
2339 const Mat& testset, Mat& compressed)
2341 PCA pca(pcaset, // pass the data
2342 Mat(), // we do not have a pre-computed mean vector,
2343 // so let the PCA engine to compute it
2344 PCA::DATA_AS_ROW, // indicate that the vectors
2345 // are stored as matrix rows
2346 // (use PCA::DATA_AS_COL if the vectors are
2347 // the matrix columns)
2348 maxComponents // specify, how many principal components to retain
2350 // if there is no test data, just return the computed basis, ready-to-use
2353 CV_Assert( testset.cols == pcaset.cols );
2355 compressed.create(testset.rows, maxComponents, testset.type());
2358 for( int i = 0; i < testset.rows; i++ )
2360 Mat vec = testset.row(i), coeffs = compressed.row(i), reconstructed;
2361 // compress the vector, the result will be stored
2362 // in the i-th row of the output matrix
2363 pca.project(vec, coeffs);
2364 // and then reconstruct it
2365 pca.backProject(coeffs, reconstructed);
2366 // and measure the error
2367 printf("%d. diff = %g\n", i, norm(vec, reconstructed, NORM_L2));
2372 @sa calcCovarMatrix, mulTransposed, SVD, dft, dct
2374 class CV_EXPORTS PCA
2377 enum Flags { DATA_AS_ROW = 0, //!< indicates that the input samples are stored as matrix rows
2378 DATA_AS_COL = 1, //!< indicates that the input samples are stored as matrix columns
2382 /** @brief default constructor
2384 The default constructor initializes an empty %PCA structure. The other
2385 constructors initialize the structure and call PCA::operator()().
2390 @param data input samples stored as matrix rows or matrix columns.
2391 @param mean optional mean value; if the matrix is empty (@c noArray()),
2392 the mean is computed from the data.
2393 @param flags operation flags; currently the parameter is only used to
2394 specify the data layout (PCA::Flags)
2395 @param maxComponents maximum number of components that %PCA should
2396 retain; by default, all the components are retained.
2398 PCA(InputArray data, InputArray mean, int flags, int maxComponents = 0);
2401 @param data input samples stored as matrix rows or matrix columns.
2402 @param mean optional mean value; if the matrix is empty (noArray()),
2403 the mean is computed from the data.
2404 @param flags operation flags; currently the parameter is only used to
2405 specify the data layout (PCA::Flags)
2406 @param retainedVariance Percentage of variance that PCA should retain.
2407 Using this parameter will let the PCA decided how many components to
2408 retain but it will always keep at least 2.
2410 PCA(InputArray data, InputArray mean, int flags, double retainedVariance);
2412 /** @brief performs %PCA
2414 The operator performs %PCA of the supplied dataset. It is safe to reuse
2415 the same PCA structure for multiple datasets. That is, if the structure
2416 has been previously used with another dataset, the existing internal
2417 data is reclaimed and the new @ref eigenvalues, @ref eigenvectors and @ref
2418 mean are allocated and computed.
2420 The computed @ref eigenvalues are sorted from the largest to the smallest and
2421 the corresponding @ref eigenvectors are stored as eigenvectors rows.
2423 @param data input samples stored as the matrix rows or as the matrix
2425 @param mean optional mean value; if the matrix is empty (noArray()),
2426 the mean is computed from the data.
2427 @param flags operation flags; currently the parameter is only used to
2428 specify the data layout. (Flags)
2429 @param maxComponents maximum number of components that PCA should
2430 retain; by default, all the components are retained.
2432 PCA& operator()(InputArray data, InputArray mean, int flags, int maxComponents = 0);
2435 @param data input samples stored as the matrix rows or as the matrix
2437 @param mean optional mean value; if the matrix is empty (noArray()),
2438 the mean is computed from the data.
2439 @param flags operation flags; currently the parameter is only used to
2440 specify the data layout. (PCA::Flags)
2441 @param retainedVariance Percentage of variance that %PCA should retain.
