1 /*M///////////////////////////////////////////////////////////////////////////////////////
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
11 // For Open Source Computer Vision Library
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
16 // Third party copyrights are property of their respective owners.
18 // Redistribution and use in source and binary forms, with or without modification,
19 // are permitted provided that the following conditions are met:
21 // * Redistribution's of source code must retain the above copyright notice,
22 // this list of conditions and the following disclaimer.
24 // * Redistribution's in binary form must reproduce the above copyright notice,
25 // this list of conditions and the following disclaimer in the documentation
26 // and/or other materials provided with the distribution.
28 // * The name of the copyright holders may not be used to endorse or promote products
29 // derived from this software without specific prior written permission.
31 // This software is provided by the copyright holders and contributors "as is" and
32 // any express or implied warranties, including, but not limited to, the implied
33 // warranties of merchantability and fitness for a particular purpose are disclaimed.
34 // In no event shall the Intel Corporation or contributors be liable for any direct,
35 // indirect, incidental, special, exemplary, or consequential damages
36 // (including, but not limited to, procurement of substitute goods or services;
37 // loss of use, data, or profits; or business interruption) however caused
38 // and on any theory of liability, whether in contract, strict liability,
39 // or tort (including negligence or otherwise) arising in any way out of
40 // the use of this software, even if advised of the possibility of such damage.
44 #ifndef __OPENCV_CORE_MAT_HPP__
45 #define __OPENCV_CORE_MAT_HPP__
48 # error mat.hpp header must be compiled as C++
51 #include "opencv2/core/matx.hpp"
52 #include "opencv2/core/types.hpp"
58 enum { ACCESS_READ=1<<24, ACCESS_WRITE=1<<25,
59 ACCESS_RW=3<<24, ACCESS_MASK=ACCESS_RW, ACCESS_FAST=1<<26 };
61 class CV_EXPORTS _OutputArray;
63 //////////////////////// Input/Output Array Arguments /////////////////////////////////
66 Proxy datatype for passing Mat's and vector<>'s as input parameters
68 class CV_EXPORTS _InputArray
73 FIXED_TYPE = 0x8000 << KIND_SHIFT,
74 FIXED_SIZE = 0x4000 << KIND_SHIFT,
75 KIND_MASK = 31 << KIND_SHIFT,
77 NONE = 0 << KIND_SHIFT,
78 MAT = 1 << KIND_SHIFT,
79 MATX = 2 << KIND_SHIFT,
80 STD_VECTOR = 3 << KIND_SHIFT,
81 STD_VECTOR_VECTOR = 4 << KIND_SHIFT,
82 STD_VECTOR_MAT = 5 << KIND_SHIFT,
83 EXPR = 6 << KIND_SHIFT,
84 OPENGL_BUFFER = 7 << KIND_SHIFT,
85 CUDA_MEM = 8 << KIND_SHIFT,
86 GPU_MAT = 9 << KIND_SHIFT,
87 OCL_MAT =10 << KIND_SHIFT,
88 UMAT =11 << KIND_SHIFT,
89 STD_VECTOR_UMAT =12 << KIND_SHIFT,
90 UEXPR =13 << KIND_SHIFT
94 _InputArray(int _flags, void* _obj);
95 _InputArray(const Mat& m);
96 _InputArray(const MatExpr& expr);
97 _InputArray(const std::vector<Mat>& vec);
98 template<typename _Tp> _InputArray(const Mat_<_Tp>& m);
99 template<typename _Tp> _InputArray(const std::vector<_Tp>& vec);
100 template<typename _Tp> _InputArray(const std::vector<std::vector<_Tp> >& vec);
101 template<typename _Tp> _InputArray(const std::vector<Mat_<_Tp> >& vec);
102 template<typename _Tp> _InputArray(const _Tp* vec, int n);
103 template<typename _Tp, int m, int n> _InputArray(const Matx<_Tp, m, n>& matx);
104 _InputArray(const double& val);
105 _InputArray(const cuda::GpuMat& d_mat);
106 _InputArray(const ogl::Buffer& buf);
107 _InputArray(const cuda::CudaMem& cuda_mem);
108 template<typename _Tp> _InputArray(const cudev::GpuMat_<_Tp>& m);
109 _InputArray(const UMat& um);
110 _InputArray(const std::vector<UMat>& umv);
111 _InputArray(const UMatExpr& uexpr);
113 virtual Mat getMat(int idx=-1) const;
114 virtual UMat getUMat(int idx=-1) const;
115 virtual void getMatVector(std::vector<Mat>& mv) const;
116 virtual void getUMatVector(std::vector<UMat>& umv) const;
117 virtual cuda::GpuMat getGpuMat() const;
118 virtual ogl::Buffer getOGlBuffer() const;
119 void* getObj() const;
121 virtual int kind() const;
122 virtual int dims(int i=-1) const;
123 virtual Size size(int i=-1) const;
124 virtual int sizend(int* sz, int i=-1) const;
125 virtual bool sameSize(const _InputArray& arr) const;
126 virtual size_t total(int i=-1) const;
127 virtual int type(int i=-1) const;
128 virtual int depth(int i=-1) const;
129 virtual int channels(int i=-1) const;
130 virtual bool isContinuous(int i=-1) const;
131 virtual bool isSubmatrix(int i=-1) const;
132 virtual bool empty() const;
133 virtual void copyTo(const _OutputArray& arr) const;
134 virtual size_t offset(int i=-1) const;
135 virtual size_t step(int i=-1) const;
138 bool isMatVector() const;
139 bool isUMatVector() const;
142 virtual ~_InputArray();
149 void init(int _flags, const void* _obj);
150 void init(int _flags, const void* _obj, Size _sz);
155 Proxy datatype for passing Mat's and vector<>'s as input parameters
157 class CV_EXPORTS _OutputArray : public _InputArray
162 DEPTH_MASK_8U = 1 << CV_8U,
163 DEPTH_MASK_8S = 1 << CV_8S,
164 DEPTH_MASK_16U = 1 << CV_16U,
165 DEPTH_MASK_16S = 1 << CV_16S,
166 DEPTH_MASK_32S = 1 << CV_32S,
167 DEPTH_MASK_32F = 1 << CV_32F,
168 DEPTH_MASK_64F = 1 << CV_64F,
169 DEPTH_MASK_ALL = (DEPTH_MASK_64F<<1)-1,
170 DEPTH_MASK_ALL_BUT_8S = DEPTH_MASK_ALL & ~DEPTH_MASK_8S,
171 DEPTH_MASK_FLT = DEPTH_MASK_32F + DEPTH_MASK_64F
175 _OutputArray(int _flags, void* _obj);
176 _OutputArray(Mat& m);
177 _OutputArray(std::vector<Mat>& vec);
178 _OutputArray(cuda::GpuMat& d_mat);
179 _OutputArray(ogl::Buffer& buf);
180 _OutputArray(cuda::CudaMem& cuda_mem);
181 template<typename _Tp> _OutputArray(cudev::GpuMat_<_Tp>& m);
182 template<typename _Tp> _OutputArray(std::vector<_Tp>& vec);
183 template<typename _Tp> _OutputArray(std::vector<std::vector<_Tp> >& vec);
184 template<typename _Tp> _OutputArray(std::vector<Mat_<_Tp> >& vec);
185 template<typename _Tp> _OutputArray(Mat_<_Tp>& m);
186 template<typename _Tp> _OutputArray(_Tp* vec, int n);
187 template<typename _Tp, int m, int n> _OutputArray(Matx<_Tp, m, n>& matx);
188 _OutputArray(UMat& m);
189 _OutputArray(std::vector<UMat>& vec);
191 _OutputArray(const Mat& m);
192 _OutputArray(const std::vector<Mat>& vec);
193 _OutputArray(const cuda::GpuMat& d_mat);
194 _OutputArray(const ogl::Buffer& buf);
195 _OutputArray(const cuda::CudaMem& cuda_mem);
196 template<typename _Tp> _OutputArray(const cudev::GpuMat_<_Tp>& m);
197 template<typename _Tp> _OutputArray(const std::vector<_Tp>& vec);
198 template<typename _Tp> _OutputArray(const std::vector<std::vector<_Tp> >& vec);
199 template<typename _Tp> _OutputArray(const std::vector<Mat_<_Tp> >& vec);
200 template<typename _Tp> _OutputArray(const Mat_<_Tp>& m);
201 template<typename _Tp> _OutputArray(const _Tp* vec, int n);
202 template<typename _Tp, int m, int n> _OutputArray(const Matx<_Tp, m, n>& matx);
203 _OutputArray(const UMat& m);
204 _OutputArray(const std::vector<UMat>& vec);
206 virtual bool fixedSize() const;
207 virtual bool fixedType() const;
208 virtual bool needed() const;
209 virtual Mat& getMatRef(int i=-1) const;
210 virtual cuda::GpuMat& getGpuMatRef() const;
211 virtual ogl::Buffer& getOGlBufferRef() const;
212 virtual cuda::CudaMem& getCudaMemRef() const;
213 virtual void create(Size sz, int type, int i=-1, bool allowTransposed=false, int fixedDepthMask=0) const;
214 virtual void create(int rows, int cols, int type, int i=-1, bool allowTransposed=false, int fixedDepthMask=0) const;
215 virtual void create(int dims, const int* size, int type, int i=-1, bool allowTransposed=false, int fixedDepthMask=0) const;
216 virtual void createSameSize(const _InputArray& arr, int mtype) const;
217 virtual void release() const;
218 virtual void clear() const;
219 virtual void setTo(const _InputArray& value) const;
223 class CV_EXPORTS _InputOutputArray : public _OutputArray
227 _InputOutputArray(int _flags, void* _obj);
228 _InputOutputArray(Mat& m);
229 _InputOutputArray(std::vector<Mat>& vec);
230 _InputOutputArray(cuda::GpuMat& d_mat);
231 _InputOutputArray(ogl::Buffer& buf);
232 _InputOutputArray(cuda::CudaMem& cuda_mem);
233 template<typename _Tp> _InputOutputArray(cudev::GpuMat_<_Tp>& m);
234 template<typename _Tp> _InputOutputArray(std::vector<_Tp>& vec);
235 template<typename _Tp> _InputOutputArray(std::vector<std::vector<_Tp> >& vec);
236 template<typename _Tp> _InputOutputArray(std::vector<Mat_<_Tp> >& vec);
237 template<typename _Tp> _InputOutputArray(Mat_<_Tp>& m);
238 template<typename _Tp> _InputOutputArray(_Tp* vec, int n);
239 template<typename _Tp, int m, int n> _InputOutputArray(Matx<_Tp, m, n>& matx);
240 _InputOutputArray(UMat& m);
241 _InputOutputArray(std::vector<UMat>& vec);
243 _InputOutputArray(const Mat& m);
244 _InputOutputArray(const std::vector<Mat>& vec);
245 _InputOutputArray(const cuda::GpuMat& d_mat);
246 _InputOutputArray(const ogl::Buffer& buf);
247 _InputOutputArray(const cuda::CudaMem& cuda_mem);
248 template<typename _Tp> _InputOutputArray(const cudev::GpuMat_<_Tp>& m);
249 template<typename _Tp> _InputOutputArray(const std::vector<_Tp>& vec);
250 template<typename _Tp> _InputOutputArray(const std::vector<std::vector<_Tp> >& vec);
251 template<typename _Tp> _InputOutputArray(const std::vector<Mat_<_Tp> >& vec);
252 template<typename _Tp> _InputOutputArray(const Mat_<_Tp>& m);
253 template<typename _Tp> _InputOutputArray(const _Tp* vec, int n);
254 template<typename _Tp, int m, int n> _InputOutputArray(const Matx<_Tp, m, n>& matx);
255 _InputOutputArray(const UMat& m);
256 _InputOutputArray(const std::vector<UMat>& vec);
259 typedef const _InputArray& InputArray;
260 typedef InputArray InputArrayOfArrays;
261 typedef const _OutputArray& OutputArray;
262 typedef OutputArray OutputArrayOfArrays;
263 typedef const _InputOutputArray& InputOutputArray;
264 typedef InputOutputArray InputOutputArrayOfArrays;
266 CV_EXPORTS InputOutputArray noArray();
268 /////////////////////////////////// MatAllocator //////////////////////////////////////
270 struct CV_EXPORTS UMatData;
273 Custom array allocator
276 class CV_EXPORTS MatAllocator
280 virtual ~MatAllocator() {}
282 // let's comment it off for now to detect and fix all the uses of allocator
283 //virtual void allocate(int dims, const int* sizes, int type, int*& refcount,
284 // uchar*& datastart, uchar*& data, size_t* step) = 0;
285 //virtual void deallocate(int* refcount, uchar* datastart, uchar* data) = 0;
286 virtual UMatData* allocate(int dims, const int* sizes, int type,
287 void* data, size_t* step, int flags) const = 0;
288 virtual bool allocate(UMatData* data, int accessflags) const = 0;
289 virtual void deallocate(UMatData* data) const = 0;
290 virtual void map(UMatData* data, int accessflags) const;
291 virtual void unmap(UMatData* data) const;
292 virtual void download(UMatData* data, void* dst, int dims, const size_t sz[],
293 const size_t srcofs[], const size_t srcstep[],
294 const size_t dststep[]) const;
295 virtual void upload(UMatData* data, const void* src, int dims, const size_t sz[],
296 const size_t dstofs[], const size_t dststep[],
297 const size_t srcstep[]) const;
298 virtual void copy(UMatData* srcdata, UMatData* dstdata, int dims, const size_t sz[],
299 const size_t srcofs[], const size_t srcstep[],
300 const size_t dstofs[], const size_t dststep[], bool sync) const;
304 //////////////////////////////// MatCommaInitializer //////////////////////////////////
