1 /*M///////////////////////////////////////////////////////////////////////////////////////
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
11 // For Open Source Computer Vision Library
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
16 // Third party copyrights are property of their respective owners.
18 // Redistribution and use in source and binary forms, with or without modification,
19 // are permitted provided that the following conditions are met:
21 // * Redistribution's of source code must retain the above copyright notice,
22 // this list of conditions and the following disclaimer.
24 // * Redistribution's in binary form must reproduce the above copyright notice,
25 // this list of conditions and the following disclaimer in the documentation
26 // and/or other materials provided with the distribution.
28 // * The name of the copyright holders may not be used to endorse or promote products
29 // derived from this software without specific prior written permission.
31 // This software is provided by the copyright holders and contributors "as is" and
32 // any express or implied warranties, including, but not limited to, the implied
33 // warranties of merchantability and fitness for a particular purpose are disclaimed.
34 // In no event shall the Intel Corporation or contributors be liable for any direct,
35 // indirect, incidental, special, exemplary, or consequential damages
36 // (including, but not limited to, procurement of substitute goods or services;
37 // loss of use, data, or profits; or business interruption) however caused
38 // and on any theory of liability, whether in contract, strict liability,
39 // or tort (including negligence or otherwise) arising in any way out of
40 // the use of this software, even if advised of the possibility of such damage.
44 #ifndef __OPENCV_CORE_MAT_HPP__
45 #define __OPENCV_CORE_MAT_HPP__
48 # error mat.hpp header must be compiled as C++
51 #include "opencv2/core/matx.hpp"
52 #include "opencv2/core/types.hpp"
58 enum { ACCESS_READ=1<<24, ACCESS_WRITE=1<<25,
59 ACCESS_RW=3<<24, ACCESS_MASK=ACCESS_RW, ACCESS_FAST=1<<26 };
61 class CV_EXPORTS _OutputArray;
63 //////////////////////// Input/Output Array Arguments /////////////////////////////////
66 Proxy datatype for passing Mat's and vector<>'s as input parameters
68 class CV_EXPORTS _InputArray
73 FIXED_TYPE = 0x8000 << KIND_SHIFT,
74 FIXED_SIZE = 0x4000 << KIND_SHIFT,
75 KIND_MASK = 31 << KIND_SHIFT,
77 NONE = 0 << KIND_SHIFT,
78 MAT = 1 << KIND_SHIFT,
79 MATX = 2 << KIND_SHIFT,
80 STD_VECTOR = 3 << KIND_SHIFT,
81 STD_VECTOR_VECTOR = 4 << KIND_SHIFT,
82 STD_VECTOR_MAT = 5 << KIND_SHIFT,
83 EXPR = 6 << KIND_SHIFT,
84 OPENGL_BUFFER = 7 << KIND_SHIFT,
85 CUDA_MEM = 8 << KIND_SHIFT,
86 GPU_MAT = 9 << KIND_SHIFT,
87 OCL_MAT =10 << KIND_SHIFT,
88 UMAT =11 << KIND_SHIFT,
89 STD_VECTOR_UMAT =12 << KIND_SHIFT,
90 UEXPR =13 << KIND_SHIFT
94 _InputArray(int _flags, void* _obj);
95 _InputArray(const Mat& m);
96 _InputArray(const MatExpr& expr);
97 _InputArray(const std::vector<Mat>& vec);
98 template<typename _Tp> _InputArray(const Mat_<_Tp>& m);
99 template<typename _Tp> _InputArray(const std::vector<_Tp>& vec);
100 template<typename _Tp> _InputArray(const std::vector<std::vector<_Tp> >& vec);
101 template<typename _Tp> _InputArray(const std::vector<Mat_<_Tp> >& vec);
102 template<typename _Tp> _InputArray(const _Tp* vec, int n);
103 template<typename _Tp, int m, int n> _InputArray(const Matx<_Tp, m, n>& matx);
104 _InputArray(const double& val);
105 _InputArray(const cuda::GpuMat& d_mat);
106 _InputArray(const ogl::Buffer& buf);
107 _InputArray(const cuda::CudaMem& cuda_mem);
108 template<typename _Tp> _InputArray(const cudev::GpuMat_<_Tp>& m);
109 _InputArray(const UMat& um);
110 _InputArray(const std::vector<UMat>& umv);
111 _InputArray(const UMatExpr& uexpr);
113 virtual Mat getMat(int idx=-1) const;
114 virtual UMat getUMat(int idx=-1) const;
115 virtual void getMatVector(std::vector<Mat>& mv) const;
116 virtual void getUMatVector(std::vector<UMat>& umv) const;
117 virtual cuda::GpuMat getGpuMat() const;
118 virtual ogl::Buffer getOGlBuffer() const;
119 void* getObj() const;
121 virtual int kind() const;
122 virtual int dims(int i=-1) const;
123 virtual Size size(int i=-1) const;
124 virtual int sizend(int* sz, int i=-1) const;
125 virtual bool sameSize(const _InputArray& arr) const;
126 virtual size_t total(int i=-1) const;
127 virtual int type(int i=-1) const;
128 virtual int depth(int i=-1) const;
129 virtual int channels(int i=-1) const;
130 virtual bool isContinuous(int i=-1) const;
131 virtual bool isSubmatrix(int i=-1) const;
132 virtual bool empty() const;
133 virtual void copyTo(const _OutputArray& arr) const;
134 virtual size_t offset(int i=-1) const;
135 virtual size_t step(int i=-1) const;
138 bool isMatVector() const;
139 bool isUMatVector() const;
142 virtual ~_InputArray();
149 void init(int _flags, const void* _obj);
150 void init(int _flags, const void* _obj, Size _sz);
155 Proxy datatype for passing Mat's and vector<>'s as input parameters
157 class CV_EXPORTS _OutputArray : public _InputArray
162 DEPTH_MASK_8U = 1 << CV_8U,
163 DEPTH_MASK_8S = 1 << CV_8S,
164 DEPTH_MASK_16U = 1 << CV_16U,
165 DEPTH_MASK_16S = 1 << CV_16S,
166 DEPTH_MASK_32S = 1 << CV_32S,
167 DEPTH_MASK_32F = 1 << CV_32F,
168 DEPTH_MASK_64F = 1 << CV_64F,
169 DEPTH_MASK_ALL = (DEPTH_MASK_64F<<1)-1,
170 DEPTH_MASK_ALL_BUT_8S = DEPTH_MASK_ALL & ~DEPTH_MASK_8S,
171 DEPTH_MASK_FLT = DEPTH_MASK_32F + DEPTH_MASK_64F
175 _OutputArray(int _flags, void* _obj);
176 _OutputArray(Mat& m);
177 _OutputArray(std::vector<Mat>& vec);
178 _OutputArray(cuda::GpuMat& d_mat);
179 _OutputArray(ogl::Buffer& buf);
180 _OutputArray(cuda::CudaMem& cuda_mem);
181 template<typename _Tp> _OutputArray(cudev::GpuMat_<_Tp>& m);
182 template<typename _Tp> _OutputArray(std::vector<_Tp>& vec);
183 template<typename _Tp> _OutputArray(std::vector<std::vector<_Tp> >& vec);
184 template<typename _Tp> _OutputArray(std::vector<Mat_<_Tp> >& vec);
185 template<typename _Tp> _OutputArray(Mat_<_Tp>& m);
186 template<typename _Tp> _OutputArray(_Tp* vec, int n);
187 template<typename _Tp, int m, int n> _OutputArray(Matx<_Tp, m, n>& matx);
188 _OutputArray(UMat& m);
189 _OutputArray(std::vector<UMat>& vec);
191 _OutputArray(const Mat& m);
192 _OutputArray(const std::vector<Mat>& vec);
193 _OutputArray(const cuda::GpuMat& d_mat);
194 _OutputArray(const ogl::Buffer& buf);
195 _OutputArray(const cuda::CudaMem& cuda_mem);
196 template<typename _Tp> _OutputArray(const cudev::GpuMat_<_Tp>& m);
197 template<typename _Tp> _OutputArray(const std::vector<_Tp>& vec);
198 template<typename _Tp> _OutputArray(const std::vector<std::vector<_Tp> >& vec);
199 template<typename _Tp> _OutputArray(const std::vector<Mat_<_Tp> >& vec);
200 template<typename _Tp> _OutputArray(const Mat_<_Tp>& m);
201 template<typename _Tp> _OutputArray(const _Tp* vec, int n);
202 template<typename _Tp, int m, int n> _OutputArray(const Matx<_Tp, m, n>& matx);
203 _OutputArray(const UMat& m);
204 _OutputArray(const std::vector<UMat>& vec);
206 virtual bool fixedSize() const;
207 virtual bool fixedType() const;
208 virtual bool needed() const;
209 virtual Mat& getMatRef(int i=-1) const;
210 virtual UMat& getUMatRef(int i=-1) const;
211 virtual cuda::GpuMat& getGpuMatRef() const;
212 virtual ogl::Buffer& getOGlBufferRef() const;
213 virtual cuda::CudaMem& getCudaMemRef() const;
214 virtual void create(Size sz, int type, int i=-1, bool allowTransposed=false, int fixedDepthMask=0) const;
215 virtual void create(int rows, int cols, int type, int i=-1, bool allowTransposed=false, int fixedDepthMask=0) const;
216 virtual void create(int dims, const int* size, int type, int i=-1, bool allowTransposed=false, int fixedDepthMask=0) const;
217 virtual void createSameSize(const _InputArray& arr, int mtype) const;
218 virtual void release() const;
219 virtual void clear() const;
220 virtual void setTo(const _InputArray& value, const _InputArray & mask = _InputArray()) const;
224 class CV_EXPORTS _InputOutputArray : public _OutputArray
228 _InputOutputArray(int _flags, void* _obj);
229 _InputOutputArray(Mat& m);
230 _InputOutputArray(std::vector<Mat>& vec);
231 _InputOutputArray(cuda::GpuMat& d_mat);
232 _InputOutputArray(ogl::Buffer& buf);
233 _InputOutputArray(cuda::CudaMem& cuda_mem);
234 template<typename _Tp> _InputOutputArray(cudev::GpuMat_<_Tp>& m);
235 template<typename _Tp> _InputOutputArray(std::vector<_Tp>& vec);
236 template<typename _Tp> _InputOutputArray(std::vector<std::vector<_Tp> >& vec);
237 template<typename _Tp> _InputOutputArray(std::vector<Mat_<_Tp> >& vec);
238 template<typename _Tp> _InputOutputArray(Mat_<_Tp>& m);
239 template<typename _Tp> _InputOutputArray(_Tp* vec, int n);
240 template<typename _Tp, int m, int n> _InputOutputArray(Matx<_Tp, m, n>& matx);
241 _InputOutputArray(UMat& m);
242 _InputOutputArray(std::vector<UMat>& vec);
244 _InputOutputArray(const Mat& m);
245 _InputOutputArray(const std::vector<Mat>& vec);
246 _InputOutputArray(const cuda::GpuMat& d_mat);
247 _InputOutputArray(const ogl::Buffer& buf);
248 _InputOutputArray(const cuda::CudaMem& cuda_mem);
249 template<typename _Tp> _InputOutputArray(const cudev::GpuMat_<_Tp>& m);
250 template<typename _Tp> _InputOutputArray(const std::vector<_Tp>& vec);
251 template<typename _Tp> _InputOutputArray(const std::vector<std::vector<_Tp> >& vec);
252 template<typename _Tp> _InputOutputArray(const std::vector<Mat_<_Tp> >& vec);
253 template<typename _Tp> _InputOutputArray(const Mat_<_Tp>& m);
254 template<typename _Tp> _InputOutputArray(const _Tp* vec, int n);
255 template<typename _Tp, int m, int n> _InputOutputArray(const Matx<_Tp, m, n>& matx);
256 _InputOutputArray(const UMat& m);
257 _InputOutputArray(const std::vector<UMat>& vec);
260 typedef const _InputArray& InputArray;
261 typedef InputArray InputArrayOfArrays;
262 typedef const _OutputArray& OutputArray;
263 typedef OutputArray OutputArrayOfArrays;
264 typedef const _InputOutputArray& InputOutputArray;
265 typedef InputOutputArray InputOutputArrayOfArrays;
267 CV_EXPORTS InputOutputArray noArray();
269 /////////////////////////////////// MatAllocator //////////////////////////////////////
271 struct CV_EXPORTS UMatData;
274 Custom array allocator
277 class CV_EXPORTS MatAllocator
281 virtual ~MatAllocator() {}
283 // let's comment it off for now to detect and fix all the uses of allocator
284 //virtual void allocate(int dims, const int* sizes, int type, int*& refcount,
285 // uchar*& datastart, uchar*& data, size_t* step) = 0;
286 //virtual void deallocate(int* refcount, uchar* datastart, uchar* data) = 0;
287 virtual UMatData* allocate(int dims, const int* sizes, int type,
288 void* data, size_t* step, int flags) const = 0;
289 virtual bool allocate(UMatData* data, int accessflags) const = 0;
290 virtual void deallocate(UMatData* data) const = 0;
291 virtual void map(UMatData* data, int accessflags) const;
292 virtual void unmap(UMatData* data) const;
293 virtual void download(UMatData* data, void* dst, int dims, const size_t sz[],
294 const size_t srcofs[], const size_t srcstep[],
295 const size_t dststep[]) const;
296 virtual void upload(UMatData* data, const void* src, int dims, const size_t sz[],
297 const size_t dstofs[], const size_t dststep[],
298 const size_t srcstep[]) const;
299 virtual void copy(UMatData* srcdata, UMatData* dstdata, int dims, const size_t sz[],
300 const size_t srcofs[], const size_t srcstep[],
301 const size_t dstofs[], const size_t dststep[], bool sync) const;
305 //////////////////////////////// MatCommaInitializer //////////////////////////////////
