2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->index: links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
23 * page->page_type: first object offset in a subpage of zspage
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/sched.h>
43 #include <linux/bitops.h>
44 #include <linux/errno.h>
45 #include <linux/highmem.h>
46 #include <linux/string.h>
47 #include <linux/slab.h>
48 #include <linux/pgtable.h>
49 #include <asm/tlbflush.h>
50 #include <linux/cpumask.h>
51 #include <linux/cpu.h>
52 #include <linux/vmalloc.h>
53 #include <linux/preempt.h>
54 #include <linux/spinlock.h>
55 #include <linux/shrinker.h>
56 #include <linux/types.h>
57 #include <linux/debugfs.h>
58 #include <linux/zsmalloc.h>
59 #include <linux/zpool.h>
60 #include <linux/migrate.h>
61 #include <linux/wait.h>
62 #include <linux/pagemap.h>
64 #include <linux/local_lock.h>
66 #define ZSPAGE_MAGIC 0x58
69 * This must be power of 2 and greater than or equal to sizeof(link_free).
70 * These two conditions ensure that any 'struct link_free' itself doesn't
71 * span more than 1 page which avoids complex case of mapping 2 pages simply
72 * to restore link_free pointer values.
77 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
78 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
80 #define ZS_MAX_ZSPAGE_ORDER 2
81 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
83 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
86 * Object location (<PFN>, <obj_idx>) is encoded as
87 * a single (unsigned long) handle value.
89 * Note that object index <obj_idx> starts from 0.
91 * This is made more complicated by various memory models and PAE.
94 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
95 #ifdef MAX_PHYSMEM_BITS
96 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
99 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
102 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
106 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
109 * Head in allocated object should have OBJ_ALLOCATED_TAG
110 * to identify the object was allocated or not.
111 * It's okay to add the status bit in the least bit because
112 * header keeps handle which is 4byte-aligned address so we
113 * have room for two bit at least.
115 #define OBJ_ALLOCATED_TAG 1
116 #define OBJ_TAG_BITS 1
117 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
118 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
121 #define FULLNESS_BITS 2
123 #define ISOLATED_BITS 3
124 #define MAGIC_VAL_BITS 8
126 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
127 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
128 #define ZS_MIN_ALLOC_SIZE \
129 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
130 /* each chunk includes extra space to keep handle */
131 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
134 * On systems with 4K page size, this gives 255 size classes! There is a
136 * - Large number of size classes is potentially wasteful as free page are
137 * spread across these classes
138 * - Small number of size classes causes large internal fragmentation
139 * - Probably its better to use specific size classes (empirically
140 * determined). NOTE: all those class sizes must be set as multiple of
141 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
143 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
146 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
147 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
148 ZS_SIZE_CLASS_DELTA) + 1)
150 enum fullness_group {
158 enum class_stat_type {
168 struct zs_size_stat {
169 unsigned long objs[NR_ZS_STAT_TYPE];
172 #ifdef CONFIG_ZSMALLOC_STAT
173 static struct dentry *zs_stat_root;
177 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
179 * n = number of allocated objects
180 * N = total number of objects zspage can store
181 * f = fullness_threshold_frac
183 * Similarly, we assign zspage to:
184 * ZS_ALMOST_FULL when n > N / f
185 * ZS_EMPTY when n == 0
186 * ZS_FULL when n == N
188 * (see: fix_fullness_group())
190 static const int fullness_threshold_frac = 4;
191 static size_t huge_class_size;
194 struct list_head fullness_list[NR_ZS_FULLNESS];
196 * Size of objects stored in this class. Must be multiple
201 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
202 int pages_per_zspage;
205 struct zs_size_stat stats;
209 * Placed within free objects to form a singly linked list.
210 * For every zspage, zspage->freeobj gives head of this list.
212 * This must be power of 2 and less than or equal to ZS_ALIGN
218 * It's valid for non-allocated object
222 * Handle of allocated object.
