Merge tag 'rtc-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux
[platform/kernel/linux-starfive.git] / mm / zswap.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * zswap.c - zswap driver file
4  *
5  * zswap is a backend for frontswap that takes pages that are in the process
6  * of being swapped out and attempts to compress and store them in a
7  * RAM-based memory pool.  This can result in a significant I/O reduction on
8  * the swap device and, in the case where decompressing from RAM is faster
9  * than reading from the swap device, can also improve workload performance.
10  *
11  * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/highmem.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/types.h>
22 #include <linux/atomic.h>
23 #include <linux/frontswap.h>
24 #include <linux/rbtree.h>
25 #include <linux/swap.h>
26 #include <linux/crypto.h>
27 #include <linux/scatterlist.h>
28 #include <linux/mempool.h>
29 #include <linux/zpool.h>
30 #include <crypto/acompress.h>
31
32 #include <linux/mm_types.h>
33 #include <linux/page-flags.h>
34 #include <linux/swapops.h>
35 #include <linux/writeback.h>
36 #include <linux/pagemap.h>
37 #include <linux/workqueue.h>
38
39 #include "swap.h"
40
41 /*********************************
42 * statistics
43 **********************************/
44 /* Total bytes used by the compressed storage */
45 u64 zswap_pool_total_size;
46 /* The number of compressed pages currently stored in zswap */
47 atomic_t zswap_stored_pages = ATOMIC_INIT(0);
48 /* The number of same-value filled pages currently stored in zswap */
49 static atomic_t zswap_same_filled_pages = ATOMIC_INIT(0);
50
51 /*
52  * The statistics below are not protected from concurrent access for
53  * performance reasons so they may not be a 100% accurate.  However,
54  * they do provide useful information on roughly how many times a
55  * certain event is occurring.
56 */
57
58 /* Pool limit was hit (see zswap_max_pool_percent) */
59 static u64 zswap_pool_limit_hit;
60 /* Pages written back when pool limit was reached */
61 static u64 zswap_written_back_pages;
62 /* Store failed due to a reclaim failure after pool limit was reached */
63 static u64 zswap_reject_reclaim_fail;
64 /* Compressed page was too big for the allocator to (optimally) store */
65 static u64 zswap_reject_compress_poor;
66 /* Store failed because underlying allocator could not get memory */
67 static u64 zswap_reject_alloc_fail;
68 /* Store failed because the entry metadata could not be allocated (rare) */
69 static u64 zswap_reject_kmemcache_fail;
70 /* Duplicate store was encountered (rare) */
71 static u64 zswap_duplicate_entry;
72
73 /* Shrinker work queue */
74 static struct workqueue_struct *shrink_wq;
75 /* Pool limit was hit, we need to calm down */
76 static bool zswap_pool_reached_full;
77
78 /*********************************
79 * tunables
80 **********************************/
81
82 #define ZSWAP_PARAM_UNSET ""
83
84 static int zswap_setup(void);
85
86 /* Enable/disable zswap */
87 static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
88 static int zswap_enabled_param_set(const char *,
89                                    const struct kernel_param *);
90 static const struct kernel_param_ops zswap_enabled_param_ops = {
91         .set =          zswap_enabled_param_set,
92         .get =          param_get_bool,
93 };
94 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
95
96 /* Crypto compressor to use */
97 static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
98 static int zswap_compressor_param_set(const char *,
99                                       const struct kernel_param *);
100 static const struct kernel_param_ops zswap_compressor_param_ops = {
101         .set =          zswap_compressor_param_set,
102         .get =          param_get_charp,
103         .free =         param_free_charp,
104 };
105 module_param_cb(compressor, &zswap_compressor_param_ops,
106                 &zswap_compressor, 0644);
107
108 /* Compressed storage zpool to use */
109 static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
110 static int zswap_zpool_param_set(const char *, const struct kernel_param *);
111 static const struct kernel_param_ops zswap_zpool_param_ops = {
112         .set =          zswap_zpool_param_set,
113         .get =          param_get_charp,
114         .free =         param_free_charp,
115 };
116 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
117
118 /* The maximum percentage of memory that the compressed pool can occupy */
119 static unsigned int zswap_max_pool_percent = 20;
120 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
121
122 /* The threshold for accepting new pages after the max_pool_percent was hit */
123 static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
124 module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
125                    uint, 0644);
126
127 /*
128  * Enable/disable handling same-value filled pages (enabled by default).
129  * If disabled every page is considered non-same-value filled.
130  */
131 static bool zswap_same_filled_pages_enabled = true;
132 module_param_named(same_filled_pages_enabled, zswap_same_filled_pages_enabled,
133                    bool, 0644);
134
135 /* Enable/disable handling non-same-value filled pages (enabled by default) */
136 static bool zswap_non_same_filled_pages_enabled = true;
137 module_param_named(non_same_filled_pages_enabled, zswap_non_same_filled_pages_enabled,
138                    bool, 0644);
139
140 /*********************************
141 * data structures
142 **********************************/
143
144 struct crypto_acomp_ctx {
145         struct crypto_acomp *acomp;
146         struct acomp_req *req;
147         struct crypto_wait wait;
148         u8 *dstmem;
149         struct mutex *mutex;
150 };
151
152 struct zswap_pool {
153         struct zpool *zpool;
154         struct crypto_acomp_ctx __percpu *acomp_ctx;
155         struct kref kref;
156         struct list_head list;
157         struct work_struct release_work;
158         struct work_struct shrink_work;
159         struct hlist_node node;
160         char tfm_name[CRYPTO_MAX_ALG_NAME];
161 };
162
163 /*
164  * struct zswap_entry
165  *
166  * This structure contains the metadata for tracking a single compressed
167  * page within zswap.
168  *
169  * rbnode - links the entry into red-black tree for the appropriate swap type
170  * offset - the swap offset for the entry.  Index into the red-black tree.
171  * refcount - the number of outstanding reference to the entry. This is needed
172  *            to protect against premature freeing of the entry by code
173  *            concurrent calls to load, invalidate, and writeback.  The lock
174  *            for the zswap_tree structure that contains the entry must
175  *            be held while changing the refcount.  Since the lock must
176  *            be held, there is no reason to also make refcount atomic.
177  * length - the length in bytes of the compressed page data.  Needed during
178  *          decompression. For a same value filled page length is 0.
