mm, hugetlb: fix and clean-up node iteration code to alloc or free
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / zswap.c
1 /*
2  * zswap.c - zswap driver file
3  *
4  * zswap is a backend for frontswap that takes pages that are in the process
5  * of being swapped out and attempts to compress and store them in a
6  * RAM-based memory pool.  This can result in a significant I/O reduction on
7  * the swap device and, in the case where decompressing from RAM is faster
8  * than reading from the swap device, can also improve workload performance.
9  *
10  * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License
14  * as published by the Free Software Foundation; either version 2
15  * of the License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21 */
22
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25 #include <linux/module.h>
26 #include <linux/cpu.h>
27 #include <linux/highmem.h>
28 #include <linux/slab.h>
29 #include <linux/spinlock.h>
30 #include <linux/types.h>
31 #include <linux/atomic.h>
32 #include <linux/frontswap.h>
33 #include <linux/rbtree.h>
34 #include <linux/swap.h>
35 #include <linux/crypto.h>
36 #include <linux/mempool.h>
37 #include <linux/zbud.h>
38
39 #include <linux/mm_types.h>
40 #include <linux/page-flags.h>
41 #include <linux/swapops.h>
42 #include <linux/writeback.h>
43 #include <linux/pagemap.h>
44
45 /*********************************
46 * statistics
47 **********************************/
48 /* Number of memory pages used by the compressed pool */
49 static u64 zswap_pool_pages;
50 /* The number of compressed pages currently stored in zswap */
51 static atomic_t zswap_stored_pages = ATOMIC_INIT(0);
52
53 /*
54  * The statistics below are not protected from concurrent access for
55  * performance reasons so they may not be a 100% accurate.  However,
56  * they do provide useful information on roughly how many times a
57  * certain event is occurring.
58 */
59
60 /* Pool limit was hit (see zswap_max_pool_percent) */
61 static u64 zswap_pool_limit_hit;
62 /* Pages written back when pool limit was reached */
63 static u64 zswap_written_back_pages;
64 /* Store failed due to a reclaim failure after pool limit was reached */
65 static u64 zswap_reject_reclaim_fail;
66 /* Compressed page was too big for the allocator to (optimally) store */
67 static u64 zswap_reject_compress_poor;
68 /* Store failed because underlying allocator could not get memory */
69 static u64 zswap_reject_alloc_fail;
70 /* Store failed because the entry metadata could not be allocated (rare) */
71 static u64 zswap_reject_kmemcache_fail;
72 /* Duplicate store was encountered (rare) */
73 static u64 zswap_duplicate_entry;
74
75 /*********************************
76 * tunables
77 **********************************/
78 /* Enable/disable zswap (disabled by default, fixed at boot for now) */
79 static bool zswap_enabled __read_mostly;
80 module_param_named(enabled, zswap_enabled, bool, 0);
81
82 /* Compressor to be used by zswap (fixed at boot for now) */
83 #define ZSWAP_COMPRESSOR_DEFAULT "lzo"
84 static char *zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
85 module_param_named(compressor, zswap_compressor, charp, 0);
86
87 /* The maximum percentage of memory that the compressed pool can occupy */
88 static unsigned int zswap_max_pool_percent = 20;
89 module_param_named(max_pool_percent,
90                         zswap_max_pool_percent, uint, 0644);
91
92 /*********************************
93 * compression functions
94 **********************************/
95 /* per-cpu compression transforms */
96 static struct crypto_comp * __percpu *zswap_comp_pcpu_tfms;
97
98 enum comp_op {
99         ZSWAP_COMPOP_COMPRESS,
100         ZSWAP_COMPOP_DECOMPRESS
101 };
102
103 static int zswap_comp_op(enum comp_op op, const u8 *src, unsigned int slen,
104                                 u8 *dst, unsigned int *dlen)
105 {
106         struct crypto_comp *tfm;
107         int ret;
108
109         tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, get_cpu());
110         switch (op) {
111         case ZSWAP_COMPOP_COMPRESS:
112                 ret = crypto_comp_compress(tfm, src, slen, dst, dlen);
113                 break;
114         case ZSWAP_COMPOP_DECOMPRESS:
115                 ret = crypto_comp_decompress(tfm, src, slen, dst, dlen);
116                 break;
117         default:
118                 ret = -EINVAL;
119         }