224 unsigned long handle;
231 struct size_class *size_class[ZS_SIZE_CLASSES];
232 struct kmem_cache *handle_cachep;
233 struct kmem_cache *zspage_cachep;
235 atomic_long_t pages_allocated;
237 struct zs_pool_stats stats;
239 /* Compact classes */
240 struct shrinker shrinker;
242 #ifdef CONFIG_ZSMALLOC_STAT
243 struct dentry *stat_dentry;
245 #ifdef CONFIG_COMPACTION
246 struct work_struct free_work;
253 unsigned int huge:HUGE_BITS;
254 unsigned int fullness:FULLNESS_BITS;
255 unsigned int class:CLASS_BITS + 1;
256 unsigned int isolated:ISOLATED_BITS;
257 unsigned int magic:MAGIC_VAL_BITS;
260 unsigned int freeobj;
261 struct page *first_page;
262 struct list_head list; /* fullness list */
263 struct zs_pool *pool;
264 #ifdef CONFIG_COMPACTION
269 struct mapping_area {
271 char *vm_buf; /* copy buffer for objects that span pages */
272 char *vm_addr; /* address of kmap_atomic()'ed pages */
273 enum zs_mapmode vm_mm; /* mapping mode */
276 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
277 static void SetZsHugePage(struct zspage *zspage)
282 static bool ZsHugePage(struct zspage *zspage)
287 #ifdef CONFIG_COMPACTION
288 static void migrate_lock_init(struct zspage *zspage);
289 static void migrate_read_lock(struct zspage *zspage);
290 static void migrate_read_unlock(struct zspage *zspage);
291 static void migrate_write_lock(struct zspage *zspage);
292 static void migrate_write_lock_nested(struct zspage *zspage);
293 static void migrate_write_unlock(struct zspage *zspage);
294 static void kick_deferred_free(struct zs_pool *pool);
295 static void init_deferred_free(struct zs_pool *pool);
296 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
298 static void migrate_lock_init(struct zspage *zspage) {}
299 static void migrate_read_lock(struct zspage *zspage) {}
300 static void migrate_read_unlock(struct zspage *zspage) {}
301 static void migrate_write_lock(struct zspage *zspage) {}
302 static void migrate_write_lock_nested(struct zspage *zspage) {}
303 static void migrate_write_unlock(struct zspage *zspage) {}
304 static void kick_deferred_free(struct zs_pool *pool) {}
305 static void init_deferred_free(struct zs_pool *pool) {}
306 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
309 static int create_cache(struct zs_pool *pool)
311 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
313 if (!pool->handle_cachep)
316 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
318 if (!pool->zspage_cachep) {
319 kmem_cache_destroy(pool->handle_cachep);
320 pool->handle_cachep = NULL;
327 static void destroy_cache(struct zs_pool *pool)
329 kmem_cache_destroy(pool->handle_cachep);
330 kmem_cache_destroy(pool->zspage_cachep);
333 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
335 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
336 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
339 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
341 kmem_cache_free(pool->handle_cachep, (void *)handle);
344 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
346 return kmem_cache_zalloc(pool->zspage_cachep,
347 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
350 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
352 kmem_cache_free(pool->zspage_cachep, zspage);
355 /* pool->lock(which owns the handle) synchronizes races */
356 static void record_obj(unsigned long handle, unsigned long obj)
358 *(unsigned long *)handle = obj;
365 static void *zs_zpool_create(const char *name, gfp_t gfp,
366 const struct zpool_ops *zpool_ops,
370 * Ignore global gfp flags: zs_malloc() may be invoked from
371 * different contexts and its caller must provide a valid
374 return zs_create_pool(name);
377 static void zs_zpool_destroy(void *pool)
379 zs_destroy_pool(pool);
382 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
383 unsigned long *handle)
385 *handle = zs_malloc(pool, size, gfp);
387 if (IS_ERR_VALUE(*handle))
388 return PTR_ERR((void *)*handle);
391 static void zs_zpool_free(void *pool, unsigned long handle)
393 zs_free(pool, handle);
396 static void *zs_zpool_map(void *pool, unsigned long handle,
397 enum zpool_mapmode mm)
399 enum zs_mapmode zs_mm;
414 return zs_map_object(pool, handle, zs_mm);
416 static void zs_zpool_unmap(void *pool, unsigned long handle)
418 zs_unmap_object(pool, handle);
421 static u64 zs_zpool_total_size(void *pool)
423 return zs_get_total_pages(pool) << PAGE_SHIFT;
426 static struct zpool_driver zs_zpool_driver = {
428 .owner = THIS_MODULE,
429 .create = zs_zpool_create,
430 .destroy = zs_zpool_destroy,
431 .malloc_support_movable = true,
432 .malloc = zs_zpool_malloc,
433 .free = zs_zpool_free,
435 .unmap = zs_zpool_unmap,
436 .total_size = zs_zpool_total_size,
439 MODULE_ALIAS("zpool-zsmalloc");
440 #endif /* CONFIG_ZPOOL */
442 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
443 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
444 .lock = INIT_LOCAL_LOCK(lock),
447 static __maybe_unused int is_first_page(struct page *page)
449 return PagePrivate(page);
452 /* Protected by pool->lock */
453 static inline int get_zspage_inuse(struct zspage *zspage)
455 return zspage->inuse;
459 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
461 zspage->inuse += val;
464 static inline struct page *get_first_page(struct zspage *zspage)
466 struct page *first_page = zspage->first_page;