307 Comma-separated Matrix Initializer
309 The class instances are usually not created explicitly.
310 Instead, they are created on "matrix << firstValue" operator.
312 The sample below initializes 2x2 rotation matrix:
315 double angle = 30, a = cos(angle*CV_PI/180), b = sin(angle*CV_PI/180);
316 Mat R = (Mat_<double>(2,2) << a, -b, b, a);
319 template<typename _Tp> class MatCommaInitializer_
322 //! the constructor, created by "matrix << firstValue" operator, where matrix is cv::Mat
323 MatCommaInitializer_(Mat_<_Tp>* _m);
324 //! the operator that takes the next value and put it to the matrix
325 template<typename T2> MatCommaInitializer_<_Tp>& operator , (T2 v);
326 //! another form of conversion operator
327 operator Mat_<_Tp>() const;
329 MatIterator_<_Tp> it;
333 /////////////////////////////////////// Mat ///////////////////////////////////////////
335 // note that umatdata might be allocated together
336 // with the matrix data, not as a separate object.
337 // therefore, it does not have constructor or destructor;
338 // it should be explicitly initialized using init().
339 struct CV_EXPORTS UMatData
341 enum { COPY_ON_MAP=1, HOST_COPY_OBSOLETE=2,
342 DEVICE_COPY_OBSOLETE=4, TEMP_UMAT=8, TEMP_COPIED_UMAT=24,
344 UMatData(const MatAllocator* allocator);
347 // provide atomic access to the structure
351 bool hostCopyObsolete() const;
352 bool deviceCopyObsolete() const;
353 bool copyOnMap() const;
354 bool tempUMat() const;
355 bool tempCopiedUMat() const;
356 void markHostCopyObsolete(bool flag);
357 void markDeviceCopyObsolete(bool flag);
359 const MatAllocator* prevAllocator;
360 const MatAllocator* currAllocator;
373 struct CV_EXPORTS UMatDataAutoLock
375 UMatDataAutoLock(UMatData* u);
381 struct CV_EXPORTS MatSize
384 Size operator()() const;
385 const int& operator[](int i) const;
386 int& operator[](int i);
387 operator const int*() const;
388 bool operator == (const MatSize& sz) const;
389 bool operator != (const MatSize& sz) const;
394 struct CV_EXPORTS MatStep
398 const size_t& operator[](int i) const;
399 size_t& operator[](int i);
400 operator size_t() const;
401 MatStep& operator = (size_t s);
406 MatStep& operator = (const MatStep&);
410 The n-dimensional matrix class.
412 The class represents an n-dimensional dense numerical array that can act as
413 a matrix, image, optical flow map, 3-focal tensor etc.
414 It is very similar to CvMat and CvMatND types from earlier versions of OpenCV,
415 and similarly to those types, the matrix can be multi-channel. It also fully supports ROI mechanism.
417 There are many different ways to create cv::Mat object. Here are the some popular ones:
419 <li> using cv::Mat::create(nrows, ncols, type) method or
420 the similar constructor cv::Mat::Mat(nrows, ncols, type[, fill_value]) constructor.
421 A new matrix of the specified size and specifed type will be allocated.
422 "type" has the same meaning as in cvCreateMat function,
423 e.g. CV_8UC1 means 8-bit single-channel matrix, CV_32FC2 means 2-channel (i.e. complex)
424 floating-point matrix etc:
427 // make 7x7 complex matrix filled with 1+3j.
428 cv::Mat M(7,7,CV_32FC2,Scalar(1,3));
429 // and now turn M to 100x60 15-channel 8-bit matrix.
430 // The old content will be deallocated
431 M.create(100,60,CV_8UC(15));
434 As noted in the introduction of this chapter, Mat::create()
435 will only allocate a new matrix when the current matrix dimensionality
436 or type are different from the specified.
438 <li> by using a copy constructor or assignment operator, where on the right side it can
439 be a matrix or expression, see below. Again, as noted in the introduction,
440 matrix assignment is O(1) operation because it only copies the header
441 and increases the reference counter. cv::Mat::clone() method can be used to get a full
442 (a.k.a. deep) copy of the matrix when you need it.
444 <li> by constructing a header for a part of another matrix. It can be a single row, single column,
445 several rows, several columns, rectangular region in the matrix (called a minor in algebra) or
446 a diagonal. Such operations are also O(1), because the new header will reference the same data.
447 You can actually modify a part of the matrix using this feature, e.g.
450 // add 5-th row, multiplied by 3 to the 3rd row
451 M.row(3) = M.row(3) + M.row(5)*3;
453 // now copy 7-th column to the 1-st column
454 // M.col(1) = M.col(7); // this will not work
458 // create new 320x240 image
459 cv::Mat img(Size(320,240),CV_8UC3);
461 cv::Mat roi(img, Rect(10,10,100,100));
462 // fill the ROI with (0,255,0) (which is green in RGB space);
463 // the original 320x240 image will be modified
464 roi = Scalar(0,255,0);
467 Thanks to the additional cv::Mat::datastart and cv::Mat::dataend members, it is possible to
468 compute the relative sub-matrix position in the main "container" matrix using cv::Mat::locateROI():
471 Mat A = Mat::eye(10, 10, CV_32S);
472 // extracts A columns, 1 (inclusive) to 3 (exclusive).
473 Mat B = A(Range::all(), Range(1, 3));
474 // extracts B rows, 5 (inclusive) to 9 (exclusive).
475 // that is, C ~ A(Range(5, 9), Range(1, 3))
476 Mat C = B(Range(5, 9), Range::all());
477 Size size; Point ofs;
478 C.locateROI(size, ofs);
479 // size will be (width=10,height=10) and the ofs will be (x=1, y=5)
482 As in the case of whole matrices, if you need a deep copy, use cv::Mat::clone() method
483 of the extracted sub-matrices.
485 <li> by making a header for user-allocated-data. It can be useful for
487 <li> processing "foreign" data using OpenCV (e.g. when you implement
488 a DirectShow filter or a processing module for gstreamer etc.), e.g.
491 void process_video_frame(const unsigned char* pixels,
492 int width, int height, int step)
494 cv::Mat img(height, width, CV_8UC3, pixels, step);
495 cv::GaussianBlur(img, img, cv::Size(7,7), 1.5, 1.5);
499 <li> for quick initialization of small matrices and/or super-fast element access
502 double m[3][3] = {{a, b, c}, {d, e, f}, {g, h, i}};
503 cv::Mat M = cv::Mat(3, 3, CV_64F, m).inv();
507 partial yet very common cases of this "user-allocated data" case are conversions
508 from CvMat and IplImage to cv::Mat. For this purpose there are special constructors
509 taking pointers to CvMat or IplImage and the optional
510 flag indicating whether to copy the data or not.
512 Backward conversion from cv::Mat to CvMat or IplImage is provided via cast operators
513 cv::Mat::operator CvMat() an cv::Mat::operator IplImage().
514 The operators do not copy the data.
518 IplImage* img = cvLoadImage("greatwave.jpg", 1);
519 Mat mtx(img); // convert IplImage* -> cv::Mat
520 CvMat oldmat = mtx; // convert cv::Mat -> CvMat
521 CV_Assert(oldmat.cols == img->width && oldmat.rows == img->height &&
522 oldmat.data.ptr == (uchar*)img->imageData && oldmat.step == img->widthStep);
525 <li> by using MATLAB-style matrix initializers, cv::Mat::zeros(), cv::Mat::ones(), cv::Mat::eye(), e.g.:
528 // create a double-precision identity martix and add it to M.
529 M += Mat::eye(M.rows, M.cols, CV_64F);
532 <li> by using comma-separated initializer:
535 // create 3x3 double-precision identity matrix
536 Mat M = (Mat_<double>(3,3) << 1, 0, 0, 0, 1, 0, 0, 0, 1);
539 here we first call constructor of cv::Mat_ class (that we describe further) with the proper matrix,
540 and then we just put "<<" operator followed by comma-separated values that can be constants,
541 variables, expressions etc. Also, note the extra parentheses that are needed to avoid compiler errors.
545 Once matrix is created, it will be automatically managed by using reference-counting mechanism
546 (unless the matrix header is built on top of user-allocated data,
547 in which case you should handle the data by yourself).
548 The matrix data will be deallocated when no one points to it;
549 if you want to release the data pointed by a matrix header before the matrix destructor is called,
550 use cv::Mat::release().
552 The next important thing to learn about the matrix class is element access. Here is how the matrix is stored.
553 The elements are stored in row-major order (row by row). The cv::Mat::data member points to the first element of the first row,
554 cv::Mat::rows contains the number of matrix rows and cv::Mat::cols - the number of matrix columns. There is yet another member,
555 cv::Mat::step that is used to actually compute address of a matrix element. cv::Mat::step is needed because the matrix can be
556 a part of another matrix or because there can some padding space in the end of each row for a proper alignment.
560 Given these parameters, address of the matrix element M_{ij} is computed as following:
562 addr(M_{ij})=M.data + M.step*i + j*M.elemSize()
564 if you know the matrix element type, e.g. it is float, then you can use cv::Mat::at() method:
566 addr(M_{ij})=&M.at<float>(i,j)
568 (where & is used to convert the reference returned by cv::Mat::at() to a pointer).
569 if you need to process a whole row of matrix, the most efficient way is to get
570 the pointer to the row first, and then just use plain C operator []:
573 // compute sum of positive matrix elements
574 // (assuming that M is double-precision matrix)
576 for(int i = 0; i < M.rows; i++)
578 const double* Mi = M.ptr<double>(i);
579 for(int j = 0; j < M.cols; j++)
580 sum += std::max(Mi[j], 0.);
584 Some operations, like the above one, do not actually depend on the matrix shape,
585 they just process elements of a matrix one by one (or elements from multiple matrices
586 that are sitting in the same place, e.g. matrix addition). Such operations are called
587 element-wise and it makes sense to check whether all the input/output matrices are continuous,
588 i.e. have no gaps in the end of each row, and if yes, process them as a single long row:
591 // compute sum of positive matrix elements, optimized variant
593 int cols = M.cols, rows = M.rows;
599 for(int i = 0; i < rows; i++)
601 const double* Mi = M.ptr<double>(i);
602 for(int j = 0; j < cols; j++)
603 sum += std::max(Mi[j], 0.);
606 in the case of continuous matrix the outer loop body will be executed just once,
607 so the overhead will be smaller, which will be especially noticeable in the case of small matrices.
