Merge tag 'trace-fixes-3.14' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / zswap.c
1 /*
2  * zswap.c - zswap driver file
3  *
4  * zswap is a backend for frontswap that takes pages that are in the process
5  * of being swapped out and attempts to compress and store them in a
6  * RAM-based memory pool.  This can result in a significant I/O reduction on
7  * the swap device and, in the case where decompressing from RAM is faster
8  * than reading from the swap device, can also improve workload performance.
9  *
10  * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License
14  * as published by the Free Software Foundation; either version 2
15  * of the License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21 */
22
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/module.h>
26 #include <linux/cpu.h>
27 #include <linux/highmem.h>
28 #include <linux/slab.h>
29 #include <linux/spinlock.h>
30 #include <linux/types.h>
31 #include <linux/atomic.h>
32 #include <linux/frontswap.h>
33 #include <linux/rbtree.h>
34 #include <linux/swap.h>
35 #include <linux/crypto.h>
36 #include <linux/mempool.h>
37 #include <linux/zbud.h>
38
39 #include <linux/mm_types.h>
40 #include <linux/page-flags.h>
41 #include <linux/swapops.h>
42 #include <linux/writeback.h>
43 #include <linux/pagemap.h>
44
45 /*********************************
46 * statistics
47 **********************************/
48 /* Number of memory pages used by the compressed pool */
49 static u64 zswap_pool_pages;
50 /* The number of compressed pages currently stored in zswap */
51 static atomic_t zswap_stored_pages = ATOMIC_INIT(0);
52
53 /*
54  * The statistics below are not protected from concurrent access for
55  * performance reasons so they may not be a 100% accurate.  However,
56  * they do provide useful information on roughly how many times a
57  * certain event is occurring.
58 */
59
60 /* Pool limit was hit (see zswap_max_pool_percent) */
61 static u64 zswap_pool_limit_hit;
62 /* Pages written back when pool limit was reached */
63 static u64 zswap_written_back_pages;
64 /* Store failed due to a reclaim failure after pool limit was reached */
65 static u64 zswap_reject_reclaim_fail;
66 /* Compressed page was too big for the allocator to (optimally) store */
67 static u64 zswap_reject_compress_poor;
68 /* Store failed because underlying allocator could not get memory */
69 static u64 zswap_reject_alloc_fail;
70 /* Store failed because the entry metadata could not be allocated (rare) */
71 static u64 zswap_reject_kmemcache_fail;
72 /* Duplicate store was encountered (rare) */
73 static u64 zswap_duplicate_entry;
74
75 /*********************************
76 * tunables
77 **********************************/
78 /* Enable/disable zswap (disabled by default, fixed at boot for now) */
79 static bool zswap_enabled __read_mostly;
80 module_param_named(enabled, zswap_enabled, bool, 0444);
81
82 /* Compressor to be used by zswap (fixed at boot for now) */
83 #define ZSWAP_COMPRESSOR_DEFAULT "lzo"
84 static char *zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
85 module_param_named(compressor, zswap_compressor, charp, 0444);
86
87 /* The maximum percentage of memory that the compressed pool can occupy */
88 static unsigned int zswap_max_pool_percent = 20;
89 module_param_named(max_pool_percent,
90                         zswap_max_pool_percent, uint, 0644);
91
92 /*********************************
93 * compression functions
94 **********************************/
95 /* per-cpu compression transforms */
96 static struct crypto_comp * __percpu *zswap_comp_pcpu_tfms;
97
98 enum comp_op {
99         ZSWAP_COMPOP_COMPRESS,
100         ZSWAP_COMPOP_DECOMPRESS
101 };
102
103 static int zswap_comp_op(enum comp_op op, const u8 *src, unsigned int slen,
104                                 u8 *dst, unsigned int *dlen)
105 {
106         struct crypto_comp *tfm;
107         int ret;
108
109         tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, get_cpu());
110         switch (op) {
111         case ZSWAP_COMPOP_COMPRESS:
112                 ret = crypto_comp_compress(tfm, src, slen, dst, dlen);
113                 break;
114         case ZSWAP_COMPOP_DECOMPRESS:
115                 ret = crypto_comp_decompress(tfm, src, slen, dst, dlen);
116                 break;
117         default:
118                 ret = -EINVAL;
119         }
120
121         put_cpu();
122         return ret;
123 }
124
125 static int __init zswap_comp_init(void)
126 {
127         if (!crypto_has_comp(zswap_compressor, 0, 0)) {
128                 pr_info("%s compressor not available\n", zswap_compressor);
129                 /* fall back to default compressor */
130                 zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
131                 if (!crypto_has_comp(zswap_compressor, 0, 0))
132                         /* can't even load the default compressor */
133                         return -ENODEV;
134         }
135         pr_info("using %s compressor\n", zswap_compressor);
136
137         /* alloc percpu transforms */
138         zswap_comp_pcpu_tfms = alloc_percpu(struct crypto_comp *);
139         if (!zswap_comp_pcpu_tfms)
140                 return -ENOMEM;
141         return 0;
142 }
143
144 static void zswap_comp_exit(void)
145 {
146         /* free percpu transforms */
147         if (zswap_comp_pcpu_tfms)
148                 free_percpu(zswap_comp_pcpu_tfms);
149 }
150
151 /*********************************
152 * data structures
153 **********************************/
154 /*
155  * struct zswap_entry
156  *
157  * This structure contains the metadata for tracking a single compressed
158  * page within zswap.
159  *
160  * rbnode - links the entry into red-black tree for the appropriate swap type
161  * refcount - the number of outstanding reference to the entry. This is needed
162  *            to protect against premature freeing of the entry by code
163  *            concurent calls to load, invalidate, and writeback.  The lock
164  *            for the zswap_tree structure that contains the entry must
165  *            be held while changing the refcount.  Since the lock must
166  *            be held, there is no reason to also make refcount atomic.
167  * offset - the swap offset for the entry.  Index into the red-black tree.
168  * handle - zsmalloc allocation handle that stores the compressed page data
169  * length - the length in bytes of the compressed page data.  Needed during
170  *           decompression
171  */
172 struct zswap_entry {
173         struct rb_node rbnode;
174         pgoff_t offset;
175         int refcount;
176         unsigned int length;
177         unsigned long handle;
178 };
179
180 struct zswap_header {
181         swp_entry_t swpentry;
182 };
183
184 /*
185  * The tree lock in the zswap_tree struct protects a few things:
186  * - the rbtree
187  * - the refcount field of each entry in the tree
188  */
189 struct zswap_tree {
190         struct rb_root rbroot;
191         spinlock_t lock;
192         struct zbud_pool *pool;
193 };
194
195 static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
196
197 /*********************************
198 * zswap entry functions
199 **********************************/
200 static struct kmem_cache *zswap_entry_cache;
201
202 static int zswap_entry_cache_create(void)
203 {
204         zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
205         return (zswap_entry_cache == NULL);
206 }
207
208 static void zswap_entry_cache_destory(void)
209 {
210         kmem_cache_destroy(zswap_entry_cache);
211 }
212
213 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
214 {
215         struct zswap_entry *entry;
216         entry = kmem_cache_alloc(zswap_entry_cache, gfp);
217         if (!entry)
218                 return NULL;
219         entry->refcount = 1;
220         RB_CLEAR_NODE(&entry->rbnode);
221         return entry;
222 }
223
224 static void zswap_entry_cache_free(struct zswap_entry *entry)
225 {
226         kmem_cache_free(zswap_entry_cache, entry);
227 }
228
229 /*********************************
230 * rbtree functions
231 **********************************/
232 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
233 {
234         struct rb_node *node = root->rb_node;
235         struct zswap_entry *entry;
236
237         while (node) {
238                 entry = rb_entry(node, struct zswap_entry, rbnode);
239                 if (entry->offset > offset)