468 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
472 static inline unsigned int get_first_obj_offset(struct page *page)
474 return page->page_type;
477 static inline void set_first_obj_offset(struct page *page, unsigned int offset)
479 page->page_type = offset;
482 static inline unsigned int get_freeobj(struct zspage *zspage)
484 return zspage->freeobj;
487 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
489 zspage->freeobj = obj;
492 static void get_zspage_mapping(struct zspage *zspage,
493 unsigned int *class_idx,
494 enum fullness_group *fullness)
496 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
498 *fullness = zspage->fullness;
499 *class_idx = zspage->class;
502 static struct size_class *zspage_class(struct zs_pool *pool,
503 struct zspage *zspage)
505 return pool->size_class[zspage->class];
508 static void set_zspage_mapping(struct zspage *zspage,
509 unsigned int class_idx,
510 enum fullness_group fullness)
512 zspage->class = class_idx;
513 zspage->fullness = fullness;
517 * zsmalloc divides the pool into various size classes where each
518 * class maintains a list of zspages where each zspage is divided
519 * into equal sized chunks. Each allocation falls into one of these
520 * classes depending on its size. This function returns index of the
521 * size class which has chunk size big enough to hold the given size.
523 static int get_size_class_index(int size)
527 if (likely(size > ZS_MIN_ALLOC_SIZE))
528 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
529 ZS_SIZE_CLASS_DELTA);
531 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
534 /* type can be of enum type class_stat_type or fullness_group */
535 static inline void class_stat_inc(struct size_class *class,
536 int type, unsigned long cnt)
538 class->stats.objs[type] += cnt;
541 /* type can be of enum type class_stat_type or fullness_group */
542 static inline void class_stat_dec(struct size_class *class,
543 int type, unsigned long cnt)
545 class->stats.objs[type] -= cnt;
548 /* type can be of enum type class_stat_type or fullness_group */
549 static inline unsigned long zs_stat_get(struct size_class *class,
552 return class->stats.objs[type];
555 #ifdef CONFIG_ZSMALLOC_STAT
557 static void __init zs_stat_init(void)
559 if (!debugfs_initialized()) {
560 pr_warn("debugfs not available, stat dir not created\n");
564 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
567 static void __exit zs_stat_exit(void)
569 debugfs_remove_recursive(zs_stat_root);
572 static unsigned long zs_can_compact(struct size_class *class);
574 static int zs_stats_size_show(struct seq_file *s, void *v)
577 struct zs_pool *pool = s->private;
578 struct size_class *class;
580 unsigned long class_almost_full, class_almost_empty;
581 unsigned long obj_allocated, obj_used, pages_used, freeable;
582 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
583 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
584 unsigned long total_freeable = 0;
586 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
587 "class", "size", "almost_full", "almost_empty",
588 "obj_allocated", "obj_used", "pages_used",
589 "pages_per_zspage", "freeable");
591 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
592 class = pool->size_class[i];
594 if (class->index != i)
597 spin_lock(&pool->lock);
598 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
599 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
600 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
601 obj_used = zs_stat_get(class, OBJ_USED);
602 freeable = zs_can_compact(class);
603 spin_unlock(&pool->lock);
605 objs_per_zspage = class->objs_per_zspage;
606 pages_used = obj_allocated / objs_per_zspage *
607 class->pages_per_zspage;
609 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
610 " %10lu %10lu %16d %8lu\n",
611 i, class->size, class_almost_full, class_almost_empty,
612 obj_allocated, obj_used, pages_used,
613 class->pages_per_zspage, freeable);
615 total_class_almost_full += class_almost_full;
616 total_class_almost_empty += class_almost_empty;
617 total_objs += obj_allocated;
618 total_used_objs += obj_used;
619 total_pages += pages_used;
620 total_freeable += freeable;
624 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
625 "Total", "", total_class_almost_full,
626 total_class_almost_empty, total_objs,
627 total_used_objs, total_pages, "", total_freeable);
631 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
633 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
636 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
640 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
642 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
643 &zs_stats_size_fops);
646 static void zs_pool_stat_destroy(struct zs_pool *pool)
648 debugfs_remove_recursive(pool->stat_dentry);
651 #else /* CONFIG_ZSMALLOC_STAT */
652 static void __init zs_stat_init(void)
656 static void __exit zs_stat_exit(void)
660 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
664 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
671 * For each size class, zspages are divided into different groups
672 * depending on how "full" they are. This was done so that we could
673 * easily find empty or nearly empty zspages when we try to shrink
674 * the pool (not yet implemented). This function returns fullness
675 * status of the given page.