308 Comma-separated Matrix Initializer
310 The class instances are usually not created explicitly.
311 Instead, they are created on "matrix << firstValue" operator.
313 The sample below initializes 2x2 rotation matrix:
316 double angle = 30, a = cos(angle*CV_PI/180), b = sin(angle*CV_PI/180);
317 Mat R = (Mat_<double>(2,2) << a, -b, b, a);
320 template<typename _Tp> class MatCommaInitializer_
323 //! the constructor, created by "matrix << firstValue" operator, where matrix is cv::Mat
324 MatCommaInitializer_(Mat_<_Tp>* _m);
325 //! the operator that takes the next value and put it to the matrix
326 template<typename T2> MatCommaInitializer_<_Tp>& operator , (T2 v);
327 //! another form of conversion operator
328 operator Mat_<_Tp>() const;
330 MatIterator_<_Tp> it;
334 /////////////////////////////////////// Mat ///////////////////////////////////////////
336 // note that umatdata might be allocated together
337 // with the matrix data, not as a separate object.
338 // therefore, it does not have constructor or destructor;
339 // it should be explicitly initialized using init().
340 struct CV_EXPORTS UMatData
342 enum { COPY_ON_MAP=1, HOST_COPY_OBSOLETE=2,
343 DEVICE_COPY_OBSOLETE=4, TEMP_UMAT=8, TEMP_COPIED_UMAT=24,
345 UMatData(const MatAllocator* allocator);
348 // provide atomic access to the structure
352 bool hostCopyObsolete() const;
353 bool deviceCopyObsolete() const;
354 bool copyOnMap() const;
355 bool tempUMat() const;
356 bool tempCopiedUMat() const;
357 void markHostCopyObsolete(bool flag);
358 void markDeviceCopyObsolete(bool flag);
360 const MatAllocator* prevAllocator;
361 const MatAllocator* currAllocator;
374 struct CV_EXPORTS UMatDataAutoLock
376 UMatDataAutoLock(UMatData* u);
382 struct CV_EXPORTS MatSize
385 Size operator()() const;
386 const int& operator[](int i) const;
387 int& operator[](int i);
388 operator const int*() const;
389 bool operator == (const MatSize& sz) const;
390 bool operator != (const MatSize& sz) const;
395 struct CV_EXPORTS MatStep
399 const size_t& operator[](int i) const;
400 size_t& operator[](int i);
401 operator size_t() const;
402 MatStep& operator = (size_t s);
407 MatStep& operator = (const MatStep&);
411 The n-dimensional matrix class.
413 The class represents an n-dimensional dense numerical array that can act as
414 a matrix, image, optical flow map, 3-focal tensor etc.
415 It is very similar to CvMat and CvMatND types from earlier versions of OpenCV,
416 and similarly to those types, the matrix can be multi-channel. It also fully supports ROI mechanism.
418 There are many different ways to create cv::Mat object. Here are the some popular ones:
420 <li> using cv::Mat::create(nrows, ncols, type) method or
421 the similar constructor cv::Mat::Mat(nrows, ncols, type[, fill_value]) constructor.
422 A new matrix of the specified size and specifed type will be allocated.
423 "type" has the same meaning as in cvCreateMat function,
424 e.g. CV_8UC1 means 8-bit single-channel matrix, CV_32FC2 means 2-channel (i.e. complex)
425 floating-point matrix etc:
428 // make 7x7 complex matrix filled with 1+3j.
429 cv::Mat M(7,7,CV_32FC2,Scalar(1,3));
430 // and now turn M to 100x60 15-channel 8-bit matrix.
431 // The old content will be deallocated
432 M.create(100,60,CV_8UC(15));
435 As noted in the introduction of this chapter, Mat::create()
436 will only allocate a new matrix when the current matrix dimensionality
437 or type are different from the specified.
439 <li> by using a copy constructor or assignment operator, where on the right side it can
440 be a matrix or expression, see below. Again, as noted in the introduction,
441 matrix assignment is O(1) operation because it only copies the header
442 and increases the reference counter. cv::Mat::clone() method can be used to get a full
443 (a.k.a. deep) copy of the matrix when you need it.
445 <li> by constructing a header for a part of another matrix. It can be a single row, single column,
446 several rows, several columns, rectangular region in the matrix (called a minor in algebra) or
447 a diagonal. Such operations are also O(1), because the new header will reference the same data.
448 You can actually modify a part of the matrix using this feature, e.g.
451 // add 5-th row, multiplied by 3 to the 3rd row
452 M.row(3) = M.row(3) + M.row(5)*3;
454 // now copy 7-th column to the 1-st column
455 // M.col(1) = M.col(7); // this will not work
459 // create new 320x240 image
460 cv::Mat img(Size(320,240),CV_8UC3);
462 cv::Mat roi(img, Rect(10,10,100,100));
463 // fill the ROI with (0,255,0) (which is green in RGB space);
464 // the original 320x240 image will be modified
465 roi = Scalar(0,255,0);
468 Thanks to the additional cv::Mat::datastart and cv::Mat::dataend members, it is possible to
469 compute the relative sub-matrix position in the main "container" matrix using cv::Mat::locateROI():
472 Mat A = Mat::eye(10, 10, CV_32S);
473 // extracts A columns, 1 (inclusive) to 3 (exclusive).
474 Mat B = A(Range::all(), Range(1, 3));
475 // extracts B rows, 5 (inclusive) to 9 (exclusive).
476 // that is, C ~ A(Range(5, 9), Range(1, 3))
477 Mat C = B(Range(5, 9), Range::all());
478 Size size; Point ofs;
479 C.locateROI(size, ofs);
480 // size will be (width=10,height=10) and the ofs will be (x=1, y=5)
483 As in the case of whole matrices, if you need a deep copy, use cv::Mat::clone() method
484 of the extracted sub-matrices.
486 <li> by making a header for user-allocated-data. It can be useful for
488 <li> processing "foreign" data using OpenCV (e.g. when you implement
489 a DirectShow filter or a processing module for gstreamer etc.), e.g.
492 void process_video_frame(const unsigned char* pixels,
493 int width, int height, int step)
495 cv::Mat img(height, width, CV_8UC3, pixels, step);
496 cv::GaussianBlur(img, img, cv::Size(7,7), 1.5, 1.5);
500 <li> for quick initialization of small matrices and/or super-fast element access
503 double m[3][3] = {{a, b, c}, {d, e, f}, {g, h, i}};
504 cv::Mat M = cv::Mat(3, 3, CV_64F, m).inv();
508 partial yet very common cases of this "user-allocated data" case are conversions
509 from CvMat and IplImage to cv::Mat. For this purpose there are special constructors
510 taking pointers to CvMat or IplImage and the optional
511 flag indicating whether to copy the data or not.
513 Backward conversion from cv::Mat to CvMat or IplImage is provided via cast operators
514 cv::Mat::operator CvMat() an cv::Mat::operator IplImage().
515 The operators do not copy the data.
519 IplImage* img = cvLoadImage("greatwave.jpg", 1);
520 Mat mtx(img); // convert IplImage* -> cv::Mat
521 CvMat oldmat = mtx; // convert cv::Mat -> CvMat
522 CV_Assert(oldmat.cols == img->width && oldmat.rows == img->height &&
523 oldmat.data.ptr == (uchar*)img->imageData && oldmat.step == img->widthStep);
526 <li> by using MATLAB-style matrix initializers, cv::Mat::zeros(), cv::Mat::ones(), cv::Mat::eye(), e.g.:
529 // create a double-precision identity martix and add it to M.
530 M += Mat::eye(M.rows, M.cols, CV_64F);
533 <li> by using comma-separated initializer:
536 // create 3x3 double-precision identity matrix
537 Mat M = (Mat_<double>(3,3) << 1, 0, 0, 0, 1, 0, 0, 0, 1);
540 here we first call constructor of cv::Mat_ class (that we describe further) with the proper matrix,
541 and then we just put "<<" operator followed by comma-separated values that can be constants,
542 variables, expressions etc. Also, note the extra parentheses that are needed to avoid compiler errors.
546 Once matrix is created, it will be automatically managed by using reference-counting mechanism
547 (unless the matrix header is built on top of user-allocated data,
548 in which case you should handle the data by yourself).
549 The matrix data will be deallocated when no one points to it;
550 if you want to release the data pointed by a matrix header before the matrix destructor is called,
551 use cv::Mat::release().
553 The next important thing to learn about the matrix class is element access. Here is how the matrix is stored.
554 The elements are stored in row-major order (row by row). The cv::Mat::data member points to the first element of the first row,
555 cv::Mat::rows contains the number of matrix rows and cv::Mat::cols - the number of matrix columns. There is yet another member,
556 cv::Mat::step that is used to actually compute address of a matrix element. cv::Mat::step is needed because the matrix can be
557 a part of another matrix or because there can some padding space in the end of each row for a proper alignment.
561 Given these parameters, address of the matrix element M_{ij} is computed as following:
563 addr(M_{ij})=M.data + M.step*i + j*M.elemSize()
565 if you know the matrix element type, e.g. it is float, then you can use cv::Mat::at() method:
567 addr(M_{ij})=&M.at<float>(i,j)
569 (where & is used to convert the reference returned by cv::Mat::at() to a pointer).
570 if you need to process a whole row of matrix, the most efficient way is to get
571 the pointer to the row first, and then just use plain C operator []:
574 // compute sum of positive matrix elements
575 // (assuming that M is double-precision matrix)
577 for(int i = 0; i < M.rows; i++)
579 const double* Mi = M.ptr<double>(i);
580 for(int j = 0; j < M.cols; j++)
581 sum += std::max(Mi[j], 0.);
585 Some operations, like the above one, do not actually depend on the matrix shape,
586 they just process elements of a matrix one by one (or elements from multiple matrices
587 that are sitting in the same place, e.g. matrix addition). Such operations are called
588 element-wise and it makes sense to check whether all the input/output matrices are continuous,
589 i.e. have no gaps in the end of each row, and if yes, process them as a single long row:
592 // compute sum of positive matrix elements, optimized variant
594 int cols = M.cols, rows = M.rows;
600 for(int i = 0; i < rows; i++)
602 const double* Mi = M.ptr<double>(i);
603 for(int j = 0; j < cols; j++)
604 sum += std::max(Mi[j], 0.);
607 in the case of continuous matrix the outer loop body will be executed just once,
608 so the overhead will be smaller, which will be especially noticeable in the case of small matrices.