2442 Using this parameter will let the %PCA decided how many components to
2443 retain but it will always keep at least 2.
2445 PCA& operator()(InputArray data, InputArray mean, int flags, double retainedVariance);
2447 /** @brief Projects vector(s) to the principal component subspace.
2449 The methods project one or more vectors to the principal component
2450 subspace, where each vector projection is represented by coefficients in
2451 the principal component basis. The first form of the method returns the
2452 matrix that the second form writes to the result. So the first form can
2453 be used as a part of expression while the second form can be more
2454 efficient in a processing loop.
2455 @param vec input vector(s); must have the same dimensionality and the
2456 same layout as the input data used at %PCA phase, that is, if
2457 DATA_AS_ROW are specified, then `vec.cols==data.cols`
2458 (vector dimensionality) and `vec.rows` is the number of vectors to
2459 project, and the same is true for the PCA::DATA_AS_COL case.
2461 Mat project(InputArray vec) const;
2464 @param vec input vector(s); must have the same dimensionality and the
2465 same layout as the input data used at PCA phase, that is, if
2466 DATA_AS_ROW are specified, then `vec.cols==data.cols`
2467 (vector dimensionality) and `vec.rows` is the number of vectors to
2468 project, and the same is true for the PCA::DATA_AS_COL case.
2469 @param result output vectors; in case of PCA::DATA_AS_COL, the
2470 output matrix has as many columns as the number of input vectors, this
2471 means that `result.cols==vec.cols` and the number of rows match the
2472 number of principal components (for example, `maxComponents` parameter
2473 passed to the constructor).
2475 void project(InputArray vec, OutputArray result) const;
2477 /** @brief Reconstructs vectors from their PC projections.
2479 The methods are inverse operations to PCA::project. They take PC
2480 coordinates of projected vectors and reconstruct the original vectors.
2481 Unless all the principal components have been retained, the
2482 reconstructed vectors are different from the originals. But typically,
2483 the difference is small if the number of components is large enough (but
2484 still much smaller than the original vector dimensionality). As a
2485 result, PCA is used.
2486 @param vec coordinates of the vectors in the principal component
2487 subspace, the layout and size are the same as of PCA::project output
2490 Mat backProject(InputArray vec) const;
2493 @param vec coordinates of the vectors in the principal component
2494 subspace, the layout and size are the same as of PCA::project output
2496 @param result reconstructed vectors; the layout and size are the same as
2497 of PCA::project input vectors.
2499 void backProject(InputArray vec, OutputArray result) const;
2501 /** @brief write PCA objects
2503 Writes @ref eigenvalues @ref eigenvectors and @ref mean to specified FileStorage
2505 void write(FileStorage& fs) const;
2507 /** @brief load PCA objects
2509 Loads @ref eigenvalues @ref eigenvectors and @ref mean from specified FileNode
2511 void read(const FileNode& fn);
2513 Mat eigenvectors; //!< eigenvectors of the covariation matrix
2514 Mat eigenvalues; //!< eigenvalues of the covariation matrix
2515 Mat mean; //!< mean value subtracted before the projection and added after the back projection
2518 /** @example pca.cpp
2519 An example using %PCA for dimensionality reduction while maintaining an amount of variance
2523 @brief Linear Discriminant Analysis
2524 @todo document this class
2526 class CV_EXPORTS LDA
2529 /** @brief constructor
2530 Initializes a LDA with num_components (default 0).
2532 explicit LDA(int num_components = 0);
2534 /** Initializes and performs a Discriminant Analysis with Fisher's
2535 Optimization Criterion on given data in src and corresponding labels
2536 in labels. If 0 (or less) number of components are given, they are
2537 automatically determined for given data in computation.
2539 LDA(InputArrayOfArrays src, InputArray labels, int num_components = 0);
2541 /** Serializes this object to a given filename.
2543 void save(const String& filename) const;
2545 /** Deserializes this object from a given filename.
2547 void load(const String& filename);
2549 /** Serializes this object to a given cv::FileStorage.