179  * pool - the zswap_pool the entry's data is in
180  * handle - zpool allocation handle that stores the compressed page data
181  * value - value of the same-value filled pages which have same content
182  */
183 struct zswap_entry {
184         struct rb_node rbnode;
185         pgoff_t offset;
186         int refcount;
187         unsigned int length;
188         struct zswap_pool *pool;
189         union {
190                 unsigned long handle;
191                 unsigned long value;
192         };
193         struct obj_cgroup *objcg;
194 };
195
196 struct zswap_header {
197         swp_entry_t swpentry;
198 };
199
200 /*
201  * The tree lock in the zswap_tree struct protects a few things:
202  * - the rbtree
203  * - the refcount field of each entry in the tree
204  */
205 struct zswap_tree {
206         struct rb_root rbroot;
207         spinlock_t lock;
208 };
209
210 static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
211
212 /* RCU-protected iteration */
213 static LIST_HEAD(zswap_pools);
214 /* protects zswap_pools list modification */
215 static DEFINE_SPINLOCK(zswap_pools_lock);
216 /* pool counter to provide unique names to zpool */
217 static atomic_t zswap_pools_count = ATOMIC_INIT(0);
218
219 enum zswap_init_type {
220         ZSWAP_UNINIT,
221         ZSWAP_INIT_SUCCEED,
222         ZSWAP_INIT_FAILED
223 };
224
225 static enum zswap_init_type zswap_init_state;
226
227 /* used to ensure the integrity of initialization */
228 static DEFINE_MUTEX(zswap_init_lock);
229
230 /* init completed, but couldn't create the initial pool */
231 static bool zswap_has_pool;
232
233 /*********************************
234 * helpers and fwd declarations
235 **********************************/
236
237 #define zswap_pool_debug(msg, p)                                \
238         pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name,         \
239                  zpool_get_type((p)->zpool))
240
241 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle);
242 static int zswap_pool_get(struct zswap_pool *pool);
243 static void zswap_pool_put(struct zswap_pool *pool);
244
245 static const struct zpool_ops zswap_zpool_ops = {
246         .evict = zswap_writeback_entry
247 };
248
249 static bool zswap_is_full(void)
250 {
251         return totalram_pages() * zswap_max_pool_percent / 100 <
252                         DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
253 }
254
255 static bool zswap_can_accept(void)
256 {
257         return totalram_pages() * zswap_accept_thr_percent / 100 *
258                                 zswap_max_pool_percent / 100 >
259                         DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
260 }
261
262 static void zswap_update_total_size(void)
263 {
264         struct zswap_pool *pool;
265         u64 total = 0;
266
267         rcu_read_lock();
268
269         list_for_each_entry_rcu(pool, &zswap_pools, list)
270                 total += zpool_get_total_size(pool->zpool);
271
272         rcu_read_unlock();
273
274         zswap_pool_total_size = total;
275 }
276
277 /*********************************
278 * zswap entry functions
279 **********************************/
280 static struct kmem_cache *zswap_entry_cache;
281
282 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
283 {
284         struct zswap_entry *entry;
285         entry = kmem_cache_alloc(zswap_entry_cache, gfp);
286         if (!entry)
287                 return NULL;
288         entry->refcount = 1;
289         RB_CLEAR_NODE(&entry->rbnode);
290         return entry;
291 }
292
293 static void zswap_entry_cache_free(struct zswap_entry *entry)
294 {
295         kmem_cache_free(zswap_entry_cache, entry);
296 }
297
298 /*********************************
299 * rbtree functions
300 **********************************/
301 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
302 {
303         struct rb_node *node = root->rb_node;
304         struct zswap_entry *entry;
305
306         while (node) {
307                 entry = rb_entry(node, struct zswap_entry, rbnode);
308                 if (entry->offset > offset)
309                         node = node->rb_left;
310                 else if (entry->offset < offset)
311                         node = node->rb_right;
312                 else
313                         return entry;
314         }
315         return NULL;
316 }
317
318 /*
319  * In the case that a entry with the same offset is found, a pointer to
320  * the existing entry is stored in dupentry and the function returns -EEXIST
321  */
322 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
323                         struct zswap_entry **dupentry)
324 {
325         struct rb_node **link = &root->rb_node, *parent = NULL;
326         struct zswap_entry *myentry;
327
328         while (*link) {
329                 parent = *link;
330                 myentry = rb_entry(parent, struct zswap_entry, rbnode);
331                 if (myentry->offset > entry->offset)
332                         link = &(*link)->rb_left;
333                 else if (myentry->offset < entry->offset)
334                         link = &(*link)->rb_right;
335                 else {
336                         *dupentry = myentry;
337                         return -EEXIST;
338                 }
339         }
340         rb_link_node(&entry->rbnode, parent, link);
341         rb_insert_color(&entry->rbnode, root);
342         return 0;
343 }
344
345 static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
346 {
347         if (!RB_EMPTY_NODE(&entry->rbnode)) {
348                 rb_erase(&entry->rbnode, root);
349                 RB_CLEAR_NODE(&entry->rbnode);
350         }
351 }
352
353 /*
354  * Carries out the common pattern of freeing and entry's zpool allocation,
355  * freeing the entry itself, and decrementing the number of stored pages.
356  */
357 static void zswap_free_entry(struct zswap_entry *entry)
358 {
359         if (entry->objcg) {
360                 obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
361                 obj_cgroup_put(entry->objcg);
362         }
363         if (!entry->length)
364                 atomic_dec(&zswap_same_filled_pages);
365         else {
366                 zpool_free(entry->pool->zpool, entry->handle);
367                 zswap_pool_put(entry->pool);
368         }
369         zswap_entry_cache_free(entry);
370         atomic_dec(&zswap_stored_pages);
371         zswap_update_total_size();
372 }
373
374 /* caller must hold the tree lock */
375 static void zswap_entry_get(struct zswap_entry *entry)
376 {
377         entry->refcount++;
378 }
379
380 /* caller must hold the tree lock
381 * remove from the tree and free it, if nobody reference the entry
382 */
383 static void zswap_entry_put(struct zswap_tree *tree,
384                         struct zswap_entry *entry)
385 {
386         int refcount = --entry->refcount;
387
388         BUG_ON(refcount < 0);
389         if (refcount == 0) {
390                 zswap_rb_erase(&tree->rbroot, entry);
391                 zswap_free_entry(entry);
392         }
393 }
394
395 /* caller must hold the tree lock */
396 static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
397                                 pgoff_t offset)
398 {
399         struct zswap_entry *entry;
400
401         entry = zswap_rb_search(root, offset);
402         if (entry)
403                 zswap_entry_get(entry);
404
405         return entry;
406 }
407
408 /*********************************
409 * per-cpu code
410 **********************************/
411 static DEFINE_PER_CPU(u8 *, zswap_dstmem);
412 /*
413  * If users dynamically change the zpool type and compressor at runtime, i.e.