609 Finally, there are STL-style iterators that are smart enough to skip gaps between successive rows:
611 // compute sum of positive matrix elements, iterator-based variant
613 MatConstIterator_<double> it = M.begin<double>(), it_end = M.end<double>();
614 for(; it != it_end; ++it)
615 sum += std::max(*it, 0.);
618 The matrix iterators are random-access iterators, so they can be passed
619 to any STL algorithm, including std::sort().
624 //! default constructor
626 //! constructs 2D matrix of the specified size and type
627 // (_type is CV_8UC1, CV_64FC3, CV_32SC(12) etc.)
628 Mat(int rows, int cols, int type);
629 Mat(Size size, int type);
630 //! constucts 2D matrix and fills it with the specified value _s.
631 Mat(int rows, int cols, int type, const Scalar& s);
632 Mat(Size size, int type, const Scalar& s);
634 //! constructs n-dimensional matrix
635 Mat(int ndims, const int* sizes, int type);
636 Mat(int ndims, const int* sizes, int type, const Scalar& s);
640 //! constructor for matrix headers pointing to user-allocated data
641 Mat(int rows, int cols, int type, void* data, size_t step=AUTO_STEP);
642 Mat(Size size, int type, void* data, size_t step=AUTO_STEP);
643 Mat(int ndims, const int* sizes, int type, void* data, const size_t* steps=0);
645 //! creates a matrix header for a part of the bigger matrix
646 Mat(const Mat& m, const Range& rowRange, const Range& colRange=Range::all());
647 Mat(const Mat& m, const Rect& roi);
648 Mat(const Mat& m, const Range* ranges);
649 //! builds matrix from std::vector with or without copying the data
650 template<typename _Tp> explicit Mat(const std::vector<_Tp>& vec, bool copyData=false);
651 //! builds matrix from cv::Vec; the data is copied by default
652 template<typename _Tp, int n> explicit Mat(const Vec<_Tp, n>& vec, bool copyData=true);
653 //! builds matrix from cv::Matx; the data is copied by default
654 template<typename _Tp, int m, int n> explicit Mat(const Matx<_Tp, m, n>& mtx, bool copyData=true);
655 //! builds matrix from a 2D point
656 template<typename _Tp> explicit Mat(const Point_<_Tp>& pt, bool copyData=true);
657 //! builds matrix from a 3D point
658 template<typename _Tp> explicit Mat(const Point3_<_Tp>& pt, bool copyData=true);
659 //! builds matrix from comma initializer
660 template<typename _Tp> explicit Mat(const MatCommaInitializer_<_Tp>& commaInitializer);
662 //! download data from GpuMat
663 explicit Mat(const cuda::GpuMat& m);
665 //! destructor - calls release()
667 //! assignment operators
668 Mat& operator = (const Mat& m);
669 Mat& operator = (const MatExpr& expr);
671 //! retrieve UMat from Mat
672 UMat getUMat(int accessFlags) const;
674 //! returns a new matrix header for the specified row
675 Mat row(int y) const;
676 //! returns a new matrix header for the specified column
677 Mat col(int x) const;
678 //! ... for the specified row span
679 Mat rowRange(int startrow, int endrow) const;
680 Mat rowRange(const Range& r) const;
681 //! ... for the specified column span
682 Mat colRange(int startcol, int endcol) const;
683 Mat colRange(const Range& r) const;
684 //! ... for the specified diagonal
685 // (d=0 - the main diagonal,
686 // >0 - a diagonal from the lower half,
687 // <0 - a diagonal from the upper half)
688 Mat diag(int d=0) const;
689 //! constructs a square diagonal matrix which main diagonal is vector "d"
690 static Mat diag(const Mat& d);
692 //! returns deep copy of the matrix, i.e. the data is copied
694 //! copies the matrix content to "m".
695 // It calls m.create(this->size(), this->type()).
696 void copyTo( OutputArray m ) const;
697 //! copies those matrix elements to "m" that are marked with non-zero mask elements.
698 void copyTo( OutputArray m, InputArray mask ) const;
699 //! converts matrix to another datatype with optional scalng. See cvConvertScale.
700 void convertTo( OutputArray m, int rtype, double alpha=1, double beta=0 ) const;
702 void assignTo( Mat& m, int type=-1 ) const;
704 //! sets every matrix element to s
705 Mat& operator = (const Scalar& s);
706 //! sets some of the matrix elements to s, according to the mask
707 Mat& setTo(InputArray value, InputArray mask=noArray());
708 //! creates alternative matrix header for the same data, with different
709 // number of channels and/or different number of rows. see cvReshape.
710 Mat reshape(int cn, int rows=0) const;
711 Mat reshape(int cn, int newndims, const int* newsz) const;
713 //! matrix transposition by means of matrix expressions
715 //! matrix inversion by means of matrix expressions
716 MatExpr inv(int method=DECOMP_LU) const;
717 //! per-element matrix multiplication by means of matrix expressions
718 MatExpr mul(InputArray m, double scale=1) const;
720 //! computes cross-product of 2 3D vectors
721 Mat cross(InputArray m) const;
722 //! computes dot-product
723 double dot(InputArray m) const;
725 //! Matlab-style matrix initialization
726 static MatExpr zeros(int rows, int cols, int type);
727 static MatExpr zeros(Size size, int type);
728 static MatExpr zeros(int ndims, const int* sz, int type);
729 static MatExpr ones(int rows, int cols, int type);
730 static MatExpr ones(Size size, int type);
731 static MatExpr ones(int ndims, const int* sz, int type);
732 static MatExpr eye(int rows, int cols, int type);
733 static MatExpr eye(Size size, int type);
735 //! allocates new matrix data unless the matrix already has specified size and type.
736 // previous data is unreferenced if needed.
737 void create(int rows, int cols, int type);
738 void create(Size size, int type);
739 void create(int ndims, const int* sizes, int type);
741 //! increases the reference counter; use with care to avoid memleaks
743 //! decreases reference counter;
744 // deallocates the data when reference counter reaches 0.
747 //! deallocates the matrix data
749 //! internal use function; properly re-allocates _size, _step arrays
750 void copySize(const Mat& m);
752 //! reserves enough space to fit sz hyper-planes
753 void reserve(size_t sz);
754 //! resizes matrix to the specified number of hyper-planes
755 void resize(size_t sz);
756 //! resizes matrix to the specified number of hyper-planes; initializes the newly added elements
757 void resize(size_t sz, const Scalar& s);
758 //! internal function
759 void push_back_(const void* elem);
760 //! adds element to the end of 1d matrix (or possibly multiple elements when _Tp=Mat)
761 template<typename _Tp> void push_back(const _Tp& elem);
762 template<typename _Tp> void push_back(const Mat_<_Tp>& elem);
763 void push_back(const Mat& m);
764 //! removes several hyper-planes from bottom of the matrix
765 void pop_back(size_t nelems=1);
767 //! locates matrix header within a parent matrix. See below
768 void locateROI( Size& wholeSize, Point& ofs ) const;
769 //! moves/resizes the current matrix ROI inside the parent matrix.
770 Mat& adjustROI( int dtop, int dbottom, int dleft, int dright );
771 //! extracts a rectangular sub-matrix
772 // (this is a generalized form of row, rowRange etc.)
773 Mat operator()( Range rowRange, Range colRange ) const;
774 Mat operator()( const Rect& roi ) const;
775 Mat operator()( const Range* ranges ) const;
777 // //! converts header to CvMat; no data is copied
778 // operator CvMat() const;
779 // //! converts header to CvMatND; no data is copied
780 // operator CvMatND() const;
781 // //! converts header to IplImage; no data is copied
782 // operator IplImage() const;
784 template<typename _Tp> operator std::vector<_Tp>() const;
785 template<typename _Tp, int n> operator Vec<_Tp, n>() const;
786 template<typename _Tp, int m, int n> operator Matx<_Tp, m, n>() const;
788 //! returns true iff the matrix data is continuous
789 // (i.e. when there are no gaps between successive rows).
790 // similar to CV_IS_MAT_CONT(cvmat->type)
791 bool isContinuous() const;
793 //! returns true if the matrix is a submatrix of another matrix
794 bool isSubmatrix() const;
796 //! returns element size in bytes,
797 // similar to CV_ELEM_SIZE(cvmat->type)
798 size_t elemSize() const;
799 //! returns the size of element channel in bytes.
800 size_t elemSize1() const;
801 //! returns element type, similar to CV_MAT_TYPE(cvmat->type)
803 //! returns element type, similar to CV_MAT_DEPTH(cvmat->type)
805 //! returns element type, similar to CV_MAT_CN(cvmat->type)
806 int channels() const;
807 //! returns step/elemSize1()
808 size_t step1(int i=0) const;
809 //! returns true if matrix data is NULL
811 //! returns the total number of matrix elements
812 size_t total() const;
814 //! returns N if the matrix is 1-channel (N x ptdim) or ptdim-channel (1 x N) or (N x 1); negative number otherwise
815 int checkVector(int elemChannels, int depth=-1, bool requireContinuous=true) const;
817 //! returns pointer to i0-th submatrix along the dimension #0
818 uchar* ptr(int i0=0);
819 const uchar* ptr(int i0=0) const;
821 //! returns pointer to (i0,i1) submatrix along the dimensions #0 and #1
822 uchar* ptr(int i0, int i1);
823 const uchar* ptr(int i0, int i1) const;
825 //! returns pointer to (i0,i1,i3) submatrix along the dimensions #0, #1, #2
826 uchar* ptr(int i0, int i1, int i2);
827 const uchar* ptr(int i0, int i1, int i2) const;
829 //! returns pointer to the matrix element
830 uchar* ptr(const int* idx);
831 //! returns read-only pointer to the matrix element
832 const uchar* ptr(const int* idx) const;
834 template<int n> uchar* ptr(const Vec<int, n>& idx);
835 template<int n> const uchar* ptr(const Vec<int, n>& idx) const;
837 //! template version of the above method
838 template<typename _Tp> _Tp* ptr(int i0=0);
839 template<typename _Tp> const _Tp* ptr(int i0=0) const;
841 template<typename _Tp> _Tp* ptr(int i0, int i1);
842 template<typename _Tp> const _Tp* ptr(int i0, int i1) const;
844 template<typename _Tp> _Tp* ptr(int i0, int i1, int i2);
845 template<typename _Tp> const _Tp* ptr(int i0, int i1, int i2) const;
847 template<typename _Tp> _Tp* ptr(const int* idx);
848 template<typename _Tp> const _Tp* ptr(const int* idx) const;
850 template<typename _Tp, int n> _Tp* ptr(const Vec<int, n>& idx);
851 template<typename _Tp, int n> const _Tp* ptr(const Vec<int, n>& idx) const;
853 //! the same as above, with the pointer dereferencing
854 template<typename _Tp> _Tp& at(int i0=0);
855 template<typename _Tp> const _Tp& at(int i0=0) const;
857 template<typename _Tp> _Tp& at(int i0, int i1);
858 template<typename _Tp> const _Tp& at(int i0, int i1) const;
860 template<typename _Tp> _Tp& at(int i0, int i1, int i2);
861 template<typename _Tp> const _Tp& at(int i0, int i1, int i2) const;
863 template<typename _Tp> _Tp& at(const int* idx);
864 template<typename _Tp> const _Tp& at(const int* idx) const;
866 template<typename _Tp, int n> _Tp& at(const Vec<int, n>& idx);
867 template<typename _Tp, int n> const _Tp& at(const Vec<int, n>& idx) const;
869 //! special versions for 2D arrays (especially convenient for referencing image pixels)
870 template<typename _Tp> _Tp& at(Point pt);
871 template<typename _Tp> const _Tp& at(Point pt) const;
873 //! template methods for iteration over matrix elements.