2551 void save(FileStorage& fs) const;
2553 /** Deserializes this object from a given cv::FileStorage.
2555 void load(const FileStorage& node);
2561 /** Compute the discriminants for data in src (row aligned) and labels.
2563 void compute(InputArrayOfArrays src, InputArray labels);
2565 /** Projects samples into the LDA subspace.
2566 src may be one or more row aligned samples.
2568 Mat project(InputArray src);
2570 /** Reconstructs projections from the LDA subspace.
2571 src may be one or more row aligned projections.
2573 Mat reconstruct(InputArray src);
2575 /** Returns the eigenvectors of this LDA.
2577 Mat eigenvectors() const { return _eigenvectors; }
2579 /** Returns the eigenvalues of this LDA.
2581 Mat eigenvalues() const { return _eigenvalues; }
2583 static Mat subspaceProject(InputArray W, InputArray mean, InputArray src);
2584 static Mat subspaceReconstruct(InputArray W, InputArray mean, InputArray src);
2587 bool _dataAsRow; // unused, but needed for 3.0 ABI compatibility.
2588 int _num_components;
2591 void lda(InputArrayOfArrays src, InputArray labels);
2594 /** @brief Singular Value Decomposition
2596 Class for computing Singular Value Decomposition of a floating-point
2597 matrix. The Singular Value Decomposition is used to solve least-square
2598 problems, under-determined linear systems, invert matrices, compute
2599 condition numbers, and so on.
2601 If you want to compute a condition number of a matrix or an absolute value of
2602 its determinant, you do not need `u` and `vt`. You can pass
2603 flags=SVD::NO_UV|... . Another flag SVD::FULL_UV indicates that full-size u
2604 and vt must be computed, which is not necessary most of the time.
2606 @sa invert, solve, eigen, determinant
2608 class CV_EXPORTS SVD
2612 /** allow the algorithm to modify the decomposed matrix; it can save space and speed up
2613 processing. currently ignored. */
2615 /** indicates that only a vector of singular values `w` is to be processed, while u and vt
2616 will be set to empty matrices */
2618 /** when the matrix is not square, by default the algorithm produces u and vt matrices of
2619 sufficiently large size for the further A reconstruction; if, however, FULL_UV flag is
2620 specified, u and vt will be full-size square orthogonal matrices.*/
2624 /** @brief the default constructor
2626 initializes an empty SVD structure
2631 initializes an empty SVD structure and then calls SVD::operator()
2632 @param src decomposed matrix.
2633 @param flags operation flags (SVD::Flags)
2635 SVD( InputArray src, int flags = 0 );
2637 /** @brief the operator that performs SVD. The previously allocated u, w and vt are released.
2639 The operator performs the singular value decomposition of the supplied
2640 matrix. The u,`vt` , and the vector of singular values w are stored in
2641 the structure. The same SVD structure can be reused many times with
2642 different matrices. Each time, if needed, the previous u,`vt` , and w
2643 are reclaimed and the new matrices are created, which is all handled by
2645 @param src decomposed matrix.
2646 @param flags operation flags (SVD::Flags)
2648 SVD& operator ()( InputArray src, int flags = 0 );
2650 /** @brief decomposes matrix and stores the results to user-provided matrices
2652 The methods/functions perform SVD of matrix. Unlike SVD::SVD constructor
2653 and SVD::operator(), they store the results to the user-provided
2658 SVD::compute(A, w, u, vt);
2661 @param src decomposed matrix
2662 @param w calculated singular values
2663 @param u calculated left singular vectors
2664 @param vt transposed matrix of right singular values
2665 @param flags operation flags - see SVD::SVD.
2667 static void compute( InputArray src, OutputArray w,
2668 OutputArray u, OutputArray vt, int flags = 0 );
2671 computes singular values of a matrix
2672 @param src decomposed matrix
2673 @param w calculated singular values
2674 @param flags operation flags - see SVD::Flags.