120
121         put_cpu();
122         return ret;
123 }
124
125 static int __init zswap_comp_init(void)
126 {
127         if (!crypto_has_comp(zswap_compressor, 0, 0)) {
128                 pr_info("%s compressor not available\n", zswap_compressor);
129                 /* fall back to default compressor */
130                 zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
131                 if (!crypto_has_comp(zswap_compressor, 0, 0))
132                         /* can't even load the default compressor */
133                         return -ENODEV;
134         }
135         pr_info("using %s compressor\n", zswap_compressor);
136
137         /* alloc percpu transforms */
138         zswap_comp_pcpu_tfms = alloc_percpu(struct crypto_comp *);
139         if (!zswap_comp_pcpu_tfms)
140                 return -ENOMEM;
141         return 0;
142 }
143
144 static void zswap_comp_exit(void)
145 {
146         /* free percpu transforms */
147         if (zswap_comp_pcpu_tfms)
148                 free_percpu(zswap_comp_pcpu_tfms);
149 }
150
151 /*********************************
152 * data structures
153 **********************************/
154 /*
155  * struct zswap_entry
156  *
157  * This structure contains the metadata for tracking a single compressed
158  * page within zswap.
159  *
160  * rbnode - links the entry into red-black tree for the appropriate swap type
161  * refcount - the number of outstanding reference to the entry. This is needed
162  *            to protect against premature freeing of the entry by code
163  *            concurent calls to load, invalidate, and writeback.  The lock
164  *            for the zswap_tree structure that contains the entry must
165  *            be held while changing the refcount.  Since the lock must
166  *            be held, there is no reason to also make refcount atomic.
167  * offset - the swap offset for the entry.  Index into the red-black tree.
168  * handle - zsmalloc allocation handle that stores the compressed page data
169  * length - the length in bytes of the compressed page data.  Needed during
170  *           decompression
171  */
172 struct zswap_entry {
173         struct rb_node rbnode;
174         pgoff_t offset;
175         int refcount;
176         unsigned int length;
177         unsigned long handle;
178 };
179
180 struct zswap_header {
181         swp_entry_t swpentry;
182 };
183
184 /*
185  * The tree lock in the zswap_tree struct protects a few things:
186  * - the rbtree
187  * - the refcount field of each entry in the tree
188  */
189 struct zswap_tree {
190         struct rb_root rbroot;
191         spinlock_t lock;
192         struct zbud_pool *pool;
193 };
194
195 static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
196
197 /*********************************
198 * zswap entry functions
199 **********************************/
200 static struct kmem_cache *zswap_entry_cache;
201
202 static int zswap_entry_cache_create(void)
203 {
204         zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
205         return (zswap_entry_cache == NULL);
206 }
207
208 static void zswap_entry_cache_destory(void)
209 {
210         kmem_cache_destroy(zswap_entry_cache);
211 }
212
213 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
214 {
215         struct zswap_entry *entry;
216         entry = kmem_cache_alloc(zswap_entry_cache, gfp);
217         if (!entry)
218                 return NULL;
219         entry->refcount = 1;
220         return entry;
221 }
222
223 static void zswap_entry_cache_free(struct zswap_entry *entry)
224 {
225         kmem_cache_free(zswap_entry_cache, entry);
226 }
227
228 /* caller must hold the tree lock */
229 static void zswap_entry_get(struct zswap_entry *entry)
230 {
231         entry->refcount++;
232 }
233
234 /* caller must hold the tree lock */
235 static int zswap_entry_put(struct zswap_entry *entry)
236 {
237         entry->refcount--;
238         return entry->refcount;
239 }
240
241 /*********************************
242 * rbtree functions
243 **********************************/
244 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
245 {
246         struct rb_node *node = root->rb_node;
247         struct zswap_entry *entry;
248
249         while (node) {
250                 entry = rb_entry(node, struct zswap_entry, rbnode);
251                 if (entry->offset > offset)
252                         node = node->rb_left;