874 // the iterators take care of skipping gaps in the end of rows (if any)
875 template<typename _Tp> MatIterator_<_Tp> begin();
876 template<typename _Tp> MatIterator_<_Tp> end();
877 template<typename _Tp> MatConstIterator_<_Tp> begin() const;
878 template<typename _Tp> MatConstIterator_<_Tp> end() const;
880 enum { MAGIC_VAL = 0x42FF0000, AUTO_STEP = 0, CONTINUOUS_FLAG = CV_MAT_CONT_FLAG, SUBMATRIX_FLAG = CV_SUBMAT_FLAG };
881 enum { MAGIC_MASK = 0xFFFF0000, TYPE_MASK = 0x00000FFF, DEPTH_MASK = 7 };
883 /*! includes several bit-fields:
884 - the magic signature
890 //! the matrix dimensionality, >= 2
892 //! the number of rows and columns or (-1, -1) when the matrix has more than 2 dimensions
894 //! pointer to the data
897 //! helper fields used in locateROI and adjustROI
903 MatAllocator* allocator;
904 //! and the standard allocator
905 static MatAllocator* getStdAllocator();
907 //! interaction with UMat
917 ///////////////////////////////// Mat_<_Tp> ////////////////////////////////////
920 Template matrix class derived from Mat
922 The class Mat_ is a "thin" template wrapper on top of cv::Mat. It does not have any extra data fields,
923 nor it or cv::Mat have any virtual methods and thus references or pointers to these two classes
924 can be safely converted one to another. But do it with care, for example:
927 // create 100x100 8-bit matrix
928 Mat M(100,100,CV_8U);
929 // this will compile fine. no any data conversion will be done.
930 Mat_<float>& M1 = (Mat_<float>&)M;
931 // the program will likely crash at the statement below
935 While cv::Mat is sufficient in most cases, cv::Mat_ can be more convenient if you use a lot of element
936 access operations and if you know matrix type at compile time.
937 Note that cv::Mat::at<_Tp>(int y, int x) and cv::Mat_<_Tp>::operator ()(int y, int x) do absolutely the
938 same thing and run at the same speed, but the latter is certainly shorter:
941 Mat_<double> M(20,20);
942 for(int i = 0; i < M.rows; i++)
943 for(int j = 0; j < M.cols; j++)
947 cout << E.at<double>(0,0)/E.at<double>(M.rows-1,0);
950 It is easy to use Mat_ for multi-channel images/matrices - just pass cv::Vec as cv::Mat_ template parameter:
953 // allocate 320x240 color image and fill it with green (in RGB space)
954 Mat_<Vec3b> img(240, 320, Vec3b(0,255,0));
955 // now draw a diagonal white line
956 for(int i = 0; i < 100; i++)
957 img(i,i)=Vec3b(255,255,255);
958 // and now modify the 2nd (red) channel of each pixel
959 for(int i = 0; i < img.rows; i++)
960 for(int j = 0; j < img.cols; j++)
961 img(i,j)[2] ^= (uchar)(i ^ j); // img(y,x)[c] accesses c-th channel of the pixel (x,y)
964 template<typename _Tp> class Mat_ : public Mat
967 typedef _Tp value_type;
968 typedef typename DataType<_Tp>::channel_type channel_type;
969 typedef MatIterator_<_Tp> iterator;
970 typedef MatConstIterator_<_Tp> const_iterator;
972 //! default constructor
974 //! equivalent to Mat(_rows, _cols, DataType<_Tp>::type)
975 Mat_(int _rows, int _cols);
976 //! constructor that sets each matrix element to specified value
977 Mat_(int _rows, int _cols, const _Tp& value);
978 //! equivalent to Mat(_size, DataType<_Tp>::type)
979 explicit Mat_(Size _size);
980 //! constructor that sets each matrix element to specified value
981 Mat_(Size _size, const _Tp& value);
982 //! n-dim array constructor
983 Mat_(int _ndims, const int* _sizes);
984 //! n-dim array constructor that sets each matrix element to specified value
985 Mat_(int _ndims, const int* _sizes, const _Tp& value);
986 //! copy/conversion contructor. If m is of different type, it's converted
990 //! constructs a matrix on top of user-allocated data. step is in bytes(!!!), regardless of the type
991 Mat_(int _rows, int _cols, _Tp* _data, size_t _step=AUTO_STEP);
992 //! constructs n-dim matrix on top of user-allocated data. steps are in bytes(!!!), regardless of the type
993 Mat_(int _ndims, const int* _sizes, _Tp* _data, const size_t* _steps=0);
994 //! selects a submatrix
995 Mat_(const Mat_& m, const Range& rowRange, const Range& colRange=Range::all());
996 //! selects a submatrix
997 Mat_(const Mat_& m, const Rect& roi);
998 //! selects a submatrix, n-dim version
999 Mat_(const Mat_& m, const Range* ranges);
1000 //! from a matrix expression
1001 explicit Mat_(const MatExpr& e);
1002 //! makes a matrix out of Vec, std::vector, Point_ or Point3_. The matrix will have a single column
1003 explicit Mat_(const std::vector<_Tp>& vec, bool copyData=false);
1004 template<int n> explicit Mat_(const Vec<typename DataType<_Tp>::channel_type, n>& vec, bool copyData=true);
1005 template<int m, int n> explicit Mat_(const Matx<typename DataType<_Tp>::channel_type, m, n>& mtx, bool copyData=true);
1006 explicit Mat_(const Point_<typename DataType<_Tp>::channel_type>& pt, bool copyData=true);
1007 explicit Mat_(const Point3_<typename DataType<_Tp>::channel_type>& pt, bool copyData=true);
1008 explicit Mat_(const MatCommaInitializer_<_Tp>& commaInitializer);
1010 Mat_& operator = (const Mat& m);
1011 Mat_& operator = (const Mat_& m);
1012 //! set all the elements to s.
1013 Mat_& operator = (const _Tp& s);
1014 //! assign a matrix expression
1015 Mat_& operator = (const MatExpr& e);
1017 //! iterators; they are smart enough to skip gaps in the end of rows
1020 const_iterator begin() const;
1021 const_iterator end() const;
1023 //! equivalent to Mat::create(_rows, _cols, DataType<_Tp>::type)
1024 void create(int _rows, int _cols);
1025 //! equivalent to Mat::create(_size, DataType<_Tp>::type)
1026 void create(Size _size);
1027 //! equivalent to Mat::create(_ndims, _sizes, DatType<_Tp>::type)
1028 void create(int _ndims, const int* _sizes);
1030 Mat_ cross(const Mat_& m) const;
1031 //! data type conversion
1032 template<typename T2> operator Mat_<T2>() const;
1033 //! overridden forms of Mat::row() etc.
1034 Mat_ row(int y) const;
1035 Mat_ col(int x) const;
1036 Mat_ diag(int d=0) const;
1039 //! overridden forms of Mat::elemSize() etc.
1040 size_t elemSize() const;
1041 size_t elemSize1() const;
1044 int channels() const;
1045 size_t step1(int i=0) const;
1046 //! returns step()/sizeof(_Tp)
1047 size_t stepT(int i=0) const;
1049 //! overridden forms of Mat::zeros() etc. Data type is omitted, of course
1050 static MatExpr zeros(int rows, int cols);
1051 static MatExpr zeros(Size size);
1052 static MatExpr zeros(int _ndims, const int* _sizes);
1053 static MatExpr ones(int rows, int cols);
1054 static MatExpr ones(Size size);
1055 static MatExpr ones(int _ndims, const int* _sizes);
1056 static MatExpr eye(int rows, int cols);
1057 static MatExpr eye(Size size);
1059 //! some more overriden methods
1060 Mat_& adjustROI( int dtop, int dbottom, int dleft, int dright );
1061 Mat_ operator()( const Range& rowRange, const Range& colRange ) const;
1062 Mat_ operator()( const Rect& roi ) const;
1063 Mat_ operator()( const Range* ranges ) const;
1065 //! more convenient forms of row and element access operators
1066 _Tp* operator [](int y);
1067 const _Tp* operator [](int y) const;
1069 //! returns reference to the specified element
1070 _Tp& operator ()(const int* idx);
1071 //! returns read-only reference to the specified element
1072 const _Tp& operator ()(const int* idx) const;
1074 //! returns reference to the specified element
1075 template<int n> _Tp& operator ()(const Vec<int, n>& idx);
1076 //! returns read-only reference to the specified element
1077 template<int n> const _Tp& operator ()(const Vec<int, n>& idx) const;
1079 //! returns reference to the specified element (1D case)
1080 _Tp& operator ()(int idx0);
1081 //! returns read-only reference to the specified element (1D case)
1082 const _Tp& operator ()(int idx0) const;
1083 //! returns reference to the specified element (2D case)
1084 _Tp& operator ()(int idx0, int idx1);
1085 //! returns read-only reference to the specified element (2D case)
1086 const _Tp& operator ()(int idx0, int idx1) const;
1087 //! returns reference to the specified element (3D case)
1088 _Tp& operator ()(int idx0, int idx1, int idx2);
1089 //! returns read-only reference to the specified element (3D case)
1090 const _Tp& operator ()(int idx0, int idx1, int idx2) const;
1092 _Tp& operator ()(Point pt);
1093 const _Tp& operator ()(Point pt) const;
1095 //! conversion to vector.
1096 operator std::vector<_Tp>() const;
1097 //! conversion to Vec
1098 template<int n> operator Vec<typename DataType<_Tp>::channel_type, n>() const;
1099 //! conversion to Matx
1100 template<int m, int n> operator Matx<typename DataType<_Tp>::channel_type, m, n>() const;
1103 typedef Mat_<uchar> Mat1b;
1104 typedef Mat_<Vec2b> Mat2b;
1105 typedef Mat_<Vec3b> Mat3b;
1106 typedef Mat_<Vec4b> Mat4b;
1108 typedef Mat_<short> Mat1s;
1109 typedef Mat_<Vec2s> Mat2s;
1110 typedef Mat_<Vec3s> Mat3s;
1111 typedef Mat_<Vec4s> Mat4s;
1113 typedef Mat_<ushort> Mat1w;
1114 typedef Mat_<Vec2w> Mat2w;
1115 typedef Mat_<Vec3w> Mat3w;
1116 typedef Mat_<Vec4w> Mat4w;
1118 typedef Mat_<int> Mat1i;
1119 typedef Mat_<Vec2i> Mat2i;
1120 typedef Mat_<Vec3i> Mat3i;
1121 typedef Mat_<Vec4i> Mat4i;
1123 typedef Mat_<float> Mat1f;
1124 typedef Mat_<Vec2f> Mat2f;
1125 typedef Mat_<Vec3f> Mat3f;
1126 typedef Mat_<Vec4f> Mat4f;
1128 typedef Mat_<double> Mat1d;
1129 typedef Mat_<Vec2d> Mat2d;
1130 typedef Mat_<Vec3d> Mat3d;
1131 typedef Mat_<Vec4d> Mat4d;
1134 class CV_EXPORTS UMatExpr;
1136 class CV_EXPORTS UMat
1139 //! default constructor
1141 //! constructs 2D matrix of the specified size and type
1142 // (_type is CV_8UC1, CV_64FC3, CV_32SC(12) etc.)
1143 UMat(int rows, int cols, int type);
1144 UMat(Size size, int type);
1145 //! constucts 2D matrix and fills it with the specified value _s.