414  * zswap is running, zswap can have more than one zpool on one cpu, but they
415  * are sharing dtsmem. So we need this mutex to be per-cpu.
416  */
417 static DEFINE_PER_CPU(struct mutex *, zswap_mutex);
418
419 static int zswap_dstmem_prepare(unsigned int cpu)
420 {
421         struct mutex *mutex;
422         u8 *dst;
423
424         dst = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
425         if (!dst)
426                 return -ENOMEM;
427
428         mutex = kmalloc_node(sizeof(*mutex), GFP_KERNEL, cpu_to_node(cpu));
429         if (!mutex) {
430                 kfree(dst);
431                 return -ENOMEM;
432         }
433
434         mutex_init(mutex);
435         per_cpu(zswap_dstmem, cpu) = dst;
436         per_cpu(zswap_mutex, cpu) = mutex;
437         return 0;
438 }
439
440 static int zswap_dstmem_dead(unsigned int cpu)
441 {
442         struct mutex *mutex;
443         u8 *dst;
444
445         mutex = per_cpu(zswap_mutex, cpu);
446         kfree(mutex);
447         per_cpu(zswap_mutex, cpu) = NULL;
448
449         dst = per_cpu(zswap_dstmem, cpu);
450         kfree(dst);
451         per_cpu(zswap_dstmem, cpu) = NULL;
452
453         return 0;
454 }
455
456 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
457 {
458         struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
459         struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
460         struct crypto_acomp *acomp;
461         struct acomp_req *req;
462
463         acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
464         if (IS_ERR(acomp)) {
465                 pr_err("could not alloc crypto acomp %s : %ld\n",
466                                 pool->tfm_name, PTR_ERR(acomp));
467                 return PTR_ERR(acomp);
468         }
469         acomp_ctx->acomp = acomp;
470
471         req = acomp_request_alloc(acomp_ctx->acomp);
472         if (!req) {
473                 pr_err("could not alloc crypto acomp_request %s\n",
474                        pool->tfm_name);
475                 crypto_free_acomp(acomp_ctx->acomp);
476                 return -ENOMEM;
477         }
478         acomp_ctx->req = req;
479
480         crypto_init_wait(&acomp_ctx->wait);
481         /*
482          * if the backend of acomp is async zip, crypto_req_done() will wakeup
483          * crypto_wait_req(); if the backend of acomp is scomp, the callback
484          * won't be called, crypto_wait_req() will return without blocking.
485          */
486         acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
487                                    crypto_req_done, &acomp_ctx->wait);
488
489         acomp_ctx->mutex = per_cpu(zswap_mutex, cpu);
490         acomp_ctx->dstmem = per_cpu(zswap_dstmem, cpu);
491
492         return 0;
493 }
494
495 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
496 {
497         struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
498         struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
499
500         if (!IS_ERR_OR_NULL(acomp_ctx)) {
501                 if (!IS_ERR_OR_NULL(acomp_ctx->req))
502                         acomp_request_free(acomp_ctx->req);
503                 if (!IS_ERR_OR_NULL(acomp_ctx->acomp))
504                         crypto_free_acomp(acomp_ctx->acomp);
505         }
506
507         return 0;
508 }
509
510 /*********************************
511 * pool functions
512 **********************************/
513
514 static struct zswap_pool *__zswap_pool_current(void)
515 {
516         struct zswap_pool *pool;
517
518         pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
519         WARN_ONCE(!pool && zswap_has_pool,
520                   "%s: no page storage pool!\n", __func__);
521
522         return pool;
523 }
524
525 static struct zswap_pool *zswap_pool_current(void)
526 {
527         assert_spin_locked(&zswap_pools_lock);
528
529         return __zswap_pool_current();
530 }
531
532 static struct zswap_pool *zswap_pool_current_get(void)
533 {
534         struct zswap_pool *pool;
535
536         rcu_read_lock();
537
538         pool = __zswap_pool_current();
539         if (!zswap_pool_get(pool))
540                 pool = NULL;
541
542         rcu_read_unlock();
543
544         return pool;
545 }
546
547 static struct zswap_pool *zswap_pool_last_get(void)
548 {
549         struct zswap_pool *pool, *last = NULL;
550
551         rcu_read_lock();
552
553         list_for_each_entry_rcu(pool, &zswap_pools, list)
554                 last = pool;
555         WARN_ONCE(!last && zswap_has_pool,
556                   "%s: no page storage pool!\n", __func__);
557         if (!zswap_pool_get(last))
558                 last = NULL;
559
560         rcu_read_unlock();
561
562         return last;
563 }
564
565 /* type and compressor must be null-terminated */
566 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
567 {
568         struct zswap_pool *pool;
569
570         assert_spin_locked(&zswap_pools_lock);
571
572         list_for_each_entry_rcu(pool, &zswap_pools, list) {
573                 if (strcmp(pool->tfm_name, compressor))
574                         continue;
575                 if (strcmp(zpool_get_type(pool->zpool), type))
576                         continue;
577                 /* if we can't get it, it's about to be destroyed */
578                 if (!zswap_pool_get(pool))
579                         continue;
580                 return pool;
581         }
582
583         return NULL;
584 }
585
586 static void shrink_worker(struct work_struct *w)
587 {
588         struct zswap_pool *pool = container_of(w, typeof(*pool),
589                                                 shrink_work);
590
591         if (zpool_shrink(pool->zpool, 1, NULL))
592                 zswap_reject_reclaim_fail++;
593         zswap_pool_put(pool);
594 }
595
596 static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
597 {
598         struct zswap_pool *pool;
599         char name[38]; /* 'zswap' + 32 char (max) num + \0 */
600         gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
601         int ret;
602
603         if (!zswap_has_pool) {
604                 /* if either are unset, pool initialization failed, and we
605                  * need both params to be set correctly before trying to
606                  * create a pool.
