1 /*M///////////////////////////////////////////////////////////////////////////////////////
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
11 // For Open Source Computer Vision Library
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
16 // Third party copyrights are property of their respective owners.
18 // Redistribution and use in source and binary forms, with or without modification,
19 // are permitted provided that the following conditions are met:
21 // * Redistribution's of source code must retain the above copyright notice,
22 // this list of conditions and the following disclaimer.
24 // * Redistribution's in binary form must reproduce the above copyright notice,
25 // this list of conditions and the following disclaimer in the documentation
26 // and/or other materials provided with the distribution.
28 // * The name of the copyright holders may not be used to endorse or promote products
29 // derived from this software without specific prior written permission.
31 // This software is provided by the copyright holders and contributors "as is" and
32 // any express or implied warranties, including, but not limited to, the implied
33 // warranties of merchantability and fitness for a particular purpose are disclaimed.
34 // In no event shall the Intel Corporation or contributors be liable for any direct,
35 // indirect, incidental, special, exemplary, or consequential damages
36 // (including, but not limited to, procurement of substitute goods or services;
37 // loss of use, data, or profits; or business interruption) however caused
38 // and on any theory of liability, whether in contract, strict liability,
39 // or tort (including negligence or otherwise) arising in any way out of
40 // the use of this software, even if advised of the possibility of such damage.
44 #ifndef __OPENCV_CORE_MAT_HPP__
45 #define __OPENCV_CORE_MAT_HPP__
48 # error mat.hpp header must be compiled as C++
51 #include "opencv2/core/matx.hpp"
52 #include "opencv2/core/types.hpp"
54 #include "opencv2/core/bufferpool.hpp"
59 enum { ACCESS_READ=1<<24, ACCESS_WRITE=1<<25,
60 ACCESS_RW=3<<24, ACCESS_MASK=ACCESS_RW, ACCESS_FAST=1<<26 };
62 class CV_EXPORTS _OutputArray;
64 //////////////////////// Input/Output Array Arguments /////////////////////////////////
67 Proxy datatype for passing Mat's and vector<>'s as input parameters
69 class CV_EXPORTS _InputArray
74 FIXED_TYPE = 0x8000 << KIND_SHIFT,
75 FIXED_SIZE = 0x4000 << KIND_SHIFT,
76 KIND_MASK = 31 << KIND_SHIFT,
78 NONE = 0 << KIND_SHIFT,
79 MAT = 1 << KIND_SHIFT,
80 MATX = 2 << KIND_SHIFT,
81 STD_VECTOR = 3 << KIND_SHIFT,
82 STD_VECTOR_VECTOR = 4 << KIND_SHIFT,
83 STD_VECTOR_MAT = 5 << KIND_SHIFT,
84 EXPR = 6 << KIND_SHIFT,
85 OPENGL_BUFFER = 7 << KIND_SHIFT,
86 CUDA_MEM = 8 << KIND_SHIFT,
87 GPU_MAT = 9 << KIND_SHIFT,
88 UMAT =10 << KIND_SHIFT,
89 STD_VECTOR_UMAT =11 << KIND_SHIFT,
90 UEXPR =12 << KIND_SHIFT
94 _InputArray(int _flags, void* _obj);
95 _InputArray(const Mat& m);
96 _InputArray(const MatExpr& expr);
97 _InputArray(const std::vector<Mat>& vec);
98 template<typename _Tp> _InputArray(const Mat_<_Tp>& m);
99 template<typename _Tp> _InputArray(const std::vector<_Tp>& vec);
100 template<typename _Tp> _InputArray(const std::vector<std::vector<_Tp> >& vec);
101 template<typename _Tp> _InputArray(const std::vector<Mat_<_Tp> >& vec);
102 template<typename _Tp> _InputArray(const _Tp* vec, int n);
103 template<typename _Tp, int m, int n> _InputArray(const Matx<_Tp, m, n>& matx);
104 _InputArray(const double& val);
105 _InputArray(const cuda::GpuMat& d_mat);
106 _InputArray(const ogl::Buffer& buf);
107 _InputArray(const cuda::CudaMem& cuda_mem);
108 template<typename _Tp> _InputArray(const cudev::GpuMat_<_Tp>& m);
109 _InputArray(const UMat& um);
110 _InputArray(const std::vector<UMat>& umv);
111 _InputArray(const UMatExpr& uexpr);
113 virtual Mat getMat(int idx=-1) const;
114 virtual UMat getUMat(int idx=-1) const;
115 virtual void getMatVector(std::vector<Mat>& mv) const;
116 virtual void getUMatVector(std::vector<UMat>& umv) const;
117 virtual cuda::GpuMat getGpuMat() const;
118 virtual ogl::Buffer getOGlBuffer() const;
119 void* getObj() const;
121 virtual int kind() const;
122 virtual int dims(int i=-1) const;
123 virtual Size size(int i=-1) const;
124 virtual int sizend(int* sz, int i=-1) const;
125 virtual bool sameSize(const _InputArray& arr) const;
126 virtual size_t total(int i=-1) const;
127 virtual int type(int i=-1) const;
128 virtual int depth(int i=-1) const;
129 virtual int channels(int i=-1) const;
130 virtual bool isContinuous(int i=-1) const;
131 virtual bool isSubmatrix(int i=-1) const;
132 virtual bool empty() const;
133 virtual void copyTo(const _OutputArray& arr) const;
134 virtual size_t offset(int i=-1) const;
135 virtual size_t step(int i=-1) const;
138 bool isMatVector() const;
139 bool isUMatVector() const;
142 virtual ~_InputArray();
149 void init(int _flags, const void* _obj);
150 void init(int _flags, const void* _obj, Size _sz);
155 Proxy datatype for passing Mat's and vector<>'s as input parameters
157 class CV_EXPORTS _OutputArray : public _InputArray
162 DEPTH_MASK_8U = 1 << CV_8U,
163 DEPTH_MASK_8S = 1 << CV_8S,
164 DEPTH_MASK_16U = 1 << CV_16U,
165 DEPTH_MASK_16S = 1 << CV_16S,
166 DEPTH_MASK_32S = 1 << CV_32S,
167 DEPTH_MASK_32F = 1 << CV_32F,
168 DEPTH_MASK_64F = 1 << CV_64F,
169 DEPTH_MASK_ALL = (DEPTH_MASK_64F<<1)-1,
170 DEPTH_MASK_ALL_BUT_8S = DEPTH_MASK_ALL & ~DEPTH_MASK_8S,
171 DEPTH_MASK_FLT = DEPTH_MASK_32F + DEPTH_MASK_64F
175 _OutputArray(int _flags, void* _obj);
176 _OutputArray(Mat& m);
177 _OutputArray(std::vector<Mat>& vec);
178 _OutputArray(cuda::GpuMat& d_mat);
179 _OutputArray(ogl::Buffer& buf);
180 _OutputArray(cuda::CudaMem& cuda_mem);
181 template<typename _Tp> _OutputArray(cudev::GpuMat_<_Tp>& m);
182 template<typename _Tp> _OutputArray(std::vector<_Tp>& vec);
183 template<typename _Tp> _OutputArray(std::vector<std::vector<_Tp> >& vec);
184 template<typename _Tp> _OutputArray(std::vector<Mat_<_Tp> >& vec);
185 template<typename _Tp> _OutputArray(Mat_<_Tp>& m);
186 template<typename _Tp> _OutputArray(_Tp* vec, int n);
187 template<typename _Tp, int m, int n> _OutputArray(Matx<_Tp, m, n>& matx);
188 _OutputArray(UMat& m);
189 _OutputArray(std::vector<UMat>& vec);
191 _OutputArray(const Mat& m);
192 _OutputArray(const std::vector<Mat>& vec);
193 _OutputArray(const cuda::GpuMat& d_mat);
194 _OutputArray(const ogl::Buffer& buf);
195 _OutputArray(const cuda::CudaMem& cuda_mem);
196 template<typename _Tp> _OutputArray(const cudev::GpuMat_<_Tp>& m);
197 template<typename _Tp> _OutputArray(const std::vector<_Tp>& vec);
198 template<typename _Tp> _OutputArray(const std::vector<std::vector<_Tp> >& vec);
199 template<typename _Tp> _OutputArray(const std::vector<Mat_<_Tp> >& vec);
200 template<typename _Tp> _OutputArray(const Mat_<_Tp>& m);
201 template<typename _Tp> _OutputArray(const _Tp* vec, int n);
202 template<typename _Tp, int m, int n> _OutputArray(const Matx<_Tp, m, n>& matx);
203 _OutputArray(const UMat& m);
204 _OutputArray(const std::vector<UMat>& vec);
206 virtual bool fixedSize() const;
207 virtual bool fixedType() const;
208 virtual bool needed() const;
209 virtual Mat& getMatRef(int i=-1) const;
210 virtual UMat& getUMatRef(int i=-1) const;
211 virtual cuda::GpuMat& getGpuMatRef() const;
212 virtual ogl::Buffer& getOGlBufferRef() const;
213 virtual cuda::CudaMem& getCudaMemRef() const;
214 virtual void create(Size sz, int type, int i=-1, bool allowTransposed=false, int fixedDepthMask=0) const;
215 virtual void create(int rows, int cols, int type, int i=-1, bool allowTransposed=false, int fixedDepthMask=0) const;
216 virtual void create(int dims, const int* size, int type, int i=-1, bool allowTransposed=false, int fixedDepthMask=0) const;
217 virtual void createSameSize(const _InputArray& arr, int mtype) const;
218 virtual void release() const;
219 virtual void clear() const;
220 virtual void setTo(const _InputArray& value, const _InputArray & mask = _InputArray()) const;
224 class CV_EXPORTS _InputOutputArray : public _OutputArray
228 _InputOutputArray(int _flags, void* _obj);
229 _InputOutputArray(Mat& m);
230 _InputOutputArray(std::vector<Mat>& vec);
231 _InputOutputArray(cuda::GpuMat& d_mat);
232 _InputOutputArray(ogl::Buffer& buf);
233 _InputOutputArray(cuda::CudaMem& cuda_mem);
234 template<typename _Tp> _InputOutputArray(cudev::GpuMat_<_Tp>& m);
235 template<typename _Tp> _InputOutputArray(std::vector<_Tp>& vec);
236 template<typename _Tp> _InputOutputArray(std::vector<std::vector<_Tp> >& vec);
237 template<typename _Tp> _InputOutputArray(std::vector<Mat_<_Tp> >& vec);
238 template<typename _Tp> _InputOutputArray(Mat_<_Tp>& m);
239 template<typename _Tp> _InputOutputArray(_Tp* vec, int n);
240 template<typename _Tp, int m, int n> _InputOutputArray(Matx<_Tp, m, n>& matx);
241 _InputOutputArray(UMat& m);
242 _InputOutputArray(std::vector<UMat>& vec);
244 _InputOutputArray(const Mat& m);
245 _InputOutputArray(const std::vector<Mat>& vec);
246 _InputOutputArray(const cuda::GpuMat& d_mat);
247 _InputOutputArray(const ogl::Buffer& buf);
248 _InputOutputArray(const cuda::CudaMem& cuda_mem);
249 template<typename _Tp> _InputOutputArray(const cudev::GpuMat_<_Tp>& m);
250 template<typename _Tp> _InputOutputArray(const std::vector<_Tp>& vec);
251 template<typename _Tp> _InputOutputArray(const std::vector<std::vector<_Tp> >& vec);
252 template<typename _Tp> _InputOutputArray(const std::vector<Mat_<_Tp> >& vec);
253 template<typename _Tp> _InputOutputArray(const Mat_<_Tp>& m);
254 template<typename _Tp> _InputOutputArray(const _Tp* vec, int n);
255 template<typename _Tp, int m, int n> _InputOutputArray(const Matx<_Tp, m, n>& matx);
256 _InputOutputArray(const UMat& m);
257 _InputOutputArray(const std::vector<UMat>& vec);
260 typedef const _InputArray& InputArray;
261 typedef InputArray InputArrayOfArrays;
262 typedef const _OutputArray& OutputArray;
263 typedef OutputArray OutputArrayOfArrays;
264 typedef const _InputOutputArray& InputOutputArray;
265 typedef InputOutputArray InputOutputArrayOfArrays;
267 CV_EXPORTS InputOutputArray noArray();
269 /////////////////////////////////// MatAllocator //////////////////////////////////////
271 struct CV_EXPORTS UMatData;
274 Custom array allocator
277 class CV_EXPORTS MatAllocator
281 virtual ~MatAllocator() {}
283 // let's comment it off for now to detect and fix all the uses of allocator
284 //virtual void allocate(int dims, const int* sizes, int type, int*& refcount,
285 // uchar*& datastart, uchar*& data, size_t* step) = 0;
286 //virtual void deallocate(int* refcount, uchar* datastart, uchar* data) = 0;
287 virtual UMatData* allocate(int dims, const int* sizes, int type,
288 void* data, size_t* step, int flags) const = 0;
289 virtual bool allocate(UMatData* data, int accessflags) const = 0;
290 virtual void deallocate(UMatData* data) const = 0;
291 virtual void map(UMatData* data, int accessflags) const;
292 virtual void unmap(UMatData* data) const;
293 virtual void download(UMatData* data, void* dst, int dims, const size_t sz[],
294 const size_t srcofs[], const size_t srcstep[],
295 const size_t dststep[]) const;
296 virtual void upload(UMatData* data, const void* src, int dims, const size_t sz[],
297 const size_t dstofs[], const size_t dststep[],
298 const size_t srcstep[]) const;
299 virtual void copy(UMatData* srcdata, UMatData* dstdata, int dims, const size_t sz[],
300 const size_t srcofs[], const size_t srcstep[],
301 const size_t dstofs[], const size_t dststep[], bool sync) const;
303 // default implementation returns DummyBufferPoolController
304 virtual BufferPoolController* getBufferPoolController() const;
308 //////////////////////////////// MatCommaInitializer //////////////////////////////////