610 Finally, there are STL-style iterators that are smart enough to skip gaps between successive rows:
612 // compute sum of positive matrix elements, iterator-based variant
614 MatConstIterator_<double> it = M.begin<double>(), it_end = M.end<double>();
615 for(; it != it_end; ++it)
616 sum += std::max(*it, 0.);
619 The matrix iterators are random-access iterators, so they can be passed
620 to any STL algorithm, including std::sort().
625 //! default constructor
627 //! constructs 2D matrix of the specified size and type
628 // (_type is CV_8UC1, CV_64FC3, CV_32SC(12) etc.)
629 Mat(int rows, int cols, int type);
630 Mat(Size size, int type);
631 //! constucts 2D matrix and fills it with the specified value _s.
632 Mat(int rows, int cols, int type, const Scalar& s);
633 Mat(Size size, int type, const Scalar& s);
635 //! constructs n-dimensional matrix
636 Mat(int ndims, const int* sizes, int type);
637 Mat(int ndims, const int* sizes, int type, const Scalar& s);
641 //! constructor for matrix headers pointing to user-allocated data
642 Mat(int rows, int cols, int type, void* data, size_t step=AUTO_STEP);
643 Mat(Size size, int type, void* data, size_t step=AUTO_STEP);
644 Mat(int ndims, const int* sizes, int type, void* data, const size_t* steps=0);
646 //! creates a matrix header for a part of the bigger matrix
647 Mat(const Mat& m, const Range& rowRange, const Range& colRange=Range::all());
648 Mat(const Mat& m, const Rect& roi);
649 Mat(const Mat& m, const Range* ranges);
650 //! builds matrix from std::vector with or without copying the data
651 template<typename _Tp> explicit Mat(const std::vector<_Tp>& vec, bool copyData=false);
652 //! builds matrix from cv::Vec; the data is copied by default
653 template<typename _Tp, int n> explicit Mat(const Vec<_Tp, n>& vec, bool copyData=true);
654 //! builds matrix from cv::Matx; the data is copied by default
655 template<typename _Tp, int m, int n> explicit Mat(const Matx<_Tp, m, n>& mtx, bool copyData=true);
656 //! builds matrix from a 2D point
657 template<typename _Tp> explicit Mat(const Point_<_Tp>& pt, bool copyData=true);
658 //! builds matrix from a 3D point
659 template<typename _Tp> explicit Mat(const Point3_<_Tp>& pt, bool copyData=true);
660 //! builds matrix from comma initializer
661 template<typename _Tp> explicit Mat(const MatCommaInitializer_<_Tp>& commaInitializer);
663 //! download data from GpuMat
664 explicit Mat(const cuda::GpuMat& m);
666 //! destructor - calls release()
668 //! assignment operators
669 Mat& operator = (const Mat& m);
670 Mat& operator = (const MatExpr& expr);
672 //! retrieve UMat from Mat
673 UMat getUMat(int accessFlags) const;
675 //! returns a new matrix header for the specified row
676 Mat row(int y) const;
677 //! returns a new matrix header for the specified column
678 Mat col(int x) const;
679 //! ... for the specified row span
680 Mat rowRange(int startrow, int endrow) const;
681 Mat rowRange(const Range& r) const;
682 //! ... for the specified column span
683 Mat colRange(int startcol, int endcol) const;
684 Mat colRange(const Range& r) const;
685 //! ... for the specified diagonal
686 // (d=0 - the main diagonal,
687 // >0 - a diagonal from the lower half,
688 // <0 - a diagonal from the upper half)
689 Mat diag(int d=0) const;
690 //! constructs a square diagonal matrix which main diagonal is vector "d"
691 static Mat diag(const Mat& d);
693 //! returns deep copy of the matrix, i.e. the data is copied
695 //! copies the matrix content to "m".
696 // It calls m.create(this->size(), this->type()).
697 void copyTo( OutputArray m ) const;
698 //! copies those matrix elements to "m" that are marked with non-zero mask elements.
699 void copyTo( OutputArray m, InputArray mask ) const;
700 //! converts matrix to another datatype with optional scalng. See cvConvertScale.
701 void convertTo( OutputArray m, int rtype, double alpha=1, double beta=0 ) const;
703 void assignTo( Mat& m, int type=-1 ) const;
705 //! sets every matrix element to s
706 Mat& operator = (const Scalar& s);
707 //! sets some of the matrix elements to s, according to the mask
708 Mat& setTo(InputArray value, InputArray mask=noArray());
709 //! creates alternative matrix header for the same data, with different
710 // number of channels and/or different number of rows. see cvReshape.
711 Mat reshape(int cn, int rows=0) const;
712 Mat reshape(int cn, int newndims, const int* newsz) const;
714 //! matrix transposition by means of matrix expressions
716 //! matrix inversion by means of matrix expressions
717 MatExpr inv(int method=DECOMP_LU) const;
718 //! per-element matrix multiplication by means of matrix expressions
719 MatExpr mul(InputArray m, double scale=1) const;
721 //! computes cross-product of 2 3D vectors
722 Mat cross(InputArray m) const;
723 //! computes dot-product
724 double dot(InputArray m) const;
726 //! Matlab-style matrix initialization
727 static MatExpr zeros(int rows, int cols, int type);
728 static MatExpr zeros(Size size, int type);
729 static MatExpr zeros(int ndims, const int* sz, int type);
730 static MatExpr ones(int rows, int cols, int type);
731 static MatExpr ones(Size size, int type);
732 static MatExpr ones(int ndims, const int* sz, int type);
733 static MatExpr eye(int rows, int cols, int type);
734 static MatExpr eye(Size size, int type);
736 //! allocates new matrix data unless the matrix already has specified size and type.
737 // previous data is unreferenced if needed.
738 void create(int rows, int cols, int type);
739 void create(Size size, int type);
740 void create(int ndims, const int* sizes, int type);
742 //! increases the reference counter; use with care to avoid memleaks
744 //! decreases reference counter;
745 // deallocates the data when reference counter reaches 0.
748 //! deallocates the matrix data
750 //! internal use function; properly re-allocates _size, _step arrays
751 void copySize(const Mat& m);
753 //! reserves enough space to fit sz hyper-planes
754 void reserve(size_t sz);
755 //! resizes matrix to the specified number of hyper-planes
756 void resize(size_t sz);
757 //! resizes matrix to the specified number of hyper-planes; initializes the newly added elements
758 void resize(size_t sz, const Scalar& s);
759 //! internal function
760 void push_back_(const void* elem);
761 //! adds element to the end of 1d matrix (or possibly multiple elements when _Tp=Mat)
762 template<typename _Tp> void push_back(const _Tp& elem);
763 template<typename _Tp> void push_back(const Mat_<_Tp>& elem);
764 void push_back(const Mat& m);
765 //! removes several hyper-planes from bottom of the matrix
766 void pop_back(size_t nelems=1);
768 //! locates matrix header within a parent matrix. See below
769 void locateROI( Size& wholeSize, Point& ofs ) const;
770 //! moves/resizes the current matrix ROI inside the parent matrix.
771 Mat& adjustROI( int dtop, int dbottom, int dleft, int dright );
772 //! extracts a rectangular sub-matrix
773 // (this is a generalized form of row, rowRange etc.)
774 Mat operator()( Range rowRange, Range colRange ) const;
775 Mat operator()( const Rect& roi ) const;
776 Mat operator()( const Range* ranges ) const;
778 // //! converts header to CvMat; no data is copied
779 // operator CvMat() const;
780 // //! converts header to CvMatND; no data is copied
781 // operator CvMatND() const;
782 // //! converts header to IplImage; no data is copied
783 // operator IplImage() const;
785 template<typename _Tp> operator std::vector<_Tp>() const;
786 template<typename _Tp, int n> operator Vec<_Tp, n>() const;
787 template<typename _Tp, int m, int n> operator Matx<_Tp, m, n>() const;
789 //! returns true iff the matrix data is continuous
790 // (i.e. when there are no gaps between successive rows).
791 // similar to CV_IS_MAT_CONT(cvmat->type)
792 bool isContinuous() const;
794 //! returns true if the matrix is a submatrix of another matrix
795 bool isSubmatrix() const;
797 //! returns element size in bytes,
798 // similar to CV_ELEM_SIZE(cvmat->type)
799 size_t elemSize() const;
800 //! returns the size of element channel in bytes.
801 size_t elemSize1() const;
802 //! returns element type, similar to CV_MAT_TYPE(cvmat->type)
804 //! returns element type, similar to CV_MAT_DEPTH(cvmat->type)
806 //! returns element type, similar to CV_MAT_CN(cvmat->type)
807 int channels() const;
808 //! returns step/elemSize1()
809 size_t step1(int i=0) const;
810 //! returns true if matrix data is NULL
812 //! returns the total number of matrix elements
813 size_t total() const;
815 //! returns N if the matrix is 1-channel (N x ptdim) or ptdim-channel (1 x N) or (N x 1); negative number otherwise
816 int checkVector(int elemChannels, int depth=-1, bool requireContinuous=true) const;
818 //! returns pointer to i0-th submatrix along the dimension #0
819 uchar* ptr(int i0=0);
820 const uchar* ptr(int i0=0) const;
822 //! returns pointer to (i0,i1) submatrix along the dimensions #0 and #1
823 uchar* ptr(int i0, int i1);
824 const uchar* ptr(int i0, int i1) const;
826 //! returns pointer to (i0,i1,i3) submatrix along the dimensions #0, #1, #2
827 uchar* ptr(int i0, int i1, int i2);
828 const uchar* ptr(int i0, int i1, int i2) const;
830 //! returns pointer to the matrix element
831 uchar* ptr(const int* idx);
832 //! returns read-only pointer to the matrix element
833 const uchar* ptr(const int* idx) const;
835 template<int n> uchar* ptr(const Vec<int, n>& idx);
836 template<int n> const uchar* ptr(const Vec<int, n>& idx) const;
838 //! template version of the above method
839 template<typename _Tp> _Tp* ptr(int i0=0);
840 template<typename _Tp> const _Tp* ptr(int i0=0) const;
842 template<typename _Tp> _Tp* ptr(int i0, int i1);
843 template<typename _Tp> const _Tp* ptr(int i0, int i1) const;
845 template<typename _Tp> _Tp* ptr(int i0, int i1, int i2);
846 template<typename _Tp> const _Tp* ptr(int i0, int i1, int i2) const;
848 template<typename _Tp> _Tp* ptr(const int* idx);
849 template<typename _Tp> const _Tp* ptr(const int* idx) const;
851 template<typename _Tp, int n> _Tp* ptr(const Vec<int, n>& idx);
852 template<typename _Tp, int n> const _Tp* ptr(const Vec<int, n>& idx) const;
854 //! the same as above, with the pointer dereferencing
855 template<typename _Tp> _Tp& at(int i0=0);
856 template<typename _Tp> const _Tp& at(int i0=0) const;
858 template<typename _Tp> _Tp& at(int i0, int i1);
859 template<typename _Tp> const _Tp& at(int i0, int i1) const;
861 template<typename _Tp> _Tp& at(int i0, int i1, int i2);
862 template<typename _Tp> const _Tp& at(int i0, int i1, int i2) const;
864 template<typename _Tp> _Tp& at(const int* idx);
865 template<typename _Tp> const _Tp& at(const int* idx) const;
867 template<typename _Tp, int n> _Tp& at(const Vec<int, n>& idx);
868 template<typename _Tp, int n> const _Tp& at(const Vec<int, n>& idx) const;
870 //! special versions for 2D arrays (especially convenient for referencing image pixels)
871 template<typename _Tp> _Tp& at(Point pt);
872 template<typename _Tp> const _Tp& at(Point pt) const;
874 //! template methods for iteration over matrix elements.