607                  */
608                 if (!strcmp(type, ZSWAP_PARAM_UNSET))
609                         return NULL;
610                 if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
611                         return NULL;
612         }
613
614         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
615         if (!pool)
616                 return NULL;
617
618         /* unique name for each pool specifically required by zsmalloc */
619         snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count));
620
621         pool->zpool = zpool_create_pool(type, name, gfp, &zswap_zpool_ops);
622         if (!pool->zpool) {
623                 pr_err("%s zpool not available\n", type);
624                 goto error;
625         }
626         pr_debug("using %s zpool\n", zpool_get_type(pool->zpool));
627
628         strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
629
630         pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
631         if (!pool->acomp_ctx) {
632                 pr_err("percpu alloc failed\n");
633                 goto error;
634         }
635
636         ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
637                                        &pool->node);
638         if (ret)
639                 goto error;
640         pr_debug("using %s compressor\n", pool->tfm_name);
641
642         /* being the current pool takes 1 ref; this func expects the
643          * caller to always add the new pool as the current pool
644          */
645         kref_init(&pool->kref);
646         INIT_LIST_HEAD(&pool->list);
647         INIT_WORK(&pool->shrink_work, shrink_worker);
648
649         zswap_pool_debug("created", pool);
650
651         return pool;
652
653 error:
654         if (pool->acomp_ctx)
655                 free_percpu(pool->acomp_ctx);
656         if (pool->zpool)
657                 zpool_destroy_pool(pool->zpool);
658         kfree(pool);
659         return NULL;
660 }
661
662 static struct zswap_pool *__zswap_pool_create_fallback(void)
663 {
664         bool has_comp, has_zpool;
665
666         has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
667         if (!has_comp && strcmp(zswap_compressor,
668                                 CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
669                 pr_err("compressor %s not available, using default %s\n",
670                        zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
671                 param_free_charp(&zswap_compressor);
672                 zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
673                 has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
674         }
675         if (!has_comp) {
676                 pr_err("default compressor %s not available\n",
677                        zswap_compressor);
678                 param_free_charp(&zswap_compressor);
679                 zswap_compressor = ZSWAP_PARAM_UNSET;
680         }
681
682         has_zpool = zpool_has_pool(zswap_zpool_type);
683         if (!has_zpool && strcmp(zswap_zpool_type,
684                                  CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
685                 pr_err("zpool %s not available, using default %s\n",
686                        zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
687                 param_free_charp(&zswap_zpool_type);
688                 zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
689                 has_zpool = zpool_has_pool(zswap_zpool_type);
690         }
691         if (!has_zpool) {
692                 pr_err("default zpool %s not available\n",
693                        zswap_zpool_type);
694                 param_free_charp(&zswap_zpool_type);
695                 zswap_zpool_type = ZSWAP_PARAM_UNSET;
696         }
697
698         if (!has_comp || !has_zpool)
699                 return NULL;
700
701         return zswap_pool_create(zswap_zpool_type, zswap_compressor);
702 }
703
704 static void zswap_pool_destroy(struct zswap_pool *pool)
705 {
706         zswap_pool_debug("destroying", pool);
707
708         cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
709         free_percpu(pool->acomp_ctx);
710         zpool_destroy_pool(pool->zpool);
711         kfree(pool);
712 }
713
714 static int __must_check zswap_pool_get(struct zswap_pool *pool)
715 {
716         if (!pool)
717                 return 0;
718
719         return kref_get_unless_zero(&pool->kref);
720 }
721
722 static void __zswap_pool_release(struct work_struct *work)
723 {
724         struct zswap_pool *pool = container_of(work, typeof(*pool),
725                                                 release_work);
726
727         synchronize_rcu();
728
729         /* nobody should have been able to get a kref... */
730         WARN_ON(kref_get_unless_zero(&pool->kref));
731
732         /* pool is now off zswap_pools list and has no references. */
733         zswap_pool_destroy(pool);
734 }
735
736 static void __zswap_pool_empty(struct kref *kref)
737 {
738         struct zswap_pool *pool;
739
740         pool = container_of(kref, typeof(*pool), kref);
741
742         spin_lock(&zswap_pools_lock);
743
744         WARN_ON(pool == zswap_pool_current());
745
746         list_del_rcu(&pool->list);
747
748         INIT_WORK(&pool->release_work, __zswap_pool_release);
749         schedule_work(&pool->release_work);
750
751         spin_unlock(&zswap_pools_lock);
752 }
753
754 static void zswap_pool_put(struct zswap_pool *pool)
755 {
756         kref_put(&pool->kref, __zswap_pool_empty);
757 }
758
759 /*********************************
760 * param callbacks
761 **********************************/
762
763 static bool zswap_pool_changed(const char *s, const struct kernel_param *kp)
764 {
765         /* no change required */
766         if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
767                 return false;
768         return true;
769 }
770
771 /* val must be a null-terminated string */
772 static int __zswap_param_set(const char *val, const struct kernel_param *kp,
773                              char *type, char *compressor)
774 {
775         struct zswap_pool *pool, *put_pool = NULL;
776         char *s = strstrip((char *)val);
777         int ret = 0;
778         bool new_pool = false;
779
780         mutex_lock(&zswap_init_lock);
781         switch (zswap_init_state) {
782         case ZSWAP_UNINIT:
783                 /* if this is load-time (pre-init) param setting,
784                  * don't create a pool; that's done during init.
785                  */
786                 ret = param_set_charp(s, kp);
787                 break;
788         case ZSWAP_INIT_SUCCEED:
789                 new_pool = zswap_pool_changed(s, kp);
790                 break;
791         case ZSWAP_INIT_FAILED:
792                 pr_err("can't set param, initialization failed\n");
793                 ret = -ENODEV;
794         }
795         mutex_unlock(&zswap_init_lock);
796
797         /* no need to create a new pool, return directly */
798         if (!new_pool)
799                 return ret;
800
801         if (!type) {
802                 if (!zpool_has_pool(s)) {
803                         pr_err("zpool %s not available\n", s);
804                         return -ENOENT;
805                 }
806                 type = s;
807         } else if (!compressor) {
808                 if (!crypto_has_acomp(s, 0, 0)) {
809                         pr_err("compressor %s not available\n", s);
810                         return -ENOENT;
811                 }
812                 compressor = s;
813         } else {
814                 WARN_ON(1);
815                 return -EINVAL;
816         }
817
818         spin_lock(&zswap_pools_lock);
819
820         pool = zswap_pool_find_get(type, compressor);
821         if (pool) {
822                 zswap_pool_debug("using existing", pool);
823                 WARN_ON(pool == zswap_pool_current());
824                 list_del_rcu(&pool->list);
825         }
826
827         spin_unlock(&zswap_pools_lock);
828
829         if (!pool)
830                 pool = zswap_pool_create(type, compressor);
831
832         if (pool)
833                 ret = param_set_charp(s, kp);
834         else
835                 ret = -EINVAL;
836
837         spin_lock(&zswap_pools_lock);
838
839         if (!ret) {
840                 put_pool = zswap_pool_current();
841                 list_add_rcu(&pool->list, &zswap_pools);
842                 zswap_has_pool = true;
843         } else if (pool) {
844                 /* add the possibly pre-existing pool to the end of the pools
845                  * list; if it's new (and empty) then it'll be removed and
846                  * destroyed by the put after we drop the lock
847                  */
848                 list_add_tail_rcu(&pool->list, &zswap_pools);
849                 put_pool = pool;
850         }
851
852         spin_unlock(&zswap_pools_lock);
853
854         if (!zswap_has_pool && !pool) {
855                 /* if initial pool creation failed, and this pool creation also
856                  * failed, maybe both compressor and zpool params were bad.