240                         node = node->rb_left;
241                 else if (entry->offset < offset)
242                         node = node->rb_right;
243                 else
244                         return entry;
245         }
246         return NULL;
247 }
248
249 /*
250  * In the case that a entry with the same offset is found, a pointer to
251  * the existing entry is stored in dupentry and the function returns -EEXIST
252  */
253 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
254                         struct zswap_entry **dupentry)
255 {
256         struct rb_node **link = &root->rb_node, *parent = NULL;
257         struct zswap_entry *myentry;
258
259         while (*link) {
260                 parent = *link;
261                 myentry = rb_entry(parent, struct zswap_entry, rbnode);
262                 if (myentry->offset > entry->offset)
263                         link = &(*link)->rb_left;
264                 else if (myentry->offset < entry->offset)
265                         link = &(*link)->rb_right;
266                 else {
267                         *dupentry = myentry;
268                         return -EEXIST;
269                 }
270         }
271         rb_link_node(&entry->rbnode, parent, link);
272         rb_insert_color(&entry->rbnode, root);
273         return 0;
274 }
275
276 static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
277 {
278         if (!RB_EMPTY_NODE(&entry->rbnode)) {
279                 rb_erase(&entry->rbnode, root);
280                 RB_CLEAR_NODE(&entry->rbnode);
281         }
282 }
283
284 /*
285  * Carries out the common pattern of freeing and entry's zsmalloc allocation,
286  * freeing the entry itself, and decrementing the number of stored pages.
287  */
288 static void zswap_free_entry(struct zswap_tree *tree,
289                         struct zswap_entry *entry)
290 {
291         zbud_free(tree->pool, entry->handle);
292         zswap_entry_cache_free(entry);
293         atomic_dec(&zswap_stored_pages);
294         zswap_pool_pages = zbud_get_pool_size(tree->pool);
295 }
296
297 /* caller must hold the tree lock */
298 static void zswap_entry_get(struct zswap_entry *entry)
299 {
300         entry->refcount++;
301 }
302
303 /* caller must hold the tree lock
304 * remove from the tree and free it, if nobody reference the entry
305 */
306 static void zswap_entry_put(struct zswap_tree *tree,
307                         struct zswap_entry *entry)
308 {
309         int refcount = --entry->refcount;
310
311         BUG_ON(refcount < 0);
312         if (refcount == 0) {
313                 zswap_rb_erase(&tree->rbroot, entry);
314                 zswap_free_entry(tree, entry);
315         }
316 }
317
318 /* caller must hold the tree lock */
319 static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
320                                 pgoff_t offset)
321 {
322         struct zswap_entry *entry = NULL;
323
324         entry = zswap_rb_search(root, offset);
325         if (entry)
326                 zswap_entry_get(entry);
327
328         return entry;
329 }
330
331 /*********************************
332 * per-cpu code
333 **********************************/
334 static DEFINE_PER_CPU(u8 *, zswap_dstmem);
335
336 static int __zswap_cpu_notifier(unsigned long action, unsigned long cpu)
337 {
338         struct crypto_comp *tfm;
339         u8 *dst;
340
341         switch (action) {
342         case CPU_UP_PREPARE:
343                 tfm = crypto_alloc_comp(zswap_compressor, 0, 0);
344                 if (IS_ERR(tfm)) {
345                         pr_err("can't allocate compressor transform\n");
346                         return NOTIFY_BAD;
347                 }
348                 *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = tfm;
349                 dst = kmalloc(PAGE_SIZE * 2, GFP_KERNEL);
350                 if (!dst) {
351                         pr_err("can't allocate compressor buffer\n");
352                         crypto_free_comp(tfm);
353                         *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL;
354                         return NOTIFY_BAD;
355                 }
356                 per_cpu(zswap_dstmem, cpu) = dst;