253                 else if (entry->offset < offset)
254                         node = node->rb_right;
255                 else
256                         return entry;
257         }
258         return NULL;
259 }
260
261 /*
262  * In the case that a entry with the same offset is found, a pointer to
263  * the existing entry is stored in dupentry and the function returns -EEXIST
264  */
265 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
266                         struct zswap_entry **dupentry)
267 {
268         struct rb_node **link = &root->rb_node, *parent = NULL;
269         struct zswap_entry *myentry;
270
271         while (*link) {
272                 parent = *link;
273                 myentry = rb_entry(parent, struct zswap_entry, rbnode);
274                 if (myentry->offset > entry->offset)
275                         link = &(*link)->rb_left;
276                 else if (myentry->offset < entry->offset)
277                         link = &(*link)->rb_right;
278                 else {
279                         *dupentry = myentry;
280                         return -EEXIST;
281                 }
282         }
283         rb_link_node(&entry->rbnode, parent, link);
284         rb_insert_color(&entry->rbnode, root);
285         return 0;
286 }
287
288 /*********************************
289 * per-cpu code
290 **********************************/
291 static DEFINE_PER_CPU(u8 *, zswap_dstmem);
292
293 static int __zswap_cpu_notifier(unsigned long action, unsigned long cpu)
294 {
295         struct crypto_comp *tfm;
296         u8 *dst;
297
298         switch (action) {
299         case CPU_UP_PREPARE:
300                 tfm = crypto_alloc_comp(zswap_compressor, 0, 0);
301                 if (IS_ERR(tfm)) {
302                         pr_err("can't allocate compressor transform\n");
303                         return NOTIFY_BAD;
304                 }
305                 *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = tfm;
306                 dst = kmalloc(PAGE_SIZE * 2, GFP_KERNEL);
307                 if (!dst) {
308                         pr_err("can't allocate compressor buffer\n");
309                         crypto_free_comp(tfm);
310                         *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL;
311                         return NOTIFY_BAD;
312                 }
313                 per_cpu(zswap_dstmem, cpu) = dst;
314                 break;
315         case CPU_DEAD:
316         case CPU_UP_CANCELED:
317                 tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu);
318                 if (tfm) {
319                         crypto_free_comp(tfm);
320                         *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL;
321                 }
322                 dst = per_cpu(zswap_dstmem, cpu);
323                 kfree(dst);
324                 per_cpu(zswap_dstmem, cpu) = NULL;
325                 break;
326         default:
327                 break;
328         }
329         return NOTIFY_OK;
330 }
331
332 static int zswap_cpu_notifier(struct notifier_block *nb,
333                                 unsigned long action, void *pcpu)
334 {
335         unsigned long cpu = (unsigned long)pcpu;
336         return __zswap_cpu_notifier(action, cpu);
337 }
338
339 static struct notifier_block zswap_cpu_notifier_block = {
340         .notifier_call = zswap_cpu_notifier
341 };
342
343 static int zswap_cpu_init(void)
344 {
345         unsigned long cpu;
346
347         get_online_cpus();
348         for_each_online_cpu(cpu)
349                 if (__zswap_cpu_notifier(CPU_UP_PREPARE, cpu) != NOTIFY_OK)
350                         goto cleanup;
351         register_cpu_notifier(&zswap_cpu_notifier_block);
352         put_online_cpus();
353         return 0;
354
355 cleanup:
356         for_each_online_cpu(cpu)
357                 __zswap_cpu_notifier(CPU_UP_CANCELED, cpu);
358         put_online_cpus();
359         return -ENOMEM;
360 }
361
362 /*********************************
363 * helpers
364 **********************************/
365 static bool zswap_is_full(void)
366 {
367         return (totalram_pages * zswap_max_pool_percent / 100 <
368                 zswap_pool_pages);
369 }
370
371 /*
372  * Carries out the common pattern of freeing and entry's zsmalloc allocation,
373  * freeing the entry itself, and decrementing the number of stored pages.