875 // the iterators take care of skipping gaps in the end of rows (if any)
876 template<typename _Tp> MatIterator_<_Tp> begin();
877 template<typename _Tp> MatIterator_<_Tp> end();
878 template<typename _Tp> MatConstIterator_<_Tp> begin() const;
879 template<typename _Tp> MatConstIterator_<_Tp> end() const;
881 enum { MAGIC_VAL = 0x42FF0000, AUTO_STEP = 0, CONTINUOUS_FLAG = CV_MAT_CONT_FLAG, SUBMATRIX_FLAG = CV_SUBMAT_FLAG };
882 enum { MAGIC_MASK = 0xFFFF0000, TYPE_MASK = 0x00000FFF, DEPTH_MASK = 7 };
884 /*! includes several bit-fields:
885 - the magic signature
891 //! the matrix dimensionality, >= 2
893 //! the number of rows and columns or (-1, -1) when the matrix has more than 2 dimensions
895 //! pointer to the data
898 //! helper fields used in locateROI and adjustROI
904 MatAllocator* allocator;
905 //! and the standard allocator
906 static MatAllocator* getStdAllocator();
908 //! interaction with UMat
918 ///////////////////////////////// Mat_<_Tp> ////////////////////////////////////
921 Template matrix class derived from Mat
923 The class Mat_ is a "thin" template wrapper on top of cv::Mat. It does not have any extra data fields,
924 nor it or cv::Mat have any virtual methods and thus references or pointers to these two classes
925 can be safely converted one to another. But do it with care, for example:
928 // create 100x100 8-bit matrix
929 Mat M(100,100,CV_8U);
930 // this will compile fine. no any data conversion will be done.
931 Mat_<float>& M1 = (Mat_<float>&)M;
932 // the program will likely crash at the statement below
936 While cv::Mat is sufficient in most cases, cv::Mat_ can be more convenient if you use a lot of element
937 access operations and if you know matrix type at compile time.
938 Note that cv::Mat::at<_Tp>(int y, int x) and cv::Mat_<_Tp>::operator ()(int y, int x) do absolutely the
939 same thing and run at the same speed, but the latter is certainly shorter:
942 Mat_<double> M(20,20);
943 for(int i = 0; i < M.rows; i++)
944 for(int j = 0; j < M.cols; j++)
948 cout << E.at<double>(0,0)/E.at<double>(M.rows-1,0);
951 It is easy to use Mat_ for multi-channel images/matrices - just pass cv::Vec as cv::Mat_ template parameter:
954 // allocate 320x240 color image and fill it with green (in RGB space)
955 Mat_<Vec3b> img(240, 320, Vec3b(0,255,0));
956 // now draw a diagonal white line
957 for(int i = 0; i < 100; i++)
958 img(i,i)=Vec3b(255,255,255);
959 // and now modify the 2nd (red) channel of each pixel
960 for(int i = 0; i < img.rows; i++)
961 for(int j = 0; j < img.cols; j++)
962 img(i,j)[2] ^= (uchar)(i ^ j); // img(y,x)[c] accesses c-th channel of the pixel (x,y)
965 template<typename _Tp> class Mat_ : public Mat
968 typedef _Tp value_type;
969 typedef typename DataType<_Tp>::channel_type channel_type;
970 typedef MatIterator_<_Tp> iterator;
971 typedef MatConstIterator_<_Tp> const_iterator;
973 //! default constructor
975 //! equivalent to Mat(_rows, _cols, DataType<_Tp>::type)
976 Mat_(int _rows, int _cols);
977 //! constructor that sets each matrix element to specified value
978 Mat_(int _rows, int _cols, const _Tp& value);
979 //! equivalent to Mat(_size, DataType<_Tp>::type)
980 explicit Mat_(Size _size);
981 //! constructor that sets each matrix element to specified value
982 Mat_(Size _size, const _Tp& value);
983 //! n-dim array constructor
984 Mat_(int _ndims, const int* _sizes);
985 //! n-dim array constructor that sets each matrix element to specified value
986 Mat_(int _ndims, const int* _sizes, const _Tp& value);
987 //! copy/conversion contructor. If m is of different type, it's converted
991 //! constructs a matrix on top of user-allocated data. step is in bytes(!!!), regardless of the type
992 Mat_(int _rows, int _cols, _Tp* _data, size_t _step=AUTO_STEP);
993 //! constructs n-dim matrix on top of user-allocated data. steps are in bytes(!!!), regardless of the type
994 Mat_(int _ndims, const int* _sizes, _Tp* _data, const size_t* _steps=0);
995 //! selects a submatrix
996 Mat_(const Mat_& m, const Range& rowRange, const Range& colRange=Range::all());
997 //! selects a submatrix
998 Mat_(const Mat_& m, const Rect& roi);
999 //! selects a submatrix, n-dim version
1000 Mat_(const Mat_& m, const Range* ranges);
1001 //! from a matrix expression
1002 explicit Mat_(const MatExpr& e);
1003 //! makes a matrix out of Vec, std::vector, Point_ or Point3_. The matrix will have a single column
1004 explicit Mat_(const std::vector<_Tp>& vec, bool copyData=false);
1005 template<int n> explicit Mat_(const Vec<typename DataType<_Tp>::channel_type, n>& vec, bool copyData=true);
1006 template<int m, int n> explicit Mat_(const Matx<typename DataType<_Tp>::channel_type, m, n>& mtx, bool copyData=true);
1007 explicit Mat_(const Point_<typename DataType<_Tp>::channel_type>& pt, bool copyData=true);
1008 explicit Mat_(const Point3_<typename DataType<_Tp>::channel_type>& pt, bool copyData=true);
1009 explicit Mat_(const MatCommaInitializer_<_Tp>& commaInitializer);
1011 Mat_& operator = (const Mat& m);
1012 Mat_& operator = (const Mat_& m);
1013 //! set all the elements to s.
1014 Mat_& operator = (const _Tp& s);
1015 //! assign a matrix expression
1016 Mat_& operator = (const MatExpr& e);
1018 //! iterators; they are smart enough to skip gaps in the end of rows
1021 const_iterator begin() const;
1022 const_iterator end() const;
1024 //! equivalent to Mat::create(_rows, _cols, DataType<_Tp>::type)
1025 void create(int _rows, int _cols);
1026 //! equivalent to Mat::create(_size, DataType<_Tp>::type)
1027 void create(Size _size);
1028 //! equivalent to Mat::create(_ndims, _sizes, DatType<_Tp>::type)
1029 void create(int _ndims, const int* _sizes);
1031 Mat_ cross(const Mat_& m) const;
1032 //! data type conversion
1033 template<typename T2> operator Mat_<T2>() const;
1034 //! overridden forms of Mat::row() etc.
1035 Mat_ row(int y) const;
1036 Mat_ col(int x) const;
1037 Mat_ diag(int d=0) const;
1040 //! overridden forms of Mat::elemSize() etc.
1041 size_t elemSize() const;
1042 size_t elemSize1() const;
1045 int channels() const;
1046 size_t step1(int i=0) const;
1047 //! returns step()/sizeof(_Tp)
1048 size_t stepT(int i=0) const;
1050 //! overridden forms of Mat::zeros() etc. Data type is omitted, of course
1051 static MatExpr zeros(int rows, int cols);
1052 static MatExpr zeros(Size size);
1053 static MatExpr zeros(int _ndims, const int* _sizes);
1054 static MatExpr ones(int rows, int cols);
1055 static MatExpr ones(Size size);
1056 static MatExpr ones(int _ndims, const int* _sizes);
1057 static MatExpr eye(int rows, int cols);
1058 static MatExpr eye(Size size);
1060 //! some more overriden methods
1061 Mat_& adjustROI( int dtop, int dbottom, int dleft, int dright );
1062 Mat_ operator()( const Range& rowRange, const Range& colRange ) const;
1063 Mat_ operator()( const Rect& roi ) const;
1064 Mat_ operator()( const Range* ranges ) const;
1066 //! more convenient forms of row and element access operators
1067 _Tp* operator [](int y);
1068 const _Tp* operator [](int y) const;
1070 //! returns reference to the specified element
1071 _Tp& operator ()(const int* idx);
1072 //! returns read-only reference to the specified element
1073 const _Tp& operator ()(const int* idx) const;
1075 //! returns reference to the specified element
1076 template<int n> _Tp& operator ()(const Vec<int, n>& idx);
1077 //! returns read-only reference to the specified element
1078 template<int n> const _Tp& operator ()(const Vec<int, n>& idx) const;
1080 //! returns reference to the specified element (1D case)
1081 _Tp& operator ()(int idx0);
1082 //! returns read-only reference to the specified element (1D case)
1083 const _Tp& operator ()(int idx0) const;
1084 //! returns reference to the specified element (2D case)
1085 _Tp& operator ()(int idx0, int idx1);
1086 //! returns read-only reference to the specified element (2D case)
1087 const _Tp& operator ()(int idx0, int idx1) const;
1088 //! returns reference to the specified element (3D case)
1089 _Tp& operator ()(int idx0, int idx1, int idx2);
1090 //! returns read-only reference to the specified element (3D case)
1091 const _Tp& operator ()(int idx0, int idx1, int idx2) const;
1093 _Tp& operator ()(Point pt);
1094 const _Tp& operator ()(Point pt) const;
1096 //! conversion to vector.
1097 operator std::vector<_Tp>() const;
1098 //! conversion to Vec
1099 template<int n> operator Vec<typename DataType<_Tp>::channel_type, n>() const;
1100 //! conversion to Matx
1101 template<int m, int n> operator Matx<typename DataType<_Tp>::channel_type, m, n>() const;
1104 typedef Mat_<uchar> Mat1b;
1105 typedef Mat_<Vec2b> Mat2b;
1106 typedef Mat_<Vec3b> Mat3b;
1107 typedef Mat_<Vec4b> Mat4b;
1109 typedef Mat_<short> Mat1s;
1110 typedef Mat_<Vec2s> Mat2s;
1111 typedef Mat_<Vec3s> Mat3s;
1112 typedef Mat_<Vec4s> Mat4s;
1114 typedef Mat_<ushort> Mat1w;
1115 typedef Mat_<Vec2w> Mat2w;
1116 typedef Mat_<Vec3w> Mat3w;
1117 typedef Mat_<Vec4w> Mat4w;
1119 typedef Mat_<int> Mat1i;
1120 typedef Mat_<Vec2i> Mat2i;
1121 typedef Mat_<Vec3i> Mat3i;
1122 typedef Mat_<Vec4i> Mat4i;
1124 typedef Mat_<float> Mat1f;
1125 typedef Mat_<Vec2f> Mat2f;
1126 typedef Mat_<Vec3f> Mat3f;
1127 typedef Mat_<Vec4f> Mat4f;
1129 typedef Mat_<double> Mat1d;
1130 typedef Mat_<Vec2d> Mat2d;
1131 typedef Mat_<Vec3d> Mat3d;
1132 typedef Mat_<Vec4d> Mat4d;
1135 class CV_EXPORTS UMatExpr;
1137 class CV_EXPORTS UMat
1140 //! default constructor
1142 //! constructs 2D matrix of the specified size and type
1143 // (_type is CV_8UC1, CV_64FC3, CV_32SC(12) etc.)
1144 UMat(int rows, int cols, int type);
1145 UMat(Size size, int type);
1146 //! constucts 2D matrix and fills it with the specified value _s.