1146 UMat(int rows, int cols, int type, const Scalar& s);
1147 UMat(Size size, int type, const Scalar& s);
1149 //! constructs n-dimensional matrix
1150 UMat(int ndims, const int* sizes, int type);
1151 UMat(int ndims, const int* sizes, int type, const Scalar& s);
1153 //! copy constructor
1154 UMat(const UMat& m);
1156 //! creates a matrix header for a part of the bigger matrix
1157 UMat(const UMat& m, const Range& rowRange, const Range& colRange=Range::all());
1158 UMat(const UMat& m, const Rect& roi);
1159 UMat(const UMat& m, const Range* ranges);
1160 //! builds matrix from std::vector with or without copying the data
1161 template<typename _Tp> explicit UMat(const std::vector<_Tp>& vec, bool copyData=false);
1162 //! builds matrix from cv::Vec; the data is copied by default
1163 template<typename _Tp, int n> explicit UMat(const Vec<_Tp, n>& vec, bool copyData=true);
1164 //! builds matrix from cv::Matx; the data is copied by default
1165 template<typename _Tp, int m, int n> explicit UMat(const Matx<_Tp, m, n>& mtx, bool copyData=true);
1166 //! builds matrix from a 2D point
1167 template<typename _Tp> explicit UMat(const Point_<_Tp>& pt, bool copyData=true);
1168 //! builds matrix from a 3D point
1169 template<typename _Tp> explicit UMat(const Point3_<_Tp>& pt, bool copyData=true);
1170 //! builds matrix from comma initializer
1171 template<typename _Tp> explicit UMat(const MatCommaInitializer_<_Tp>& commaInitializer);
1173 //! destructor - calls release()
1175 //! assignment operators
1176 UMat& operator = (const UMat& m);
1177 UMat& operator = (const UMatExpr& expr);
1179 Mat getMat(int flags) const;
1181 //! returns a new matrix header for the specified row
1182 UMat row(int y) const;
1183 //! returns a new matrix header for the specified column
1184 UMat col(int x) const;
1185 //! ... for the specified row span
1186 UMat rowRange(int startrow, int endrow) const;
1187 UMat rowRange(const Range& r) const;
1188 //! ... for the specified column span
1189 UMat colRange(int startcol, int endcol) const;
1190 UMat colRange(const Range& r) const;
1191 //! ... for the specified diagonal
1192 // (d=0 - the main diagonal,
1193 // >0 - a diagonal from the lower half,
1194 // <0 - a diagonal from the upper half)
1195 UMat diag(int d=0) const;
1196 //! constructs a square diagonal matrix which main diagonal is vector "d"
1197 static UMat diag(const UMat& d);
1199 //! returns deep copy of the matrix, i.e. the data is copied
1201 //! copies the matrix content to "m".
1202 // It calls m.create(this->size(), this->type()).
1203 void copyTo( OutputArray m ) const;
1204 //! copies those matrix elements to "m" that are marked with non-zero mask elements.
1205 void copyTo( OutputArray m, InputArray mask ) const;
1206 //! converts matrix to another datatype with optional scalng. See cvConvertScale.
1207 void convertTo( OutputArray m, int rtype, double alpha=1, double beta=0 ) const;
1209 void assignTo( UMat& m, int type=-1 ) const;
1211 //! sets every matrix element to s
1212 UMat& operator = (const Scalar& s);
1213 //! sets some of the matrix elements to s, according to the mask
1214 UMat& setTo(InputArray value, InputArray mask=noArray());
1215 //! creates alternative matrix header for the same data, with different
1216 // number of channels and/or different number of rows. see cvReshape.
1217 UMat reshape(int cn, int rows=0) const;
1218 UMat reshape(int cn, int newndims, const int* newsz) const;
1220 //! matrix transposition by means of matrix expressions
1222 //! matrix inversion by means of matrix expressions
1223 UMatExpr inv(int method=DECOMP_LU) const;
1224 //! per-element matrix multiplication by means of matrix expressions
1225 UMatExpr mul(InputArray m, double scale=1) const;
1227 //! computes cross-product of 2 3D vectors
1228 UMat cross(InputArray m) const;
1229 //! computes dot-product
1230 double dot(InputArray m) const;
1232 //! Matlab-style matrix initialization
1233 static UMatExpr zeros(int rows, int cols, int type);
1234 static UMatExpr zeros(Size size, int type);
1235 static UMatExpr zeros(int ndims, const int* sz, int type);
1236 static UMatExpr ones(int rows, int cols, int type);
1237 static UMatExpr ones(Size size, int type);
1238 static UMatExpr ones(int ndims, const int* sz, int type);
1239 static UMatExpr eye(int rows, int cols, int type);
1240 static UMatExpr eye(Size size, int type);
1242 //! allocates new matrix data unless the matrix already has specified size and type.
1243 // previous data is unreferenced if needed.
1244 void create(int rows, int cols, int type);
1245 void create(Size size, int type);
1246 void create(int ndims, const int* sizes, int type);
1248 //! increases the reference counter; use with care to avoid memleaks
1250 //! decreases reference counter;
1251 // deallocates the data when reference counter reaches 0.
1254 //! deallocates the matrix data
1256 //! internal use function; properly re-allocates _size, _step arrays
1257 void copySize(const UMat& m);
1259 //! locates matrix header within a parent matrix. See below
1260 void locateROI( Size& wholeSize, Point& ofs ) const;
1261 //! moves/resizes the current matrix ROI inside the parent matrix.
1262 UMat& adjustROI( int dtop, int dbottom, int dleft, int dright );
1263 //! extracts a rectangular sub-matrix
1264 // (this is a generalized form of row, rowRange etc.)
1265 UMat operator()( Range rowRange, Range colRange ) const;
1266 UMat operator()( const Rect& roi ) const;
1267 UMat operator()( const Range* ranges ) const;
1269 //! returns true iff the matrix data is continuous
1270 // (i.e. when there are no gaps between successive rows).
1271 // similar to CV_IS_MAT_CONT(cvmat->type)
1272 bool isContinuous() const;
1274 //! returns true if the matrix is a submatrix of another matrix
1275 bool isSubmatrix() const;
1277 //! returns element size in bytes,
1278 // similar to CV_ELEM_SIZE(cvmat->type)
1279 size_t elemSize() const;
1280 //! returns the size of element channel in bytes.
1281 size_t elemSize1() const;
1282 //! returns element type, similar to CV_MAT_TYPE(cvmat->type)
1284 //! returns element type, similar to CV_MAT_DEPTH(cvmat->type)
1286 //! returns element type, similar to CV_MAT_CN(cvmat->type)
1287 int channels() const;
1288 //! returns step/elemSize1()
1289 size_t step1(int i=0) const;
1290 //! returns true if matrix data is NULL
1292 //! returns the total number of matrix elements
1293 size_t total() const;
1295 //! returns N if the matrix is 1-channel (N x ptdim) or ptdim-channel (1 x N) or (N x 1); negative number otherwise
1296 int checkVector(int elemChannels, int depth=-1, bool requireContinuous=true) const;
1298 void* handle(int accessFlags) const;
1299 void ndoffset(size_t* ofs) const;
1301 enum { MAGIC_VAL = 0x42FF0000, AUTO_STEP = 0, CONTINUOUS_FLAG = CV_MAT_CONT_FLAG, SUBMATRIX_FLAG = CV_SUBMAT_FLAG };
1302 enum { MAGIC_MASK = 0xFFFF0000, TYPE_MASK = 0x00000FFF, DEPTH_MASK = 7 };
1304 /*! includes several bit-fields:
1305 - the magic signature
1308 - number of channels
1311 //! the matrix dimensionality, >= 2
1313 //! the number of rows and columns or (-1, -1) when the matrix has more than 2 dimensions
1316 //! custom allocator
1317 MatAllocator* allocator;
1318 //! and the standard allocator
1319 static MatAllocator* getStdAllocator();
1321 // black-box container of UMat data
1324 // offset of the submatrix (or 0)
1334 /////////////////////////// multi-dimensional sparse matrix //////////////////////////
1337 Sparse matrix class.
1339 The class represents multi-dimensional sparse numerical arrays. Such a sparse array can store elements
1340 of any type that cv::Mat is able to store. "Sparse" means that only non-zero elements
1341 are stored (though, as a result of some operations on a sparse matrix, some of its stored elements
1342 can actually become 0. It's user responsibility to detect such elements and delete them using cv::SparseMat::erase().
1343 The non-zero elements are stored in a hash table that grows when it's filled enough,
1344 so that the search time remains O(1) in average. Elements can be accessed using the following methods:
1347 <li>Query operations: cv::SparseMat::ptr() and the higher-level cv::SparseMat::ref(),
1348 cv::SparseMat::value() and cv::SparseMat::find, for example:
1351 int size[] = {10, 10, 10, 10, 10};
1352 SparseMat sparse_mat(dims, size, CV_32F);
1353 for(int i = 0; i < 1000; i++)
1356 for(int k = 0; k < dims; k++)
1357 idx[k] = rand()%sparse_mat.size(k);
1358 sparse_mat.ref<float>(idx) += 1.f;
1362 <li>Sparse matrix iterators. Like cv::Mat iterators and unlike cv::Mat iterators, the sparse matrix iterators are STL-style,
1363 that is, the iteration is done as following:
1365 // prints elements of a sparse floating-point matrix and the sum of elements.
1366 SparseMatConstIterator_<float>
1367 it = sparse_mat.begin<float>(),
1368 it_end = sparse_mat.end<float>();
1370 int dims = sparse_mat.dims();
1371 for(; it != it_end; ++it)
1373 // print element indices and the element value
1374 const Node* n = it.node();
1376 for(int i = 0; i < dims; i++)
1377 printf("%3d%c", n->idx[i], i < dims-1 ? ',' : ')');
1378 printf(": %f\n", *it);
1381 printf("Element sum is %g\n", s);
1383 If you run this loop, you will notice that elements are enumerated
1384 in no any logical order (lexicographical etc.),
1385 they come in the same order as they stored in the hash table, i.e. semi-randomly.
1387 You may collect pointers to the nodes and sort them to get the proper ordering.
1388 Note, however, that pointers to the nodes may become invalid when you add more
1389 elements to the matrix; this is because of possible buffer reallocation.
1391 <li>A combination of the above 2 methods when you need to process 2 or more sparse
1392 matrices simultaneously, e.g. this is how you can compute unnormalized
1393 cross-correlation of the 2 floating-point sparse matrices:
1395 double crossCorr(const SparseMat& a, const SparseMat& b)
1397 const SparseMat *_a = &a, *_b = &b;
1398 // if b contains less elements than a,
1399 // it's faster to iterate through b
1400 if(_a->nzcount() > _b->nzcount())
1402 SparseMatConstIterator_<float> it = _a->begin<float>(),
1403 it_end = _a->end<float>();
1405 for(; it != it_end; ++it)
1407 // take the next element from the first matrix
1409 const Node* anode = it.node();
1410 // and try to find element with the same index in the second matrix.
1411 // since the hash value depends only on the element index,
1412 // we reuse hashvalue stored in the node
1413 float bvalue = _b->value<float>(anode->idx,&anode->hashval);
1414 ccorr += avalue*bvalue;
1421 class CV_EXPORTS SparseMat
1424 typedef SparseMatIterator iterator;
1425 typedef SparseMatConstIterator const_iterator;
1427 enum { MAGIC_VAL=0x42FD0000, MAX_DIM=32, HASH_SCALE=0x5bd1e995, HASH_BIT=0x80000000 };
1429 //! the sparse matrix header
1430 struct CV_EXPORTS Hdr
1432 Hdr(int _dims, const int* _sizes, int _type);
1440 std::vector<uchar> pool;
1441 std::vector<size_t> hashtab;
1445 //! sparse matrix node - element of a hash table
1446 struct CV_EXPORTS Node
1450 //! index of the next node in the same hash table entry
1452 //! index of the matrix element
1456 //! default constructor
1458 //! creates matrix of the specified size and type
1459 SparseMat(int dims, const int* _sizes, int _type);
1460 //! copy constructor
1461 SparseMat(const SparseMat& m);
1462 //! converts dense 2d matrix to the sparse form
1464 \param m the input matrix
1466 explicit SparseMat(const Mat& m);
1467 //! converts old-style sparse matrix to the new-style. All the data is copied
1468 //SparseMat(const CvSparseMat* m);
1472 //! assignment operator. This is O(1) operation, i.e. no data is copied
1473 SparseMat& operator = (const SparseMat& m);
1474 //! equivalent to the corresponding constructor
1475 SparseMat& operator = (const Mat& m);
1477 //! creates full copy of the matrix
1478 SparseMat clone() const;
1480 //! copies all the data to the destination matrix. All the previous content of m is erased
1481 void copyTo( SparseMat& m ) const;
1482 //! converts sparse matrix to dense matrix.