311 Comma-separated Matrix Initializer
313 The class instances are usually not created explicitly.
314 Instead, they are created on "matrix << firstValue" operator.
316 The sample below initializes 2x2 rotation matrix:
319 double angle = 30, a = cos(angle*CV_PI/180), b = sin(angle*CV_PI/180);
320 Mat R = (Mat_<double>(2,2) << a, -b, b, a);
323 template<typename _Tp> class MatCommaInitializer_
326 //! the constructor, created by "matrix << firstValue" operator, where matrix is cv::Mat
327 MatCommaInitializer_(Mat_<_Tp>* _m);
328 //! the operator that takes the next value and put it to the matrix
329 template<typename T2> MatCommaInitializer_<_Tp>& operator , (T2 v);
330 //! another form of conversion operator
331 operator Mat_<_Tp>() const;
333 MatIterator_<_Tp> it;
337 /////////////////////////////////////// Mat ///////////////////////////////////////////
339 // note that umatdata might be allocated together
340 // with the matrix data, not as a separate object.
341 // therefore, it does not have constructor or destructor;
342 // it should be explicitly initialized using init().
343 struct CV_EXPORTS UMatData
345 enum { COPY_ON_MAP=1, HOST_COPY_OBSOLETE=2,
346 DEVICE_COPY_OBSOLETE=4, TEMP_UMAT=8, TEMP_COPIED_UMAT=24,
348 UMatData(const MatAllocator* allocator);
351 // provide atomic access to the structure
355 bool hostCopyObsolete() const;
356 bool deviceCopyObsolete() const;
357 bool copyOnMap() const;
358 bool tempUMat() const;
359 bool tempCopiedUMat() const;
360 void markHostCopyObsolete(bool flag);
361 void markDeviceCopyObsolete(bool flag);
363 const MatAllocator* prevAllocator;
364 const MatAllocator* currAllocator;
369 size_t size, capacity;
377 struct CV_EXPORTS UMatDataAutoLock
379 UMatDataAutoLock(UMatData* u);
385 struct CV_EXPORTS MatSize
388 Size operator()() const;
389 const int& operator[](int i) const;
390 int& operator[](int i);
391 operator const int*() const;
392 bool operator == (const MatSize& sz) const;
393 bool operator != (const MatSize& sz) const;
398 struct CV_EXPORTS MatStep
402 const size_t& operator[](int i) const;
403 size_t& operator[](int i);
404 operator size_t() const;
405 MatStep& operator = (size_t s);
410 MatStep& operator = (const MatStep&);
414 The n-dimensional matrix class.
416 The class represents an n-dimensional dense numerical array that can act as
417 a matrix, image, optical flow map, 3-focal tensor etc.
418 It is very similar to CvMat and CvMatND types from earlier versions of OpenCV,
419 and similarly to those types, the matrix can be multi-channel. It also fully supports ROI mechanism.
421 There are many different ways to create cv::Mat object. Here are the some popular ones:
423 <li> using cv::Mat::create(nrows, ncols, type) method or
424 the similar constructor cv::Mat::Mat(nrows, ncols, type[, fill_value]) constructor.
425 A new matrix of the specified size and specifed type will be allocated.
426 "type" has the same meaning as in cvCreateMat function,
427 e.g. CV_8UC1 means 8-bit single-channel matrix, CV_32FC2 means 2-channel (i.e. complex)
428 floating-point matrix etc:
431 // make 7x7 complex matrix filled with 1+3j.
432 cv::Mat M(7,7,CV_32FC2,Scalar(1,3));
433 // and now turn M to 100x60 15-channel 8-bit matrix.
434 // The old content will be deallocated
435 M.create(100,60,CV_8UC(15));
438 As noted in the introduction of this chapter, Mat::create()
439 will only allocate a new matrix when the current matrix dimensionality
440 or type are different from the specified.
442 <li> by using a copy constructor or assignment operator, where on the right side it can
443 be a matrix or expression, see below. Again, as noted in the introduction,
444 matrix assignment is O(1) operation because it only copies the header
445 and increases the reference counter. cv::Mat::clone() method can be used to get a full
446 (a.k.a. deep) copy of the matrix when you need it.
448 <li> by constructing a header for a part of another matrix. It can be a single row, single column,
449 several rows, several columns, rectangular region in the matrix (called a minor in algebra) or
450 a diagonal. Such operations are also O(1), because the new header will reference the same data.
451 You can actually modify a part of the matrix using this feature, e.g.
454 // add 5-th row, multiplied by 3 to the 3rd row
455 M.row(3) = M.row(3) + M.row(5)*3;
457 // now copy 7-th column to the 1-st column
458 // M.col(1) = M.col(7); // this will not work
462 // create new 320x240 image
463 cv::Mat img(Size(320,240),CV_8UC3);
465 cv::Mat roi(img, Rect(10,10,100,100));
466 // fill the ROI with (0,255,0) (which is green in RGB space);
467 // the original 320x240 image will be modified
468 roi = Scalar(0,255,0);
471 Thanks to the additional cv::Mat::datastart and cv::Mat::dataend members, it is possible to
472 compute the relative sub-matrix position in the main "container" matrix using cv::Mat::locateROI():
475 Mat A = Mat::eye(10, 10, CV_32S);
476 // extracts A columns, 1 (inclusive) to 3 (exclusive).
477 Mat B = A(Range::all(), Range(1, 3));
478 // extracts B rows, 5 (inclusive) to 9 (exclusive).
479 // that is, C ~ A(Range(5, 9), Range(1, 3))
480 Mat C = B(Range(5, 9), Range::all());
481 Size size; Point ofs;
482 C.locateROI(size, ofs);
483 // size will be (width=10,height=10) and the ofs will be (x=1, y=5)
486 As in the case of whole matrices, if you need a deep copy, use cv::Mat::clone() method
487 of the extracted sub-matrices.
489 <li> by making a header for user-allocated-data. It can be useful for
491 <li> processing "foreign" data using OpenCV (e.g. when you implement
492 a DirectShow filter or a processing module for gstreamer etc.), e.g.
495 void process_video_frame(const unsigned char* pixels,
496 int width, int height, int step)
498 cv::Mat img(height, width, CV_8UC3, pixels, step);
499 cv::GaussianBlur(img, img, cv::Size(7,7), 1.5, 1.5);
503 <li> for quick initialization of small matrices and/or super-fast element access
506 double m[3][3] = {{a, b, c}, {d, e, f}, {g, h, i}};
507 cv::Mat M = cv::Mat(3, 3, CV_64F, m).inv();
511 partial yet very common cases of this "user-allocated data" case are conversions
512 from CvMat and IplImage to cv::Mat. For this purpose there are special constructors
513 taking pointers to CvMat or IplImage and the optional
514 flag indicating whether to copy the data or not.
516 Backward conversion from cv::Mat to CvMat or IplImage is provided via cast operators
517 cv::Mat::operator CvMat() an cv::Mat::operator IplImage().
518 The operators do not copy the data.
522 IplImage* img = cvLoadImage("greatwave.jpg", 1);
523 Mat mtx(img); // convert IplImage* -> cv::Mat
524 CvMat oldmat = mtx; // convert cv::Mat -> CvMat
525 CV_Assert(oldmat.cols == img->width && oldmat.rows == img->height &&
526 oldmat.data.ptr == (uchar*)img->imageData && oldmat.step == img->widthStep);
529 <li> by using MATLAB-style matrix initializers, cv::Mat::zeros(), cv::Mat::ones(), cv::Mat::eye(), e.g.:
532 // create a double-precision identity martix and add it to M.
533 M += Mat::eye(M.rows, M.cols, CV_64F);
536 <li> by using comma-separated initializer:
539 // create 3x3 double-precision identity matrix
540 Mat M = (Mat_<double>(3,3) << 1, 0, 0, 0, 1, 0, 0, 0, 1);
543 here we first call constructor of cv::Mat_ class (that we describe further) with the proper matrix,
544 and then we just put "<<" operator followed by comma-separated values that can be constants,
545 variables, expressions etc. Also, note the extra parentheses that are needed to avoid compiler errors.
549 Once matrix is created, it will be automatically managed by using reference-counting mechanism
550 (unless the matrix header is built on top of user-allocated data,
551 in which case you should handle the data by yourself).
552 The matrix data will be deallocated when no one points to it;
553 if you want to release the data pointed by a matrix header before the matrix destructor is called,
554 use cv::Mat::release().
556 The next important thing to learn about the matrix class is element access. Here is how the matrix is stored.
557 The elements are stored in row-major order (row by row). The cv::Mat::data member points to the first element of the first row,
558 cv::Mat::rows contains the number of matrix rows and cv::Mat::cols - the number of matrix columns. There is yet another member,
559 cv::Mat::step that is used to actually compute address of a matrix element. cv::Mat::step is needed because the matrix can be
560 a part of another matrix or because there can some padding space in the end of each row for a proper alignment.
564 Given these parameters, address of the matrix element M_{ij} is computed as following:
566 addr(M_{ij})=M.data + M.step*i + j*M.elemSize()
568 if you know the matrix element type, e.g. it is float, then you can use cv::Mat::at() method:
570 addr(M_{ij})=&M.at<float>(i,j)
572 (where & is used to convert the reference returned by cv::Mat::at() to a pointer).
573 if you need to process a whole row of matrix, the most efficient way is to get
574 the pointer to the row first, and then just use plain C operator []:
577 // compute sum of positive matrix elements
578 // (assuming that M is double-precision matrix)
580 for(int i = 0; i < M.rows; i++)
582 const double* Mi = M.ptr<double>(i);
583 for(int j = 0; j < M.cols; j++)
584 sum += std::max(Mi[j], 0.);
588 Some operations, like the above one, do not actually depend on the matrix shape,
589 they just process elements of a matrix one by one (or elements from multiple matrices
590 that are sitting in the same place, e.g. matrix addition). Such operations are called
591 element-wise and it makes sense to check whether all the input/output matrices are continuous,
592 i.e. have no gaps in the end of each row, and if yes, process them as a single long row:
595 // compute sum of positive matrix elements, optimized variant
597 int cols = M.cols, rows = M.rows;
603 for(int i = 0; i < rows; i++)
605 const double* Mi = M.ptr<double>(i);
606 for(int j = 0; j < cols; j++)
607 sum += std::max(Mi[j], 0.);
610 in the case of continuous matrix the outer loop body will be executed just once,
611 so the overhead will be smaller, which will be especially noticeable in the case of small matrices.