1147 UMat(int rows, int cols, int type, const Scalar& s);
1148 UMat(Size size, int type, const Scalar& s);
1150 //! constructs n-dimensional matrix
1151 UMat(int ndims, const int* sizes, int type);
1152 UMat(int ndims, const int* sizes, int type, const Scalar& s);
1154 //! copy constructor
1155 UMat(const UMat& m);
1157 //! creates a matrix header for a part of the bigger matrix
1158 UMat(const UMat& m, const Range& rowRange, const Range& colRange=Range::all());
1159 UMat(const UMat& m, const Rect& roi);
1160 UMat(const UMat& m, const Range* ranges);
1161 //! builds matrix from std::vector with or without copying the data
1162 template<typename _Tp> explicit UMat(const std::vector<_Tp>& vec, bool copyData=false);
1163 //! builds matrix from cv::Vec; the data is copied by default
1164 template<typename _Tp, int n> explicit UMat(const Vec<_Tp, n>& vec, bool copyData=true);
1165 //! builds matrix from cv::Matx; the data is copied by default
1166 template<typename _Tp, int m, int n> explicit UMat(const Matx<_Tp, m, n>& mtx, bool copyData=true);
1167 //! builds matrix from a 2D point
1168 template<typename _Tp> explicit UMat(const Point_<_Tp>& pt, bool copyData=true);
1169 //! builds matrix from a 3D point
1170 template<typename _Tp> explicit UMat(const Point3_<_Tp>& pt, bool copyData=true);
1171 //! builds matrix from comma initializer
1172 template<typename _Tp> explicit UMat(const MatCommaInitializer_<_Tp>& commaInitializer);
1174 //! destructor - calls release()
1176 //! assignment operators
1177 UMat& operator = (const UMat& m);
1178 UMat& operator = (const UMatExpr& expr);
1180 Mat getMat(int flags) const;
1182 //! returns a new matrix header for the specified row
1183 UMat row(int y) const;
1184 //! returns a new matrix header for the specified column
1185 UMat col(int x) const;
1186 //! ... for the specified row span
1187 UMat rowRange(int startrow, int endrow) const;
1188 UMat rowRange(const Range& r) const;
1189 //! ... for the specified column span
1190 UMat colRange(int startcol, int endcol) const;
1191 UMat colRange(const Range& r) const;
1192 //! ... for the specified diagonal
1193 // (d=0 - the main diagonal,
1194 // >0 - a diagonal from the lower half,
1195 // <0 - a diagonal from the upper half)
1196 UMat diag(int d=0) const;
1197 //! constructs a square diagonal matrix which main diagonal is vector "d"
1198 static UMat diag(const UMat& d);
1200 //! returns deep copy of the matrix, i.e. the data is copied
1202 //! copies the matrix content to "m".
1203 // It calls m.create(this->size(), this->type()).
1204 void copyTo( OutputArray m ) const;
1205 //! copies those matrix elements to "m" that are marked with non-zero mask elements.
1206 void copyTo( OutputArray m, InputArray mask ) const;
1207 //! converts matrix to another datatype with optional scalng. See cvConvertScale.
1208 void convertTo( OutputArray m, int rtype, double alpha=1, double beta=0 ) const;
1210 void assignTo( UMat& m, int type=-1 ) const;
1212 //! sets every matrix element to s
1213 UMat& operator = (const Scalar& s);
1214 //! sets some of the matrix elements to s, according to the mask
1215 UMat& setTo(InputArray value, InputArray mask=noArray());
1216 //! creates alternative matrix header for the same data, with different
1217 // number of channels and/or different number of rows. see cvReshape.
1218 UMat reshape(int cn, int rows=0) const;
1219 UMat reshape(int cn, int newndims, const int* newsz) const;
1221 //! matrix transposition by means of matrix expressions
1223 //! matrix inversion by means of matrix expressions
1224 UMatExpr inv(int method=DECOMP_LU) const;
1225 //! per-element matrix multiplication by means of matrix expressions
1226 UMatExpr mul(InputArray m, double scale=1) const;
1228 //! computes cross-product of 2 3D vectors
1229 UMat cross(InputArray m) const;
1230 //! computes dot-product
1231 double dot(InputArray m) const;
1233 //! Matlab-style matrix initialization
1234 static UMatExpr zeros(int rows, int cols, int type);
1235 static UMatExpr zeros(Size size, int type);
1236 static UMatExpr zeros(int ndims, const int* sz, int type);
1237 static UMatExpr ones(int rows, int cols, int type);
1238 static UMatExpr ones(Size size, int type);
1239 static UMatExpr ones(int ndims, const int* sz, int type);
1240 static UMatExpr eye(int rows, int cols, int type);
1241 static UMatExpr eye(Size size, int type);
1243 //! allocates new matrix data unless the matrix already has specified size and type.
1244 // previous data is unreferenced if needed.
1245 void create(int rows, int cols, int type);
1246 void create(Size size, int type);
1247 void create(int ndims, const int* sizes, int type);
1249 //! increases the reference counter; use with care to avoid memleaks
1251 //! decreases reference counter;
1252 // deallocates the data when reference counter reaches 0.
1255 //! deallocates the matrix data
1257 //! internal use function; properly re-allocates _size, _step arrays
1258 void copySize(const UMat& m);
1260 //! locates matrix header within a parent matrix. See below
1261 void locateROI( Size& wholeSize, Point& ofs ) const;
1262 //! moves/resizes the current matrix ROI inside the parent matrix.
1263 UMat& adjustROI( int dtop, int dbottom, int dleft, int dright );
1264 //! extracts a rectangular sub-matrix
1265 // (this is a generalized form of row, rowRange etc.)
1266 UMat operator()( Range rowRange, Range colRange ) const;
1267 UMat operator()( const Rect& roi ) const;
1268 UMat operator()( const Range* ranges ) const;
1270 //! returns true iff the matrix data is continuous
1271 // (i.e. when there are no gaps between successive rows).
1272 // similar to CV_IS_MAT_CONT(cvmat->type)
1273 bool isContinuous() const;
1275 //! returns true if the matrix is a submatrix of another matrix
1276 bool isSubmatrix() const;
1278 //! returns element size in bytes,
1279 // similar to CV_ELEM_SIZE(cvmat->type)
1280 size_t elemSize() const;
1281 //! returns the size of element channel in bytes.
1282 size_t elemSize1() const;
1283 //! returns element type, similar to CV_MAT_TYPE(cvmat->type)
1285 //! returns element type, similar to CV_MAT_DEPTH(cvmat->type)
1287 //! returns element type, similar to CV_MAT_CN(cvmat->type)
1288 int channels() const;
1289 //! returns step/elemSize1()
1290 size_t step1(int i=0) const;
1291 //! returns true if matrix data is NULL
1293 //! returns the total number of matrix elements
1294 size_t total() const;
1296 //! returns N if the matrix is 1-channel (N x ptdim) or ptdim-channel (1 x N) or (N x 1); negative number otherwise
1297 int checkVector(int elemChannels, int depth=-1, bool requireContinuous=true) const;
1299 void* handle(int accessFlags) const;
1300 void ndoffset(size_t* ofs) const;
1302 enum { MAGIC_VAL = 0x42FF0000, AUTO_STEP = 0, CONTINUOUS_FLAG = CV_MAT_CONT_FLAG, SUBMATRIX_FLAG = CV_SUBMAT_FLAG };
1303 enum { MAGIC_MASK = 0xFFFF0000, TYPE_MASK = 0x00000FFF, DEPTH_MASK = 7 };
1305 /*! includes several bit-fields:
1306 - the magic signature
1309 - number of channels
1312 //! the matrix dimensionality, >= 2
1314 //! the number of rows and columns or (-1, -1) when the matrix has more than 2 dimensions
1317 //! custom allocator
1318 MatAllocator* allocator;
1319 //! and the standard allocator
1320 static MatAllocator* getStdAllocator();
1322 // black-box container of UMat data
1325 // offset of the submatrix (or 0)
1335 /////////////////////////// multi-dimensional sparse matrix //////////////////////////
1338 Sparse matrix class.
1340 The class represents multi-dimensional sparse numerical arrays. Such a sparse array can store elements
1341 of any type that cv::Mat is able to store. "Sparse" means that only non-zero elements
1342 are stored (though, as a result of some operations on a sparse matrix, some of its stored elements
1343 can actually become 0. It's user responsibility to detect such elements and delete them using cv::SparseMat::erase().
1344 The non-zero elements are stored in a hash table that grows when it's filled enough,
1345 so that the search time remains O(1) in average. Elements can be accessed using the following methods:
1348 <li>Query operations: cv::SparseMat::ptr() and the higher-level cv::SparseMat::ref(),
1349 cv::SparseMat::value() and cv::SparseMat::find, for example:
1352 int size[] = {10, 10, 10, 10, 10};
1353 SparseMat sparse_mat(dims, size, CV_32F);
1354 for(int i = 0; i < 1000; i++)
1357 for(int k = 0; k < dims; k++)
1358 idx[k] = rand()%sparse_mat.size(k);
1359 sparse_mat.ref<float>(idx) += 1.f;
1363 <li>Sparse matrix iterators. Like cv::Mat iterators and unlike cv::Mat iterators, the sparse matrix iterators are STL-style,
1364 that is, the iteration is done as following:
1366 // prints elements of a sparse floating-point matrix and the sum of elements.
1367 SparseMatConstIterator_<float>
1368 it = sparse_mat.begin<float>(),
1369 it_end = sparse_mat.end<float>();
1371 int dims = sparse_mat.dims();
1372 for(; it != it_end; ++it)
1374 // print element indices and the element value
1375 const Node* n = it.node();
1377 for(int i = 0; i < dims; i++)
1378 printf("%3d%c", n->idx[i], i < dims-1 ? ',' : ')');
1379 printf(": %f\n", *it);
1382 printf("Element sum is %g\n", s);
1384 If you run this loop, you will notice that elements are enumerated
1385 in no any logical order (lexicographical etc.),
1386 they come in the same order as they stored in the hash table, i.e. semi-randomly.
1388 You may collect pointers to the nodes and sort them to get the proper ordering.
1389 Note, however, that pointers to the nodes may become invalid when you add more
1390 elements to the matrix; this is because of possible buffer reallocation.
1392 <li>A combination of the above 2 methods when you need to process 2 or more sparse
1393 matrices simultaneously, e.g. this is how you can compute unnormalized
1394 cross-correlation of the 2 floating-point sparse matrices:
1396 double crossCorr(const SparseMat& a, const SparseMat& b)
1398 const SparseMat *_a = &a, *_b = &b;
1399 // if b contains less elements than a,
1400 // it's faster to iterate through b
1401 if(_a->nzcount() > _b->nzcount())
1403 SparseMatConstIterator_<float> it = _a->begin<float>(),
1404 it_end = _a->end<float>();
1406 for(; it != it_end; ++it)
1408 // take the next element from the first matrix
1410 const Node* anode = it.node();
1411 // and try to find element with the same index in the second matrix.
1412 // since the hash value depends only on the element index,
1413 // we reuse hashvalue stored in the node
1414 float bvalue = _b->value<float>(anode->idx,&anode->hashval);
1415 ccorr += avalue*bvalue;
1422 class CV_EXPORTS SparseMat
1425 typedef SparseMatIterator iterator;
1426 typedef SparseMatConstIterator const_iterator;
1428 enum { MAGIC_VAL=0x42FD0000, MAX_DIM=32, HASH_SCALE=0x5bd1e995, HASH_BIT=0x80000000 };
1430 //! the sparse matrix header
1431 struct CV_EXPORTS Hdr
1433 Hdr(int _dims, const int* _sizes, int _type);
1441 std::vector<uchar> pool;
1442 std::vector<size_t> hashtab;
1446 //! sparse matrix node - element of a hash table
1447 struct CV_EXPORTS Node
1451 //! index of the next node in the same hash table entry
1453 //! index of the matrix element
1457 //! default constructor
1459 //! creates matrix of the specified size and type
1460 SparseMat(int dims, const int* _sizes, int _type);
1461 //! copy constructor
1462 SparseMat(const SparseMat& m);
1463 //! converts dense 2d matrix to the sparse form
1465 \param m the input matrix
1467 explicit SparseMat(const Mat& m);
1468 //! converts old-style sparse matrix to the new-style. All the data is copied
1469 //SparseMat(const CvSparseMat* m);
1473 //! assignment operator. This is O(1) operation, i.e. no data is copied
1474 SparseMat& operator = (const SparseMat& m);
1475 //! equivalent to the corresponding constructor
1476 SparseMat& operator = (const Mat& m);
1478 //! creates full copy of the matrix
1479 SparseMat clone() const;
1481 //! copies all the data to the destination matrix. All the previous content of m is erased
1482 void copyTo( SparseMat& m ) const;
1483 //! converts sparse matrix to dense matrix.