1483 void copyTo( Mat& m ) const;
1484 //! multiplies all the matrix elements by the specified scale factor alpha and converts the results to the specified data type
1485 void convertTo( SparseMat& m, int rtype, double alpha=1 ) const;
1486 //! converts sparse matrix to dense n-dim matrix with optional type conversion and scaling.
1488 \param rtype The output matrix data type. When it is =-1, the output array will have the same data type as (*this)
1489 \param alpha The scale factor
1490 \param beta The optional delta added to the scaled values before the conversion
1492 void convertTo( Mat& m, int rtype, double alpha=1, double beta=0 ) const;
1495 void assignTo( SparseMat& m, int type=-1 ) const;
1497 //! reallocates sparse matrix.
1499 If the matrix already had the proper size and type,
1500 it is simply cleared with clear(), otherwise,
1501 the old matrix is released (using release()) and the new one is allocated.
1503 void create(int dims, const int* _sizes, int _type);
1504 //! sets all the sparse matrix elements to 0, which means clearing the hash table.
1506 //! manually increments the reference counter to the header.
1508 // decrements the header reference counter. When the counter reaches 0, the header and all the underlying data are deallocated.
1511 //! converts sparse matrix to the old-style representation; all the elements are copied.
1512 //operator CvSparseMat*() const;
1513 //! returns the size of each element in bytes (not including the overhead - the space occupied by SparseMat::Node elements)
1514 size_t elemSize() const;
1515 //! returns elemSize()/channels()
1516 size_t elemSize1() const;
1518 //! returns type of sparse matrix elements
1520 //! returns the depth of sparse matrix elements
1522 //! returns the number of channels
1523 int channels() const;
1525 //! returns the array of sizes, or NULL if the matrix is not allocated
1526 const int* size() const;
1527 //! returns the size of i-th matrix dimension (or 0)
1528 int size(int i) const;
1529 //! returns the matrix dimensionality
1531 //! returns the number of non-zero elements (=the number of hash table nodes)
1532 size_t nzcount() const;
1534 //! computes the element hash value (1D case)
1535 size_t hash(int i0) const;
1536 //! computes the element hash value (2D case)
1537 size_t hash(int i0, int i1) const;
1538 //! computes the element hash value (3D case)
1539 size_t hash(int i0, int i1, int i2) const;
1540 //! computes the element hash value (nD case)
1541 size_t hash(const int* idx) const;
1545 specialized variants for 1D, 2D, 3D cases and the generic_type one for n-D case.
1547 return pointer to the matrix element.
1549 <li>if the element is there (it's non-zero), the pointer to it is returned
1550 <li>if it's not there and createMissing=false, NULL pointer is returned
1551 <li>if it's not there and createMissing=true, then the new element
1552 is created and initialized with 0. Pointer to it is returned
1553 <li>if the optional hashval pointer is not NULL, the element hash value is
1554 not computed, but *hashval is taken instead.
1557 //! returns pointer to the specified element (1D case)
1558 uchar* ptr(int i0, bool createMissing, size_t* hashval=0);
1559 //! returns pointer to the specified element (2D case)
1560 uchar* ptr(int i0, int i1, bool createMissing, size_t* hashval=0);
1561 //! returns pointer to the specified element (3D case)
1562 uchar* ptr(int i0, int i1, int i2, bool createMissing, size_t* hashval=0);
1563 //! returns pointer to the specified element (nD case)
1564 uchar* ptr(const int* idx, bool createMissing, size_t* hashval=0);
1569 return read-write reference to the specified sparse matrix element.
1571 ref<_Tp>(i0,...[,hashval]) is equivalent to *(_Tp*)ptr(i0,...,true[,hashval]).
1572 The methods always return a valid reference.
1573 If the element did not exist, it is created and initialiazed with 0.
1575 //! returns reference to the specified element (1D case)
1576 template<typename _Tp> _Tp& ref(int i0, size_t* hashval=0);
1577 //! returns reference to the specified element (2D case)
1578 template<typename _Tp> _Tp& ref(int i0, int i1, size_t* hashval=0);
1579 //! returns reference to the specified element (3D case)
1580 template<typename _Tp> _Tp& ref(int i0, int i1, int i2, size_t* hashval=0);
1581 //! returns reference to the specified element (nD case)
1582 template<typename _Tp> _Tp& ref(const int* idx, size_t* hashval=0);
1587 return value of the specified sparse matrix element.
1589 value<_Tp>(i0,...[,hashval]) is equivalent
1592 { const _Tp* p = find<_Tp>(i0,...[,hashval]); return p ? *p : _Tp(); }
1595 That is, if the element did not exist, the methods return 0.
1597 //! returns value of the specified element (1D case)
1598 template<typename _Tp> _Tp value(int i0, size_t* hashval=0) const;
1599 //! returns value of the specified element (2D case)
1600 template<typename _Tp> _Tp value(int i0, int i1, size_t* hashval=0) const;
1601 //! returns value of the specified element (3D case)
1602 template<typename _Tp> _Tp value(int i0, int i1, int i2, size_t* hashval=0) const;
1603 //! returns value of the specified element (nD case)
1604 template<typename _Tp> _Tp value(const int* idx, size_t* hashval=0) const;
1609 Return pointer to the specified sparse matrix element if it exists
1611 find<_Tp>(i0,...[,hashval]) is equivalent to (_const Tp*)ptr(i0,...false[,hashval]).
1613 If the specified element does not exist, the methods return NULL.
1615 //! returns pointer to the specified element (1D case)
1616 template<typename _Tp> const _Tp* find(int i0, size_t* hashval=0) const;
1617 //! returns pointer to the specified element (2D case)
1618 template<typename _Tp> const _Tp* find(int i0, int i1, size_t* hashval=0) const;
1619 //! returns pointer to the specified element (3D case)
1620 template<typename _Tp> const _Tp* find(int i0, int i1, int i2, size_t* hashval=0) const;
1621 //! returns pointer to the specified element (nD case)
1622 template<typename _Tp> const _Tp* find(const int* idx, size_t* hashval=0) const;
1624 //! erases the specified element (2D case)
1625 void erase(int i0, int i1, size_t* hashval=0);
1626 //! erases the specified element (3D case)
1627 void erase(int i0, int i1, int i2, size_t* hashval=0);
1628 //! erases the specified element (nD case)
1629 void erase(const int* idx, size_t* hashval=0);
1633 return the sparse matrix iterator pointing to the first sparse matrix element
1635 //! returns the sparse matrix iterator at the matrix beginning
1636 SparseMatIterator begin();
1637 //! returns the sparse matrix iterator at the matrix beginning
1638 template<typename _Tp> SparseMatIterator_<_Tp> begin();
1639 //! returns the read-only sparse matrix iterator at the matrix beginning
1640 SparseMatConstIterator begin() const;
1641 //! returns the read-only sparse matrix iterator at the matrix beginning
1642 template<typename _Tp> SparseMatConstIterator_<_Tp> begin() const;
1645 return the sparse matrix iterator pointing to the element following the last sparse matrix element
1647 //! returns the sparse matrix iterator at the matrix end
1648 SparseMatIterator end();
1649 //! returns the read-only sparse matrix iterator at the matrix end
1650 SparseMatConstIterator end() const;
1651 //! returns the typed sparse matrix iterator at the matrix end
1652 template<typename _Tp> SparseMatIterator_<_Tp> end();
1653 //! returns the typed read-only sparse matrix iterator at the matrix end
1654 template<typename _Tp> SparseMatConstIterator_<_Tp> end() const;
1656 //! returns the value stored in the sparse martix node
1657 template<typename _Tp> _Tp& value(Node* n);
1658 //! returns the value stored in the sparse martix node
1659 template<typename _Tp> const _Tp& value(const Node* n) const;
1661 ////////////// some internal-use methods ///////////////
1662 Node* node(size_t nidx);
1663 const Node* node(size_t nidx) const;
1665 uchar* newNode(const int* idx, size_t hashval);
1666 void removeNode(size_t hidx, size_t nidx, size_t previdx);
1667 void resizeHashTab(size_t newsize);
1675 ///////////////////////////////// SparseMat_<_Tp> ////////////////////////////////////