357                 break;
358         case CPU_DEAD:
359         case CPU_UP_CANCELED:
360                 tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu);
361                 if (tfm) {
362                         crypto_free_comp(tfm);
363                         *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL;
364                 }
365                 dst = per_cpu(zswap_dstmem, cpu);
366                 kfree(dst);
367                 per_cpu(zswap_dstmem, cpu) = NULL;
368                 break;
369         default:
370                 break;
371         }
372         return NOTIFY_OK;
373 }
374
375 static int zswap_cpu_notifier(struct notifier_block *nb,
376                                 unsigned long action, void *pcpu)
377 {
378         unsigned long cpu = (unsigned long)pcpu;
379         return __zswap_cpu_notifier(action, cpu);
380 }
381
382 static struct notifier_block zswap_cpu_notifier_block = {
383         .notifier_call = zswap_cpu_notifier
384 };
385
386 static int zswap_cpu_init(void)
387 {
388         unsigned long cpu;
389
390         get_online_cpus();
391         for_each_online_cpu(cpu)
392                 if (__zswap_cpu_notifier(CPU_UP_PREPARE, cpu) != NOTIFY_OK)
393                         goto cleanup;
394         register_cpu_notifier(&zswap_cpu_notifier_block);
395         put_online_cpus();
396         return 0;
397
398 cleanup:
399         for_each_online_cpu(cpu)
400                 __zswap_cpu_notifier(CPU_UP_CANCELED, cpu);
401         put_online_cpus();
402         return -ENOMEM;
403 }
404
405 /*********************************
406 * helpers
407 **********************************/
408 static bool zswap_is_full(void)
409 {
410         return (totalram_pages * zswap_max_pool_percent / 100 <
411                 zswap_pool_pages);
412 }
413
414 /*********************************
415 * writeback code
416 **********************************/
417 /* return enum for zswap_get_swap_cache_page */
418 enum zswap_get_swap_ret {
419         ZSWAP_SWAPCACHE_NEW,
420         ZSWAP_SWAPCACHE_EXIST,
421         ZSWAP_SWAPCACHE_FAIL,
422 };
423
424 /*
425  * zswap_get_swap_cache_page
426  *
427  * This is an adaption of read_swap_cache_async()
428  *
429  * This function tries to find a page with the given swap entry
430  * in the swapper_space address space (the swap cache).  If the page
431  * is found, it is returned in retpage.  Otherwise, a page is allocated,
432  * added to the swap cache, and returned in retpage.
433  *
434  * If success, the swap cache page is returned in retpage
435  * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache
436  * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated,
437  *     the new page is added to swapcache and locked
438  * Returns ZSWAP_SWAPCACHE_FAIL on error
439  */
440 static int zswap_get_swap_cache_page(swp_entry_t entry,
441                                 struct page **retpage)
442 {
443         struct page *found_page, *new_page = NULL;
444         struct address_space *swapper_space = swap_address_space(entry);
445         int err;
446
447         *retpage = NULL;
448         do {
449                 /*
450                  * First check the swap cache.  Since this is normally
451                  * called after lookup_swap_cache() failed, re-calling
452                  * that would confuse statistics.
453                  */
454                 found_page = find_get_page(swapper_space, entry.val);
455                 if (found_page)
456                         break;
457
458                 /*
459                  * Get a new page to read into from swap.
460                  */
461                 if (!new_page) {
462                         new_page = alloc_page(GFP_KERNEL);
463                         if (!new_page)
464                                 break; /* Out of memory */
465                 }
466
467                 /*
468                  * call radix_tree_preload() while we can wait.
469                  */
470                 err = radix_tree_preload(GFP_KERNEL);
471                 if (err)
472                         break;
473
474                 /*
475                  * Swap entry may have been freed since our caller observed it.