857                  * Allow changing this param, so pool creation will succeed
858                  * when the other param is changed. We already verified this
859                  * param is ok in the zpool_has_pool() or crypto_has_acomp()
860                  * checks above.
861                  */
862                 ret = param_set_charp(s, kp);
863         }
864
865         /* drop the ref from either the old current pool,
866          * or the new pool we failed to add
867          */
868         if (put_pool)
869                 zswap_pool_put(put_pool);
870
871         return ret;
872 }
873
874 static int zswap_compressor_param_set(const char *val,
875                                       const struct kernel_param *kp)
876 {
877         return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
878 }
879
880 static int zswap_zpool_param_set(const char *val,
881                                  const struct kernel_param *kp)
882 {
883         return __zswap_param_set(val, kp, NULL, zswap_compressor);
884 }
885
886 static int zswap_enabled_param_set(const char *val,
887                                    const struct kernel_param *kp)
888 {
889         int ret = -ENODEV;
890
891         /* if this is load-time (pre-init) param setting, only set param. */
892         if (system_state != SYSTEM_RUNNING)
893                 return param_set_bool(val, kp);
894
895         mutex_lock(&zswap_init_lock);
896         switch (zswap_init_state) {
897         case ZSWAP_UNINIT:
898                 if (zswap_setup())
899                         break;
900                 fallthrough;
901         case ZSWAP_INIT_SUCCEED:
902                 if (!zswap_has_pool)
903                         pr_err("can't enable, no pool configured\n");
904                 else
905                         ret = param_set_bool(val, kp);
906                 break;
907         case ZSWAP_INIT_FAILED:
908                 pr_err("can't enable, initialization failed\n");
909         }
910         mutex_unlock(&zswap_init_lock);
911
912         return ret;
913 }
914
915 /*********************************
916 * writeback code
917 **********************************/
918 /* return enum for zswap_get_swap_cache_page */
919 enum zswap_get_swap_ret {
920         ZSWAP_SWAPCACHE_NEW,
921         ZSWAP_SWAPCACHE_EXIST,
922         ZSWAP_SWAPCACHE_FAIL,
923 };
924
925 /*
926  * zswap_get_swap_cache_page
927  *
928  * This is an adaption of read_swap_cache_async()
929  *
930  * This function tries to find a page with the given swap entry
931  * in the swapper_space address space (the swap cache).  If the page
932  * is found, it is returned in retpage.  Otherwise, a page is allocated,
933  * added to the swap cache, and returned in retpage.
934  *
935  * If success, the swap cache page is returned in retpage
936  * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache
937  * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated,
938  *     the new page is added to swapcache and locked
939  * Returns ZSWAP_SWAPCACHE_FAIL on error
940  */
941 static int zswap_get_swap_cache_page(swp_entry_t entry,
942                                 struct page **retpage)
943 {
944         bool page_was_allocated;
945
946         *retpage = __read_swap_cache_async(entry, GFP_KERNEL,
947                         NULL, 0, &page_was_allocated);
948         if (page_was_allocated)
949                 return ZSWAP_SWAPCACHE_NEW;
950         if (!*retpage)
951                 return ZSWAP_SWAPCACHE_FAIL;
952         return ZSWAP_SWAPCACHE_EXIST;
953 }
954
955 /*
956  * Attempts to free an entry by adding a page to the swap cache,
957  * decompressing the entry data into the page, and issuing a
958  * bio write to write the page back to the swap device.
959  *
960  * This can be thought of as a "resumed writeback" of the page
961  * to the swap device.  We are basically resuming the same swap
962  * writeback path that was intercepted with the frontswap_store()
963  * in the first place.  After the page has been decompressed into
964  * the swap cache, the compressed version stored by zswap can be
965  * freed.
966  */
967 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle)
968 {
969         struct zswap_header *zhdr;
970         swp_entry_t swpentry;
971         struct zswap_tree *tree;
972         pgoff_t offset;
973         struct zswap_entry *entry;
974         struct page *page;
975         struct scatterlist input, output;
976         struct crypto_acomp_ctx *acomp_ctx;
977
978         u8 *src, *tmp = NULL;
979         unsigned int dlen;
980         int ret;
981         struct writeback_control wbc = {
982                 .sync_mode = WB_SYNC_NONE,
983         };
984
985         if (!zpool_can_sleep_mapped(pool)) {
986                 tmp = kmalloc(PAGE_SIZE, GFP_KERNEL);
987                 if (!tmp)
988                         return -ENOMEM;
989         }
990
991         /* extract swpentry from data */
992         zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO);
993         swpentry = zhdr->swpentry; /* here */
994         tree = zswap_trees[swp_type(swpentry)];
995         offset = swp_offset(swpentry);
996         zpool_unmap_handle(pool, handle);
997
998         /* find and ref zswap entry */
999         spin_lock(&tree->lock);
1000         entry = zswap_entry_find_get(&tree->rbroot, offset);
1001         if (!entry) {
1002                 /* entry was invalidated */
1003                 spin_unlock(&tree->lock);
1004                 kfree(tmp);
1005                 return 0;
1006         }
1007         spin_unlock(&tree->lock);
1008         BUG_ON(offset != entry->offset);
1009
1010         /* try to allocate swap cache page */
1011         switch (zswap_get_swap_cache_page(swpentry, &page)) {
1012         case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */
1013                 ret = -ENOMEM;
1014                 goto fail;
1015
1016         case ZSWAP_SWAPCACHE_EXIST:
1017                 /* page is already in the swap cache, ignore for now */
1018                 put_page(page);
1019                 ret = -EEXIST;
1020                 goto fail;
1021
1022         case ZSWAP_SWAPCACHE_NEW: /* page is locked */
1023                 /* decompress */
1024                 acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1025                 dlen = PAGE_SIZE;
1026
1027                 zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO);
1028                 src = (u8 *)zhdr + sizeof(struct zswap_header);
1029                 if (!zpool_can_sleep_mapped(pool)) {
1030                         memcpy(tmp, src, entry->length);
1031                         src = tmp;
1032                         zpool_unmap_handle(pool, handle);
1033                 }
1034
1035                 mutex_lock(acomp_ctx->mutex);
1036                 sg_init_one(&input, src, entry->length);