2676 static void compute( InputArray src, OutputArray w, int flags = 0 );
2678 /** @brief performs back substitution
2680 static void backSubst( InputArray w, InputArray u,
2681 InputArray vt, InputArray rhs,
2684 /** @brief solves an under-determined singular linear system
2686 The method finds a unit-length solution x of a singular linear system
2687 A\*x = 0. Depending on the rank of A, there can be no solutions, a
2688 single solution or an infinite number of solutions. In general, the
2689 algorithm solves the following problem:
2690 \f[dst = \arg \min _{x: \| x \| =1} \| src \cdot x \|\f]
2691 @param src left-hand-side matrix.
2692 @param dst found solution.
2694 static void solveZ( InputArray src, OutputArray dst );
2696 /** @brief performs a singular value back substitution.
2698 The method calculates a back substitution for the specified right-hand
2701 \f[\texttt{x} = \texttt{vt} ^T \cdot diag( \texttt{w} )^{-1} \cdot \texttt{u} ^T \cdot \texttt{rhs} \sim \texttt{A} ^{-1} \cdot \texttt{rhs}\f]
2703 Using this technique you can either get a very accurate solution of the
2704 convenient linear system, or the best (in the least-squares terms)
2705 pseudo-solution of an overdetermined linear system.
2707 @param rhs right-hand side of a linear system (u\*w\*v')\*dst = rhs to
2708 be solved, where A has been previously decomposed.
2710 @param dst found solution of the system.
2712 @note Explicit SVD with the further back substitution only makes sense
2713 if you need to solve many linear systems with the same left-hand side
2714 (for example, src ). If all you need is to solve a single system
2715 (possibly with multiple rhs immediately available), simply call solve
2716 add pass DECOMP_SVD there. It does absolutely the same thing.
2718 void backSubst( InputArray rhs, OutputArray dst ) const;
2720 /** @todo document */
2721 template<typename _Tp, int m, int n, int nm> static
2722 void compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w, Matx<_Tp, m, nm>& u, Matx<_Tp, n, nm>& vt );
2724 /** @todo document */
2725 template<typename _Tp, int m, int n, int nm> static
2726 void compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w );
2728 /** @todo document */
2729 template<typename _Tp, int m, int n, int nm, int nb> static
2730 void backSubst( const Matx<_Tp, nm, 1>& w, const Matx<_Tp, m, nm>& u, const Matx<_Tp, n, nm>& vt, const Matx<_Tp, m, nb>& rhs, Matx<_Tp, n, nb>& dst );
2735 /** @brief Random Number Generator
2737 Random number generator. It encapsulates the state (currently, a 64-bit
2738 integer) and has methods to return scalar random values and to fill
2739 arrays with random values. Currently it supports uniform and Gaussian
2740 (normal) distributions. The generator uses Multiply-With-Carry
2741 algorithm, introduced by G. Marsaglia (
2742 <http://en.wikipedia.org/wiki/Multiply-with-carry> ).
2743 Gaussian-distribution random numbers are generated using the Ziggurat
2744 algorithm ( <http://en.wikipedia.org/wiki/Ziggurat_algorithm> ),
2745 introduced by G. Marsaglia and W. W. Tsang.
2747 class CV_EXPORTS RNG
2754 /** @brief constructor
2756 These are the RNG constructors. The first form sets the state to some
2757 pre-defined value, equal to 2\*\*32-1 in the current implementation. The
2758 second form sets the state to the specified value. If you passed state=0
2759 , the constructor uses the above default value instead to avoid the
2760 singular random number sequence, consisting of all zeros.
2764 @param state 64-bit value used to initialize the RNG.
2767 /**The method updates the state using the MWC algorithm and returns the
2768 next 32-bit random number.*/
2771 /**Each of the methods updates the state using the MWC algorithm and
2772 returns the next random number of the specified type. In case of integer
2773 types, the returned number is from the available value range for the
2774 specified type. In case of floating-point types, the returned value is
2785 operator unsigned();
2793 /** @brief returns a random integer sampled uniformly from [0, N).