374  */
375 static void zswap_free_entry(struct zswap_tree *tree, struct zswap_entry *entry)
376 {
377         zbud_free(tree->pool, entry->handle);
378         zswap_entry_cache_free(entry);
379         atomic_dec(&zswap_stored_pages);
380         zswap_pool_pages = zbud_get_pool_size(tree->pool);
381 }
382
383 /*********************************
384 * writeback code
385 **********************************/
386 /* return enum for zswap_get_swap_cache_page */
387 enum zswap_get_swap_ret {
388         ZSWAP_SWAPCACHE_NEW,
389         ZSWAP_SWAPCACHE_EXIST,
390         ZSWAP_SWAPCACHE_NOMEM
391 };
392
393 /*
394  * zswap_get_swap_cache_page
395  *
396  * This is an adaption of read_swap_cache_async()
397  *
398  * This function tries to find a page with the given swap entry
399  * in the swapper_space address space (the swap cache).  If the page
400  * is found, it is returned in retpage.  Otherwise, a page is allocated,
401  * added to the swap cache, and returned in retpage.
402  *
403  * If success, the swap cache page is returned in retpage
404  * Returns 0 if page was already in the swap cache, page is not locked
405  * Returns 1 if the new page needs to be populated, page is locked
406  * Returns <0 on error
407  */
408 static int zswap_get_swap_cache_page(swp_entry_t entry,
409                                 struct page **retpage)
410 {
411         struct page *found_page, *new_page = NULL;
412         struct address_space *swapper_space = swap_address_space(entry);
413         int err;
414
415         *retpage = NULL;
416         do {
417                 /*
418                  * First check the swap cache.  Since this is normally
419                  * called after lookup_swap_cache() failed, re-calling
420                  * that would confuse statistics.
421                  */
422                 found_page = find_get_page(swapper_space, entry.val);
423                 if (found_page)
424                         break;
425
426                 /*
427                  * Get a new page to read into from swap.
428                  */
429                 if (!new_page) {
430                         new_page = alloc_page(GFP_KERNEL);
431                         if (!new_page)
432                                 break; /* Out of memory */
433                 }
434
435                 /*
436                  * call radix_tree_preload() while we can wait.
437                  */
438                 err = radix_tree_preload(GFP_KERNEL);
439                 if (err)
440                         break;
441
442                 /*
443                  * Swap entry may have been freed since our caller observed it.
444                  */
445                 err = swapcache_prepare(entry);
446                 if (err == -EEXIST) { /* seems racy */
447                         radix_tree_preload_end();
448                         continue;
449                 }
450                 if (err) { /* swp entry is obsolete ? */
451                         radix_tree_preload_end();
452                         break;
453                 }
454
455                 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
456                 __set_page_locked(new_page);
457                 SetPageSwapBacked(new_page);
458                 err = __add_to_swap_cache(new_page, entry);
459                 if (likely(!err)) {
460                         radix_tree_preload_end();
461                         lru_cache_add_anon(new_page);
462                         *retpage = new_page;
463                         return ZSWAP_SWAPCACHE_NEW;
464                 }
465                 radix_tree_preload_end();
466                 ClearPageSwapBacked(new_page);
467                 __clear_page_locked(new_page);
468                 /*
469                  * add_to_swap_cache() doesn't return -EEXIST, so we can safely
470                  * clear SWAP_HAS_CACHE flag.
471                  */
472                 swapcache_free(entry, NULL);
473         } while (err != -ENOMEM);
474
475         if (new_page)
476                 page_cache_release(new_page);
477         if (!found_page)
478                 return ZSWAP_SWAPCACHE_NOMEM;
479         *retpage = found_page;
480         return ZSWAP_SWAPCACHE_EXIST;
481 }
482
483 /*
484  * Attempts to free an entry by adding a page to the swap cache,
485  * decompressing the entry data into the page, and issuing a
486  * bio write to write the page back to the swap device.