476                  */
477                 err = swapcache_prepare(entry);
478                 if (err == -EEXIST) { /* seems racy */
479                         radix_tree_preload_end();
480                         continue;
481                 }
482                 if (err) { /* swp entry is obsolete ? */
483                         radix_tree_preload_end();
484                         break;
485                 }
486
487                 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
488                 __set_page_locked(new_page);
489                 SetPageSwapBacked(new_page);
490                 err = __add_to_swap_cache(new_page, entry);
491                 if (likely(!err)) {
492                         radix_tree_preload_end();
493                         lru_cache_add_anon(new_page);
494                         *retpage = new_page;
495                         return ZSWAP_SWAPCACHE_NEW;
496                 }
497                 radix_tree_preload_end();
498                 ClearPageSwapBacked(new_page);
499                 __clear_page_locked(new_page);
500                 /*
501                  * add_to_swap_cache() doesn't return -EEXIST, so we can safely
502                  * clear SWAP_HAS_CACHE flag.
503                  */
504                 swapcache_free(entry, NULL);
505         } while (err != -ENOMEM);
506
507         if (new_page)
508                 page_cache_release(new_page);
509         if (!found_page)
510                 return ZSWAP_SWAPCACHE_FAIL;
511         *retpage = found_page;
512         return ZSWAP_SWAPCACHE_EXIST;
513 }
514
515 /*
516  * Attempts to free an entry by adding a page to the swap cache,
517  * decompressing the entry data into the page, and issuing a
518  * bio write to write the page back to the swap device.
519  *
520  * This can be thought of as a "resumed writeback" of the page
521  * to the swap device.  We are basically resuming the same swap
522  * writeback path that was intercepted with the frontswap_store()
523  * in the first place.  After the page has been decompressed into
524  * the swap cache, the compressed version stored by zswap can be
525  * freed.
526  */
527 static int zswap_writeback_entry(struct zbud_pool *pool, unsigned long handle)
528 {
529         struct zswap_header *zhdr;
530         swp_entry_t swpentry;
531         struct zswap_tree *tree;
532         pgoff_t offset;
533         struct zswap_entry *entry;
534         struct page *page;
535         u8 *src, *dst;
536         unsigned int dlen;
537         int ret;
538         struct writeback_control wbc = {
539                 .sync_mode = WB_SYNC_NONE,
540         };
541
542         /* extract swpentry from data */
543         zhdr = zbud_map(pool, handle);
544         swpentry = zhdr->swpentry; /* here */
545         zbud_unmap(pool, handle);
546         tree = zswap_trees[swp_type(swpentry)];
547         offset = swp_offset(swpentry);
548         BUG_ON(pool != tree->pool);
549
550         /* find and ref zswap entry */
551         spin_lock(&tree->lock);
552         entry = zswap_entry_find_get(&tree->rbroot, offset);
553         if (!entry) {
554                 /* entry was invalidated */
555                 spin_unlock(&tree->lock);
556                 return 0;
557         }
558         spin_unlock(&tree->lock);
559         BUG_ON(offset != entry->offset);
560
561         /* try to allocate swap cache page */
562         switch (zswap_get_swap_cache_page(swpentry, &page)) {
563         case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */
564                 ret = -ENOMEM;
565                 goto fail;
566
567         case ZSWAP_SWAPCACHE_EXIST:
568                 /* page is already in the swap cache, ignore for now */
569                 page_cache_release(page);
570                 ret = -EEXIST;
571                 goto fail;
572
573         case ZSWAP_SWAPCACHE_NEW: /* page is locked */
574                 /* decompress */
575                 dlen = PAGE_SIZE;
576                 src = (u8 *)zbud_map(tree->pool, entry->handle) +
577                         sizeof(struct zswap_header);