2795 The methods transform the state using the MWC algorithm and return the
2796 next random number. The first form is equivalent to RNG::next . The
2797 second form returns the random number modulo N , which means that the
2798 result is in the range [0, N) .
2800 unsigned operator ()();
2802 @param N upper non-inclusive boundary of the returned random number.
2804 unsigned operator ()(unsigned N);
2806 /** @brief returns uniformly distributed integer random number from [a,b) range
2808 The methods transform the state using the MWC algorithm and return the
2809 next uniformly-distributed random number of the specified type, deduced
2810 from the input parameter type, from the range [a, b) . There is a nuance
2811 illustrated by the following sample:
2816 // always produces 0
2817 double a = rng.uniform(0, 1);
2819 // produces double from [0, 1)
2820 double a1 = rng.uniform((double)0, (double)1);
2822 // produces float from [0, 1)
2823 float b = rng.uniform(0.f, 1.f);
2825 // produces double from [0, 1)
2826 double c = rng.uniform(0., 1.);
2828 // may cause compiler error because of ambiguity:
2829 // RNG::uniform(0, (int)0.999999)? or RNG::uniform((double)0, 0.99999)?
2830 double d = rng.uniform(0, 0.999999);
2833 The compiler does not take into account the type of the variable to
2834 which you assign the result of RNG::uniform . The only thing that
2835 matters to the compiler is the type of a and b parameters. So, if you
2836 want a floating-point random number, but the range boundaries are
2837 integer numbers, either put dots in the end, if they are constants, or
2838 use explicit type cast operators, as in the a1 initialization above.
2839 @param a lower inclusive boundary of the returned random number.
2840 @param b upper non-inclusive boundary of the returned random number.
2842 int uniform(int a, int b);
2844 float uniform(float a, float b);
2846 double uniform(double a, double b);
2848 /** @brief Fills arrays with random numbers.
2850 @param mat 2D or N-dimensional matrix; currently matrices with more than
2851 4 channels are not supported by the methods, use Mat::reshape as a
2852 possible workaround.
2853 @param distType distribution type, RNG::UNIFORM or RNG::NORMAL.
2854 @param a first distribution parameter; in case of the uniform
2855 distribution, this is an inclusive lower boundary, in case of the normal
2856 distribution, this is a mean value.
2857 @param b second distribution parameter; in case of the uniform
2858 distribution, this is a non-inclusive upper boundary, in case of the
2859 normal distribution, this is a standard deviation (diagonal of the
2860 standard deviation matrix or the full standard deviation matrix).
2861 @param saturateRange pre-saturation flag; for uniform distribution only;
2862 if true, the method will first convert a and b to the acceptable value
2863 range (according to the mat datatype) and then will generate uniformly
2864 distributed random numbers within the range [saturate(a), saturate(b)),
2865 if saturateRange=false, the method will generate uniformly distributed
2866 random numbers in the original range [a, b) and then will saturate them,
2867 it means, for example, that
2868 <tt>theRNG().fill(mat_8u, RNG::UNIFORM, -DBL_MAX, DBL_MAX)</tt> will likely
2869 produce array mostly filled with 0's and 255's, since the range (0, 255)
2870 is significantly smaller than [-DBL_MAX, DBL_MAX).
2872 Each of the methods fills the matrix with the random values from the
2873 specified distribution. As the new numbers are generated, the RNG state
2874 is updated accordingly. In case of multiple-channel images, every
2875 channel is filled independently, which means that RNG cannot generate
2876 samples from the multi-dimensional Gaussian distribution with
2877 non-diagonal covariance matrix directly. To do that, the method
2878 generates samples from multi-dimensional standard Gaussian distribution
2879 with zero mean and identity covariation matrix, and then transforms them
2880 using transform to get samples from the specified Gaussian distribution.
2882 void fill( InputOutputArray mat, int distType, InputArray a, InputArray b, bool saturateRange = false );
2884 /** @brief Returns the next random number sampled from the Gaussian distribution
2885 @param sigma standard deviation of the distribution.