1484 void copyTo( Mat& m ) const;
1485 //! multiplies all the matrix elements by the specified scale factor alpha and converts the results to the specified data type
1486 void convertTo( SparseMat& m, int rtype, double alpha=1 ) const;
1487 //! converts sparse matrix to dense n-dim matrix with optional type conversion and scaling.
1489 \param rtype The output matrix data type. When it is =-1, the output array will have the same data type as (*this)
1490 \param alpha The scale factor
1491 \param beta The optional delta added to the scaled values before the conversion
1493 void convertTo( Mat& m, int rtype, double alpha=1, double beta=0 ) const;
1496 void assignTo( SparseMat& m, int type=-1 ) const;
1498 //! reallocates sparse matrix.
1500 If the matrix already had the proper size and type,
1501 it is simply cleared with clear(), otherwise,
1502 the old matrix is released (using release()) and the new one is allocated.
1504 void create(int dims, const int* _sizes, int _type);
1505 //! sets all the sparse matrix elements to 0, which means clearing the hash table.
1507 //! manually increments the reference counter to the header.
1509 // decrements the header reference counter. When the counter reaches 0, the header and all the underlying data are deallocated.
1512 //! converts sparse matrix to the old-style representation; all the elements are copied.
1513 //operator CvSparseMat*() const;
1514 //! returns the size of each element in bytes (not including the overhead - the space occupied by SparseMat::Node elements)
1515 size_t elemSize() const;
1516 //! returns elemSize()/channels()
1517 size_t elemSize1() const;
1519 //! returns type of sparse matrix elements
1521 //! returns the depth of sparse matrix elements
1523 //! returns the number of channels
1524 int channels() const;
1526 //! returns the array of sizes, or NULL if the matrix is not allocated
1527 const int* size() const;
1528 //! returns the size of i-th matrix dimension (or 0)
1529 int size(int i) const;
1530 //! returns the matrix dimensionality
1532 //! returns the number of non-zero elements (=the number of hash table nodes)
1533 size_t nzcount() const;
1535 //! computes the element hash value (1D case)
1536 size_t hash(int i0) const;
1537 //! computes the element hash value (2D case)
1538 size_t hash(int i0, int i1) const;
1539 //! computes the element hash value (3D case)
1540 size_t hash(int i0, int i1, int i2) const;
1541 //! computes the element hash value (nD case)
1542 size_t hash(const int* idx) const;
1546 specialized variants for 1D, 2D, 3D cases and the generic_type one for n-D case.
1548 return pointer to the matrix element.
1550 <li>if the element is there (it's non-zero), the pointer to it is returned
1551 <li>if it's not there and createMissing=false, NULL pointer is returned
1552 <li>if it's not there and createMissing=true, then the new element
1553 is created and initialized with 0. Pointer to it is returned
1554 <li>if the optional hashval pointer is not NULL, the element hash value is
1555 not computed, but *hashval is taken instead.
1558 //! returns pointer to the specified element (1D case)
1559 uchar* ptr(int i0, bool createMissing, size_t* hashval=0);
1560 //! returns pointer to the specified element (2D case)
1561 uchar* ptr(int i0, int i1, bool createMissing, size_t* hashval=0);
1562 //! returns pointer to the specified element (3D case)
1563 uchar* ptr(int i0, int i1, int i2, bool createMissing, size_t* hashval=0);
1564 //! returns pointer to the specified element (nD case)
1565 uchar* ptr(const int* idx, bool createMissing, size_t* hashval=0);
1570 return read-write reference to the specified sparse matrix element.
1572 ref<_Tp>(i0,...[,hashval]) is equivalent to *(_Tp*)ptr(i0,...,true[,hashval]).
1573 The methods always return a valid reference.
1574 If the element did not exist, it is created and initialiazed with 0.
1576 //! returns reference to the specified element (1D case)
1577 template<typename _Tp> _Tp& ref(int i0, size_t* hashval=0);
1578 //! returns reference to the specified element (2D case)
1579 template<typename _Tp> _Tp& ref(int i0, int i1, size_t* hashval=0);
1580 //! returns reference to the specified element (3D case)
1581 template<typename _Tp> _Tp& ref(int i0, int i1, int i2, size_t* hashval=0);
1582 //! returns reference to the specified element (nD case)
1583 template<typename _Tp> _Tp& ref(const int* idx, size_t* hashval=0);
1588 return value of the specified sparse matrix element.
1590 value<_Tp>(i0,...[,hashval]) is equivalent
1593 { const _Tp* p = find<_Tp>(i0,...[,hashval]); return p ? *p : _Tp(); }
1596 That is, if the element did not exist, the methods return 0.
1598 //! returns value of the specified element (1D case)
1599 template<typename _Tp> _Tp value(int i0, size_t* hashval=0) const;
1600 //! returns value of the specified element (2D case)
1601 template<typename _Tp> _Tp value(int i0, int i1, size_t* hashval=0) const;
1602 //! returns value of the specified element (3D case)
1603 template<typename _Tp> _Tp value(int i0, int i1, int i2, size_t* hashval=0) const;
1604 //! returns value of the specified element (nD case)
1605 template<typename _Tp> _Tp value(const int* idx, size_t* hashval=0) const;
1610 Return pointer to the specified sparse matrix element if it exists
1612 find<_Tp>(i0,...[,hashval]) is equivalent to (_const Tp*)ptr(i0,...false[,hashval]).
1614 If the specified element does not exist, the methods return NULL.
1616 //! returns pointer to the specified element (1D case)
1617 template<typename _Tp> const _Tp* find(int i0, size_t* hashval=0) const;
1618 //! returns pointer to the specified element (2D case)
1619 template<typename _Tp> const _Tp* find(int i0, int i1, size_t* hashval=0) const;
1620 //! returns pointer to the specified element (3D case)
1621 template<typename _Tp> const _Tp* find(int i0, int i1, int i2, size_t* hashval=0) const;
1622 //! returns pointer to the specified element (nD case)
1623 template<typename _Tp> const _Tp* find(const int* idx, size_t* hashval=0) const;
1625 //! erases the specified element (2D case)
1626 void erase(int i0, int i1, size_t* hashval=0);
1627 //! erases the specified element (3D case)
1628 void erase(int i0, int i1, int i2, size_t* hashval=0);
1629 //! erases the specified element (nD case)
1630 void erase(const int* idx, size_t* hashval=0);
1634 return the sparse matrix iterator pointing to the first sparse matrix element
1636 //! returns the sparse matrix iterator at the matrix beginning
1637 SparseMatIterator begin();
1638 //! returns the sparse matrix iterator at the matrix beginning
1639 template<typename _Tp> SparseMatIterator_<_Tp> begin();
1640 //! returns the read-only sparse matrix iterator at the matrix beginning
1641 SparseMatConstIterator begin() const;
1642 //! returns the read-only sparse matrix iterator at the matrix beginning
1643 template<typename _Tp> SparseMatConstIterator_<_Tp> begin() const;
1646 return the sparse matrix iterator pointing to the element following the last sparse matrix element
1648 //! returns the sparse matrix iterator at the matrix end
1649 SparseMatIterator end();
1650 //! returns the read-only sparse matrix iterator at the matrix end
1651 SparseMatConstIterator end() const;
1652 //! returns the typed sparse matrix iterator at the matrix end
1653 template<typename _Tp> SparseMatIterator_<_Tp> end();
1654 //! returns the typed read-only sparse matrix iterator at the matrix end
1655 template<typename _Tp> SparseMatConstIterator_<_Tp> end() const;
1657 //! returns the value stored in the sparse martix node
1658 template<typename _Tp> _Tp& value(Node* n);
1659 //! returns the value stored in the sparse martix node
1660 template<typename _Tp> const _Tp& value(const Node* n) const;
1662 ////////////// some internal-use methods ///////////////
1663 Node* node(size_t nidx);
1664 const Node* node(size_t nidx) const;
1666 uchar* newNode(const int* idx, size_t hashval);
1667 void removeNode(size_t hidx, size_t nidx, size_t previdx);
1668 void resizeHashTab(size_t newsize);
1676 ///////////////////////////////// SparseMat_<_Tp> ////////////////////////////////////