613 Finally, there are STL-style iterators that are smart enough to skip gaps between successive rows:
615 // compute sum of positive matrix elements, iterator-based variant
617 MatConstIterator_<double> it = M.begin<double>(), it_end = M.end<double>();
618 for(; it != it_end; ++it)
619 sum += std::max(*it, 0.);
622 The matrix iterators are random-access iterators, so they can be passed
623 to any STL algorithm, including std::sort().
628 //! default constructor
630 //! constructs 2D matrix of the specified size and type
631 // (_type is CV_8UC1, CV_64FC3, CV_32SC(12) etc.)
632 Mat(int rows, int cols, int type);
633 Mat(Size size, int type);
634 //! constucts 2D matrix and fills it with the specified value _s.
635 Mat(int rows, int cols, int type, const Scalar& s);
636 Mat(Size size, int type, const Scalar& s);
638 //! constructs n-dimensional matrix
639 Mat(int ndims, const int* sizes, int type);
640 Mat(int ndims, const int* sizes, int type, const Scalar& s);
644 //! constructor for matrix headers pointing to user-allocated data
645 Mat(int rows, int cols, int type, void* data, size_t step=AUTO_STEP);
646 Mat(Size size, int type, void* data, size_t step=AUTO_STEP);
647 Mat(int ndims, const int* sizes, int type, void* data, const size_t* steps=0);
649 //! creates a matrix header for a part of the bigger matrix
650 Mat(const Mat& m, const Range& rowRange, const Range& colRange=Range::all());
651 Mat(const Mat& m, const Rect& roi);
652 Mat(const Mat& m, const Range* ranges);
653 //! builds matrix from std::vector with or without copying the data
654 template<typename _Tp> explicit Mat(const std::vector<_Tp>& vec, bool copyData=false);
655 //! builds matrix from cv::Vec; the data is copied by default
656 template<typename _Tp, int n> explicit Mat(const Vec<_Tp, n>& vec, bool copyData=true);
657 //! builds matrix from cv::Matx; the data is copied by default
658 template<typename _Tp, int m, int n> explicit Mat(const Matx<_Tp, m, n>& mtx, bool copyData=true);
659 //! builds matrix from a 2D point
660 template<typename _Tp> explicit Mat(const Point_<_Tp>& pt, bool copyData=true);
661 //! builds matrix from a 3D point
662 template<typename _Tp> explicit Mat(const Point3_<_Tp>& pt, bool copyData=true);
663 //! builds matrix from comma initializer
664 template<typename _Tp> explicit Mat(const MatCommaInitializer_<_Tp>& commaInitializer);
666 //! download data from GpuMat
667 explicit Mat(const cuda::GpuMat& m);
669 //! destructor - calls release()
671 //! assignment operators
672 Mat& operator = (const Mat& m);
673 Mat& operator = (const MatExpr& expr);
675 //! retrieve UMat from Mat
676 UMat getUMat(int accessFlags) const;
678 //! returns a new matrix header for the specified row
679 Mat row(int y) const;
680 //! returns a new matrix header for the specified column
681 Mat col(int x) const;
682 //! ... for the specified row span
683 Mat rowRange(int startrow, int endrow) const;
684 Mat rowRange(const Range& r) const;
685 //! ... for the specified column span
686 Mat colRange(int startcol, int endcol) const;
687 Mat colRange(const Range& r) const;
688 //! ... for the specified diagonal
689 // (d=0 - the main diagonal,
690 // >0 - a diagonal from the lower half,
691 // <0 - a diagonal from the upper half)
692 Mat diag(int d=0) const;
693 //! constructs a square diagonal matrix which main diagonal is vector "d"
694 static Mat diag(const Mat& d);
696 //! returns deep copy of the matrix, i.e. the data is copied
698 //! copies the matrix content to "m".
699 // It calls m.create(this->size(), this->type()).
700 void copyTo( OutputArray m ) const;
701 //! copies those matrix elements to "m" that are marked with non-zero mask elements.
702 void copyTo( OutputArray m, InputArray mask ) const;
703 //! converts matrix to another datatype with optional scalng. See cvConvertScale.
704 void convertTo( OutputArray m, int rtype, double alpha=1, double beta=0 ) const;
706 void assignTo( Mat& m, int type=-1 ) const;
708 //! sets every matrix element to s
709 Mat& operator = (const Scalar& s);
710 //! sets some of the matrix elements to s, according to the mask
711 Mat& setTo(InputArray value, InputArray mask=noArray());
712 //! creates alternative matrix header for the same data, with different
713 // number of channels and/or different number of rows. see cvReshape.
714 Mat reshape(int cn, int rows=0) const;
715 Mat reshape(int cn, int newndims, const int* newsz) const;
717 //! matrix transposition by means of matrix expressions
719 //! matrix inversion by means of matrix expressions
720 MatExpr inv(int method=DECOMP_LU) const;
721 //! per-element matrix multiplication by means of matrix expressions
722 MatExpr mul(InputArray m, double scale=1) const;
724 //! computes cross-product of 2 3D vectors
725 Mat cross(InputArray m) const;
726 //! computes dot-product
727 double dot(InputArray m) const;
729 //! Matlab-style matrix initialization
730 static MatExpr zeros(int rows, int cols, int type);
731 static MatExpr zeros(Size size, int type);
732 static MatExpr zeros(int ndims, const int* sz, int type);
733 static MatExpr ones(int rows, int cols, int type);
734 static MatExpr ones(Size size, int type);
735 static MatExpr ones(int ndims, const int* sz, int type);
736 static MatExpr eye(int rows, int cols, int type);
737 static MatExpr eye(Size size, int type);
739 //! allocates new matrix data unless the matrix already has specified size and type.
740 // previous data is unreferenced if needed.
741 void create(int rows, int cols, int type);
742 void create(Size size, int type);
743 void create(int ndims, const int* sizes, int type);
745 //! increases the reference counter; use with care to avoid memleaks
747 //! decreases reference counter;
748 // deallocates the data when reference counter reaches 0.
751 //! deallocates the matrix data
753 //! internal use function; properly re-allocates _size, _step arrays
754 void copySize(const Mat& m);
756 //! reserves enough space to fit sz hyper-planes
757 void reserve(size_t sz);
758 //! resizes matrix to the specified number of hyper-planes
759 void resize(size_t sz);
760 //! resizes matrix to the specified number of hyper-planes; initializes the newly added elements
761 void resize(size_t sz, const Scalar& s);
762 //! internal function
763 void push_back_(const void* elem);
764 //! adds element to the end of 1d matrix (or possibly multiple elements when _Tp=Mat)
765 template<typename _Tp> void push_back(const _Tp& elem);
766 template<typename _Tp> void push_back(const Mat_<_Tp>& elem);
767 void push_back(const Mat& m);
768 //! removes several hyper-planes from bottom of the matrix
769 void pop_back(size_t nelems=1);
771 //! locates matrix header within a parent matrix. See below
772 void locateROI( Size& wholeSize, Point& ofs ) const;
773 //! moves/resizes the current matrix ROI inside the parent matrix.
774 Mat& adjustROI( int dtop, int dbottom, int dleft, int dright );
775 //! extracts a rectangular sub-matrix
776 // (this is a generalized form of row, rowRange etc.)
777 Mat operator()( Range rowRange, Range colRange ) const;
778 Mat operator()( const Rect& roi ) const;
779 Mat operator()( const Range* ranges ) const;
781 // //! converts header to CvMat; no data is copied
782 // operator CvMat() const;
783 // //! converts header to CvMatND; no data is copied
784 // operator CvMatND() const;
785 // //! converts header to IplImage; no data is copied
786 // operator IplImage() const;
788 template<typename _Tp> operator std::vector<_Tp>() const;
789 template<typename _Tp, int n> operator Vec<_Tp, n>() const;
790 template<typename _Tp, int m, int n> operator Matx<_Tp, m, n>() const;
792 //! returns true iff the matrix data is continuous
793 // (i.e. when there are no gaps between successive rows).
794 // similar to CV_IS_MAT_CONT(cvmat->type)
795 bool isContinuous() const;
797 //! returns true if the matrix is a submatrix of another matrix
798 bool isSubmatrix() const;
800 //! returns element size in bytes,
801 // similar to CV_ELEM_SIZE(cvmat->type)
802 size_t elemSize() const;
803 //! returns the size of element channel in bytes.
804 size_t elemSize1() const;
805 //! returns element type, similar to CV_MAT_TYPE(cvmat->type)
807 //! returns element type, similar to CV_MAT_DEPTH(cvmat->type)
809 //! returns element type, similar to CV_MAT_CN(cvmat->type)
810 int channels() const;
811 //! returns step/elemSize1()
812 size_t step1(int i=0) const;
813 //! returns true if matrix data is NULL
815 //! returns the total number of matrix elements
816 size_t total() const;
818 //! returns N if the matrix is 1-channel (N x ptdim) or ptdim-channel (1 x N) or (N x 1); negative number otherwise
819 int checkVector(int elemChannels, int depth=-1, bool requireContinuous=true) const;
821 //! returns pointer to i0-th submatrix along the dimension #0
822 uchar* ptr(int i0=0);
823 const uchar* ptr(int i0=0) const;
825 //! returns pointer to (i0,i1) submatrix along the dimensions #0 and #1
826 uchar* ptr(int i0, int i1);
827 const uchar* ptr(int i0, int i1) const;
829 //! returns pointer to (i0,i1,i3) submatrix along the dimensions #0, #1, #2
830 uchar* ptr(int i0, int i1, int i2);
831 const uchar* ptr(int i0, int i1, int i2) const;
833 //! returns pointer to the matrix element
834 uchar* ptr(const int* idx);
835 //! returns read-only pointer to the matrix element
836 const uchar* ptr(const int* idx) const;
838 template<int n> uchar* ptr(const Vec<int, n>& idx);
839 template<int n> const uchar* ptr(const Vec<int, n>& idx) const;
841 //! template version of the above method
842 template<typename _Tp> _Tp* ptr(int i0=0);
843 template<typename _Tp> const _Tp* ptr(int i0=0) const;
845 template<typename _Tp> _Tp* ptr(int i0, int i1);
846 template<typename _Tp> const _Tp* ptr(int i0, int i1) const;
848 template<typename _Tp> _Tp* ptr(int i0, int i1, int i2);
849 template<typename _Tp> const _Tp* ptr(int i0, int i1, int i2) const;
851 template<typename _Tp> _Tp* ptr(const int* idx);
852 template<typename _Tp> const _Tp* ptr(const int* idx) const;
854 template<typename _Tp, int n> _Tp* ptr(const Vec<int, n>& idx);
855 template<typename _Tp, int n> const _Tp* ptr(const Vec<int, n>& idx) const;
857 //! the same as above, with the pointer dereferencing
858 template<typename _Tp> _Tp& at(int i0=0);
859 template<typename _Tp> const _Tp& at(int i0=0) const;
861 template<typename _Tp> _Tp& at(int i0, int i1);
862 template<typename _Tp> const _Tp& at(int i0, int i1) const;
864 template<typename _Tp> _Tp& at(int i0, int i1, int i2);
865 template<typename _Tp> const _Tp& at(int i0, int i1, int i2) const;
867 template<typename _Tp> _Tp& at(const int* idx);
868 template<typename _Tp> const _Tp& at(const int* idx) const;
870 template<typename _Tp, int n> _Tp& at(const Vec<int, n>& idx);
871 template<typename _Tp, int n> const _Tp& at(const Vec<int, n>& idx) const;
873 //! special versions for 2D arrays (especially convenient for referencing image pixels)
874 template<typename _Tp> _Tp& at(Point pt);
875 template<typename _Tp> const _Tp& at(Point pt) const;
877 //! template methods for iteration over matrix elements.