2887 The method transforms the state using the MWC algorithm and returns the
2888 next random number from the Gaussian distribution N(0,sigma) . That is,
2889 the mean value of the returned random numbers is zero and the standard
2890 deviation is the specified sigma .
2892 double gaussian(double sigma);
2896 bool operator ==(const RNG& other) const;
2899 /** @brief Mersenne Twister random number generator
2901 Inspired by http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/CODES/mt19937ar.c
2904 class CV_EXPORTS RNG_MT19937
2908 RNG_MT19937(unsigned s);
2909 void seed(unsigned s);
2914 operator unsigned();
2918 unsigned operator ()(unsigned N);
2919 unsigned operator ()();
2921 /** @brief returns uniformly distributed integer random number from [a,b) range
2924 int uniform(int a, int b);
2925 /** @brief returns uniformly distributed floating-point random number from [a,b) range
2928 float uniform(float a, float b);
2929 /** @brief returns uniformly distributed double-precision floating-point random number from [a,b) range
2932 double uniform(double a, double b);
2935 enum PeriodParameters {N = 624, M = 397};
2942 //! @addtogroup core_cluster
2945 /** @example kmeans.cpp
2946 An example on K-means clustering
2949 /** @brief Finds centers of clusters and groups input samples around the clusters.
2951 The function kmeans implements a k-means algorithm that finds the centers of cluster_count clusters
2952 and groups the input samples around the clusters. As an output, \f$\texttt{labels}_i\f$ contains a
2953 0-based cluster index for the sample stored in the \f$i^{th}\f$ row of the samples matrix.
2956 - (Python) An example on K-means clustering can be found at
2957 opencv_source_code/samples/python/kmeans.py
2958 @param data Data for clustering. An array of N-Dimensional points with float coordinates is needed.
2959 Examples of this array can be:
2960 - Mat points(count, 2, CV_32F);
2961 - Mat points(count, 1, CV_32FC2);
2962 - Mat points(1, count, CV_32FC2);
2963 - std::vector\<cv::Point2f\> points(sampleCount);
2964 @param K Number of clusters to split the set by.
2965 @param bestLabels Input/output integer array that stores the cluster indices for every sample.
2966 @param criteria The algorithm termination criteria, that is, the maximum number of iterations and/or
2967 the desired accuracy. The accuracy is specified as criteria.epsilon. As soon as each of the cluster
2968 centers moves by less than criteria.epsilon on some iteration, the algorithm stops.
2969 @param attempts Flag to specify the number of times the algorithm is executed using different
2970 initial labellings. The algorithm returns the labels that yield the best compactness (see the last
2971 function parameter).
2972 @param flags Flag that can take values of cv::KmeansFlags
2973 @param centers Output matrix of the cluster centers, one row per each cluster center.
2974 @return The function returns the compactness measure that is computed as
2975 \f[\sum _i \| \texttt{samples} _i - \texttt{centers} _{ \texttt{labels} _i} \| ^2\f]
2976 after every attempt. The best (minimum) value is chosen and the corresponding labels and the
2977 compactness value are returned by the function. Basically, you can use only the core of the
2978 function, set the number of attempts to 1, initialize labels each time using a custom algorithm,
2979 pass them with the ( flags = KMEANS_USE_INITIAL_LABELS ) flag, and then choose the best
2980 (most-compact) clustering.