1037                 sg_init_table(&output, 1);
1038                 sg_set_page(&output, page, PAGE_SIZE, 0);
1039                 acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, dlen);
1040                 ret = crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait);
1041                 dlen = acomp_ctx->req->dlen;
1042                 mutex_unlock(acomp_ctx->mutex);
1043
1044                 if (!zpool_can_sleep_mapped(pool))
1045                         kfree(tmp);
1046                 else
1047                         zpool_unmap_handle(pool, handle);
1048
1049                 BUG_ON(ret);
1050                 BUG_ON(dlen != PAGE_SIZE);
1051
1052                 /* page is up to date */
1053                 SetPageUptodate(page);
1054         }
1055
1056         /* move it to the tail of the inactive list after end_writeback */
1057         SetPageReclaim(page);
1058
1059         /* start writeback */
1060         __swap_writepage(page, &wbc);
1061         put_page(page);
1062         zswap_written_back_pages++;
1063
1064         spin_lock(&tree->lock);
1065         /* drop local reference */
1066         zswap_entry_put(tree, entry);
1067
1068         /*
1069         * There are two possible situations for entry here:
1070         * (1) refcount is 1(normal case),  entry is valid and on the tree
1071         * (2) refcount is 0, entry is freed and not on the tree
1072         *     because invalidate happened during writeback
1073         *  search the tree and free the entry if find entry
1074         */
1075         if (entry == zswap_rb_search(&tree->rbroot, offset))
1076                 zswap_entry_put(tree, entry);
1077         spin_unlock(&tree->lock);
1078
1079         return ret;
1080
1081 fail:
1082         if (!zpool_can_sleep_mapped(pool))
1083                 kfree(tmp);
1084
1085         /*
1086         * if we get here due to ZSWAP_SWAPCACHE_EXIST
1087         * a load may be happening concurrently.
1088         * it is safe and okay to not free the entry.
1089         * if we free the entry in the following put
1090         * it is also okay to return !0
1091         */
1092         spin_lock(&tree->lock);
1093         zswap_entry_put(tree, entry);
1094         spin_unlock(&tree->lock);
1095
1096         return ret;
1097 }
1098
1099 static int zswap_is_page_same_filled(void *ptr, unsigned long *value)
1100 {
1101         unsigned long *page;
1102         unsigned long val;
1103         unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
1104
1105         page = (unsigned long *)ptr;
1106         val = page[0];
1107
1108         if (val != page[last_pos])
1109                 return 0;
1110
1111         for (pos = 1; pos < last_pos; pos++) {
1112                 if (val != page[pos])
1113                         return 0;
1114         }
1115
1116         *value = val;
1117
1118         return 1;
1119 }
1120
1121 static void zswap_fill_page(void *ptr, unsigned long value)
1122 {
1123         unsigned long *page;
1124
1125         page = (unsigned long *)ptr;
1126         memset_l(page, value, PAGE_SIZE / sizeof(unsigned long));
1127 }
1128
1129 /*********************************
1130 * frontswap hooks
1131 **********************************/
1132 /* attempts to compress and store an single page */
1133 static int zswap_frontswap_store(unsigned type, pgoff_t offset,
1134                                 struct page *page)
1135 {
1136         struct zswap_tree *tree = zswap_trees[type];
1137         struct zswap_entry *entry, *dupentry;
1138         struct scatterlist input, output;
1139         struct crypto_acomp_ctx *acomp_ctx;
1140         struct obj_cgroup *objcg = NULL;
1141         struct zswap_pool *pool;
1142         int ret;
1143         unsigned int hlen, dlen = PAGE_SIZE;
1144         unsigned long handle, value;
1145         char *buf;
1146         u8 *src, *dst;
1147         struct zswap_header zhdr = { .swpentry = swp_entry(type, offset) };
1148         gfp_t gfp;
1149
1150         /* THP isn't supported */
1151         if (PageTransHuge(page)) {
1152                 ret = -EINVAL;
1153                 goto reject;
1154         }
1155
1156         if (!zswap_enabled || !tree) {
1157                 ret = -ENODEV;
1158                 goto reject;
1159         }
1160
1161         objcg = get_obj_cgroup_from_page(page);
1162         if (objcg && !obj_cgroup_may_zswap(objcg))
1163                 goto shrink;
1164
1165         /* reclaim space if needed */
1166         if (zswap_is_full()) {
1167                 zswap_pool_limit_hit++;
1168                 zswap_pool_reached_full = true;
1169                 goto shrink;
1170         }
1171
1172         if (zswap_pool_reached_full) {
1173                if (!zswap_can_accept()) {
1174                         ret = -ENOMEM;
1175                         goto reject;
1176                 } else
1177                         zswap_pool_reached_full = false;
1178         }
1179
1180         /* allocate entry */
1181         entry = zswap_entry_cache_alloc(GFP_KERNEL);
1182         if (!entry) {
1183                 zswap_reject_kmemcache_fail++;
1184                 ret = -ENOMEM;
1185                 goto reject;
1186         }
1187
1188         if (zswap_same_filled_pages_enabled) {
1189                 src = kmap_atomic(page);
1190                 if (zswap_is_page_same_filled(src, &value)) {
1191                         kunmap_atomic(src);
1192                         entry->offset = offset;
1193                         entry->length = 0;
1194                         entry->value = value;
1195                         atomic_inc(&zswap_same_filled_pages);
1196                         goto insert_entry;
1197                 }
1198                 kunmap_atomic(src);
1199         }
1200
1201         if (!zswap_non_same_filled_pages_enabled) {
1202                 ret = -EINVAL;
1203                 goto freepage;
1204         }
1205
1206         /* if entry is successfully added, it keeps the reference */
1207         entry->pool = zswap_pool_current_get();
1208         if (!entry->pool) {
1209                 ret = -EINVAL;
1210                 goto freepage;
1211         }
1212
1213         /* compress */
1214         acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1215
1216         mutex_lock(acomp_ctx->mutex);
1217
1218         dst = acomp_ctx->dstmem;
1219         sg_init_table(&input, 1);
1220         sg_set_page(&input, page, PAGE_SIZE, 0);
1221
1222         /* zswap_dstmem is of size (PAGE_SIZE * 2). Reflect same in sg_list */
1223         sg_init_one(&output, dst, PAGE_SIZE * 2);
1224         acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
1225         /*
1226          * it maybe looks a little bit silly that we send an asynchronous request,
1227          * then wait for its completion synchronously. This makes the process look
1228          * synchronous in fact.