878 // the iterators take care of skipping gaps in the end of rows (if any)
879 template<typename _Tp> MatIterator_<_Tp> begin();
880 template<typename _Tp> MatIterator_<_Tp> end();
881 template<typename _Tp> MatConstIterator_<_Tp> begin() const;
882 template<typename _Tp> MatConstIterator_<_Tp> end() const;
884 enum { MAGIC_VAL = 0x42FF0000, AUTO_STEP = 0, CONTINUOUS_FLAG = CV_MAT_CONT_FLAG, SUBMATRIX_FLAG = CV_SUBMAT_FLAG };
885 enum { MAGIC_MASK = 0xFFFF0000, TYPE_MASK = 0x00000FFF, DEPTH_MASK = 7 };
887 /*! includes several bit-fields:
888 - the magic signature
894 //! the matrix dimensionality, >= 2
896 //! the number of rows and columns or (-1, -1) when the matrix has more than 2 dimensions
898 //! pointer to the data
901 //! helper fields used in locateROI and adjustROI
907 MatAllocator* allocator;
908 //! and the standard allocator
909 static MatAllocator* getStdAllocator();
911 //! interaction with UMat
921 ///////////////////////////////// Mat_<_Tp> ////////////////////////////////////
924 Template matrix class derived from Mat
926 The class Mat_ is a "thin" template wrapper on top of cv::Mat. It does not have any extra data fields,
927 nor it or cv::Mat have any virtual methods and thus references or pointers to these two classes
928 can be safely converted one to another. But do it with care, for example:
931 // create 100x100 8-bit matrix
932 Mat M(100,100,CV_8U);
933 // this will compile fine. no any data conversion will be done.
934 Mat_<float>& M1 = (Mat_<float>&)M;
935 // the program will likely crash at the statement below
939 While cv::Mat is sufficient in most cases, cv::Mat_ can be more convenient if you use a lot of element
940 access operations and if you know matrix type at compile time.
941 Note that cv::Mat::at<_Tp>(int y, int x) and cv::Mat_<_Tp>::operator ()(int y, int x) do absolutely the
942 same thing and run at the same speed, but the latter is certainly shorter:
945 Mat_<double> M(20,20);
946 for(int i = 0; i < M.rows; i++)
947 for(int j = 0; j < M.cols; j++)
951 cout << E.at<double>(0,0)/E.at<double>(M.rows-1,0);
954 It is easy to use Mat_ for multi-channel images/matrices - just pass cv::Vec as cv::Mat_ template parameter:
957 // allocate 320x240 color image and fill it with green (in RGB space)
958 Mat_<Vec3b> img(240, 320, Vec3b(0,255,0));
959 // now draw a diagonal white line
960 for(int i = 0; i < 100; i++)
961 img(i,i)=Vec3b(255,255,255);
962 // and now modify the 2nd (red) channel of each pixel
963 for(int i = 0; i < img.rows; i++)
964 for(int j = 0; j < img.cols; j++)
965 img(i,j)[2] ^= (uchar)(i ^ j); // img(y,x)[c] accesses c-th channel of the pixel (x,y)
968 template<typename _Tp> class Mat_ : public Mat
971 typedef _Tp value_type;
972 typedef typename DataType<_Tp>::channel_type channel_type;
973 typedef MatIterator_<_Tp> iterator;
974 typedef MatConstIterator_<_Tp> const_iterator;
976 //! default constructor
978 //! equivalent to Mat(_rows, _cols, DataType<_Tp>::type)
979 Mat_(int _rows, int _cols);
980 //! constructor that sets each matrix element to specified value
981 Mat_(int _rows, int _cols, const _Tp& value);
982 //! equivalent to Mat(_size, DataType<_Tp>::type)
983 explicit Mat_(Size _size);
984 //! constructor that sets each matrix element to specified value
985 Mat_(Size _size, const _Tp& value);
986 //! n-dim array constructor
987 Mat_(int _ndims, const int* _sizes);
988 //! n-dim array constructor that sets each matrix element to specified value
989 Mat_(int _ndims, const int* _sizes, const _Tp& value);
990 //! copy/conversion contructor. If m is of different type, it's converted
994 //! constructs a matrix on top of user-allocated data. step is in bytes(!!!), regardless of the type
995 Mat_(int _rows, int _cols, _Tp* _data, size_t _step=AUTO_STEP);
996 //! constructs n-dim matrix on top of user-allocated data. steps are in bytes(!!!), regardless of the type
997 Mat_(int _ndims, const int* _sizes, _Tp* _data, const size_t* _steps=0);
998 //! selects a submatrix
999 Mat_(const Mat_& m, const Range& rowRange, const Range& colRange=Range::all());
1000 //! selects a submatrix
1001 Mat_(const Mat_& m, const Rect& roi);
1002 //! selects a submatrix, n-dim version
1003 Mat_(const Mat_& m, const Range* ranges);
1004 //! from a matrix expression
1005 explicit Mat_(const MatExpr& e);
1006 //! makes a matrix out of Vec, std::vector, Point_ or Point3_. The matrix will have a single column
1007 explicit Mat_(const std::vector<_Tp>& vec, bool copyData=false);
1008 template<int n> explicit Mat_(const Vec<typename DataType<_Tp>::channel_type, n>& vec, bool copyData=true);
1009 template<int m, int n> explicit Mat_(const Matx<typename DataType<_Tp>::channel_type, m, n>& mtx, bool copyData=true);
1010 explicit Mat_(const Point_<typename DataType<_Tp>::channel_type>& pt, bool copyData=true);
1011 explicit Mat_(const Point3_<typename DataType<_Tp>::channel_type>& pt, bool copyData=true);
1012 explicit Mat_(const MatCommaInitializer_<_Tp>& commaInitializer);
1014 Mat_& operator = (const Mat& m);
1015 Mat_& operator = (const Mat_& m);
1016 //! set all the elements to s.
1017 Mat_& operator = (const _Tp& s);
1018 //! assign a matrix expression
1019 Mat_& operator = (const MatExpr& e);
1021 //! iterators; they are smart enough to skip gaps in the end of rows
1024 const_iterator begin() const;
1025 const_iterator end() const;
1027 //! equivalent to Mat::create(_rows, _cols, DataType<_Tp>::type)
1028 void create(int _rows, int _cols);
1029 //! equivalent to Mat::create(_size, DataType<_Tp>::type)
1030 void create(Size _size);
1031 //! equivalent to Mat::create(_ndims, _sizes, DatType<_Tp>::type)
1032 void create(int _ndims, const int* _sizes);
1034 Mat_ cross(const Mat_& m) const;
1035 //! data type conversion
1036 template<typename T2> operator Mat_<T2>() const;
1037 //! overridden forms of Mat::row() etc.
1038 Mat_ row(int y) const;
1039 Mat_ col(int x) const;
1040 Mat_ diag(int d=0) const;
1043 //! overridden forms of Mat::elemSize() etc.
1044 size_t elemSize() const;
1045 size_t elemSize1() const;
1048 int channels() const;
1049 size_t step1(int i=0) const;
1050 //! returns step()/sizeof(_Tp)
1051 size_t stepT(int i=0) const;
1053 //! overridden forms of Mat::zeros() etc. Data type is omitted, of course
1054 static MatExpr zeros(int rows, int cols);
1055 static MatExpr zeros(Size size);
1056 static MatExpr zeros(int _ndims, const int* _sizes);
1057 static MatExpr ones(int rows, int cols);
1058 static MatExpr ones(Size size);
1059 static MatExpr ones(int _ndims, const int* _sizes);
1060 static MatExpr eye(int rows, int cols);
1061 static MatExpr eye(Size size);
1063 //! some more overriden methods
1064 Mat_& adjustROI( int dtop, int dbottom, int dleft, int dright );
1065 Mat_ operator()( const Range& rowRange, const Range& colRange ) const;
1066 Mat_ operator()( const Rect& roi ) const;
1067 Mat_ operator()( const Range* ranges ) const;
1069 //! more convenient forms of row and element access operators
1070 _Tp* operator [](int y);
1071 const _Tp* operator [](int y) const;
1073 //! returns reference to the specified element
1074 _Tp& operator ()(const int* idx);
1075 //! returns read-only reference to the specified element
1076 const _Tp& operator ()(const int* idx) const;
1078 //! returns reference to the specified element
1079 template<int n> _Tp& operator ()(const Vec<int, n>& idx);
1080 //! returns read-only reference to the specified element
1081 template<int n> const _Tp& operator ()(const Vec<int, n>& idx) const;
1083 //! returns reference to the specified element (1D case)
1084 _Tp& operator ()(int idx0);
1085 //! returns read-only reference to the specified element (1D case)
1086 const _Tp& operator ()(int idx0) const;
1087 //! returns reference to the specified element (2D case)
1088 _Tp& operator ()(int idx0, int idx1);
1089 //! returns read-only reference to the specified element (2D case)
1090 const _Tp& operator ()(int idx0, int idx1) const;
1091 //! returns reference to the specified element (3D case)
1092 _Tp& operator ()(int idx0, int idx1, int idx2);
1093 //! returns read-only reference to the specified element (3D case)
1094 const _Tp& operator ()(int idx0, int idx1, int idx2) const;
1096 _Tp& operator ()(Point pt);
1097 const _Tp& operator ()(Point pt) const;
1099 //! conversion to vector.
1100 operator std::vector<_Tp>() const;
1101 //! conversion to Vec
1102 template<int n> operator Vec<typename DataType<_Tp>::channel_type, n>() const;
1103 //! conversion to Matx
1104 template<int m, int n> operator Matx<typename DataType<_Tp>::channel_type, m, n>() const;
1107 typedef Mat_<uchar> Mat1b;
1108 typedef Mat_<Vec2b> Mat2b;
1109 typedef Mat_<Vec3b> Mat3b;
1110 typedef Mat_<Vec4b> Mat4b;
1112 typedef Mat_<short> Mat1s;
1113 typedef Mat_<Vec2s> Mat2s;
1114 typedef Mat_<Vec3s> Mat3s;
1115 typedef Mat_<Vec4s> Mat4s;
1117 typedef Mat_<ushort> Mat1w;
1118 typedef Mat_<Vec2w> Mat2w;
1119 typedef Mat_<Vec3w> Mat3w;
1120 typedef Mat_<Vec4w> Mat4w;
1122 typedef Mat_<int> Mat1i;
1123 typedef Mat_<Vec2i> Mat2i;
1124 typedef Mat_<Vec3i> Mat3i;
1125 typedef Mat_<Vec4i> Mat4i;
1127 typedef Mat_<float> Mat1f;
1128 typedef Mat_<Vec2f> Mat2f;
1129 typedef Mat_<Vec3f> Mat3f;
1130 typedef Mat_<Vec4f> Mat4f;
1132 typedef Mat_<double> Mat1d;
1133 typedef Mat_<Vec2d> Mat2d;
1134 typedef Mat_<Vec3d> Mat3d;
1135 typedef Mat_<Vec4d> Mat4d;
1138 class CV_EXPORTS UMatExpr;
1140 class CV_EXPORTS UMat
1143 //! default constructor
1145 //! constructs 2D matrix of the specified size and type
1146 // (_type is CV_8UC1, CV_64FC3, CV_32SC(12) etc.)
1147 UMat(int rows, int cols, int type);
1148 UMat(Size size, int type);
1149 //! constucts 2D matrix and fills it with the specified value _s.