578                 dst = kmap_atomic(page);
579                 ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src,
580                                 entry->length, dst, &dlen);
581                 kunmap_atomic(dst);
582                 zbud_unmap(tree->pool, entry->handle);
583                 BUG_ON(ret);
584                 BUG_ON(dlen != PAGE_SIZE);
585
586                 /* page is up to date */
587                 SetPageUptodate(page);
588         }
589
590         /* move it to the tail of the inactive list after end_writeback */
591         SetPageReclaim(page);
592
593         /* start writeback */
594         __swap_writepage(page, &wbc, end_swap_bio_write);
595         page_cache_release(page);
596         zswap_written_back_pages++;
597
598         spin_lock(&tree->lock);
599         /* drop local reference */
600         zswap_entry_put(tree, entry);
601
602         /*
603         * There are two possible situations for entry here:
604         * (1) refcount is 1(normal case),  entry is valid and on the tree
605         * (2) refcount is 0, entry is freed and not on the tree
606         *     because invalidate happened during writeback
607         *  search the tree and free the entry if find entry
608         */
609         if (entry == zswap_rb_search(&tree->rbroot, offset))
610                 zswap_entry_put(tree, entry);
611         spin_unlock(&tree->lock);
612
613         goto end;
614
615         /*
616         * if we get here due to ZSWAP_SWAPCACHE_EXIST
617         * a load may happening concurrently
618         * it is safe and okay to not free the entry
619         * if we free the entry in the following put
620         * it it either okay to return !0
621         */
622 fail:
623         spin_lock(&tree->lock);
624         zswap_entry_put(tree, entry);
625         spin_unlock(&tree->lock);
626
627 end:
628         return ret;
629 }
630
631 /*********************************
632 * frontswap hooks
633 **********************************/
634 /* attempts to compress and store an single page */
635 static int zswap_frontswap_store(unsigned type, pgoff_t offset,
636                                 struct page *page)
637 {
638         struct zswap_tree *tree = zswap_trees[type];
639         struct zswap_entry *entry, *dupentry;
640         int ret;
641         unsigned int dlen = PAGE_SIZE, len;
642         unsigned long handle;
643         char *buf;
644         u8 *src, *dst;
645         struct zswap_header *zhdr;
646
647         if (!tree) {
648                 ret = -ENODEV;
649                 goto reject;
650         }
651
652         /* reclaim space if needed */
653         if (zswap_is_full()) {
654                 zswap_pool_limit_hit++;
655                 if (zbud_reclaim_page(tree->pool, 8)) {
656                         zswap_reject_reclaim_fail++;
657                         ret = -ENOMEM;
658                         goto reject;
659                 }
660         }
661
662         /* allocate entry */
663         entry = zswap_entry_cache_alloc(GFP_KERNEL);
664         if (!entry) {
665                 zswap_reject_kmemcache_fail++;
666                 ret = -ENOMEM;
667                 goto reject;
668         }
669
670         /* compress */
671         dst = get_cpu_var(zswap_dstmem);
672         src = kmap_atomic(page);
673         ret = zswap_comp_op(ZSWAP_COMPOP_COMPRESS, src, PAGE_SIZE, dst, &dlen);
674         kunmap_atomic(src);
675         if (ret) {
676                 ret = -EINVAL;
677                 goto freepage;
678         }
679
680         /* store */
681         len = dlen + sizeof(struct zswap_header);
682         ret = zbud_alloc(tree->pool, len, __GFP_NORETRY | __GFP_NOWARN,
683                 &handle);
684         if (ret == -ENOSPC) {
685                 zswap_reject_compress_poor++;
686                 goto freepage;
687         }
688         if (ret) {
689                 zswap_reject_alloc_fail++;
690                 goto freepage;
691         }
692         zhdr = zbud_map(tree->pool, handle);
693         zhdr->swpentry = swp_entry(type, offset);
694         buf = (u8 *)(zhdr + 1);