487  *
488  * This can be thought of as a "resumed writeback" of the page
489  * to the swap device.  We are basically resuming the same swap
490  * writeback path that was intercepted with the frontswap_store()
491  * in the first place.  After the page has been decompressed into
492  * the swap cache, the compressed version stored by zswap can be
493  * freed.
494  */
495 static int zswap_writeback_entry(struct zbud_pool *pool, unsigned long handle)
496 {
497         struct zswap_header *zhdr;
498         swp_entry_t swpentry;
499         struct zswap_tree *tree;
500         pgoff_t offset;
501         struct zswap_entry *entry;
502         struct page *page;
503         u8 *src, *dst;
504         unsigned int dlen;
505         int ret, refcount;
506         struct writeback_control wbc = {
507                 .sync_mode = WB_SYNC_NONE,
508         };
509
510         /* extract swpentry from data */
511         zhdr = zbud_map(pool, handle);
512         swpentry = zhdr->swpentry; /* here */
513         zbud_unmap(pool, handle);
514         tree = zswap_trees[swp_type(swpentry)];
515         offset = swp_offset(swpentry);
516         BUG_ON(pool != tree->pool);
517
518         /* find and ref zswap entry */
519         spin_lock(&tree->lock);
520         entry = zswap_rb_search(&tree->rbroot, offset);
521         if (!entry) {
522                 /* entry was invalidated */
523                 spin_unlock(&tree->lock);
524                 return 0;
525         }
526         zswap_entry_get(entry);
527         spin_unlock(&tree->lock);
528         BUG_ON(offset != entry->offset);
529
530         /* try to allocate swap cache page */
531         switch (zswap_get_swap_cache_page(swpentry, &page)) {
532         case ZSWAP_SWAPCACHE_NOMEM: /* no memory */
533                 ret = -ENOMEM;
534                 goto fail;
535
536         case ZSWAP_SWAPCACHE_EXIST: /* page is unlocked */
537                 /* page is already in the swap cache, ignore for now */
538                 page_cache_release(page);
539                 ret = -EEXIST;
540                 goto fail;
541
542         case ZSWAP_SWAPCACHE_NEW: /* page is locked */
543                 /* decompress */
544                 dlen = PAGE_SIZE;
545                 src = (u8 *)zbud_map(tree->pool, entry->handle) +
546                         sizeof(struct zswap_header);
547                 dst = kmap_atomic(page);
548                 ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src,
549                                 entry->length, dst, &dlen);
550                 kunmap_atomic(dst);
551                 zbud_unmap(tree->pool, entry->handle);
552                 BUG_ON(ret);
553                 BUG_ON(dlen != PAGE_SIZE);
554
555                 /* page is up to date */
556                 SetPageUptodate(page);
557         }
558
559         /* start writeback */
560         __swap_writepage(page, &wbc, end_swap_bio_write);
561         page_cache_release(page);
562         zswap_written_back_pages++;
563
564         spin_lock(&tree->lock);
565
566         /* drop local reference */
567         zswap_entry_put(entry);
568         /* drop the initial reference from entry creation */
569         refcount = zswap_entry_put(entry);
570
571         /*
572          * There are three possible values for refcount here:
573          * (1) refcount is 1, load is in progress, unlink from rbtree,
574          *     load will free
575          * (2) refcount is 0, (normal case) entry is valid,
576          *     remove from rbtree and free entry
577          * (3) refcount is -1, invalidate happened during writeback,
578          *     free entry
579          */
580         if (refcount >= 0) {
581                 /* no invalidate yet, remove from rbtree */