1150 UMat(int rows, int cols, int type, const Scalar& s);
1151 UMat(Size size, int type, const Scalar& s);
1153 //! constructs n-dimensional matrix
1154 UMat(int ndims, const int* sizes, int type);
1155 UMat(int ndims, const int* sizes, int type, const Scalar& s);
1157 //! copy constructor
1158 UMat(const UMat& m);
1160 //! creates a matrix header for a part of the bigger matrix
1161 UMat(const UMat& m, const Range& rowRange, const Range& colRange=Range::all());
1162 UMat(const UMat& m, const Rect& roi);
1163 UMat(const UMat& m, const Range* ranges);
1164 //! builds matrix from std::vector with or without copying the data
1165 template<typename _Tp> explicit UMat(const std::vector<_Tp>& vec, bool copyData=false);
1166 //! builds matrix from cv::Vec; the data is copied by default
1167 template<typename _Tp, int n> explicit UMat(const Vec<_Tp, n>& vec, bool copyData=true);
1168 //! builds matrix from cv::Matx; the data is copied by default
1169 template<typename _Tp, int m, int n> explicit UMat(const Matx<_Tp, m, n>& mtx, bool copyData=true);
1170 //! builds matrix from a 2D point
1171 template<typename _Tp> explicit UMat(const Point_<_Tp>& pt, bool copyData=true);
1172 //! builds matrix from a 3D point
1173 template<typename _Tp> explicit UMat(const Point3_<_Tp>& pt, bool copyData=true);
1174 //! builds matrix from comma initializer
1175 template<typename _Tp> explicit UMat(const MatCommaInitializer_<_Tp>& commaInitializer);
1177 //! destructor - calls release()
1179 //! assignment operators
1180 UMat& operator = (const UMat& m);
1181 UMat& operator = (const UMatExpr& expr);
1183 Mat getMat(int flags) const;
1185 //! returns a new matrix header for the specified row
1186 UMat row(int y) const;
1187 //! returns a new matrix header for the specified column
1188 UMat col(int x) const;
1189 //! ... for the specified row span
1190 UMat rowRange(int startrow, int endrow) const;
1191 UMat rowRange(const Range& r) const;
1192 //! ... for the specified column span
1193 UMat colRange(int startcol, int endcol) const;
1194 UMat colRange(const Range& r) const;
1195 //! ... for the specified diagonal
1196 // (d=0 - the main diagonal,
1197 // >0 - a diagonal from the lower half,
1198 // <0 - a diagonal from the upper half)
1199 UMat diag(int d=0) const;
1200 //! constructs a square diagonal matrix which main diagonal is vector "d"
1201 static UMat diag(const UMat& d);
1203 //! returns deep copy of the matrix, i.e. the data is copied
1205 //! copies the matrix content to "m".
1206 // It calls m.create(this->size(), this->type()).
1207 void copyTo( OutputArray m ) const;
1208 //! copies those matrix elements to "m" that are marked with non-zero mask elements.
1209 void copyTo( OutputArray m, InputArray mask ) const;
1210 //! converts matrix to another datatype with optional scalng. See cvConvertScale.
1211 void convertTo( OutputArray m, int rtype, double alpha=1, double beta=0 ) const;
1213 void assignTo( UMat& m, int type=-1 ) const;
1215 //! sets every matrix element to s
1216 UMat& operator = (const Scalar& s);
1217 //! sets some of the matrix elements to s, according to the mask
1218 UMat& setTo(InputArray value, InputArray mask=noArray());
1219 //! creates alternative matrix header for the same data, with different
1220 // number of channels and/or different number of rows. see cvReshape.
1221 UMat reshape(int cn, int rows=0) const;
1222 UMat reshape(int cn, int newndims, const int* newsz) const;
1224 //! matrix transposition by means of matrix expressions
1226 //! matrix inversion by means of matrix expressions
1227 UMatExpr inv(int method=DECOMP_LU) const;
1228 //! per-element matrix multiplication by means of matrix expressions
1229 UMatExpr mul(InputArray m, double scale=1) const;
1231 //! computes cross-product of 2 3D vectors
1232 UMat cross(InputArray m) const;
1233 //! computes dot-product
1234 double dot(InputArray m) const;
1236 //! Matlab-style matrix initialization
1237 static UMatExpr zeros(int rows, int cols, int type);
1238 static UMatExpr zeros(Size size, int type);
1239 static UMatExpr zeros(int ndims, const int* sz, int type);
1240 static UMatExpr ones(int rows, int cols, int type);
1241 static UMatExpr ones(Size size, int type);
1242 static UMatExpr ones(int ndims, const int* sz, int type);
1243 static UMatExpr eye(int rows, int cols, int type);
1244 static UMatExpr eye(Size size, int type);
1246 //! allocates new matrix data unless the matrix already has specified size and type.
1247 // previous data is unreferenced if needed.
1248 void create(int rows, int cols, int type);
1249 void create(Size size, int type);
1250 void create(int ndims, const int* sizes, int type);
1252 //! increases the reference counter; use with care to avoid memleaks
1254 //! decreases reference counter;
1255 // deallocates the data when reference counter reaches 0.
1258 //! deallocates the matrix data
1260 //! internal use function; properly re-allocates _size, _step arrays
1261 void copySize(const UMat& m);
1263 //! locates matrix header within a parent matrix. See below
1264 void locateROI( Size& wholeSize, Point& ofs ) const;
1265 //! moves/resizes the current matrix ROI inside the parent matrix.
1266 UMat& adjustROI( int dtop, int dbottom, int dleft, int dright );
1267 //! extracts a rectangular sub-matrix
1268 // (this is a generalized form of row, rowRange etc.)
1269 UMat operator()( Range rowRange, Range colRange ) const;
1270 UMat operator()( const Rect& roi ) const;
1271 UMat operator()( const Range* ranges ) const;
1273 //! returns true iff the matrix data is continuous
1274 // (i.e. when there are no gaps between successive rows).
1275 // similar to CV_IS_MAT_CONT(cvmat->type)
1276 bool isContinuous() const;
1278 //! returns true if the matrix is a submatrix of another matrix
1279 bool isSubmatrix() const;
1281 //! returns element size in bytes,
1282 // similar to CV_ELEM_SIZE(cvmat->type)
1283 size_t elemSize() const;
1284 //! returns the size of element channel in bytes.
1285 size_t elemSize1() const;
1286 //! returns element type, similar to CV_MAT_TYPE(cvmat->type)
1288 //! returns element type, similar to CV_MAT_DEPTH(cvmat->type)
1290 //! returns element type, similar to CV_MAT_CN(cvmat->type)
1291 int channels() const;
1292 //! returns step/elemSize1()
1293 size_t step1(int i=0) const;
1294 //! returns true if matrix data is NULL
1296 //! returns the total number of matrix elements
1297 size_t total() const;
1299 //! returns N if the matrix is 1-channel (N x ptdim) or ptdim-channel (1 x N) or (N x 1); negative number otherwise
1300 int checkVector(int elemChannels, int depth=-1, bool requireContinuous=true) const;
1302 void* handle(int accessFlags) const;
1303 void ndoffset(size_t* ofs) const;
1305 enum { MAGIC_VAL = 0x42FF0000, AUTO_STEP = 0, CONTINUOUS_FLAG = CV_MAT_CONT_FLAG, SUBMATRIX_FLAG = CV_SUBMAT_FLAG };
1306 enum { MAGIC_MASK = 0xFFFF0000, TYPE_MASK = 0x00000FFF, DEPTH_MASK = 7 };
1308 /*! includes several bit-fields:
1309 - the magic signature
1312 - number of channels
1315 //! the matrix dimensionality, >= 2
1317 //! the number of rows and columns or (-1, -1) when the matrix has more than 2 dimensions
1320 //! custom allocator
1321 MatAllocator* allocator;
1322 //! and the standard allocator
1323 static MatAllocator* getStdAllocator();
1325 // black-box container of UMat data
1328 // offset of the submatrix (or 0)
1338 /////////////////////////// multi-dimensional sparse matrix //////////////////////////
1341 Sparse matrix class.
1343 The class represents multi-dimensional sparse numerical arrays. Such a sparse array can store elements
1344 of any type that cv::Mat is able to store. "Sparse" means that only non-zero elements
1345 are stored (though, as a result of some operations on a sparse matrix, some of its stored elements
1346 can actually become 0. It's user responsibility to detect such elements and delete them using cv::SparseMat::erase().
1347 The non-zero elements are stored in a hash table that grows when it's filled enough,
1348 so that the search time remains O(1) in average. Elements can be accessed using the following methods:
1351 <li>Query operations: cv::SparseMat::ptr() and the higher-level cv::SparseMat::ref(),
1352 cv::SparseMat::value() and cv::SparseMat::find, for example:
1355 int size[] = {10, 10, 10, 10, 10};
1356 SparseMat sparse_mat(dims, size, CV_32F);
1357 for(int i = 0; i < 1000; i++)
1360 for(int k = 0; k < dims; k++)
1361 idx[k] = rand()%sparse_mat.size(k);
1362 sparse_mat.ref<float>(idx) += 1.f;
1366 <li>Sparse matrix iterators. Like cv::Mat iterators and unlike cv::Mat iterators, the sparse matrix iterators are STL-style,
1367 that is, the iteration is done as following:
1369 // prints elements of a sparse floating-point matrix and the sum of elements.
1370 SparseMatConstIterator_<float>
1371 it = sparse_mat.begin<float>(),
1372 it_end = sparse_mat.end<float>();
1374 int dims = sparse_mat.dims();
1375 for(; it != it_end; ++it)
1377 // print element indices and the element value
1378 const Node* n = it.node();
1380 for(int i = 0; i < dims; i++)
1381 printf("%3d%c", n->idx[i], i < dims-1 ? ',' : ')');
1382 printf(": %f\n", *it);
1385 printf("Element sum is %g\n", s);
1387 If you run this loop, you will notice that elements are enumerated
1388 in no any logical order (lexicographical etc.),
1389 they come in the same order as they stored in the hash table, i.e. semi-randomly.
1391 You may collect pointers to the nodes and sort them to get the proper ordering.
1392 Note, however, that pointers to the nodes may become invalid when you add more
1393 elements to the matrix; this is because of possible buffer reallocation.
1395 <li>A combination of the above 2 methods when you need to process 2 or more sparse
1396 matrices simultaneously, e.g. this is how you can compute unnormalized
1397 cross-correlation of the 2 floating-point sparse matrices:
1399 double crossCorr(const SparseMat& a, const SparseMat& b)
1401 const SparseMat *_a = &a, *_b = &b;
1402 // if b contains less elements than a,
1403 // it's faster to iterate through b
1404 if(_a->nzcount() > _b->nzcount())
1406 SparseMatConstIterator_<float> it = _a->begin<float>(),
1407 it_end = _a->end<float>();
1409 for(; it != it_end; ++it)
1411 // take the next element from the first matrix
1413 const Node* anode = it.node();
1414 // and try to find element with the same index in the second matrix.
1415 // since the hash value depends only on the element index,
1416 // we reuse hashvalue stored in the node
1417 float bvalue = _b->value<float>(anode->idx,&anode->hashval);
1418 ccorr += avalue*bvalue;
1425 class CV_EXPORTS SparseMat
1428 typedef SparseMatIterator iterator;
1429 typedef SparseMatConstIterator const_iterator;
1431 enum { MAGIC_VAL=0x42FD0000, MAX_DIM=32, HASH_SCALE=0x5bd1e995, HASH_BIT=0x80000000 };
1433 //! the sparse matrix header
1434 struct CV_EXPORTS Hdr
1436 Hdr(int _dims, const int* _sizes, int _type);
1444 std::vector<uchar> pool;
1445 std::vector<size_t> hashtab;
1449 //! sparse matrix node - element of a hash table
1450 struct CV_EXPORTS Node
1454 //! index of the next node in the same hash table entry
1456 //! index of the matrix element
1460 //! default constructor
1462 //! creates matrix of the specified size and type
1463 SparseMat(int dims, const int* _sizes, int _type);
1464 //! copy constructor
1465 SparseMat(const SparseMat& m);
1466 //! converts dense 2d matrix to the sparse form
1468 \param m the input matrix
1470 explicit SparseMat(const Mat& m);
1471 //! converts old-style sparse matrix to the new-style. All the data is copied
1472 //SparseMat(const CvSparseMat* m);
1476 //! assignment operator. This is O(1) operation, i.e. no data is copied
1477 SparseMat& operator = (const SparseMat& m);
1478 //! equivalent to the corresponding constructor
1479 SparseMat& operator = (const Mat& m);
1481 //! creates full copy of the matrix
1482 SparseMat clone() const;
1484 //! copies all the data to the destination matrix. All the previous content of m is erased
1485 void copyTo( SparseMat& m ) const;
1486 //! converts sparse matrix to dense matrix.