1678 The Template Sparse Matrix class derived from cv::SparseMat
1680 The class provides slightly more convenient operations for accessing elements.
1685 SparseMat_<int> m_ = (SparseMat_<int>&)m;
1686 m_.ref(1)++; // equivalent to m.ref<int>(1)++;
1687 m_.ref(2) += m_(3); // equivalent to m.ref<int>(2) += m.value<int>(3);
1690 template<typename _Tp> class SparseMat_ : public SparseMat
1693 typedef SparseMatIterator_<_Tp> iterator;
1694 typedef SparseMatConstIterator_<_Tp> const_iterator;
1696 //! the default constructor
1698 //! the full constructor equivelent to SparseMat(dims, _sizes, DataType<_Tp>::type)
1699 SparseMat_(int dims, const int* _sizes);
1700 //! the copy constructor. If DataType<_Tp>.type != m.type(), the m elements are converted
1701 SparseMat_(const SparseMat& m);
1702 //! the copy constructor. This is O(1) operation - no data is copied
1703 SparseMat_(const SparseMat_& m);
1704 //! converts dense matrix to the sparse form
1705 SparseMat_(const Mat& m);
1706 //! converts the old-style sparse matrix to the C++ class. All the elements are copied
1707 //SparseMat_(const CvSparseMat* m);
1708 //! the assignment operator. If DataType<_Tp>.type != m.type(), the m elements are converted
1709 SparseMat_& operator = (const SparseMat& m);
1710 //! the assignment operator. This is O(1) operation - no data is copied
1711 SparseMat_& operator = (const SparseMat_& m);
1712 //! converts dense matrix to the sparse form
1713 SparseMat_& operator = (const Mat& m);
1715 //! makes full copy of the matrix. All the elements are duplicated
1716 SparseMat_ clone() const;
1717 //! equivalent to cv::SparseMat::create(dims, _sizes, DataType<_Tp>::type)
1718 void create(int dims, const int* _sizes);
1719 //! converts sparse matrix to the old-style CvSparseMat. All the elements are copied
1720 //operator CvSparseMat*() const;
1722 //! returns type of the matrix elements
1724 //! returns depth of the matrix elements
1726 //! returns the number of channels in each matrix element
1727 int channels() const;
1729 //! equivalent to SparseMat::ref<_Tp>(i0, hashval)
1730 _Tp& ref(int i0, size_t* hashval=0);
1731 //! equivalent to SparseMat::ref<_Tp>(i0, i1, hashval)
1732 _Tp& ref(int i0, int i1, size_t* hashval=0);
1733 //! equivalent to SparseMat::ref<_Tp>(i0, i1, i2, hashval)
1734 _Tp& ref(int i0, int i1, int i2, size_t* hashval=0);
1735 //! equivalent to SparseMat::ref<_Tp>(idx, hashval)
1736 _Tp& ref(const int* idx, size_t* hashval=0);
1738 //! equivalent to SparseMat::value<_Tp>(i0, hashval)
1739 _Tp operator()(int i0, size_t* hashval=0) const;
1740 //! equivalent to SparseMat::value<_Tp>(i0, i1, hashval)
1741 _Tp operator()(int i0, int i1, size_t* hashval=0) const;
1742 //! equivalent to SparseMat::value<_Tp>(i0, i1, i2, hashval)
1743 _Tp operator()(int i0, int i1, int i2, size_t* hashval=0) const;
1744 //! equivalent to SparseMat::value<_Tp>(idx, hashval)
1745 _Tp operator()(const int* idx, size_t* hashval=0) const;
1747 //! returns sparse matrix iterator pointing to the first sparse matrix element
1748 SparseMatIterator_<_Tp> begin();
1749 //! returns read-only sparse matrix iterator pointing to the first sparse matrix element
1750 SparseMatConstIterator_<_Tp> begin() const;
1751 //! returns sparse matrix iterator pointing to the element following the last sparse matrix element
1752 SparseMatIterator_<_Tp> end();
1753 //! returns read-only sparse matrix iterator pointing to the element following the last sparse matrix element
1754 SparseMatConstIterator_<_Tp> end() const;
1759 ////////////////////////////////// MatConstIterator //////////////////////////////////
1761 class CV_EXPORTS MatConstIterator
1764 typedef uchar* value_type;
1765 typedef ptrdiff_t difference_type;
1766 typedef const uchar** pointer;
1767 typedef uchar* reference;
1769 #ifndef OPENCV_NOSTL
1770 typedef std::random_access_iterator_tag iterator_category;
1773 //! default constructor
1775 //! constructor that sets the iterator to the beginning of the matrix
1776 MatConstIterator(const Mat* _m);
1777 //! constructor that sets the iterator to the specified element of the matrix
1778 MatConstIterator(const Mat* _m, int _row, int _col=0);
1779 //! constructor that sets the iterator to the specified element of the matrix
1780 MatConstIterator(const Mat* _m, Point _pt);
1781 //! constructor that sets the iterator to the specified element of the matrix
1782 MatConstIterator(const Mat* _m, const int* _idx);
1783 //! copy constructor
1784 MatConstIterator(const MatConstIterator& it);
1787 MatConstIterator& operator = (const MatConstIterator& it);
1788 //! returns the current matrix element
1789 uchar* operator *() const;
1790 //! returns the i-th matrix element, relative to the current
1791 uchar* operator [](ptrdiff_t i) const;
1793 //! shifts the iterator forward by the specified number of elements
1794 MatConstIterator& operator += (ptrdiff_t ofs);
1795 //! shifts the iterator backward by the specified number of elements
1796 MatConstIterator& operator -= (ptrdiff_t ofs);
1797 //! decrements the iterator
1798 MatConstIterator& operator --();
1799 //! decrements the iterator
1800 MatConstIterator operator --(int);
1801 //! increments the iterator
1802 MatConstIterator& operator ++();
1803 //! increments the iterator
1804 MatConstIterator operator ++(int);
1805 //! returns the current iterator position
1807 //! returns the current iterator position
1808 void pos(int* _idx) const;
1810 ptrdiff_t lpos() const;
1811 void seek(ptrdiff_t ofs, bool relative = false);
1812 void seek(const int* _idx, bool relative = false);
1823 ////////////////////////////////// MatConstIterator_ /////////////////////////////////
1826 Matrix read-only iterator
1828 template<typename _Tp>
1829 class MatConstIterator_ : public MatConstIterator
1832 typedef _Tp value_type;
1833 typedef ptrdiff_t difference_type;
1834 typedef const _Tp* pointer;
1835 typedef const _Tp& reference;
1837 #ifndef OPENCV_NOSTL
1838 typedef std::random_access_iterator_tag iterator_category;
1841 //! default constructor
1842 MatConstIterator_();
1843 //! constructor that sets the iterator to the beginning of the matrix
1844 MatConstIterator_(const Mat_<_Tp>* _m);
1845 //! constructor that sets the iterator to the specified element of the matrix
1846 MatConstIterator_(const Mat_<_Tp>* _m, int _row, int _col=0);
1847 //! constructor that sets the iterator to the specified element of the matrix
1848 MatConstIterator_(const Mat_<_Tp>* _m, Point _pt);
1849 //! constructor that sets the iterator to the specified element of the matrix
1850 MatConstIterator_(const Mat_<_Tp>* _m, const int* _idx);
1851 //! copy constructor
1852 MatConstIterator_(const MatConstIterator_& it);
1855 MatConstIterator_& operator = (const MatConstIterator_& it);
1856 //! returns the current matrix element
1857 _Tp operator *() const;
1858 //! returns the i-th matrix element, relative to the current
1859 _Tp operator [](ptrdiff_t i) const;
1861 //! shifts the iterator forward by the specified number of elements
1862 MatConstIterator_& operator += (ptrdiff_t ofs);
1863 //! shifts the iterator backward by the specified number of elements
1864 MatConstIterator_& operator -= (ptrdiff_t ofs);
1865 //! decrements the iterator
1866 MatConstIterator_& operator --();
1867 //! decrements the iterator
1868 MatConstIterator_ operator --(int);
1869 //! increments the iterator
1870 MatConstIterator_& operator ++();
1871 //! increments the iterator
1872 MatConstIterator_ operator ++(int);
1873 //! returns the current iterator position
1879 //////////////////////////////////// MatIterator_ ////////////////////////////////////
1882 Matrix read-write iterator
1884 template<typename _Tp>
1885 class MatIterator_ : public MatConstIterator_<_Tp>
1888 typedef _Tp* pointer;
1889 typedef _Tp& reference;
1891 #ifndef OPENCV_NOSTL
1892 typedef std::random_access_iterator_tag iterator_category;
1895 //! the default constructor
1897 //! constructor that sets the iterator to the beginning of the matrix
1898 MatIterator_(Mat_<_Tp>* _m);
1899 //! constructor that sets the iterator to the specified element of the matrix
1900 MatIterator_(Mat_<_Tp>* _m, int _row, int _col=0);
1901 //! constructor that sets the iterator to the specified element of the matrix
1902 MatIterator_(const Mat_<_Tp>* _m, Point _pt);
1903 //! constructor that sets the iterator to the specified element of the matrix
1904 MatIterator_(const Mat_<_Tp>* _m, const int* _idx);
1905 //! copy constructor
1906 MatIterator_(const MatIterator_& it);
1908 MatIterator_& operator = (const MatIterator_<_Tp>& it );
1910 //! returns the current matrix element
1911 _Tp& operator *() const;
1912 //! returns the i-th matrix element, relative to the current
1913 _Tp& operator [](ptrdiff_t i) const;
1915 //! shifts the iterator forward by the specified number of elements
1916 MatIterator_& operator += (ptrdiff_t ofs);
1917 //! shifts the iterator backward by the specified number of elements
1918 MatIterator_& operator -= (ptrdiff_t ofs);
1919 //! decrements the iterator
1920 MatIterator_& operator --();
1921 //! decrements the iterator
1922 MatIterator_ operator --(int);
1923 //! increments the iterator
1924 MatIterator_& operator ++();
1925 //! increments the iterator
1926 MatIterator_ operator ++(int);
1931 /////////////////////////////// SparseMatConstIterator ///////////////////////////////
1934 Read-Only Sparse Matrix Iterator.
1935 Here is how to use the iterator to compute the sum of floating-point sparse matrix elements:
1938 SparseMatConstIterator it = m.begin(), it_end = m.end();
1940 CV_Assert( m.type() == CV_32F );
1941 for( ; it != it_end; ++it )
1942 s += it.value<float>();
1945 class CV_EXPORTS SparseMatConstIterator
1948 //! the default constructor
1949 SparseMatConstIterator();
1950 //! the full constructor setting the iterator to the first sparse matrix element
1951 SparseMatConstIterator(const SparseMat* _m);
1952 //! the copy constructor
1953 SparseMatConstIterator(const SparseMatConstIterator& it);
1955 //! the assignment operator
1956 SparseMatConstIterator& operator = (const SparseMatConstIterator& it);
1958 //! template method returning the current matrix element
1959 template<typename _Tp> const _Tp& value() const;
1960 //! returns the current node of the sparse matrix. it.node->idx is the current element index
1961 const SparseMat::Node* node() const;
1963 //! moves iterator to the previous element
1964 SparseMatConstIterator& operator --();
1965 //! moves iterator to the previous element
1966 SparseMatConstIterator operator --(int);
1967 //! moves iterator to the next element
1968 SparseMatConstIterator& operator ++();
1969 //! moves iterator to the next element
1970 SparseMatConstIterator operator ++(int);
1972 //! moves iterator to the element after the last element
1982 ////////////////////////////////// SparseMatIterator /////////////////////////////////
1985 Read-write Sparse Matrix Iterator
1987 The class is similar to cv::SparseMatConstIterator,
1988 but can be used for in-place modification of the matrix elements.
1990 class CV_EXPORTS SparseMatIterator : public SparseMatConstIterator
1993 //! the default constructor
1994 SparseMatIterator();
1995 //! the full constructor setting the iterator to the first sparse matrix element
1996 SparseMatIterator(SparseMat* _m);
1997 //! the full constructor setting the iterator to the specified sparse matrix element
1998 SparseMatIterator(SparseMat* _m, const int* idx);
1999 //! the copy constructor
2000 SparseMatIterator(const SparseMatIterator& it);
2002 //! the assignment operator
2003 SparseMatIterator& operator = (const SparseMatIterator& it);
2004 //! returns read-write reference to the current sparse matrix element
2005 template<typename _Tp> _Tp& value() const;
2006 //! returns pointer to the current sparse matrix node. it.node->idx is the index of the current element (do not modify it!)
2007 SparseMat::Node* node() const;
2009 //! moves iterator to the next element
2010 SparseMatIterator& operator ++();
2011 //! moves iterator to the next element
2012 SparseMatIterator operator ++(int);
2017 /////////////////////////////// SparseMatConstIterator_ //////////////////////////////
2020 Template Read-Only Sparse Matrix Iterator Class.
2022 This is the derived from SparseMatConstIterator class that
2023 introduces more convenient operator *() for accessing the current element.
2025 template<typename _Tp> class SparseMatConstIterator_ : public SparseMatConstIterator
2029 #ifndef OPENCV_NOSTL
2030 typedef std::forward_iterator_tag iterator_category;
2033 //! the default constructor
2034 SparseMatConstIterator_();
2035 //! the full constructor setting the iterator to the first sparse matrix element
2036 SparseMatConstIterator_(const SparseMat_<_Tp>* _m);
2037 SparseMatConstIterator_(const SparseMat* _m);
2038 //! the copy constructor
2039 SparseMatConstIterator_(const SparseMatConstIterator_& it);
2041 //! the assignment operator
2042 SparseMatConstIterator_& operator = (const SparseMatConstIterator_& it);
2043 //! the element access operator
2044 const _Tp& operator *() const;
2046 //! moves iterator to the next element
2047 SparseMatConstIterator_& operator ++();
2048 //! moves iterator to the next element
2049 SparseMatConstIterator_ operator ++(int);
2054 ///////////////////////////////// SparseMatIterator_ /////////////////////////////////
2057 Template Read-Write Sparse Matrix Iterator Class.
2059 This is the derived from cv::SparseMatConstIterator_ class that
2060 introduces more convenient operator *() for accessing the current element.
2062 template<typename _Tp> class SparseMatIterator_ : public SparseMatConstIterator_<_Tp>
2066 #ifndef OPENCV_NOSTL
2067 typedef std::forward_iterator_tag iterator_category;
2070 //! the default constructor
2071 SparseMatIterator_();
2072 //! the full constructor setting the iterator to the first sparse matrix element
2073 SparseMatIterator_(SparseMat_<_Tp>* _m);
2074 SparseMatIterator_(SparseMat* _m);
2075 //! the copy constructor
2076 SparseMatIterator_(const SparseMatIterator_& it);
2078 //! the assignment operator
2079 SparseMatIterator_& operator = (const SparseMatIterator_& it);
2080 //! returns the reference to the current element
2081 _Tp& operator *() const;
2083 //! moves the iterator to the next element
2084 SparseMatIterator_& operator ++();
2085 //! moves the iterator to the next element
2086 SparseMatIterator_ operator ++(int);
2091 /////////////////////////////////// NAryMatIterator //////////////////////////////////
2094 n-Dimensional Dense Matrix Iterator Class.