582                 rb_erase(&entry->rbnode, &tree->rbroot);
583         }
584         spin_unlock(&tree->lock);
585         if (refcount <= 0) {
586                 /* free the entry */
587                 zswap_free_entry(tree, entry);
588                 return 0;
589         }
590         return -EAGAIN;
591
592 fail:
593         spin_lock(&tree->lock);
594         zswap_entry_put(entry);
595         spin_unlock(&tree->lock);
596         return ret;
597 }
598
599 /*********************************
600 * frontswap hooks
601 **********************************/
602 /* attempts to compress and store an single page */
603 static int zswap_frontswap_store(unsigned type, pgoff_t offset,
604                                 struct page *page)
605 {
606         struct zswap_tree *tree = zswap_trees[type];
607         struct zswap_entry *entry, *dupentry;
608         int ret;
609         unsigned int dlen = PAGE_SIZE, len;
610         unsigned long handle;
611         char *buf;
612         u8 *src, *dst;
613         struct zswap_header *zhdr;
614
615         if (!tree) {
616                 ret = -ENODEV;
617                 goto reject;
618         }
619
620         /* reclaim space if needed */
621         if (zswap_is_full()) {
622                 zswap_pool_limit_hit++;
623                 if (zbud_reclaim_page(tree->pool, 8)) {
624                         zswap_reject_reclaim_fail++;
625                         ret = -ENOMEM;
626                         goto reject;
627                 }
628         }
629
630         /* allocate entry */
631         entry = zswap_entry_cache_alloc(GFP_KERNEL);
632         if (!entry) {
633                 zswap_reject_kmemcache_fail++;
634                 ret = -ENOMEM;
635                 goto reject;
636         }
637
638         /* compress */
639         dst = get_cpu_var(zswap_dstmem);
640         src = kmap_atomic(page);
641         ret = zswap_comp_op(ZSWAP_COMPOP_COMPRESS, src, PAGE_SIZE, dst, &dlen);
642         kunmap_atomic(src);
643         if (ret) {
644                 ret = -EINVAL;
645                 goto freepage;
646         }
647
648         /* store */
649         len = dlen + sizeof(struct zswap_header);
650         ret = zbud_alloc(tree->pool, len, __GFP_NORETRY | __GFP_NOWARN,
651                 &handle);
652         if (ret == -ENOSPC) {
653                 zswap_reject_compress_poor++;
654                 goto freepage;
655         }
656         if (ret) {
657                 zswap_reject_alloc_fail++;
658                 goto freepage;
659         }
660         zhdr = zbud_map(tree->pool, handle);
661         zhdr->swpentry = swp_entry(type, offset);
662         buf = (u8 *)(zhdr + 1);
663         memcpy(buf, dst, dlen);
664         zbud_unmap(tree->pool, handle);
665         put_cpu_var(zswap_dstmem);
666
667         /* populate entry */
668         entry->offset = offset;
669         entry->handle = handle;
670         entry->length = dlen;
671
672         /* map */
673         spin_lock(&tree->lock);
674         do {
675                 ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry);
676                 if (ret == -EEXIST) {
677                         zswap_duplicate_entry++;
678                         /* remove from rbtree */
679                         rb_erase(&dupentry->rbnode, &tree->rbroot);
680                         if (!zswap_entry_put(dupentry)) {
681                                 /* free */
682                                 zswap_free_entry(tree, dupentry);
683                         }
684                 }
685         } while (ret == -EEXIST);
686         spin_unlock(&tree->lock);
687
688         /* update stats */
689         atomic_inc(&zswap_stored_pages);
690         zswap_pool_pages = zbud_get_pool_size(tree->pool);
691
692         return 0;
693
694 freepage:
695         put_cpu_var(zswap_dstmem);
696         zswap_entry_cache_free(entry);
697 reject:
698         return ret;
699 }
700
701 /*
702  * returns 0 if the page was successfully decompressed
703  * return -1 on entry not found or error
704 */
705 static int zswap_frontswap_load(unsigned type, pgoff_t offset,
706                                 struct page *page)
707 {
708         struct zswap_tree *tree = zswap_trees[type];
709         struct zswap_entry *entry;
710         u8 *src, *dst;
711         unsigned int dlen;
712         int refcount, ret;
713
714         /* find */
715         spin_lock(&tree->lock);
716         entry = zswap_rb_search(&tree->rbroot, offset);
717         if (!entry) {
718                 /* entry was written back */
719                 spin_unlock(&tree->lock);
720                 return -1;
721         }
722         zswap_entry_get(entry);
723         spin_unlock(&tree->lock);
724
725         /* decompress */
726         dlen = PAGE_SIZE;
727         src = (u8 *)zbud_map(tree->pool, entry->handle) +
728                         sizeof(struct zswap_header);
729         dst = kmap_atomic(page);
730         ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src, entry->length,
731                 dst, &dlen);
732         kunmap_atomic(dst);
733         zbud_unmap(tree->pool, entry->handle);
734         BUG_ON(ret);
735
736         spin_lock(&tree->lock);
737         refcount = zswap_entry_put(entry);
738         if (likely(refcount)) {
739                 spin_unlock(&tree->lock);
740                 return 0;
741         }
742         spin_unlock(&tree->lock);
743
744         /*
745          * We don't have to unlink from the rbtree because
746          * zswap_writeback_entry() or zswap_frontswap_invalidate page()
747          * has already done this for us if we are the last reference.
748          */
749         /* free */
750
751         zswap_free_entry(tree, entry);
752
753         return 0;
754 }
755
756 /* frees an entry in zswap */
757 static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
758 {
759         struct zswap_tree *tree = zswap_trees[type];
760         struct zswap_entry *entry;
761         int refcount;
762
763         /* find */
764         spin_lock(&tree->lock);
765         entry = zswap_rb_search(&tree->rbroot, offset);
766         if (!entry) {
767                 /* entry was written back */
768                 spin_unlock(&tree->lock);
769                 return;
770         }
771
772         /* remove from rbtree */
773         rb_erase(&entry->rbnode, &tree->rbroot);
774
775         /* drop the initial reference from entry creation */
776         refcount = zswap_entry_put(entry);
777
778         spin_unlock(&tree->lock);
779
780         if (refcount) {
781                 /* writeback in progress, writeback will free */
782                 return;
783         }
784
785         /* free */
786         zswap_free_entry(tree, entry);
787 }
788
789 /* frees all zswap entries for the given swap type */
790 static void zswap_frontswap_invalidate_area(unsigned type)
791 {
792         struct zswap_tree *tree = zswap_trees[type];
793         struct rb_node *node;
794         struct zswap_entry *entry;
795
796         if (!tree)
797                 return;
798
799         /* walk the tree and free everything */
800         spin_lock(&tree->lock);
801         /*
802          * TODO: Even though this code should not be executed because
803          * the try_to_unuse() in swapoff should have emptied the tree,
804          * it is very wasteful to rebalance the tree after every
805          * removal when we are freeing the whole tree.
806          *
807          * If post-order traversal code is ever added to the rbtree
808          * implementation, it should be used here.