1487 void copyTo( Mat& m ) const;
1488 //! multiplies all the matrix elements by the specified scale factor alpha and converts the results to the specified data type
1489 void convertTo( SparseMat& m, int rtype, double alpha=1 ) const;
1490 //! converts sparse matrix to dense n-dim matrix with optional type conversion and scaling.
1492 \param rtype The output matrix data type. When it is =-1, the output array will have the same data type as (*this)
1493 \param alpha The scale factor
1494 \param beta The optional delta added to the scaled values before the conversion
1496 void convertTo( Mat& m, int rtype, double alpha=1, double beta=0 ) const;
1499 void assignTo( SparseMat& m, int type=-1 ) const;
1501 //! reallocates sparse matrix.
1503 If the matrix already had the proper size and type,
1504 it is simply cleared with clear(), otherwise,
1505 the old matrix is released (using release()) and the new one is allocated.
1507 void create(int dims, const int* _sizes, int _type);
1508 //! sets all the sparse matrix elements to 0, which means clearing the hash table.
1510 //! manually increments the reference counter to the header.
1512 // decrements the header reference counter. When the counter reaches 0, the header and all the underlying data are deallocated.
1515 //! converts sparse matrix to the old-style representation; all the elements are copied.
1516 //operator CvSparseMat*() const;
1517 //! returns the size of each element in bytes (not including the overhead - the space occupied by SparseMat::Node elements)
1518 size_t elemSize() const;
1519 //! returns elemSize()/channels()
1520 size_t elemSize1() const;
1522 //! returns type of sparse matrix elements
1524 //! returns the depth of sparse matrix elements
1526 //! returns the number of channels
1527 int channels() const;
1529 //! returns the array of sizes, or NULL if the matrix is not allocated
1530 const int* size() const;
1531 //! returns the size of i-th matrix dimension (or 0)
1532 int size(int i) const;
1533 //! returns the matrix dimensionality
1535 //! returns the number of non-zero elements (=the number of hash table nodes)
1536 size_t nzcount() const;
1538 //! computes the element hash value (1D case)
1539 size_t hash(int i0) const;
1540 //! computes the element hash value (2D case)
1541 size_t hash(int i0, int i1) const;
1542 //! computes the element hash value (3D case)
1543 size_t hash(int i0, int i1, int i2) const;
1544 //! computes the element hash value (nD case)
1545 size_t hash(const int* idx) const;
1549 specialized variants for 1D, 2D, 3D cases and the generic_type one for n-D case.
1551 return pointer to the matrix element.
1553 <li>if the element is there (it's non-zero), the pointer to it is returned
1554 <li>if it's not there and createMissing=false, NULL pointer is returned
1555 <li>if it's not there and createMissing=true, then the new element
1556 is created and initialized with 0. Pointer to it is returned
1557 <li>if the optional hashval pointer is not NULL, the element hash value is
1558 not computed, but *hashval is taken instead.
1561 //! returns pointer to the specified element (1D case)
1562 uchar* ptr(int i0, bool createMissing, size_t* hashval=0);
1563 //! returns pointer to the specified element (2D case)
1564 uchar* ptr(int i0, int i1, bool createMissing, size_t* hashval=0);
1565 //! returns pointer to the specified element (3D case)
1566 uchar* ptr(int i0, int i1, int i2, bool createMissing, size_t* hashval=0);
1567 //! returns pointer to the specified element (nD case)
1568 uchar* ptr(const int* idx, bool createMissing, size_t* hashval=0);
1573 return read-write reference to the specified sparse matrix element.
1575 ref<_Tp>(i0,...[,hashval]) is equivalent to *(_Tp*)ptr(i0,...,true[,hashval]).
1576 The methods always return a valid reference.
1577 If the element did not exist, it is created and initialiazed with 0.
1579 //! returns reference to the specified element (1D case)
1580 template<typename _Tp> _Tp& ref(int i0, size_t* hashval=0);
1581 //! returns reference to the specified element (2D case)
1582 template<typename _Tp> _Tp& ref(int i0, int i1, size_t* hashval=0);
1583 //! returns reference to the specified element (3D case)
1584 template<typename _Tp> _Tp& ref(int i0, int i1, int i2, size_t* hashval=0);
1585 //! returns reference to the specified element (nD case)
1586 template<typename _Tp> _Tp& ref(const int* idx, size_t* hashval=0);
1591 return value of the specified sparse matrix element.
1593 value<_Tp>(i0,...[,hashval]) is equivalent
1596 { const _Tp* p = find<_Tp>(i0,...[,hashval]); return p ? *p : _Tp(); }
1599 That is, if the element did not exist, the methods return 0.
1601 //! returns value of the specified element (1D case)
1602 template<typename _Tp> _Tp value(int i0, size_t* hashval=0) const;
1603 //! returns value of the specified element (2D case)
1604 template<typename _Tp> _Tp value(int i0, int i1, size_t* hashval=0) const;
1605 //! returns value of the specified element (3D case)
1606 template<typename _Tp> _Tp value(int i0, int i1, int i2, size_t* hashval=0) const;
1607 //! returns value of the specified element (nD case)
1608 template<typename _Tp> _Tp value(const int* idx, size_t* hashval=0) const;
1613 Return pointer to the specified sparse matrix element if it exists
1615 find<_Tp>(i0,...[,hashval]) is equivalent to (_const Tp*)ptr(i0,...false[,hashval]).
1617 If the specified element does not exist, the methods return NULL.
1619 //! returns pointer to the specified element (1D case)
1620 template<typename _Tp> const _Tp* find(int i0, size_t* hashval=0) const;
1621 //! returns pointer to the specified element (2D case)
1622 template<typename _Tp> const _Tp* find(int i0, int i1, size_t* hashval=0) const;
1623 //! returns pointer to the specified element (3D case)
1624 template<typename _Tp> const _Tp* find(int i0, int i1, int i2, size_t* hashval=0) const;
1625 //! returns pointer to the specified element (nD case)
1626 template<typename _Tp> const _Tp* find(const int* idx, size_t* hashval=0) const;
1628 //! erases the specified element (2D case)
1629 void erase(int i0, int i1, size_t* hashval=0);
1630 //! erases the specified element (3D case)
1631 void erase(int i0, int i1, int i2, size_t* hashval=0);
1632 //! erases the specified element (nD case)
1633 void erase(const int* idx, size_t* hashval=0);
1637 return the sparse matrix iterator pointing to the first sparse matrix element
1639 //! returns the sparse matrix iterator at the matrix beginning
1640 SparseMatIterator begin();
1641 //! returns the sparse matrix iterator at the matrix beginning
1642 template<typename _Tp> SparseMatIterator_<_Tp> begin();
1643 //! returns the read-only sparse matrix iterator at the matrix beginning
1644 SparseMatConstIterator begin() const;
1645 //! returns the read-only sparse matrix iterator at the matrix beginning
1646 template<typename _Tp> SparseMatConstIterator_<_Tp> begin() const;
1649 return the sparse matrix iterator pointing to the element following the last sparse matrix element
1651 //! returns the sparse matrix iterator at the matrix end
1652 SparseMatIterator end();
1653 //! returns the read-only sparse matrix iterator at the matrix end
1654 SparseMatConstIterator end() const;
1655 //! returns the typed sparse matrix iterator at the matrix end
1656 template<typename _Tp> SparseMatIterator_<_Tp> end();
1657 //! returns the typed read-only sparse matrix iterator at the matrix end
1658 template<typename _Tp> SparseMatConstIterator_<_Tp> end() const;
1660 //! returns the value stored in the sparse martix node
1661 template<typename _Tp> _Tp& value(Node* n);
1662 //! returns the value stored in the sparse martix node
1663 template<typename _Tp> const _Tp& value(const Node* n) const;
1665 ////////////// some internal-use methods ///////////////
1666 Node* node(size_t nidx);
1667 const Node* node(size_t nidx) const;
1669 uchar* newNode(const int* idx, size_t hashval);
1670 void removeNode(size_t hidx, size_t nidx, size_t previdx);
1671 void resizeHashTab(size_t newsize);
1679 ///////////////////////////////// SparseMat_<_Tp> ////////////////////////////////////