1229          * Theoretically, acomp supports users send multiple acomp requests in one
1230          * acomp instance, then get those requests done simultaneously. but in this
1231          * case, frontswap actually does store and load page by page, there is no
1232          * existing method to send the second page before the first page is done
1233          * in one thread doing frontswap.
1234          * but in different threads running on different cpu, we have different
1235          * acomp instance, so multiple threads can do (de)compression in parallel.
1236          */
1237         ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
1238         dlen = acomp_ctx->req->dlen;
1239
1240         if (ret) {
1241                 ret = -EINVAL;
1242                 goto put_dstmem;
1243         }
1244
1245         /* store */
1246         hlen = zpool_evictable(entry->pool->zpool) ? sizeof(zhdr) : 0;
1247         gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
1248         if (zpool_malloc_support_movable(entry->pool->zpool))
1249                 gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
1250         ret = zpool_malloc(entry->pool->zpool, hlen + dlen, gfp, &handle);
1251         if (ret == -ENOSPC) {
1252                 zswap_reject_compress_poor++;
1253                 goto put_dstmem;
1254         }
1255         if (ret) {
1256                 zswap_reject_alloc_fail++;
1257                 goto put_dstmem;
1258         }
1259         buf = zpool_map_handle(entry->pool->zpool, handle, ZPOOL_MM_WO);
1260         memcpy(buf, &zhdr, hlen);
1261         memcpy(buf + hlen, dst, dlen);
1262         zpool_unmap_handle(entry->pool->zpool, handle);
1263         mutex_unlock(acomp_ctx->mutex);
1264
1265         /* populate entry */
1266         entry->offset = offset;
1267         entry->handle = handle;
1268         entry->length = dlen;
1269
1270 insert_entry:
1271         entry->objcg = objcg;
1272         if (objcg) {
1273                 obj_cgroup_charge_zswap(objcg, entry->length);
1274                 /* Account before objcg ref is moved to tree */
1275                 count_objcg_event(objcg, ZSWPOUT);
1276         }
1277
1278         /* map */
1279         spin_lock(&tree->lock);
1280         do {
1281                 ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry);
1282                 if (ret == -EEXIST) {
1283                         zswap_duplicate_entry++;
1284                         /* remove from rbtree */
1285                         zswap_rb_erase(&tree->rbroot, dupentry);
1286                         zswap_entry_put(tree, dupentry);
1287                 }
1288         } while (ret == -EEXIST);
1289         spin_unlock(&tree->lock);
1290
1291         /* update stats */
1292         atomic_inc(&zswap_stored_pages);
1293         zswap_update_total_size();
1294         count_vm_event(ZSWPOUT);
1295
1296         return 0;
1297
1298 put_dstmem:
1299         mutex_unlock(acomp_ctx->mutex);
1300         zswap_pool_put(entry->pool);
1301 freepage:
1302         zswap_entry_cache_free(entry);
1303 reject:
1304         if (objcg)
1305                 obj_cgroup_put(objcg);
1306         return ret;
1307
1308 shrink:
1309         pool = zswap_pool_last_get();
1310         if (pool)
1311                 queue_work(shrink_wq, &pool->shrink_work);
1312         ret = -ENOMEM;
1313         goto reject;
1314 }
1315
1316 /*
1317  * returns 0 if the page was successfully decompressed
1318  * return -1 on entry not found or error
1319 */
1320 static int zswap_frontswap_load(unsigned type, pgoff_t offset,
1321                                 struct page *page)
1322 {
1323         struct zswap_tree *tree = zswap_trees[type];
1324         struct zswap_entry *entry;
1325         struct scatterlist input, output;
1326         struct crypto_acomp_ctx *acomp_ctx;
1327         u8 *src, *dst, *tmp;
1328         unsigned int dlen;
1329         int ret;
1330
1331         /* find */
1332         spin_lock(&tree->lock);
1333         entry = zswap_entry_find_get(&tree->rbroot, offset);
1334         if (!entry) {
1335                 /* entry was written back */
1336                 spin_unlock(&tree->lock);
1337                 return -1;
1338         }
1339         spin_unlock(&tree->lock);
1340
1341         if (!entry->length) {
1342                 dst = kmap_atomic(page);
1343                 zswap_fill_page(dst, entry->value);
1344                 kunmap_atomic(dst);
1345                 ret = 0;
1346                 goto stats;
1347         }
1348
1349         if (!zpool_can_sleep_mapped(entry->pool->zpool)) {
1350                 tmp = kmalloc(entry->length, GFP_KERNEL);
1351                 if (!tmp) {
1352                         ret = -ENOMEM;
1353                         goto freeentry;
1354                 }
1355         }
1356
1357         /* decompress */
1358         dlen = PAGE_SIZE;
1359         src = zpool_map_handle(entry->pool->zpool, entry->handle, ZPOOL_MM_RO);
1360         if (zpool_evictable(entry->pool->zpool))
1361                 src += sizeof(struct zswap_header);
1362
1363         if (!zpool_can_sleep_mapped(entry->pool->zpool)) {
1364                 memcpy(tmp, src, entry->length);
1365                 src = tmp;
1366                 zpool_unmap_handle(entry->pool->zpool, entry->handle);
1367         }
1368
1369         acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1370         mutex_lock(acomp_ctx->mutex);
1371         sg_init_one(&input, src, entry->length);
1372         sg_init_table(&output, 1);
1373         sg_set_page(&output, page, PAGE_SIZE, 0);
1374         acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, dlen);
1375         ret = crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait);
1376         mutex_unlock(acomp_ctx->mutex);
1377
1378         if (zpool_can_sleep_mapped(entry->pool->zpool))
1379                 zpool_unmap_handle(entry->pool->zpool, entry->handle);
1380         else
1381                 kfree(tmp);
1382
1383         BUG_ON(ret);
1384 stats:
1385         count_vm_event(ZSWPIN);
1386         if (entry->objcg)
1387                 count_objcg_event(entry->objcg, ZSWPIN);
1388 freeentry:
1389         spin_lock(&tree->lock);
1390         zswap_entry_put(tree, entry);
1391         spin_unlock(&tree->lock);
1392
1393         return ret;
1394 }
1395
1396 /* frees an entry in zswap */
1397 static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
1398 {
1399         struct zswap_tree *tree = zswap_trees[type];
1400         struct zswap_entry *entry;
1401
1402         /* find */
1403         spin_lock(&tree->lock);
1404         entry = zswap_rb_search(&tree->rbroot, offset);