1679 The Template Sparse Matrix class derived from cv::SparseMat
1681 The class provides slightly more convenient operations for accessing elements.
1686 SparseMat_<int> m_ = (SparseMat_<int>&)m;
1687 m_.ref(1)++; // equivalent to m.ref<int>(1)++;
1688 m_.ref(2) += m_(3); // equivalent to m.ref<int>(2) += m.value<int>(3);
1691 template<typename _Tp> class SparseMat_ : public SparseMat
1694 typedef SparseMatIterator_<_Tp> iterator;
1695 typedef SparseMatConstIterator_<_Tp> const_iterator;
1697 //! the default constructor
1699 //! the full constructor equivelent to SparseMat(dims, _sizes, DataType<_Tp>::type)
1700 SparseMat_(int dims, const int* _sizes);
1701 //! the copy constructor. If DataType<_Tp>.type != m.type(), the m elements are converted
1702 SparseMat_(const SparseMat& m);
1703 //! the copy constructor. This is O(1) operation - no data is copied
1704 SparseMat_(const SparseMat_& m);
1705 //! converts dense matrix to the sparse form
1706 SparseMat_(const Mat& m);
1707 //! converts the old-style sparse matrix to the C++ class. All the elements are copied
1708 //SparseMat_(const CvSparseMat* m);
1709 //! the assignment operator. If DataType<_Tp>.type != m.type(), the m elements are converted
1710 SparseMat_& operator = (const SparseMat& m);
1711 //! the assignment operator. This is O(1) operation - no data is copied
1712 SparseMat_& operator = (const SparseMat_& m);
1713 //! converts dense matrix to the sparse form
1714 SparseMat_& operator = (const Mat& m);
1716 //! makes full copy of the matrix. All the elements are duplicated
1717 SparseMat_ clone() const;
1718 //! equivalent to cv::SparseMat::create(dims, _sizes, DataType<_Tp>::type)
1719 void create(int dims, const int* _sizes);
1720 //! converts sparse matrix to the old-style CvSparseMat. All the elements are copied
1721 //operator CvSparseMat*() const;
1723 //! returns type of the matrix elements
1725 //! returns depth of the matrix elements
1727 //! returns the number of channels in each matrix element
1728 int channels() const;
1730 //! equivalent to SparseMat::ref<_Tp>(i0, hashval)
1731 _Tp& ref(int i0, size_t* hashval=0);
1732 //! equivalent to SparseMat::ref<_Tp>(i0, i1, hashval)
1733 _Tp& ref(int i0, int i1, size_t* hashval=0);
1734 //! equivalent to SparseMat::ref<_Tp>(i0, i1, i2, hashval)
1735 _Tp& ref(int i0, int i1, int i2, size_t* hashval=0);
1736 //! equivalent to SparseMat::ref<_Tp>(idx, hashval)
1737 _Tp& ref(const int* idx, size_t* hashval=0);
1739 //! equivalent to SparseMat::value<_Tp>(i0, hashval)
1740 _Tp operator()(int i0, size_t* hashval=0) const;
1741 //! equivalent to SparseMat::value<_Tp>(i0, i1, hashval)
1742 _Tp operator()(int i0, int i1, size_t* hashval=0) const;
1743 //! equivalent to SparseMat::value<_Tp>(i0, i1, i2, hashval)
1744 _Tp operator()(int i0, int i1, int i2, size_t* hashval=0) const;
1745 //! equivalent to SparseMat::value<_Tp>(idx, hashval)
1746 _Tp operator()(const int* idx, size_t* hashval=0) const;
1748 //! returns sparse matrix iterator pointing to the first sparse matrix element
1749 SparseMatIterator_<_Tp> begin();
1750 //! returns read-only sparse matrix iterator pointing to the first sparse matrix element
1751 SparseMatConstIterator_<_Tp> begin() const;
1752 //! returns sparse matrix iterator pointing to the element following the last sparse matrix element
1753 SparseMatIterator_<_Tp> end();
1754 //! returns read-only sparse matrix iterator pointing to the element following the last sparse matrix element
1755 SparseMatConstIterator_<_Tp> end() const;
1760 ////////////////////////////////// MatConstIterator //////////////////////////////////
1762 class CV_EXPORTS MatConstIterator
1765 typedef uchar* value_type;
1766 typedef ptrdiff_t difference_type;
1767 typedef const uchar** pointer;
1768 typedef uchar* reference;
1770 #ifndef OPENCV_NOSTL
1771 typedef std::random_access_iterator_tag iterator_category;
1774 //! default constructor
1776 //! constructor that sets the iterator to the beginning of the matrix
1777 MatConstIterator(const Mat* _m);
1778 //! constructor that sets the iterator to the specified element of the matrix
1779 MatConstIterator(const Mat* _m, int _row, int _col=0);
1780 //! constructor that sets the iterator to the specified element of the matrix
1781 MatConstIterator(const Mat* _m, Point _pt);
1782 //! constructor that sets the iterator to the specified element of the matrix
1783 MatConstIterator(const Mat* _m, const int* _idx);
1784 //! copy constructor
1785 MatConstIterator(const MatConstIterator& it);
1788 MatConstIterator& operator = (const MatConstIterator& it);
1789 //! returns the current matrix element
1790 uchar* operator *() const;
1791 //! returns the i-th matrix element, relative to the current
1792 uchar* operator [](ptrdiff_t i) const;
1794 //! shifts the iterator forward by the specified number of elements
1795 MatConstIterator& operator += (ptrdiff_t ofs);
1796 //! shifts the iterator backward by the specified number of elements
1797 MatConstIterator& operator -= (ptrdiff_t ofs);
1798 //! decrements the iterator
1799 MatConstIterator& operator --();
1800 //! decrements the iterator
1801 MatConstIterator operator --(int);
1802 //! increments the iterator
1803 MatConstIterator& operator ++();
1804 //! increments the iterator
1805 MatConstIterator operator ++(int);
1806 //! returns the current iterator position
1808 //! returns the current iterator position
1809 void pos(int* _idx) const;
1811 ptrdiff_t lpos() const;
1812 void seek(ptrdiff_t ofs, bool relative = false);
1813 void seek(const int* _idx, bool relative = false);
1824 ////////////////////////////////// MatConstIterator_ /////////////////////////////////
1827 Matrix read-only iterator
1829 template<typename _Tp>
1830 class MatConstIterator_ : public MatConstIterator
1833 typedef _Tp value_type;
1834 typedef ptrdiff_t difference_type;
1835 typedef const _Tp* pointer;
1836 typedef const _Tp& reference;
1838 #ifndef OPENCV_NOSTL
1839 typedef std::random_access_iterator_tag iterator_category;
1842 //! default constructor
1843 MatConstIterator_();
1844 //! constructor that sets the iterator to the beginning of the matrix
1845 MatConstIterator_(const Mat_<_Tp>* _m);
1846 //! constructor that sets the iterator to the specified element of the matrix
1847 MatConstIterator_(const Mat_<_Tp>* _m, int _row, int _col=0);
1848 //! constructor that sets the iterator to the specified element of the matrix
1849 MatConstIterator_(const Mat_<_Tp>* _m, Point _pt);
1850 //! constructor that sets the iterator to the specified element of the matrix
1851 MatConstIterator_(const Mat_<_Tp>* _m, const int* _idx);
1852 //! copy constructor
1853 MatConstIterator_(const MatConstIterator_& it);
1856 MatConstIterator_& operator = (const MatConstIterator_& it);
1857 //! returns the current matrix element
1858 _Tp operator *() const;
1859 //! returns the i-th matrix element, relative to the current
1860 _Tp operator [](ptrdiff_t i) const;
1862 //! shifts the iterator forward by the specified number of elements
1863 MatConstIterator_& operator += (ptrdiff_t ofs);
1864 //! shifts the iterator backward by the specified number of elements
1865 MatConstIterator_& operator -= (ptrdiff_t ofs);
1866 //! decrements the iterator
1867 MatConstIterator_& operator --();
1868 //! decrements the iterator
1869 MatConstIterator_ operator --(int);
1870 //! increments the iterator
1871 MatConstIterator_& operator ++();
1872 //! increments the iterator
1873 MatConstIterator_ operator ++(int);
1874 //! returns the current iterator position
1880 //////////////////////////////////// MatIterator_ ////////////////////////////////////
1883 Matrix read-write iterator
1885 template<typename _Tp>
1886 class MatIterator_ : public MatConstIterator_<_Tp>
1889 typedef _Tp* pointer;
1890 typedef _Tp& reference;
1892 #ifndef OPENCV_NOSTL
1893 typedef std::random_access_iterator_tag iterator_category;
1896 //! the default constructor
1898 //! constructor that sets the iterator to the beginning of the matrix
1899 MatIterator_(Mat_<_Tp>* _m);
1900 //! constructor that sets the iterator to the specified element of the matrix
1901 MatIterator_(Mat_<_Tp>* _m, int _row, int _col=0);
1902 //! constructor that sets the iterator to the specified element of the matrix
1903 MatIterator_(const Mat_<_Tp>* _m, Point _pt);
1904 //! constructor that sets the iterator to the specified element of the matrix
1905 MatIterator_(const Mat_<_Tp>* _m, const int* _idx);
1906 //! copy constructor
1907 MatIterator_(const MatIterator_& it);
1909 MatIterator_& operator = (const MatIterator_<_Tp>& it );
1911 //! returns the current matrix element
1912 _Tp& operator *() const;
1913 //! returns the i-th matrix element, relative to the current
1914 _Tp& operator [](ptrdiff_t i) const;
1916 //! shifts the iterator forward by the specified number of elements
1917 MatIterator_& operator += (ptrdiff_t ofs);
1918 //! shifts the iterator backward by the specified number of elements
1919 MatIterator_& operator -= (ptrdiff_t ofs);
1920 //! decrements the iterator
1921 MatIterator_& operator --();
1922 //! decrements the iterator
1923 MatIterator_ operator --(int);
1924 //! increments the iterator
1925 MatIterator_& operator ++();
1926 //! increments the iterator
1927 MatIterator_ operator ++(int);
1932 /////////////////////////////// SparseMatConstIterator ///////////////////////////////
1935 Read-Only Sparse Matrix Iterator.
1936 Here is how to use the iterator to compute the sum of floating-point sparse matrix elements:
1939 SparseMatConstIterator it = m.begin(), it_end = m.end();
1941 CV_Assert( m.type() == CV_32F );
1942 for( ; it != it_end; ++it )
1943 s += it.value<float>();
1946 class CV_EXPORTS SparseMatConstIterator
1949 //! the default constructor
1950 SparseMatConstIterator();
1951 //! the full constructor setting the iterator to the first sparse matrix element
1952 SparseMatConstIterator(const SparseMat* _m);
1953 //! the copy constructor
1954 SparseMatConstIterator(const SparseMatConstIterator& it);
1956 //! the assignment operator
1957 SparseMatConstIterator& operator = (const SparseMatConstIterator& it);
1959 //! template method returning the current matrix element
1960 template<typename _Tp> const _Tp& value() const;
1961 //! returns the current node of the sparse matrix. it.node->idx is the current element index
1962 const SparseMat::Node* node() const;
1964 //! moves iterator to the previous element
1965 SparseMatConstIterator& operator --();
1966 //! moves iterator to the previous element
1967 SparseMatConstIterator operator --(int);
1968 //! moves iterator to the next element
1969 SparseMatConstIterator& operator ++();
1970 //! moves iterator to the next element
1971 SparseMatConstIterator operator ++(int);
1973 //! moves iterator to the element after the last element
1983 ////////////////////////////////// SparseMatIterator /////////////////////////////////
1986 Read-write Sparse Matrix Iterator
1988 The class is similar to cv::SparseMatConstIterator,
1989 but can be used for in-place modification of the matrix elements.
1991 class CV_EXPORTS SparseMatIterator : public SparseMatConstIterator
1994 //! the default constructor
1995 SparseMatIterator();
1996 //! the full constructor setting the iterator to the first sparse matrix element
1997 SparseMatIterator(SparseMat* _m);
1998 //! the full constructor setting the iterator to the specified sparse matrix element
1999 SparseMatIterator(SparseMat* _m, const int* idx);
2000 //! the copy constructor
2001 SparseMatIterator(const SparseMatIterator& it);
2003 //! the assignment operator
2004 SparseMatIterator& operator = (const SparseMatIterator& it);
2005 //! returns read-write reference to the current sparse matrix element
2006 template<typename _Tp> _Tp& value() const;
2007 //! returns pointer to the current sparse matrix node. it.node->idx is the index of the current element (do not modify it!)
2008 SparseMat::Node* node() const;
2010 //! moves iterator to the next element
2011 SparseMatIterator& operator ++();
2012 //! moves iterator to the next element
2013 SparseMatIterator operator ++(int);
2018 /////////////////////////////// SparseMatConstIterator_ //////////////////////////////
2021 Template Read-Only Sparse Matrix Iterator Class.
2023 This is the derived from SparseMatConstIterator class that
2024 introduces more convenient operator *() for accessing the current element.
2026 template<typename _Tp> class SparseMatConstIterator_ : public SparseMatConstIterator
2030 #ifndef OPENCV_NOSTL
2031 typedef std::forward_iterator_tag iterator_category;
2034 //! the default constructor
2035 SparseMatConstIterator_();
2036 //! the full constructor setting the iterator to the first sparse matrix element
2037 SparseMatConstIterator_(const SparseMat_<_Tp>* _m);
2038 SparseMatConstIterator_(const SparseMat* _m);
2039 //! the copy constructor
2040 SparseMatConstIterator_(const SparseMatConstIterator_& it);
2042 //! the assignment operator
2043 SparseMatConstIterator_& operator = (const SparseMatConstIterator_& it);
2044 //! the element access operator
2045 const _Tp& operator *() const;
2047 //! moves iterator to the next element
2048 SparseMatConstIterator_& operator ++();
2049 //! moves iterator to the next element
2050 SparseMatConstIterator_ operator ++(int);
2055 ///////////////////////////////// SparseMatIterator_ /////////////////////////////////
2058 Template Read-Write Sparse Matrix Iterator Class.
2060 This is the derived from cv::SparseMatConstIterator_ class that
2061 introduces more convenient operator *() for accessing the current element.
2063 template<typename _Tp> class SparseMatIterator_ : public SparseMatConstIterator_<_Tp>
2067 #ifndef OPENCV_NOSTL
2068 typedef std::forward_iterator_tag iterator_category;
2071 //! the default constructor
2072 SparseMatIterator_();
2073 //! the full constructor setting the iterator to the first sparse matrix element
2074 SparseMatIterator_(SparseMat_<_Tp>* _m);
2075 SparseMatIterator_(SparseMat* _m);
2076 //! the copy constructor
2077 SparseMatIterator_(const SparseMatIterator_& it);
2079 //! the assignment operator
2080 SparseMatIterator_& operator = (const SparseMatIterator_& it);
2081 //! returns the reference to the current element
2082 _Tp& operator *() const;
2084 //! moves the iterator to the next element
2085 SparseMatIterator_& operator ++();
2086 //! moves the iterator to the next element
2087 SparseMatIterator_ operator ++(int);
2092 /////////////////////////////////// NAryMatIterator //////////////////////////////////
2095 n-Dimensional Dense Matrix Iterator Class.