2096 The class cv::NAryMatIterator is used for iterating over one or more n-dimensional dense arrays (cv::Mat's).
2098 The iterator is completely different from cv::Mat_ and cv::SparseMat_ iterators.
2099 It iterates through the slices (or planes), not the elements, where "slice" is a continuous part of the arrays.
2101 Here is the example on how the iterator can be used to normalize 3D histogram:
2104 void normalizeColorHist(Mat& hist)
2107 // intialize iterator (the style is different from STL).
2108 // after initialization the iterator will contain
2109 // the number of slices or planes
2110 // the iterator will go through
2111 Mat* arrays[] = { &hist, 0 };
2113 NAryMatIterator it(arrays, planes);
2115 // iterate through the matrix. on each iteration
2116 // it.planes[i] (of type Mat) will be set to the current plane of
2117 // i-th n-dim matrix passed to the iterator constructor.
2118 for(int p = 0; p < it.nplanes; p++, ++it)
2119 s += sum(it.planes[0])[0];
2120 it = NAryMatIterator(hist);
2122 for(int p = 0; p < it.nplanes; p++, ++it)
2125 // this is a shorter implementation of the above
2126 // using built-in operations on Mat
2127 double s = sum(hist)[0];
2128 hist.convertTo(hist, hist.type(), 1./s, 0);
2130 // and this is even shorter one
2131 // (assuming that the histogram elements are non-negative)
2132 normalize(hist, hist, 1, 0, NORM_L1);
2137 You can iterate through several matrices simultaneously as long as they have the same geometry
2138 (dimensionality and all the dimension sizes are the same), which is useful for binary
2139 and n-ary operations on such matrices. Just pass those matrices to cv::MatNDIterator.
2140 Then, during the iteration it.planes[0], it.planes[1], ... will
2141 be the slices of the corresponding matrices
2143 class CV_EXPORTS NAryMatIterator
2146 //! the default constructor
2148 //! the full constructor taking arbitrary number of n-dim matrices
2149 NAryMatIterator(const Mat** arrays, uchar** ptrs, int narrays=-1);
2150 //! the full constructor taking arbitrary number of n-dim matrices
2151 NAryMatIterator(const Mat** arrays, Mat* planes, int narrays=-1);
2152 //! the separate iterator initialization method
2153 void init(const Mat** arrays, Mat* planes, uchar** ptrs, int narrays=-1);
2155 //! proceeds to the next plane of every iterated matrix
2156 NAryMatIterator& operator ++();
2157 //! proceeds to the next plane of every iterated matrix (postfix increment operator)
2158 NAryMatIterator operator ++(int);
2160 //! the iterated arrays
2162 //! the current planes
2166 //! the number of arrays
2168 //! the number of hyper-planes that the iterator steps through
2170 //! the size of each segment (in elements)
2179 ///////////////////////////////// Matrix Expressions /////////////////////////////////
2181 class CV_EXPORTS MatOp
2187 virtual bool elementWise(const MatExpr& expr) const;
2188 virtual void assign(const MatExpr& expr, Mat& m, int type=-1) const = 0;
2189 virtual void roi(const MatExpr& expr, const Range& rowRange,
2190 const Range& colRange, MatExpr& res) const;
2191 virtual void diag(const MatExpr& expr, int d, MatExpr& res) const;
2192 virtual void augAssignAdd(const MatExpr& expr, Mat& m) const;
2193 virtual void augAssignSubtract(const MatExpr& expr, Mat& m) const;
2194 virtual void augAssignMultiply(const MatExpr& expr, Mat& m) const;
2195 virtual void augAssignDivide(const MatExpr& expr, Mat& m) const;
2196 virtual void augAssignAnd(const MatExpr& expr, Mat& m) const;
2197 virtual void augAssignOr(const MatExpr& expr, Mat& m) const;
2198 virtual void augAssignXor(const MatExpr& expr, Mat& m) const;
2200 virtual void add(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res) const;
2201 virtual void add(const MatExpr& expr1, const Scalar& s, MatExpr& res) const;
2203 virtual void subtract(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res) const;
2204 virtual void subtract(const Scalar& s, const MatExpr& expr, MatExpr& res) const;
2206 virtual void multiply(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res, double scale=1) const;
2207 virtual void multiply(const MatExpr& expr1, double s, MatExpr& res) const;
2209 virtual void divide(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res, double scale=1) const;
2210 virtual void divide(double s, const MatExpr& expr, MatExpr& res) const;
2212 virtual void abs(const MatExpr& expr, MatExpr& res) const;
2214 virtual void transpose(const MatExpr& expr, MatExpr& res) const;
2215 virtual void matmul(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res) const;
2216 virtual void invert(const MatExpr& expr, int method, MatExpr& res) const;
2218 virtual Size size(const MatExpr& expr) const;
2219 virtual int type(const MatExpr& expr) const;
2223 class CV_EXPORTS MatExpr
2227 explicit MatExpr(const Mat& m);
2229 MatExpr(const MatOp* _op, int _flags, const Mat& _a = Mat(), const Mat& _b = Mat(),
2230 const Mat& _c = Mat(), double _alpha = 1, double _beta = 1, const Scalar& _s = Scalar());
2232 operator Mat() const;
2233 template<typename _Tp> operator Mat_<_Tp>() const;
2238 MatExpr row(int y) const;
2239 MatExpr col(int x) const;
2240 MatExpr diag(int d = 0) const;
2241 MatExpr operator()( const Range& rowRange, const Range& colRange ) const;
2242 MatExpr operator()( const Rect& roi ) const;
2245 MatExpr inv(int method = DECOMP_LU) const;
2246 MatExpr mul(const MatExpr& e, double scale=1) const;
2247 MatExpr mul(const Mat& m, double scale=1) const;
2249 Mat cross(const Mat& m) const;
2250 double dot(const Mat& m) const;
2261 CV_EXPORTS MatExpr operator + (const Mat& a, const Mat& b);
2262 CV_EXPORTS MatExpr operator + (const Mat& a, const Scalar& s);
2263 CV_EXPORTS MatExpr operator + (const Scalar& s, const Mat& a);
2264 CV_EXPORTS MatExpr operator + (const MatExpr& e, const Mat& m);
2265 CV_EXPORTS MatExpr operator + (const Mat& m, const MatExpr& e);
2266 CV_EXPORTS MatExpr operator + (const MatExpr& e, const Scalar& s);
2267 CV_EXPORTS MatExpr operator + (const Scalar& s, const MatExpr& e);
2268 CV_EXPORTS MatExpr operator + (const MatExpr& e1, const MatExpr& e2);
2270 CV_EXPORTS MatExpr operator - (const Mat& a, const Mat& b);
2271 CV_EXPORTS MatExpr operator - (const Mat& a, const Scalar& s);
2272 CV_EXPORTS MatExpr operator - (const Scalar& s, const Mat& a);
2273 CV_EXPORTS MatExpr operator - (const MatExpr& e, const Mat& m);
2274 CV_EXPORTS MatExpr operator - (const Mat& m, const MatExpr& e);
2275 CV_EXPORTS MatExpr operator - (const MatExpr& e, const Scalar& s);
2276 CV_EXPORTS MatExpr operator - (const Scalar& s, const MatExpr& e);
2277 CV_EXPORTS MatExpr operator - (const MatExpr& e1, const MatExpr& e2);
2279 CV_EXPORTS MatExpr operator - (const Mat& m);
2280 CV_EXPORTS MatExpr operator - (const MatExpr& e);
2282 CV_EXPORTS MatExpr operator * (const Mat& a, const Mat& b);
2283 CV_EXPORTS MatExpr operator * (const Mat& a, double s);
2284 CV_EXPORTS MatExpr operator * (double s, const Mat& a);
2285 CV_EXPORTS MatExpr operator * (const MatExpr& e, const Mat& m);
2286 CV_EXPORTS MatExpr operator * (const Mat& m, const MatExpr& e);
2287 CV_EXPORTS MatExpr operator * (const MatExpr& e, double s);
2288 CV_EXPORTS MatExpr operator * (double s, const MatExpr& e);
2289 CV_EXPORTS MatExpr operator * (const MatExpr& e1, const MatExpr& e2);
2291 CV_EXPORTS MatExpr operator / (const Mat& a, const Mat& b);
2292 CV_EXPORTS MatExpr operator / (const Mat& a, double s);
2293 CV_EXPORTS MatExpr operator / (double s, const Mat& a);
2294 CV_EXPORTS MatExpr operator / (const MatExpr& e, const Mat& m);
2295 CV_EXPORTS MatExpr operator / (const Mat& m, const MatExpr& e);
2296 CV_EXPORTS MatExpr operator / (const MatExpr& e, double s);
2297 CV_EXPORTS MatExpr operator / (double s, const MatExpr& e);
2298 CV_EXPORTS MatExpr operator / (const MatExpr& e1, const MatExpr& e2);
2300 CV_EXPORTS MatExpr operator < (const Mat& a, const Mat& b);
2301 CV_EXPORTS MatExpr operator < (const Mat& a, double s);
2302 CV_EXPORTS MatExpr operator < (double s, const Mat& a);
2304 CV_EXPORTS MatExpr operator <= (const Mat& a, const Mat& b);
2305 CV_EXPORTS MatExpr operator <= (const Mat& a, double s);
2306 CV_EXPORTS MatExpr operator <= (double s, const Mat& a);
2308 CV_EXPORTS MatExpr operator == (const Mat& a, const Mat& b);
2309 CV_EXPORTS MatExpr operator == (const Mat& a, double s);
2310 CV_EXPORTS MatExpr operator == (double s, const Mat& a);
2312 CV_EXPORTS MatExpr operator != (const Mat& a, const Mat& b);
2313 CV_EXPORTS MatExpr operator != (const Mat& a, double s);
2314 CV_EXPORTS MatExpr operator != (double s, const Mat& a);
2316 CV_EXPORTS MatExpr operator >= (const Mat& a, const Mat& b);
2317 CV_EXPORTS MatExpr operator >= (const Mat& a, double s);
2318 CV_EXPORTS MatExpr operator >= (double s, const Mat& a);
2320 CV_EXPORTS MatExpr operator > (const Mat& a, const Mat& b);
2321 CV_EXPORTS MatExpr operator > (const Mat& a, double s);
2322 CV_EXPORTS MatExpr operator > (double s, const Mat& a);
2324 CV_EXPORTS MatExpr operator & (const Mat& a, const Mat& b);
2325 CV_EXPORTS MatExpr operator & (const Mat& a, const Scalar& s);
2326 CV_EXPORTS MatExpr operator & (const Scalar& s, const Mat& a);
2328 CV_EXPORTS MatExpr operator | (const Mat& a, const Mat& b);
2329 CV_EXPORTS MatExpr operator | (const Mat& a, const Scalar& s);
2330 CV_EXPORTS MatExpr operator | (const Scalar& s, const Mat& a);
2332 CV_EXPORTS MatExpr operator ^ (const Mat& a, const Mat& b);
2333 CV_EXPORTS MatExpr operator ^ (const Mat& a, const Scalar& s);
2334 CV_EXPORTS MatExpr operator ^ (const Scalar& s, const Mat& a);
2336 CV_EXPORTS MatExpr operator ~(const Mat& m);
2338 CV_EXPORTS MatExpr min(const Mat& a, const Mat& b);
2339 CV_EXPORTS MatExpr min(const Mat& a, double s);
2340 CV_EXPORTS MatExpr min(double s, const Mat& a);
2342 CV_EXPORTS MatExpr max(const Mat& a, const Mat& b);
2343 CV_EXPORTS MatExpr max(const Mat& a, double s);
2344 CV_EXPORTS MatExpr max(double s, const Mat& a);
2346 CV_EXPORTS MatExpr abs(const Mat& m);
2347 CV_EXPORTS MatExpr abs(const MatExpr& e);
2351 #include "opencv2/core/mat.inl.hpp"
2353 #endif // __OPENCV_CORE_MAT_HPP__