677 static enum fullness_group get_fullness_group(struct size_class *class,
678 struct zspage *zspage)
680 int inuse, objs_per_zspage;
681 enum fullness_group fg;
683 inuse = get_zspage_inuse(zspage);
684 objs_per_zspage = class->objs_per_zspage;
688 else if (inuse == objs_per_zspage)
690 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
691 fg = ZS_ALMOST_EMPTY;
699 * Each size class maintains various freelists and zspages are assigned
700 * to one of these freelists based on the number of live objects they
701 * have. This functions inserts the given zspage into the freelist
702 * identified by <class, fullness_group>.
704 static void insert_zspage(struct size_class *class,
705 struct zspage *zspage,
706 enum fullness_group fullness)
710 class_stat_inc(class, fullness, 1);
711 head = list_first_entry_or_null(&class->fullness_list[fullness],
712 struct zspage, list);
714 * We want to see more ZS_FULL pages and less almost empty/full.
715 * Put pages with higher ->inuse first.
717 if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
718 list_add(&zspage->list, &head->list);
720 list_add(&zspage->list, &class->fullness_list[fullness]);
724 * This function removes the given zspage from the freelist identified
725 * by <class, fullness_group>.
727 static void remove_zspage(struct size_class *class,
728 struct zspage *zspage,
729 enum fullness_group fullness)
731 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
733 list_del_init(&zspage->list);
734 class_stat_dec(class, fullness, 1);
738 * Each size class maintains zspages in different fullness groups depending
739 * on the number of live objects they contain. When allocating or freeing
740 * objects, the fullness status of the page can change, say, from ALMOST_FULL
741 * to ALMOST_EMPTY when freeing an object. This function checks if such
742 * a status change has occurred for the given page and accordingly moves the
743 * page from the freelist of the old fullness group to that of the new
746 static enum fullness_group fix_fullness_group(struct size_class *class,
747 struct zspage *zspage)
750 enum fullness_group currfg, newfg;
752 get_zspage_mapping(zspage, &class_idx, &currfg);
753 newfg = get_fullness_group(class, zspage);
757 remove_zspage(class, zspage, currfg);
758 insert_zspage(class, zspage, newfg);
759 set_zspage_mapping(zspage, class_idx, newfg);
765 * We have to decide on how many pages to link together
766 * to form a zspage for each size class. This is important
767 * to reduce wastage due to unusable space left at end of
768 * each zspage which is given as:
769 * wastage = Zp % class_size
770 * usage = Zp - wastage
771 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
773 * For example, for size class of 3/8 * PAGE_SIZE, we should
774 * link together 3 PAGE_SIZE sized pages to form a zspage
775 * since then we can perfectly fit in 8 such objects.