1682 The Template Sparse Matrix class derived from cv::SparseMat
1684 The class provides slightly more convenient operations for accessing elements.
1689 SparseMat_<int> m_ = (SparseMat_<int>&)m;
1690 m_.ref(1)++; // equivalent to m.ref<int>(1)++;
1691 m_.ref(2) += m_(3); // equivalent to m.ref<int>(2) += m.value<int>(3);
1694 template<typename _Tp> class SparseMat_ : public SparseMat
1697 typedef SparseMatIterator_<_Tp> iterator;
1698 typedef SparseMatConstIterator_<_Tp> const_iterator;
1700 //! the default constructor
1702 //! the full constructor equivelent to SparseMat(dims, _sizes, DataType<_Tp>::type)
1703 SparseMat_(int dims, const int* _sizes);
1704 //! the copy constructor. If DataType<_Tp>.type != m.type(), the m elements are converted
1705 SparseMat_(const SparseMat& m);
1706 //! the copy constructor. This is O(1) operation - no data is copied
1707 SparseMat_(const SparseMat_& m);
1708 //! converts dense matrix to the sparse form
1709 SparseMat_(const Mat& m);
1710 //! converts the old-style sparse matrix to the C++ class. All the elements are copied
1711 //SparseMat_(const CvSparseMat* m);
1712 //! the assignment operator. If DataType<_Tp>.type != m.type(), the m elements are converted
1713 SparseMat_& operator = (const SparseMat& m);
1714 //! the assignment operator. This is O(1) operation - no data is copied
1715 SparseMat_& operator = (const SparseMat_& m);
1716 //! converts dense matrix to the sparse form
1717 SparseMat_& operator = (const Mat& m);
1719 //! makes full copy of the matrix. All the elements are duplicated
1720 SparseMat_ clone() const;
1721 //! equivalent to cv::SparseMat::create(dims, _sizes, DataType<_Tp>::type)
1722 void create(int dims, const int* _sizes);
1723 //! converts sparse matrix to the old-style CvSparseMat. All the elements are copied
1724 //operator CvSparseMat*() const;
1726 //! returns type of the matrix elements
1728 //! returns depth of the matrix elements
1730 //! returns the number of channels in each matrix element
1731 int channels() const;
1733 //! equivalent to SparseMat::ref<_Tp>(i0, hashval)
1734 _Tp& ref(int i0, size_t* hashval=0);
1735 //! equivalent to SparseMat::ref<_Tp>(i0, i1, hashval)
1736 _Tp& ref(int i0, int i1, size_t* hashval=0);
1737 //! equivalent to SparseMat::ref<_Tp>(i0, i1, i2, hashval)
1738 _Tp& ref(int i0, int i1, int i2, size_t* hashval=0);
1739 //! equivalent to SparseMat::ref<_Tp>(idx, hashval)
1740 _Tp& ref(const int* idx, size_t* hashval=0);
1742 //! equivalent to SparseMat::value<_Tp>(i0, hashval)
1743 _Tp operator()(int i0, size_t* hashval=0) const;
1744 //! equivalent to SparseMat::value<_Tp>(i0, i1, hashval)
1745 _Tp operator()(int i0, int i1, size_t* hashval=0) const;
1746 //! equivalent to SparseMat::value<_Tp>(i0, i1, i2, hashval)
1747 _Tp operator()(int i0, int i1, int i2, size_t* hashval=0) const;
1748 //! equivalent to SparseMat::value<_Tp>(idx, hashval)
1749 _Tp operator()(const int* idx, size_t* hashval=0) const;
1751 //! returns sparse matrix iterator pointing to the first sparse matrix element
1752 SparseMatIterator_<_Tp> begin();
1753 //! returns read-only sparse matrix iterator pointing to the first sparse matrix element
1754 SparseMatConstIterator_<_Tp> begin() const;
1755 //! returns sparse matrix iterator pointing to the element following the last sparse matrix element
1756 SparseMatIterator_<_Tp> end();
1757 //! returns read-only sparse matrix iterator pointing to the element following the last sparse matrix element
1758 SparseMatConstIterator_<_Tp> end() const;
1763 ////////////////////////////////// MatConstIterator //////////////////////////////////
1765 class CV_EXPORTS MatConstIterator
1768 typedef uchar* value_type;
1769 typedef ptrdiff_t difference_type;
1770 typedef const uchar** pointer;
1771 typedef uchar* reference;
1773 #ifndef OPENCV_NOSTL
1774 typedef std::random_access_iterator_tag iterator_category;
1777 //! default constructor
1779 //! constructor that sets the iterator to the beginning of the matrix
1780 MatConstIterator(const Mat* _m);
1781 //! constructor that sets the iterator to the specified element of the matrix
1782 MatConstIterator(const Mat* _m, int _row, int _col=0);
1783 //! constructor that sets the iterator to the specified element of the matrix
1784 MatConstIterator(const Mat* _m, Point _pt);
1785 //! constructor that sets the iterator to the specified element of the matrix
1786 MatConstIterator(const Mat* _m, const int* _idx);
1787 //! copy constructor
1788 MatConstIterator(const MatConstIterator& it);
1791 MatConstIterator& operator = (const MatConstIterator& it);
1792 //! returns the current matrix element
1793 uchar* operator *() const;
1794 //! returns the i-th matrix element, relative to the current
1795 uchar* operator [](ptrdiff_t i) const;
1797 //! shifts the iterator forward by the specified number of elements
1798 MatConstIterator& operator += (ptrdiff_t ofs);
1799 //! shifts the iterator backward by the specified number of elements
1800 MatConstIterator& operator -= (ptrdiff_t ofs);
1801 //! decrements the iterator
1802 MatConstIterator& operator --();
1803 //! decrements the iterator
1804 MatConstIterator operator --(int);
1805 //! increments the iterator
1806 MatConstIterator& operator ++();
1807 //! increments the iterator
1808 MatConstIterator operator ++(int);
1809 //! returns the current iterator position
1811 //! returns the current iterator position
1812 void pos(int* _idx) const;
1814 ptrdiff_t lpos() const;
1815 void seek(ptrdiff_t ofs, bool relative = false);
1816 void seek(const int* _idx, bool relative = false);
1827 ////////////////////////////////// MatConstIterator_ /////////////////////////////////
1830 Matrix read-only iterator
1832 template<typename _Tp>
1833 class MatConstIterator_ : public MatConstIterator
1836 typedef _Tp value_type;
1837 typedef ptrdiff_t difference_type;
1838 typedef const _Tp* pointer;
1839 typedef const _Tp& reference;
1841 #ifndef OPENCV_NOSTL
1842 typedef std::random_access_iterator_tag iterator_category;
1845 //! default constructor
1846 MatConstIterator_();
1847 //! constructor that sets the iterator to the beginning of the matrix
1848 MatConstIterator_(const Mat_<_Tp>* _m);
1849 //! constructor that sets the iterator to the specified element of the matrix
1850 MatConstIterator_(const Mat_<_Tp>* _m, int _row, int _col=0);
1851 //! constructor that sets the iterator to the specified element of the matrix
1852 MatConstIterator_(const Mat_<_Tp>* _m, Point _pt);
1853 //! constructor that sets the iterator to the specified element of the matrix
1854 MatConstIterator_(const Mat_<_Tp>* _m, const int* _idx);
1855 //! copy constructor
1856 MatConstIterator_(const MatConstIterator_& it);
1859 MatConstIterator_& operator = (const MatConstIterator_& it);
1860 //! returns the current matrix element
1861 _Tp operator *() const;
1862 //! returns the i-th matrix element, relative to the current
1863 _Tp operator [](ptrdiff_t i) const;
1865 //! shifts the iterator forward by the specified number of elements
1866 MatConstIterator_& operator += (ptrdiff_t ofs);
1867 //! shifts the iterator backward by the specified number of elements
1868 MatConstIterator_& operator -= (ptrdiff_t ofs);
1869 //! decrements the iterator
1870 MatConstIterator_& operator --();
1871 //! decrements the iterator
1872 MatConstIterator_ operator --(int);
1873 //! increments the iterator
1874 MatConstIterator_& operator ++();
1875 //! increments the iterator
1876 MatConstIterator_ operator ++(int);
1877 //! returns the current iterator position
1883 //////////////////////////////////// MatIterator_ ////////////////////////////////////
1886 Matrix read-write iterator
1888 template<typename _Tp>
1889 class MatIterator_ : public MatConstIterator_<_Tp>
1892 typedef _Tp* pointer;
1893 typedef _Tp& reference;
1895 #ifndef OPENCV_NOSTL
1896 typedef std::random_access_iterator_tag iterator_category;
1899 //! the default constructor
1901 //! constructor that sets the iterator to the beginning of the matrix
1902 MatIterator_(Mat_<_Tp>* _m);
1903 //! constructor that sets the iterator to the specified element of the matrix
1904 MatIterator_(Mat_<_Tp>* _m, int _row, int _col=0);
1905 //! constructor that sets the iterator to the specified element of the matrix
1906 MatIterator_(const Mat_<_Tp>* _m, Point _pt);
1907 //! constructor that sets the iterator to the specified element of the matrix
1908 MatIterator_(const Mat_<_Tp>* _m, const int* _idx);
1909 //! copy constructor
1910 MatIterator_(const MatIterator_& it);
1912 MatIterator_& operator = (const MatIterator_<_Tp>& it );
1914 //! returns the current matrix element
1915 _Tp& operator *() const;
1916 //! returns the i-th matrix element, relative to the current
1917 _Tp& operator [](ptrdiff_t i) const;
1919 //! shifts the iterator forward by the specified number of elements
1920 MatIterator_& operator += (ptrdiff_t ofs);
1921 //! shifts the iterator backward by the specified number of elements
1922 MatIterator_& operator -= (ptrdiff_t ofs);
1923 //! decrements the iterator
1924 MatIterator_& operator --();
1925 //! decrements the iterator
1926 MatIterator_ operator --(int);
1927 //! increments the iterator
1928 MatIterator_& operator ++();
1929 //! increments the iterator
1930 MatIterator_ operator ++(int);
1935 /////////////////////////////// SparseMatConstIterator ///////////////////////////////
1938 Read-Only Sparse Matrix Iterator.
1939 Here is how to use the iterator to compute the sum of floating-point sparse matrix elements:
1942 SparseMatConstIterator it = m.begin(), it_end = m.end();
1944 CV_Assert( m.type() == CV_32F );
1945 for( ; it != it_end; ++it )
1946 s += it.value<float>();
1949 class CV_EXPORTS SparseMatConstIterator
1952 //! the default constructor
1953 SparseMatConstIterator();
1954 //! the full constructor setting the iterator to the first sparse matrix element
1955 SparseMatConstIterator(const SparseMat* _m);
1956 //! the copy constructor
1957 SparseMatConstIterator(const SparseMatConstIterator& it);
1959 //! the assignment operator
1960 SparseMatConstIterator& operator = (const SparseMatConstIterator& it);
1962 //! template method returning the current matrix element
1963 template<typename _Tp> const _Tp& value() const;
1964 //! returns the current node of the sparse matrix. it.node->idx is the current element index
1965 const SparseMat::Node* node() const;
1967 //! moves iterator to the previous element
1968 SparseMatConstIterator& operator --();
1969 //! moves iterator to the previous element
1970 SparseMatConstIterator operator --(int);
1971 //! moves iterator to the next element
1972 SparseMatConstIterator& operator ++();
1973 //! moves iterator to the next element
1974 SparseMatConstIterator operator ++(int);
1976 //! moves iterator to the element after the last element
1986 ////////////////////////////////// SparseMatIterator /////////////////////////////////
1989 Read-write Sparse Matrix Iterator
1991 The class is similar to cv::SparseMatConstIterator,
1992 but can be used for in-place modification of the matrix elements.
1994 class CV_EXPORTS SparseMatIterator : public SparseMatConstIterator
1997 //! the default constructor
1998 SparseMatIterator();
1999 //! the full constructor setting the iterator to the first sparse matrix element
2000 SparseMatIterator(SparseMat* _m);
2001 //! the full constructor setting the iterator to the specified sparse matrix element
2002 SparseMatIterator(SparseMat* _m, const int* idx);
2003 //! the copy constructor
2004 SparseMatIterator(const SparseMatIterator& it);
2006 //! the assignment operator
2007 SparseMatIterator& operator = (const SparseMatIterator& it);
2008 //! returns read-write reference to the current sparse matrix element
2009 template<typename _Tp> _Tp& value() const;
2010 //! returns pointer to the current sparse matrix node. it.node->idx is the index of the current element (do not modify it!)
2011 SparseMat::Node* node() const;
2013 //! moves iterator to the next element
2014 SparseMatIterator& operator ++();
2015 //! moves iterator to the next element
2016 SparseMatIterator operator ++(int);
2021 /////////////////////////////// SparseMatConstIterator_ //////////////////////////////
2024 Template Read-Only Sparse Matrix Iterator Class.
2026 This is the derived from SparseMatConstIterator class that
2027 introduces more convenient operator *() for accessing the current element.
2029 template<typename _Tp> class SparseMatConstIterator_ : public SparseMatConstIterator
2033 #ifndef OPENCV_NOSTL
2034 typedef std::forward_iterator_tag iterator_category;
2037 //! the default constructor
2038 SparseMatConstIterator_();
2039 //! the full constructor setting the iterator to the first sparse matrix element
2040 SparseMatConstIterator_(const SparseMat_<_Tp>* _m);
2041 SparseMatConstIterator_(const SparseMat* _m);
2042 //! the copy constructor
2043 SparseMatConstIterator_(const SparseMatConstIterator_& it);
2045 //! the assignment operator
2046 SparseMatConstIterator_& operator = (const SparseMatConstIterator_& it);
2047 //! the element access operator
2048 const _Tp& operator *() const;
2050 //! moves iterator to the next element
2051 SparseMatConstIterator_& operator ++();
2052 //! moves iterator to the next element
2053 SparseMatConstIterator_ operator ++(int);
2058 ///////////////////////////////// SparseMatIterator_ /////////////////////////////////
2061 Template Read-Write Sparse Matrix Iterator Class.
2063 This is the derived from cv::SparseMatConstIterator_ class that
2064 introduces more convenient operator *() for accessing the current element.
2066 template<typename _Tp> class SparseMatIterator_ : public SparseMatConstIterator_<_Tp>
2070 #ifndef OPENCV_NOSTL
2071 typedef std::forward_iterator_tag iterator_category;
2074 //! the default constructor
2075 SparseMatIterator_();
2076 //! the full constructor setting the iterator to the first sparse matrix element
2077 SparseMatIterator_(SparseMat_<_Tp>* _m);
2078 SparseMatIterator_(SparseMat* _m);
2079 //! the copy constructor
2080 SparseMatIterator_(const SparseMatIterator_& it);
2082 //! the assignment operator
2083 SparseMatIterator_& operator = (const SparseMatIterator_& it);
2084 //! returns the reference to the current element
2085 _Tp& operator *() const;
2087 //! moves the iterator to the next element
2088 SparseMatIterator_& operator ++();
2089 //! moves the iterator to the next element
2090 SparseMatIterator_ operator ++(int);
2095 /////////////////////////////////// NAryMatIterator //////////////////////////////////
2098 n-Dimensional Dense Matrix Iterator Class.