2982 CV_EXPORTS_W double kmeans( InputArray data, int K, InputOutputArray bestLabels,
2983 TermCriteria criteria, int attempts,
2984 int flags, OutputArray centers = noArray() );
2988 //! @addtogroup core_basic
2991 /////////////////////////////// Formatted output of cv::Mat ///////////////////////////
2993 /** @todo document */
2994 class CV_EXPORTS Formatted
2997 virtual const char* next() = 0;
2998 virtual void reset() = 0;
2999 virtual ~Formatted();
3002 /** @todo document */
3003 class CV_EXPORTS Formatter
3006 enum { FMT_DEFAULT = 0,
3014 virtual ~Formatter();
3016 virtual Ptr<Formatted> format(const Mat& mtx) const = 0;
3018 virtual void set32fPrecision(int p = 8) = 0;
3019 virtual void set64fPrecision(int p = 16) = 0;
3020 virtual void setMultiline(bool ml = true) = 0;
3022 static Ptr<Formatter> get(int fmt = FMT_DEFAULT);
3027 String& operator << (String& out, Ptr<Formatted> fmtd)
3030 for(const char* str = fmtd->next(); str; str = fmtd->next())
3031 out += cv::String(str);
3036 String& operator << (String& out, const Mat& mtx)
3038 return out << Formatter::get()->format(mtx);
3041 //////////////////////////////////////// Algorithm ////////////////////////////////////
3043 class CV_EXPORTS Algorithm;
3045 template<typename _Tp> struct ParamType {};
3048 /** @brief This is a base class for all more or less complex algorithms in OpenCV
3050 especially for classes of algorithms, for which there can be multiple implementations. The examples
3051 are stereo correspondence (for which there are algorithms like block matching, semi-global block
3052 matching, graph-cut etc.), background subtraction (which can be done using mixture-of-gaussians
3053 models, codebook-based algorithm etc.), optical flow (block matching, Lucas-Kanade, Horn-Schunck
3056 Here is example of SIFT use in your application via Algorithm interface:
3058 #include "opencv2/opencv.hpp"
3059 #include "opencv2/xfeatures2d.hpp"
3060 using namespace cv::xfeatures2d;
3062 Ptr<Feature2D> sift = SIFT::create();
3063 FileStorage fs("sift_params.xml", FileStorage::READ);
3064 if( fs.isOpened() ) // if we have file with parameters, read them
3066 sift->read(fs["sift_params"]);
3069 else // else modify the parameters and store them; user can later edit the file to use different parameters
3071 sift->setContrastThreshold(0.01f); // lower the contrast threshold, compared to the default value
3073 WriteStructContext ws(fs, "sift_params", CV_NODE_MAP);
3077 Mat image = imread("myimage.png", 0), descriptors;
3078 vector<KeyPoint> keypoints;
3079 sift->detectAndCompute(image, noArray(), keypoints, descriptors);
3082 class CV_EXPORTS_W Algorithm
3086 virtual ~Algorithm();
3088 /** @brief Clears the algorithm state
3090 CV_WRAP virtual void clear() {}
3092 /** @brief Stores algorithm parameters in a file storage
3094 virtual void write(FileStorage& fs) const { (void)fs; }
3096 /** @brief Reads algorithm parameters from a file storage
3098 virtual void read(const FileNode& fn) { (void)fn; }
3100 /** @brief Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
3102 virtual bool empty() const { return false; }
3104 /** @brief Reads algorithm from the file node
3106 This is static template method of Algorithm. It's usage is following (in the case of SVM):
3108 cv::FileStorage fsRead("example.xml", FileStorage::READ);
3109 Ptr<SVM> svm = Algorithm::read<SVM>(fsRead.root());
3111 In order to make this method work, the derived class must overwrite Algorithm::read(const
3112 FileNode& fn) and also have static create() method without parameters
3113 (or with all the optional parameters)
3115 template<typename _Tp> static Ptr<_Tp> read(const FileNode& fn)
3117 Ptr<_Tp> obj = _Tp::create();
3119 return !obj->empty() ? obj : Ptr<_Tp>();
3122 /** @brief Loads algorithm from the file
3124 @param filename Name of the file to read.
3125 @param objname The optional name of the node to read (if empty, the first top-level node will be used)
3127 This is static template method of Algorithm. It's usage is following (in the case of SVM):
3129 Ptr<SVM> svm = Algorithm::load<SVM>("my_svm_model.xml");
3131 In order to make this method work, the derived class must overwrite Algorithm::read(const
3134 template<typename _Tp> static Ptr<_Tp> load(const String& filename, const String& objname=String())
3136 FileStorage fs(filename, FileStorage::READ);
3137 FileNode fn = objname.empty() ? fs.getFirstTopLevelNode() : fs[objname];
3138 if (fn.empty()) return Ptr<_Tp>();
3139 Ptr<_Tp> obj = _Tp::create();
3141 return !obj->empty() ? obj : Ptr<_Tp>();
3144 /** @brief Loads algorithm from a String
3146 @param strModel The string variable containing the model you want to load.