809          */
810         while ((node = rb_first(&tree->rbroot))) {
811                 entry = rb_entry(node, struct zswap_entry, rbnode);
812                 rb_erase(&entry->rbnode, &tree->rbroot);
813                 zbud_free(tree->pool, entry->handle);
814                 zswap_entry_cache_free(entry);
815                 atomic_dec(&zswap_stored_pages);
816         }
817         tree->rbroot = RB_ROOT;
818         spin_unlock(&tree->lock);
819 }
820
821 static struct zbud_ops zswap_zbud_ops = {
822         .evict = zswap_writeback_entry
823 };
824
825 static void zswap_frontswap_init(unsigned type)
826 {
827         struct zswap_tree *tree;
828
829         tree = kzalloc(sizeof(struct zswap_tree), GFP_KERNEL);
830         if (!tree)
831                 goto err;
832         tree->pool = zbud_create_pool(GFP_KERNEL, &zswap_zbud_ops);
833         if (!tree->pool)
834                 goto freetree;
835         tree->rbroot = RB_ROOT;
836         spin_lock_init(&tree->lock);
837         zswap_trees[type] = tree;
838         return;
839
840 freetree:
841         kfree(tree);
842 err:
843         pr_err("alloc failed, zswap disabled for swap type %d\n", type);
844 }
845
846 static struct frontswap_ops zswap_frontswap_ops = {
847         .store = zswap_frontswap_store,
848         .load = zswap_frontswap_load,
849         .invalidate_page = zswap_frontswap_invalidate_page,
850         .invalidate_area = zswap_frontswap_invalidate_area,
851         .init = zswap_frontswap_init
852 };
853
854 /*********************************
855 * debugfs functions
856 **********************************/
857 #ifdef CONFIG_DEBUG_FS
858 #include <linux/debugfs.h>
859
860 static struct dentry *zswap_debugfs_root;
861
862 static int __init zswap_debugfs_init(void)
863 {
864         if (!debugfs_initialized())
865                 return -ENODEV;
866
867         zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
868         if (!zswap_debugfs_root)
869                 return -ENOMEM;
870
871         debugfs_create_u64("pool_limit_hit", S_IRUGO,
872                         zswap_debugfs_root, &zswap_pool_limit_hit);
873         debugfs_create_u64("reject_reclaim_fail", S_IRUGO,
874                         zswap_debugfs_root, &zswap_reject_reclaim_fail);
875         debugfs_create_u64("reject_alloc_fail", S_IRUGO,
876                         zswap_debugfs_root, &zswap_reject_alloc_fail);
877         debugfs_create_u64("reject_kmemcache_fail", S_IRUGO,
878                         zswap_debugfs_root, &zswap_reject_kmemcache_fail);
879         debugfs_create_u64("reject_compress_poor", S_IRUGO,
880                         zswap_debugfs_root, &zswap_reject_compress_poor);
881         debugfs_create_u64("written_back_pages", S_IRUGO,
882                         zswap_debugfs_root, &zswap_written_back_pages);
883         debugfs_create_u64("duplicate_entry", S_IRUGO,
884                         zswap_debugfs_root, &zswap_duplicate_entry);
885         debugfs_create_u64("pool_pages", S_IRUGO,
886                         zswap_debugfs_root, &zswap_pool_pages);
887         debugfs_create_atomic_t("stored_pages", S_IRUGO,
888                         zswap_debugfs_root, &zswap_stored_pages);
889
890         return 0;
891 }
892
893 static void __exit zswap_debugfs_exit(void)
894 {
895         debugfs_remove_recursive(zswap_debugfs_root);
896 }
897 #else
898 static int __init zswap_debugfs_init(void)
899 {
900         return 0;
901 }
902
903 static void __exit zswap_debugfs_exit(void) { }
904 #endif
905
906 /*********************************
907 * module init and exit
908 **********************************/
909 static int __init init_zswap(void)
910 {
911         if (!zswap_enabled)
912                 return 0;
913
914         pr_info("loading zswap\n");
915         if (zswap_entry_cache_create()) {
916                 pr_err("entry cache creation failed\n");
917                 goto error;
918         }
919         if (zswap_comp_init()) {
920                 pr_err("compressor initialization failed\n");
921                 goto compfail;
922         }
923         if (zswap_cpu_init()) {
924                 pr_err("per-cpu initialization failed\n");
925                 goto pcpufail;
926         }
927         frontswap_register_ops(&zswap_frontswap_ops);
928         if (zswap_debugfs_init())
929                 pr_warn("debugfs initialization failed\n");
930         return 0;
931 pcpufail:
932         zswap_comp_exit();
933 compfail:
934         zswap_entry_cache_destory();
935 error:
936         return -ENOMEM;
937 }
938 /* must be late so crypto has time to come up */
939 late_initcall(init_zswap);
940
941 MODULE_LICENSE("GPL");
942 MODULE_AUTHOR("Seth Jennings <sjenning@linux.vnet.ibm.com>");
943 MODULE_DESCRIPTION("Compressed cache for swap pages");