2100 The class cv::NAryMatIterator is used for iterating over one or more n-dimensional dense arrays (cv::Mat's).
2102 The iterator is completely different from cv::Mat_ and cv::SparseMat_ iterators.
2103 It iterates through the slices (or planes), not the elements, where "slice" is a continuous part of the arrays.
2105 Here is the example on how the iterator can be used to normalize 3D histogram:
2108 void normalizeColorHist(Mat& hist)
2111 // intialize iterator (the style is different from STL).
2112 // after initialization the iterator will contain
2113 // the number of slices or planes
2114 // the iterator will go through
2115 Mat* arrays[] = { &hist, 0 };
2117 NAryMatIterator it(arrays, planes);
2119 // iterate through the matrix. on each iteration
2120 // it.planes[i] (of type Mat) will be set to the current plane of
2121 // i-th n-dim matrix passed to the iterator constructor.
2122 for(int p = 0; p < it.nplanes; p++, ++it)
2123 s += sum(it.planes[0])[0];
2124 it = NAryMatIterator(hist);
2126 for(int p = 0; p < it.nplanes; p++, ++it)
2129 // this is a shorter implementation of the above
2130 // using built-in operations on Mat
2131 double s = sum(hist)[0];
2132 hist.convertTo(hist, hist.type(), 1./s, 0);
2134 // and this is even shorter one
2135 // (assuming that the histogram elements are non-negative)
2136 normalize(hist, hist, 1, 0, NORM_L1);
2141 You can iterate through several matrices simultaneously as long as they have the same geometry
2142 (dimensionality and all the dimension sizes are the same), which is useful for binary
2143 and n-ary operations on such matrices. Just pass those matrices to cv::MatNDIterator.
2144 Then, during the iteration it.planes[0], it.planes[1], ... will
2145 be the slices of the corresponding matrices
2147 class CV_EXPORTS NAryMatIterator
2150 //! the default constructor
2152 //! the full constructor taking arbitrary number of n-dim matrices
2153 NAryMatIterator(const Mat** arrays, uchar** ptrs, int narrays=-1);
2154 //! the full constructor taking arbitrary number of n-dim matrices
2155 NAryMatIterator(const Mat** arrays, Mat* planes, int narrays=-1);
2156 //! the separate iterator initialization method
2157 void init(const Mat** arrays, Mat* planes, uchar** ptrs, int narrays=-1);
2159 //! proceeds to the next plane of every iterated matrix
2160 NAryMatIterator& operator ++();
2161 //! proceeds to the next plane of every iterated matrix (postfix increment operator)
2162 NAryMatIterator operator ++(int);
2164 //! the iterated arrays
2166 //! the current planes
2170 //! the number of arrays
2172 //! the number of hyper-planes that the iterator steps through
2174 //! the size of each segment (in elements)
2183 ///////////////////////////////// Matrix Expressions /////////////////////////////////
2185 class CV_EXPORTS MatOp
2191 virtual bool elementWise(const MatExpr& expr) const;
2192 virtual void assign(const MatExpr& expr, Mat& m, int type=-1) const = 0;
2193 virtual void roi(const MatExpr& expr, const Range& rowRange,
2194 const Range& colRange, MatExpr& res) const;
2195 virtual void diag(const MatExpr& expr, int d, MatExpr& res) const;
2196 virtual void augAssignAdd(const MatExpr& expr, Mat& m) const;
2197 virtual void augAssignSubtract(const MatExpr& expr, Mat& m) const;
2198 virtual void augAssignMultiply(const MatExpr& expr, Mat& m) const;
2199 virtual void augAssignDivide(const MatExpr& expr, Mat& m) const;
2200 virtual void augAssignAnd(const MatExpr& expr, Mat& m) const;
2201 virtual void augAssignOr(const MatExpr& expr, Mat& m) const;
2202 virtual void augAssignXor(const MatExpr& expr, Mat& m) const;
2204 virtual void add(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res) const;
2205 virtual void add(const MatExpr& expr1, const Scalar& s, MatExpr& res) const;
2207 virtual void subtract(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res) const;
2208 virtual void subtract(const Scalar& s, const MatExpr& expr, MatExpr& res) const;
2210 virtual void multiply(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res, double scale=1) const;
2211 virtual void multiply(const MatExpr& expr1, double s, MatExpr& res) const;
2213 virtual void divide(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res, double scale=1) const;
2214 virtual void divide(double s, const MatExpr& expr, MatExpr& res) const;
2216 virtual void abs(const MatExpr& expr, MatExpr& res) const;
2218 virtual void transpose(const MatExpr& expr, MatExpr& res) const;
2219 virtual void matmul(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res) const;
2220 virtual void invert(const MatExpr& expr, int method, MatExpr& res) const;
2222 virtual Size size(const MatExpr& expr) const;
2223 virtual int type(const MatExpr& expr) const;
2227 class CV_EXPORTS MatExpr
2231 explicit MatExpr(const Mat& m);
2233 MatExpr(const MatOp* _op, int _flags, const Mat& _a = Mat(), const Mat& _b = Mat(),
2234 const Mat& _c = Mat(), double _alpha = 1, double _beta = 1, const Scalar& _s = Scalar());
2236 operator Mat() const;
2237 template<typename _Tp> operator Mat_<_Tp>() const;
2242 MatExpr row(int y) const;
2243 MatExpr col(int x) const;
2244 MatExpr diag(int d = 0) const;
2245 MatExpr operator()( const Range& rowRange, const Range& colRange ) const;
2246 MatExpr operator()( const Rect& roi ) const;
2249 MatExpr inv(int method = DECOMP_LU) const;
2250 MatExpr mul(const MatExpr& e, double scale=1) const;
2251 MatExpr mul(const Mat& m, double scale=1) const;
2253 Mat cross(const Mat& m) const;
2254 double dot(const Mat& m) const;
2265 CV_EXPORTS MatExpr operator + (const Mat& a, const Mat& b);
2266 CV_EXPORTS MatExpr operator + (const Mat& a, const Scalar& s);
2267 CV_EXPORTS MatExpr operator + (const Scalar& s, const Mat& a);
2268 CV_EXPORTS MatExpr operator + (const MatExpr& e, const Mat& m);
2269 CV_EXPORTS MatExpr operator + (const Mat& m, const MatExpr& e);
2270 CV_EXPORTS MatExpr operator + (const MatExpr& e, const Scalar& s);
2271 CV_EXPORTS MatExpr operator + (const Scalar& s, const MatExpr& e);
2272 CV_EXPORTS MatExpr operator + (const MatExpr& e1, const MatExpr& e2);
2274 CV_EXPORTS MatExpr operator - (const Mat& a, const Mat& b);
2275 CV_EXPORTS MatExpr operator - (const Mat& a, const Scalar& s);
2276 CV_EXPORTS MatExpr operator - (const Scalar& s, const Mat& a);
2277 CV_EXPORTS MatExpr operator - (const MatExpr& e, const Mat& m);
2278 CV_EXPORTS MatExpr operator - (const Mat& m, const MatExpr& e);
2279 CV_EXPORTS MatExpr operator - (const MatExpr& e, const Scalar& s);
2280 CV_EXPORTS MatExpr operator - (const Scalar& s, const MatExpr& e);
2281 CV_EXPORTS MatExpr operator - (const MatExpr& e1, const MatExpr& e2);
2283 CV_EXPORTS MatExpr operator - (const Mat& m);
2284 CV_EXPORTS MatExpr operator - (const MatExpr& e);
2286 CV_EXPORTS MatExpr operator * (const Mat& a, const Mat& b);
2287 CV_EXPORTS MatExpr operator * (const Mat& a, double s);
2288 CV_EXPORTS MatExpr operator * (double s, const Mat& a);
2289 CV_EXPORTS MatExpr operator * (const MatExpr& e, const Mat& m);
2290 CV_EXPORTS MatExpr operator * (const Mat& m, const MatExpr& e);
2291 CV_EXPORTS MatExpr operator * (const MatExpr& e, double s);
2292 CV_EXPORTS MatExpr operator * (double s, const MatExpr& e);
2293 CV_EXPORTS MatExpr operator * (const MatExpr& e1, const MatExpr& e2);
2295 CV_EXPORTS MatExpr operator / (const Mat& a, const Mat& b);
2296 CV_EXPORTS MatExpr operator / (const Mat& a, double s);
2297 CV_EXPORTS MatExpr operator / (double s, const Mat& a);
2298 CV_EXPORTS MatExpr operator / (const MatExpr& e, const Mat& m);
2299 CV_EXPORTS MatExpr operator / (const Mat& m, const MatExpr& e);
2300 CV_EXPORTS MatExpr operator / (const MatExpr& e, double s);
2301 CV_EXPORTS MatExpr operator / (double s, const MatExpr& e);
2302 CV_EXPORTS MatExpr operator / (const MatExpr& e1, const MatExpr& e2);
2304 CV_EXPORTS MatExpr operator < (const Mat& a, const Mat& b);
2305 CV_EXPORTS MatExpr operator < (const Mat& a, double s);
2306 CV_EXPORTS MatExpr operator < (double s, const Mat& a);
2308 CV_EXPORTS MatExpr operator <= (const Mat& a, const Mat& b);
2309 CV_EXPORTS MatExpr operator <= (const Mat& a, double s);
2310 CV_EXPORTS MatExpr operator <= (double s, const Mat& a);
2312 CV_EXPORTS MatExpr operator == (const Mat& a, const Mat& b);
2313 CV_EXPORTS MatExpr operator == (const Mat& a, double s);
2314 CV_EXPORTS MatExpr operator == (double s, const Mat& a);
2316 CV_EXPORTS MatExpr operator != (const Mat& a, const Mat& b);
2317 CV_EXPORTS MatExpr operator != (const Mat& a, double s);
2318 CV_EXPORTS MatExpr operator != (double s, const Mat& a);
2320 CV_EXPORTS MatExpr operator >= (const Mat& a, const Mat& b);
2321 CV_EXPORTS MatExpr operator >= (const Mat& a, double s);
2322 CV_EXPORTS MatExpr operator >= (double s, const Mat& a);
2324 CV_EXPORTS MatExpr operator > (const Mat& a, const Mat& b);
2325 CV_EXPORTS MatExpr operator > (const Mat& a, double s);
2326 CV_EXPORTS MatExpr operator > (double s, const Mat& a);
2328 CV_EXPORTS MatExpr operator & (const Mat& a, const Mat& b);
2329 CV_EXPORTS MatExpr operator & (const Mat& a, const Scalar& s);
2330 CV_EXPORTS MatExpr operator & (const Scalar& s, const Mat& a);
2332 CV_EXPORTS MatExpr operator | (const Mat& a, const Mat& b);
2333 CV_EXPORTS MatExpr operator | (const Mat& a, const Scalar& s);
2334 CV_EXPORTS MatExpr operator | (const Scalar& s, const Mat& a);
2336 CV_EXPORTS MatExpr operator ^ (const Mat& a, const Mat& b);
2337 CV_EXPORTS MatExpr operator ^ (const Mat& a, const Scalar& s);
2338 CV_EXPORTS MatExpr operator ^ (const Scalar& s, const Mat& a);
2340 CV_EXPORTS MatExpr operator ~(const Mat& m);
2342 CV_EXPORTS MatExpr min(const Mat& a, const Mat& b);
2343 CV_EXPORTS MatExpr min(const Mat& a, double s);
2344 CV_EXPORTS MatExpr min(double s, const Mat& a);
2346 CV_EXPORTS MatExpr max(const Mat& a, const Mat& b);
2347 CV_EXPORTS MatExpr max(const Mat& a, double s);
2348 CV_EXPORTS MatExpr max(double s, const Mat& a);
2350 CV_EXPORTS MatExpr abs(const Mat& m);
2351 CV_EXPORTS MatExpr abs(const MatExpr& e);
2355 #include "opencv2/core/mat.inl.hpp"
2357 #endif // __OPENCV_CORE_MAT_HPP__