695         memcpy(buf, dst, dlen);
696         zbud_unmap(tree->pool, handle);
697         put_cpu_var(zswap_dstmem);
698
699         /* populate entry */
700         entry->offset = offset;
701         entry->handle = handle;
702         entry->length = dlen;
703
704         /* map */
705         spin_lock(&tree->lock);
706         do {
707                 ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry);
708                 if (ret == -EEXIST) {
709                         zswap_duplicate_entry++;
710                         /* remove from rbtree */
711                         zswap_rb_erase(&tree->rbroot, dupentry);
712                         zswap_entry_put(tree, dupentry);
713                 }
714         } while (ret == -EEXIST);
715         spin_unlock(&tree->lock);
716
717         /* update stats */
718         atomic_inc(&zswap_stored_pages);
719         zswap_pool_pages = zbud_get_pool_size(tree->pool);
720
721         return 0;
722
723 freepage:
724         put_cpu_var(zswap_dstmem);
725         zswap_entry_cache_free(entry);
726 reject:
727         return ret;
728 }
729
730 /*
731  * returns 0 if the page was successfully decompressed
732  * return -1 on entry not found or error
733 */
734 static int zswap_frontswap_load(unsigned type, pgoff_t offset,
735                                 struct page *page)
736 {
737         struct zswap_tree *tree = zswap_trees[type];
738         struct zswap_entry *entry;
739         u8 *src, *dst;
740         unsigned int dlen;
741         int ret;
742
743         /* find */
744         spin_lock(&tree->lock);
745         entry = zswap_entry_find_get(&tree->rbroot, offset);
746         if (!entry) {
747                 /* entry was written back */
748                 spin_unlock(&tree->lock);
749                 return -1;
750         }
751         spin_unlock(&tree->lock);
752
753         /* decompress */
754         dlen = PAGE_SIZE;
755         src = (u8 *)zbud_map(tree->pool, entry->handle) +
756                         sizeof(struct zswap_header);
757         dst = kmap_atomic(page);
758         ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src, entry->length,
759                 dst, &dlen);
760         kunmap_atomic(dst);
761         zbud_unmap(tree->pool, entry->handle);
762         BUG_ON(ret);
763
764         spin_lock(&tree->lock);
765         zswap_entry_put(tree, entry);
766         spin_unlock(&tree->lock);
767
768         return 0;
769 }
770
771 /* frees an entry in zswap */
772 static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
773 {
774         struct zswap_tree *tree = zswap_trees[type];
775         struct zswap_entry *entry;
776
777         /* find */
778         spin_lock(&tree->lock);
779         entry = zswap_rb_search(&tree->rbroot, offset);
780         if (!entry) {
781                 /* entry was written back */
782                 spin_unlock(&tree->lock);
783                 return;
784         }
785
786         /* remove from rbtree */
787         zswap_rb_erase(&tree->rbroot, entry);
788
789         /* drop the initial reference from entry creation */
790         zswap_entry_put(tree, entry);
791
792         spin_unlock(&tree->lock);
793 }
794
795 /* frees all zswap entries for the given swap type */
796 static void zswap_frontswap_invalidate_area(unsigned type)
797 {
798         struct zswap_tree *tree = zswap_trees[type];
799         struct zswap_entry *entry, *n;
800
801         if (!tree)
802                 return;
803
804         /* walk the tree and free everything */
805         spin_lock(&tree->lock);
806         rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
807                 zswap_free_entry(tree, entry);
808         tree->rbroot = RB_ROOT;
809         spin_unlock(&tree->lock);
810
811         zbud_destroy_pool(tree->pool);
812         kfree(tree);
813         zswap_trees[type] = NULL;
814 }
815
816 static struct zbud_ops zswap_zbud_ops = {
817         .evict = zswap_writeback_entry
818 };
819
820 static void zswap_frontswap_init(unsigned type)
821 {
822         struct zswap_tree *tree;
823