777 static int get_pages_per_zspage(int class_size)
779 int i, max_usedpc = 0;
780 /* zspage order which gives maximum used size per KB */
781 int max_usedpc_order = 1;
783 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
787 zspage_size = i * PAGE_SIZE;
788 waste = zspage_size % class_size;
789 usedpc = (zspage_size - waste) * 100 / zspage_size;
791 if (usedpc > max_usedpc) {
793 max_usedpc_order = i;
797 return max_usedpc_order;
800 static struct zspage *get_zspage(struct page *page)
802 struct zspage *zspage = (struct zspage *)page_private(page);
804 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
808 static struct page *get_next_page(struct page *page)
810 struct zspage *zspage = get_zspage(page);
812 if (unlikely(ZsHugePage(zspage)))
815 return (struct page *)page->index;
819 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
820 * @obj: the encoded object value
821 * @page: page object resides in zspage
822 * @obj_idx: object index
824 static void obj_to_location(unsigned long obj, struct page **page,
825 unsigned int *obj_idx)
827 obj >>= OBJ_TAG_BITS;
828 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
829 *obj_idx = (obj & OBJ_INDEX_MASK);
832 static void obj_to_page(unsigned long obj, struct page **page)
834 obj >>= OBJ_TAG_BITS;
835 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
839 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
840 * @page: page object resides in zspage
841 * @obj_idx: object index
843 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
847 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
848 obj |= obj_idx & OBJ_INDEX_MASK;
849 obj <<= OBJ_TAG_BITS;
854 static unsigned long handle_to_obj(unsigned long handle)
856 return *(unsigned long *)handle;
859 static bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
861 unsigned long handle;
862 struct zspage *zspage = get_zspage(page);
864 if (unlikely(ZsHugePage(zspage))) {
865 VM_BUG_ON_PAGE(!is_first_page(page), page);
866 handle = page->index;
868 handle = *(unsigned long *)obj;
870 if (!(handle & OBJ_ALLOCATED_TAG))
873 *phandle = handle & ~OBJ_ALLOCATED_TAG;
877 static void reset_page(struct page *page)
879 __ClearPageMovable(page);
880 ClearPagePrivate(page);
881 set_page_private(page, 0);
882 page_mapcount_reset(page);
886 static int trylock_zspage(struct zspage *zspage)
888 struct page *cursor, *fail;
890 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
891 get_next_page(cursor)) {
892 if (!trylock_page(cursor)) {
900 for (cursor = get_first_page(zspage); cursor != fail; cursor =
901 get_next_page(cursor))
907 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
908 struct zspage *zspage)
910 struct page *page, *next;
911 enum fullness_group fg;
912 unsigned int class_idx;
914 get_zspage_mapping(zspage, &class_idx, &fg);
916 assert_spin_locked(&pool->lock);
918 VM_BUG_ON(get_zspage_inuse(zspage));
919 VM_BUG_ON(fg != ZS_EMPTY);
921 next = page = get_first_page(zspage);
923 VM_BUG_ON_PAGE(!PageLocked(page), page);
924 next = get_next_page(page);
927 dec_zone_page_state(page, NR_ZSPAGES);
930 } while (page != NULL);
932 cache_free_zspage(pool, zspage);
934 class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
935 atomic_long_sub(class->pages_per_zspage,
936 &pool->pages_allocated);
939 static void free_zspage(struct zs_pool *pool, struct size_class *class,
940 struct zspage *zspage)
942 VM_BUG_ON(get_zspage_inuse(zspage));
943 VM_BUG_ON(list_empty(&zspage->list));
946 * Since zs_free couldn't be sleepable, this function cannot call
947 * lock_page. The page locks trylock_zspage got will be released
950 if (!trylock_zspage(zspage)) {
951 kick_deferred_free(pool);
955 remove_zspage(class, zspage, ZS_EMPTY);
956 __free_zspage(pool, class, zspage);
959 /* Initialize a newly allocated zspage */
960 static void init_zspage(struct size_class *class, struct zspage *zspage)
962 unsigned int freeobj = 1;
963 unsigned long off = 0;
964 struct page *page = get_first_page(zspage);
967 struct page *next_page;
968 struct link_free *link;
971 set_first_obj_offset(page, off);
973 vaddr = kmap_atomic(page);
974 link = (struct link_free *)vaddr + off / sizeof(*link);
976 while ((off += class->size) < PAGE_SIZE) {
977 link->next = freeobj++ << OBJ_TAG_BITS;
978 link += class->size / sizeof(*link);
982 * We now come to the last (full or partial) object on this
983 * page, which must point to the first object on the next
986 next_page = get_next_page(page);
988 link->next = freeobj++ << OBJ_TAG_BITS;
991 * Reset OBJ_TAG_BITS bit to last link to tell
992 * whether it's allocated object or not.
994 link->next = -1UL << OBJ_TAG_BITS;
996 kunmap_atomic(vaddr);
1001 set_freeobj(zspage, 0);
1004 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1005 struct page *pages[])
1009 struct page *prev_page = NULL;
1010 int nr_pages = class->pages_per_zspage;
1013 * Allocate individual pages and link them together as:
1014 * 1. all pages are linked together using page->index
1015 * 2. each sub-page point to zspage using page->private
1017 * we set PG_private to identify the first page (i.e. no other sub-page
1018 * has this flag set).