2097 The class cv::NAryMatIterator is used for iterating over one or more n-dimensional dense arrays (cv::Mat's).
2099 The iterator is completely different from cv::Mat_ and cv::SparseMat_ iterators.
2100 It iterates through the slices (or planes), not the elements, where "slice" is a continuous part of the arrays.
2102 Here is the example on how the iterator can be used to normalize 3D histogram:
2105 void normalizeColorHist(Mat& hist)
2108 // intialize iterator (the style is different from STL).
2109 // after initialization the iterator will contain
2110 // the number of slices or planes
2111 // the iterator will go through
2112 Mat* arrays[] = { &hist, 0 };
2114 NAryMatIterator it(arrays, planes);
2116 // iterate through the matrix. on each iteration
2117 // it.planes[i] (of type Mat) will be set to the current plane of
2118 // i-th n-dim matrix passed to the iterator constructor.
2119 for(int p = 0; p < it.nplanes; p++, ++it)
2120 s += sum(it.planes[0])[0];
2121 it = NAryMatIterator(hist);
2123 for(int p = 0; p < it.nplanes; p++, ++it)
2126 // this is a shorter implementation of the above
2127 // using built-in operations on Mat
2128 double s = sum(hist)[0];
2129 hist.convertTo(hist, hist.type(), 1./s, 0);
2131 // and this is even shorter one
2132 // (assuming that the histogram elements are non-negative)
2133 normalize(hist, hist, 1, 0, NORM_L1);
2138 You can iterate through several matrices simultaneously as long as they have the same geometry
2139 (dimensionality and all the dimension sizes are the same), which is useful for binary
2140 and n-ary operations on such matrices. Just pass those matrices to cv::MatNDIterator.
2141 Then, during the iteration it.planes[0], it.planes[1], ... will
2142 be the slices of the corresponding matrices
2144 class CV_EXPORTS NAryMatIterator
2147 //! the default constructor
2149 //! the full constructor taking arbitrary number of n-dim matrices
2150 NAryMatIterator(const Mat** arrays, uchar** ptrs, int narrays=-1);
2151 //! the full constructor taking arbitrary number of n-dim matrices
2152 NAryMatIterator(const Mat** arrays, Mat* planes, int narrays=-1);
2153 //! the separate iterator initialization method
2154 void init(const Mat** arrays, Mat* planes, uchar** ptrs, int narrays=-1);
2156 //! proceeds to the next plane of every iterated matrix
2157 NAryMatIterator& operator ++();
2158 //! proceeds to the next plane of every iterated matrix (postfix increment operator)
2159 NAryMatIterator operator ++(int);
2161 //! the iterated arrays
2163 //! the current planes
2167 //! the number of arrays
2169 //! the number of hyper-planes that the iterator steps through
2171 //! the size of each segment (in elements)
2180 ///////////////////////////////// Matrix Expressions /////////////////////////////////
2182 class CV_EXPORTS MatOp
2188 virtual bool elementWise(const MatExpr& expr) const;
2189 virtual void assign(const MatExpr& expr, Mat& m, int type=-1) const = 0;
2190 virtual void roi(const MatExpr& expr, const Range& rowRange,
2191 const Range& colRange, MatExpr& res) const;
2192 virtual void diag(const MatExpr& expr, int d, MatExpr& res) const;
2193 virtual void augAssignAdd(const MatExpr& expr, Mat& m) const;
2194 virtual void augAssignSubtract(const MatExpr& expr, Mat& m) const;
2195 virtual void augAssignMultiply(const MatExpr& expr, Mat& m) const;
2196 virtual void augAssignDivide(const MatExpr& expr, Mat& m) const;
2197 virtual void augAssignAnd(const MatExpr& expr, Mat& m) const;
2198 virtual void augAssignOr(const MatExpr& expr, Mat& m) const;
2199 virtual void augAssignXor(const MatExpr& expr, Mat& m) const;
2201 virtual void add(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res) const;
2202 virtual void add(const MatExpr& expr1, const Scalar& s, MatExpr& res) const;
2204 virtual void subtract(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res) const;
2205 virtual void subtract(const Scalar& s, const MatExpr& expr, MatExpr& res) const;
2207 virtual void multiply(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res, double scale=1) const;
2208 virtual void multiply(const MatExpr& expr1, double s, MatExpr& res) const;
2210 virtual void divide(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res, double scale=1) const;
2211 virtual void divide(double s, const MatExpr& expr, MatExpr& res) const;
2213 virtual void abs(const MatExpr& expr, MatExpr& res) const;
2215 virtual void transpose(const MatExpr& expr, MatExpr& res) const;
2216 virtual void matmul(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res) const;
2217 virtual void invert(const MatExpr& expr, int method, MatExpr& res) const;
2219 virtual Size size(const MatExpr& expr) const;
2220 virtual int type(const MatExpr& expr) const;
2224 class CV_EXPORTS MatExpr
2228 explicit MatExpr(const Mat& m);
2230 MatExpr(const MatOp* _op, int _flags, const Mat& _a = Mat(), const Mat& _b = Mat(),
2231 const Mat& _c = Mat(), double _alpha = 1, double _beta = 1, const Scalar& _s = Scalar());
2233 operator Mat() const;
2234 template<typename _Tp> operator Mat_<_Tp>() const;
2239 MatExpr row(int y) const;
2240 MatExpr col(int x) const;
2241 MatExpr diag(int d = 0) const;
2242 MatExpr operator()( const Range& rowRange, const Range& colRange ) const;
2243 MatExpr operator()( const Rect& roi ) const;
2246 MatExpr inv(int method = DECOMP_LU) const;
2247 MatExpr mul(const MatExpr& e, double scale=1) const;
2248 MatExpr mul(const Mat& m, double scale=1) const;
2250 Mat cross(const Mat& m) const;
2251 double dot(const Mat& m) const;
2262 CV_EXPORTS MatExpr operator + (const Mat& a, const Mat& b);
2263 CV_EXPORTS MatExpr operator + (const Mat& a, const Scalar& s);
2264 CV_EXPORTS MatExpr operator + (const Scalar& s, const Mat& a);
2265 CV_EXPORTS MatExpr operator + (const MatExpr& e, const Mat& m);
2266 CV_EXPORTS MatExpr operator + (const Mat& m, const MatExpr& e);
2267 CV_EXPORTS MatExpr operator + (const MatExpr& e, const Scalar& s);
2268 CV_EXPORTS MatExpr operator + (const Scalar& s, const MatExpr& e);
2269 CV_EXPORTS MatExpr operator + (const MatExpr& e1, const MatExpr& e2);
2271 CV_EXPORTS MatExpr operator - (const Mat& a, const Mat& b);
2272 CV_EXPORTS MatExpr operator - (const Mat& a, const Scalar& s);
2273 CV_EXPORTS MatExpr operator - (const Scalar& s, const Mat& a);
2274 CV_EXPORTS MatExpr operator - (const MatExpr& e, const Mat& m);
2275 CV_EXPORTS MatExpr operator - (const Mat& m, const MatExpr& e);
2276 CV_EXPORTS MatExpr operator - (const MatExpr& e, const Scalar& s);
2277 CV_EXPORTS MatExpr operator - (const Scalar& s, const MatExpr& e);
2278 CV_EXPORTS MatExpr operator - (const MatExpr& e1, const MatExpr& e2);
2280 CV_EXPORTS MatExpr operator - (const Mat& m);
2281 CV_EXPORTS MatExpr operator - (const MatExpr& e);
2283 CV_EXPORTS MatExpr operator * (const Mat& a, const Mat& b);
2284 CV_EXPORTS MatExpr operator * (const Mat& a, double s);
2285 CV_EXPORTS MatExpr operator * (double s, const Mat& a);
2286 CV_EXPORTS MatExpr operator * (const MatExpr& e, const Mat& m);
2287 CV_EXPORTS MatExpr operator * (const Mat& m, const MatExpr& e);
2288 CV_EXPORTS MatExpr operator * (const MatExpr& e, double s);
2289 CV_EXPORTS MatExpr operator * (double s, const MatExpr& e);
2290 CV_EXPORTS MatExpr operator * (const MatExpr& e1, const MatExpr& e2);
2292 CV_EXPORTS MatExpr operator / (const Mat& a, const Mat& b);
2293 CV_EXPORTS MatExpr operator / (const Mat& a, double s);
2294 CV_EXPORTS MatExpr operator / (double s, const Mat& a);
2295 CV_EXPORTS MatExpr operator / (const MatExpr& e, const Mat& m);
2296 CV_EXPORTS MatExpr operator / (const Mat& m, const MatExpr& e);
2297 CV_EXPORTS MatExpr operator / (const MatExpr& e, double s);
2298 CV_EXPORTS MatExpr operator / (double s, const MatExpr& e);
2299 CV_EXPORTS MatExpr operator / (const MatExpr& e1, const MatExpr& e2);
2301 CV_EXPORTS MatExpr operator < (const Mat& a, const Mat& b);
2302 CV_EXPORTS MatExpr operator < (const Mat& a, double s);
2303 CV_EXPORTS MatExpr operator < (double s, const Mat& a);
2305 CV_EXPORTS MatExpr operator <= (const Mat& a, const Mat& b);
2306 CV_EXPORTS MatExpr operator <= (const Mat& a, double s);
2307 CV_EXPORTS MatExpr operator <= (double s, const Mat& a);
2309 CV_EXPORTS MatExpr operator == (const Mat& a, const Mat& b);
2310 CV_EXPORTS MatExpr operator == (const Mat& a, double s);
2311 CV_EXPORTS MatExpr operator == (double s, const Mat& a);
2313 CV_EXPORTS MatExpr operator != (const Mat& a, const Mat& b);
2314 CV_EXPORTS MatExpr operator != (const Mat& a, double s);
2315 CV_EXPORTS MatExpr operator != (double s, const Mat& a);
2317 CV_EXPORTS MatExpr operator >= (const Mat& a, const Mat& b);
2318 CV_EXPORTS MatExpr operator >= (const Mat& a, double s);
2319 CV_EXPORTS MatExpr operator >= (double s, const Mat& a);
2321 CV_EXPORTS MatExpr operator > (const Mat& a, const Mat& b);
2322 CV_EXPORTS MatExpr operator > (const Mat& a, double s);
2323 CV_EXPORTS MatExpr operator > (double s, const Mat& a);
2325 CV_EXPORTS MatExpr operator & (const Mat& a, const Mat& b);
2326 CV_EXPORTS MatExpr operator & (const Mat& a, const Scalar& s);
2327 CV_EXPORTS MatExpr operator & (const Scalar& s, const Mat& a);
2329 CV_EXPORTS MatExpr operator | (const Mat& a, const Mat& b);
2330 CV_EXPORTS MatExpr operator | (const Mat& a, const Scalar& s);
2331 CV_EXPORTS MatExpr operator | (const Scalar& s, const Mat& a);
2333 CV_EXPORTS MatExpr operator ^ (const Mat& a, const Mat& b);
2334 CV_EXPORTS MatExpr operator ^ (const Mat& a, const Scalar& s);
2335 CV_EXPORTS MatExpr operator ^ (const Scalar& s, const Mat& a);
2337 CV_EXPORTS MatExpr operator ~(const Mat& m);
2339 CV_EXPORTS MatExpr min(const Mat& a, const Mat& b);
2340 CV_EXPORTS MatExpr min(const Mat& a, double s);
2341 CV_EXPORTS MatExpr min(double s, const Mat& a);
2343 CV_EXPORTS MatExpr max(const Mat& a, const Mat& b);
2344 CV_EXPORTS MatExpr max(const Mat& a, double s);
2345 CV_EXPORTS MatExpr max(double s, const Mat& a);
2347 CV_EXPORTS MatExpr abs(const Mat& m);
2348 CV_EXPORTS MatExpr abs(const MatExpr& e);
2352 #include "opencv2/core/mat.inl.hpp"
2354 #endif // __OPENCV_CORE_MAT_HPP__