1405         if (!entry) {
1406                 /* entry was written back */
1407                 spin_unlock(&tree->lock);
1408                 return;
1409         }
1410
1411         /* remove from rbtree */
1412         zswap_rb_erase(&tree->rbroot, entry);
1413
1414         /* drop the initial reference from entry creation */
1415         zswap_entry_put(tree, entry);
1416
1417         spin_unlock(&tree->lock);
1418 }
1419
1420 /* frees all zswap entries for the given swap type */
1421 static void zswap_frontswap_invalidate_area(unsigned type)
1422 {
1423         struct zswap_tree *tree = zswap_trees[type];
1424         struct zswap_entry *entry, *n;
1425
1426         if (!tree)
1427                 return;
1428
1429         /* walk the tree and free everything */
1430         spin_lock(&tree->lock);
1431         rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
1432                 zswap_free_entry(entry);
1433         tree->rbroot = RB_ROOT;
1434         spin_unlock(&tree->lock);
1435         kfree(tree);
1436         zswap_trees[type] = NULL;
1437 }
1438
1439 static void zswap_frontswap_init(unsigned type)
1440 {
1441         struct zswap_tree *tree;
1442
1443         tree = kzalloc(sizeof(*tree), GFP_KERNEL);
1444         if (!tree) {
1445                 pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1446                 return;
1447         }
1448
1449         tree->rbroot = RB_ROOT;
1450         spin_lock_init(&tree->lock);
1451         zswap_trees[type] = tree;
1452 }
1453
1454 static const struct frontswap_ops zswap_frontswap_ops = {
1455         .store = zswap_frontswap_store,
1456         .load = zswap_frontswap_load,
1457         .invalidate_page = zswap_frontswap_invalidate_page,
1458         .invalidate_area = zswap_frontswap_invalidate_area,
1459         .init = zswap_frontswap_init
1460 };
1461
1462 /*********************************
1463 * debugfs functions
1464 **********************************/
1465 #ifdef CONFIG_DEBUG_FS
1466 #include <linux/debugfs.h>
1467
1468 static struct dentry *zswap_debugfs_root;
1469
1470 static int zswap_debugfs_init(void)
1471 {
1472         if (!debugfs_initialized())
1473                 return -ENODEV;
1474
1475         zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1476
1477         debugfs_create_u64("pool_limit_hit", 0444,
1478                            zswap_debugfs_root, &zswap_pool_limit_hit);
1479         debugfs_create_u64("reject_reclaim_fail", 0444,
1480                            zswap_debugfs_root, &zswap_reject_reclaim_fail);
1481         debugfs_create_u64("reject_alloc_fail", 0444,
1482                            zswap_debugfs_root, &zswap_reject_alloc_fail);
1483         debugfs_create_u64("reject_kmemcache_fail", 0444,
1484                            zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1485         debugfs_create_u64("reject_compress_poor", 0444,
1486                            zswap_debugfs_root, &zswap_reject_compress_poor);
1487         debugfs_create_u64("written_back_pages", 0444,
1488                            zswap_debugfs_root, &zswap_written_back_pages);
1489         debugfs_create_u64("duplicate_entry", 0444,
1490                            zswap_debugfs_root, &zswap_duplicate_entry);
1491         debugfs_create_u64("pool_total_size", 0444,
1492                            zswap_debugfs_root, &zswap_pool_total_size);
1493         debugfs_create_atomic_t("stored_pages", 0444,
1494                                 zswap_debugfs_root, &zswap_stored_pages);
1495         debugfs_create_atomic_t("same_filled_pages", 0444,
1496                                 zswap_debugfs_root, &zswap_same_filled_pages);
1497
1498         return 0;
1499 }
1500 #else
1501 static int zswap_debugfs_init(void)
1502 {
1503         return 0;
1504 }
1505 #endif
1506
1507 /*********************************
1508 * module init and exit
1509 **********************************/
1510 static int zswap_setup(void)
1511 {
1512         struct zswap_pool *pool;
1513         int ret;
1514
1515         zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
1516         if (!zswap_entry_cache) {
1517                 pr_err("entry cache creation failed\n");
1518                 goto cache_fail;
1519         }
1520
1521         ret = cpuhp_setup_state(CPUHP_MM_ZSWP_MEM_PREPARE, "mm/zswap:prepare",
1522                                 zswap_dstmem_prepare, zswap_dstmem_dead);
1523         if (ret) {
1524                 pr_err("dstmem alloc failed\n");
1525                 goto dstmem_fail;
1526         }
1527
1528         ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1529                                       "mm/zswap_pool:prepare",
1530                                       zswap_cpu_comp_prepare,
1531                                       zswap_cpu_comp_dead);
1532         if (ret)
1533                 goto hp_fail;
1534
1535         pool = __zswap_pool_create_fallback();
1536         if (pool) {
1537                 pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1538                         zpool_get_type(pool->zpool));
1539                 list_add(&pool->list, &zswap_pools);
1540                 zswap_has_pool = true;
1541         } else {
1542                 pr_err("pool creation failed\n");
1543                 zswap_enabled = false;
1544         }
1545
1546         shrink_wq = create_workqueue("zswap-shrink");
1547         if (!shrink_wq)
1548                 goto fallback_fail;
1549
1550         ret = frontswap_register_ops(&zswap_frontswap_ops);
1551         if (ret)
1552                 goto destroy_wq;
1553         if (zswap_debugfs_init())
1554                 pr_warn("debugfs initialization failed\n");
1555         zswap_init_state = ZSWAP_INIT_SUCCEED;
1556         return 0;
1557
1558 destroy_wq:
1559         destroy_workqueue(shrink_wq);
1560 fallback_fail:
1561         if (pool)
1562                 zswap_pool_destroy(pool);
1563 hp_fail:
1564         cpuhp_remove_state(CPUHP_MM_ZSWP_MEM_PREPARE);
1565 dstmem_fail:
1566         kmem_cache_destroy(zswap_entry_cache);
1567 cache_fail:
1568         /* if built-in, we aren't unloaded on failure; don't allow use */
1569         zswap_init_state = ZSWAP_INIT_FAILED;
1570         zswap_enabled = false;
1571         return -ENOMEM;
1572 }
1573
1574 static int __init zswap_init(void)
1575 {
1576         if (!zswap_enabled)
1577                 return 0;
1578         return zswap_setup();
1579 }
1580 /* must be late so crypto has time to come up */
1581 late_initcall(zswap_init);
1582
1583 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1584 MODULE_DESCRIPTION("Compressed cache for swap pages");