3147 @param objname The optional name of the node to read (if empty, the first top-level node will be used)
3149 This is static template method of Algorithm. It's usage is following (in the case of SVM):
3151 Ptr<SVM> svm = Algorithm::loadFromString<SVM>(myStringModel);
3154 template<typename _Tp> static Ptr<_Tp> loadFromString(const String& strModel, const String& objname=String())
3156 FileStorage fs(strModel, FileStorage::READ + FileStorage::MEMORY);
3157 FileNode fn = objname.empty() ? fs.getFirstTopLevelNode() : fs[objname];
3158 Ptr<_Tp> obj = _Tp::create();
3160 return !obj->empty() ? obj : Ptr<_Tp>();
3163 /** Saves the algorithm to a file.
3164 In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs). */
3165 CV_WRAP virtual void save(const String& filename) const;
3167 /** Returns the algorithm string identifier.
3168 This string is used as top level xml/yml node tag when the object is saved to a file or string. */
3169 CV_WRAP virtual String getDefaultName() const;
3172 void writeFormat(FileStorage& fs) const;
3176 enum { INT=0, BOOLEAN=1, REAL=2, STRING=3, MAT=4, MAT_VECTOR=5, ALGORITHM=6, FLOAT=7,
3177 UNSIGNED_INT=8, UINT64=9, UCHAR=11 };
3182 template<> struct ParamType<bool>
3184 typedef bool const_param_type;
3185 typedef bool member_type;
3187 enum { type = Param::BOOLEAN };
3190 template<> struct ParamType<int>
3192 typedef int const_param_type;
3193 typedef int member_type;
3195 enum { type = Param::INT };
3198 template<> struct ParamType<double>
3200 typedef double const_param_type;
3201 typedef double member_type;
3203 enum { type = Param::REAL };
3206 template<> struct ParamType<String>
3208 typedef const String& const_param_type;
3209 typedef String member_type;
3211 enum { type = Param::STRING };
3214 template<> struct ParamType<Mat>
3216 typedef const Mat& const_param_type;
3217 typedef Mat member_type;
3219 enum { type = Param::MAT };
3222 template<> struct ParamType<std::vector<Mat> >
3224 typedef const std::vector<Mat>& const_param_type;
3225 typedef std::vector<Mat> member_type;
3227 enum { type = Param::MAT_VECTOR };
3230 template<> struct ParamType<Algorithm>
3232 typedef const Ptr<Algorithm>& const_param_type;
3233 typedef Ptr<Algorithm> member_type;
3235 enum { type = Param::ALGORITHM };
3238 template<> struct ParamType<float>
3240 typedef float const_param_type;
3241 typedef float member_type;
3243 enum { type = Param::FLOAT };
3246 template<> struct ParamType<unsigned>
3248 typedef unsigned const_param_type;
3249 typedef unsigned member_type;
3251 enum { type = Param::UNSIGNED_INT };
3254 template<> struct ParamType<uint64>
3256 typedef uint64 const_param_type;
3257 typedef uint64 member_type;
3259 enum { type = Param::UINT64 };
3262 template<> struct ParamType<uchar>
3264 typedef uchar const_param_type;
3265 typedef uchar member_type;
3267 enum { type = Param::UCHAR };
3274 #include "opencv2/core/operations.hpp"
3275 #include "opencv2/core/cvstd.inl.hpp"
3276 #include "opencv2/core/utility.hpp"
3277 #include "opencv2/core/optim.hpp"
3278 #include "opencv2/core/ovx.hpp"
3280 #endif /*OPENCV_CORE_HPP*/