824         tree = kzalloc(sizeof(struct zswap_tree), GFP_KERNEL);
825         if (!tree)
826                 goto err;
827         tree->pool = zbud_create_pool(GFP_KERNEL, &zswap_zbud_ops);
828         if (!tree->pool)
829                 goto freetree;
830         tree->rbroot = RB_ROOT;
831         spin_lock_init(&tree->lock);
832         zswap_trees[type] = tree;
833         return;
834
835 freetree:
836         kfree(tree);
837 err:
838         pr_err("alloc failed, zswap disabled for swap type %d\n", type);
839 }
840
841 static struct frontswap_ops zswap_frontswap_ops = {
842         .store = zswap_frontswap_store,
843         .load = zswap_frontswap_load,
844         .invalidate_page = zswap_frontswap_invalidate_page,
845         .invalidate_area = zswap_frontswap_invalidate_area,
846         .init = zswap_frontswap_init
847 };
848
849 /*********************************
850 * debugfs functions
851 **********************************/
852 #ifdef CONFIG_DEBUG_FS
853 #include <linux/debugfs.h>
854
855 static struct dentry *zswap_debugfs_root;
856
857 static int __init zswap_debugfs_init(void)
858 {
859         if (!debugfs_initialized())
860                 return -ENODEV;
861
862         zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
863         if (!zswap_debugfs_root)
864                 return -ENOMEM;
865
866         debugfs_create_u64("pool_limit_hit", S_IRUGO,
867                         zswap_debugfs_root, &zswap_pool_limit_hit);
868         debugfs_create_u64("reject_reclaim_fail", S_IRUGO,
869                         zswap_debugfs_root, &zswap_reject_reclaim_fail);
870         debugfs_create_u64("reject_alloc_fail", S_IRUGO,
871                         zswap_debugfs_root, &zswap_reject_alloc_fail);
872         debugfs_create_u64("reject_kmemcache_fail", S_IRUGO,
873                         zswap_debugfs_root, &zswap_reject_kmemcache_fail);
874         debugfs_create_u64("reject_compress_poor", S_IRUGO,
875                         zswap_debugfs_root, &zswap_reject_compress_poor);
876         debugfs_create_u64("written_back_pages", S_IRUGO,
877                         zswap_debugfs_root, &zswap_written_back_pages);
878         debugfs_create_u64("duplicate_entry", S_IRUGO,
879                         zswap_debugfs_root, &zswap_duplicate_entry);
880         debugfs_create_u64("pool_pages", S_IRUGO,
881                         zswap_debugfs_root, &zswap_pool_pages);
882         debugfs_create_atomic_t("stored_pages", S_IRUGO,
883                         zswap_debugfs_root, &zswap_stored_pages);
884
885         return 0;
886 }
887
888 static void __exit zswap_debugfs_exit(void)
889 {
890         debugfs_remove_recursive(zswap_debugfs_root);
891 }
892 #else
893 static int __init zswap_debugfs_init(void)
894 {
895         return 0;
896 }
897
898 static void __exit zswap_debugfs_exit(void) { }
899 #endif
900
901 /*********************************
902 * module init and exit
903 **********************************/
904 static int __init init_zswap(void)
905 {
906         if (!zswap_enabled)
907                 return 0;
908
909         pr_info("loading zswap\n");
910         if (zswap_entry_cache_create()) {
911                 pr_err("entry cache creation failed\n");
912                 goto error;
913         }
914         if (zswap_comp_init()) {
915                 pr_err("compressor initialization failed\n");
916                 goto compfail;
917         }
918         if (zswap_cpu_init()) {
919                 pr_err("per-cpu initialization failed\n");
920                 goto pcpufail;
921         }
922         frontswap_register_ops(&zswap_frontswap_ops);
923         if (zswap_debugfs_init())
924                 pr_warn("debugfs initialization failed\n");
925         return 0;
926 pcpufail:
927         zswap_comp_exit();
928 compfail:
929         zswap_entry_cache_destory();
930 error:
931         return -ENOMEM;
932 }
933 /* must be late so crypto has time to come up */
934 late_initcall(init_zswap);
935
936 MODULE_LICENSE("GPL");
937 MODULE_AUTHOR("Seth Jennings <sjenning@linux.vnet.ibm.com>");
938 MODULE_DESCRIPTION("Compressed cache for swap pages");