1020 for (i = 0; i < nr_pages; i++) {
1022 set_page_private(page, (unsigned long)zspage);
1025 zspage->first_page = page;
1026 SetPagePrivate(page);
1027 if (unlikely(class->objs_per_zspage == 1 &&
1028 class->pages_per_zspage == 1))
1029 SetZsHugePage(zspage);
1031 prev_page->index = (unsigned long)page;
1038 * Allocate a zspage for the given size class
1040 static struct zspage *alloc_zspage(struct zs_pool *pool,
1041 struct size_class *class,
1045 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1046 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1051 zspage->magic = ZSPAGE_MAGIC;
1052 migrate_lock_init(zspage);
1054 for (i = 0; i < class->pages_per_zspage; i++) {
1057 page = alloc_page(gfp);
1060 dec_zone_page_state(pages[i], NR_ZSPAGES);
1061 __free_page(pages[i]);
1063 cache_free_zspage(pool, zspage);
1067 inc_zone_page_state(page, NR_ZSPAGES);
1071 create_page_chain(class, zspage, pages);
1072 init_zspage(class, zspage);
1073 zspage->pool = pool;
1078 static struct zspage *find_get_zspage(struct size_class *class)
1081 struct zspage *zspage;
1083 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1084 zspage = list_first_entry_or_null(&class->fullness_list[i],
1085 struct zspage, list);
1093 static inline int __zs_cpu_up(struct mapping_area *area)
1096 * Make sure we don't leak memory if a cpu UP notification
1097 * and zs_init() race and both call zs_cpu_up() on the same cpu
1101 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1107 static inline void __zs_cpu_down(struct mapping_area *area)
1109 kfree(area->vm_buf);
1110 area->vm_buf = NULL;
1113 static void *__zs_map_object(struct mapping_area *area,
1114 struct page *pages[2], int off, int size)
1118 char *buf = area->vm_buf;
1120 /* disable page faults to match kmap_atomic() return conditions */
1121 pagefault_disable();
1123 /* no read fastpath */
1124 if (area->vm_mm == ZS_MM_WO)
1127 sizes[0] = PAGE_SIZE - off;
1128 sizes[1] = size - sizes[0];
1130 /* copy object to per-cpu buffer */
1131 addr = kmap_atomic(pages[0]);
1132 memcpy(buf, addr + off, sizes[0]);
1133 kunmap_atomic(addr);
1134 addr = kmap_atomic(pages[1]);
1135 memcpy(buf + sizes[0], addr, sizes[1]);
1136 kunmap_atomic(addr);
1138 return area->vm_buf;
1141 static void __zs_unmap_object(struct mapping_area *area,
1142 struct page *pages[2], int off, int size)
1148 /* no write fastpath */
1149 if (area->vm_mm == ZS_MM_RO)
1153 buf = buf + ZS_HANDLE_SIZE;
1154 size -= ZS_HANDLE_SIZE;
1155 off += ZS_HANDLE_SIZE;
1157 sizes[0] = PAGE_SIZE - off;
1158 sizes[1] = size - sizes[0];
1160 /* copy per-cpu buffer to object */
1161 addr = kmap_atomic(pages[0]);
1162 memcpy(addr + off, buf, sizes[0]);
1163 kunmap_atomic(addr);
1164 addr = kmap_atomic(pages[1]);
1165 memcpy(addr, buf + sizes[0], sizes[1]);
1166 kunmap_atomic(addr);
1169 /* enable page faults to match kunmap_atomic() return conditions */
1173 static int zs_cpu_prepare(unsigned int cpu)
1175 struct mapping_area *area;
1177 area = &per_cpu(zs_map_area, cpu);
1178 return __zs_cpu_up(area);
1181 static int zs_cpu_dead(unsigned int cpu)
1183 struct mapping_area *area;
1185 area = &per_cpu(zs_map_area, cpu);
1186 __zs_cpu_down(area);
1190 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1191 int objs_per_zspage)
1193 if (prev->pages_per_zspage == pages_per_zspage &&
1194 prev->objs_per_zspage == objs_per_zspage)
1200 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1202 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1206 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1207 * that hold objects of the provided size.
1208 * @pool: zsmalloc pool to use
1209 * @size: object size
1211 * Context: Any context.
1213 * Return: the index of the zsmalloc &size_class that hold objects of the
1216 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1218 struct size_class *class;
1220 class = pool->size_class[get_size_class_index(size)];
1222 return class->index;
1224 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1226 unsigned long zs_get_total_pages(struct zs_pool *pool)
1228 return atomic_long_read(&pool->pages_allocated);
1230 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1233 * zs_map_object - get address of allocated object from handle.
1234 * @pool: pool from which the object was allocated
1235 * @handle: handle returned from zs_malloc
1236 * @mm: mapping mode to use
1238 * Before using an object allocated from zs_malloc, it must be mapped using
1239 * this function. When done with the object, it must be unmapped using
1242 * Only one object can be mapped per cpu at a time. There is no protection
1243 * against nested mappings.
1245 * This function returns with preemption and page faults disabled.
1247 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1250 struct zspage *zspage;
1252 unsigned long obj, off;
1253 unsigned int obj_idx;
1255 struct size_class *class;
1256 struct mapping_area *area;
1257 struct page *pages[2];
1261 * Because we use per-cpu mapping areas shared among the
1262 * pools/users, we can't allow mapping in interrupt context
1263 * because it can corrupt another users mappings.
1265 BUG_ON(in_interrupt());
1267 /* It guarantees it can get zspage from handle safely */
1268 spin_lock(&pool->lock);
1269 obj = handle_to_obj(handle);
1270 obj_to_location(obj, &page, &obj_idx);
1271 zspage = get_zspage(page);
1274 * migration cannot move any zpages in this zspage. Here, pool->lock
1275 * is too heavy since callers would take some time until they calls
1276 * zs_unmap_object API so delegate the locking from class to zspage
1277 * which is smaller granularity.
1279 migrate_read_lock(zspage);
1280 spin_unlock(&pool->lock);
1282 class = zspage_class(pool, zspage);
1283 off = (class->size * obj_idx) & ~PAGE_MASK;
1285 local_lock(&zs_map_area.lock);
1286 area = this_cpu_ptr(&zs_map_area);
1288 if (off + class->size <= PAGE_SIZE) {
1289 /* this object is contained entirely within a page */
1290 area->vm_addr = kmap_atomic(page);
1291 ret = area->vm_addr + off;
1295 /* this object spans two pages */
1297 pages[1] = get_next_page(page);
1300 ret = __zs_map_object(area, pages, off, class->size);
1302 if (likely(!ZsHugePage(zspage)))
1303 ret += ZS_HANDLE_SIZE;
1307 EXPORT_SYMBOL_GPL(zs_map_object);
1309 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1311 struct zspage *zspage;
1313 unsigned long obj, off;
1314 unsigned int obj_idx;
1316 struct size_class *class;
1317 struct mapping_area *area;
1319 obj = handle_to_obj(handle);
1320 obj_to_location(obj, &page, &obj_idx);
1321 zspage = get_zspage(page);
1322 class = zspage_class(pool, zspage);
1323 off = (class->size * obj_idx) & ~PAGE_MASK;
1325 area = this_cpu_ptr(&zs_map_area);
1326 if (off + class->size <= PAGE_SIZE)
1327 kunmap_atomic(area->vm_addr);
1329 struct page *pages[2];
1332 pages[1] = get_next_page(page);
1335 __zs_unmap_object(area, pages, off, class->size);
1337 local_unlock(&zs_map_area.lock);
1339 migrate_read_unlock(zspage);
1341 EXPORT_SYMBOL_GPL(zs_unmap_object);
1344 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1345 * zsmalloc &size_class.
1346 * @pool: zsmalloc pool to use
1348 * The function returns the size of the first huge class - any object of equal
1349 * or bigger size will be stored in zspage consisting of a single physical
1352 * Context: Any context.
1354 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1356 size_t zs_huge_class_size(struct zs_pool *pool)
1358 return huge_class_size;
1360 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1362 static unsigned long obj_malloc(struct zs_pool *pool,
1363 struct zspage *zspage, unsigned long handle)
1365 int i, nr_page, offset;
1367 struct link_free *link;
1368 struct size_class *class;
1370 struct page *m_page;
1371 unsigned long m_offset;
1374 class = pool->size_class[zspage->class];
1375 handle |= OBJ_ALLOCATED_TAG;
1376 obj = get_freeobj(zspage);
1378 offset = obj * class->size;
1379 nr_page = offset >> PAGE_SHIFT;
1380 m_offset = offset & ~PAGE_MASK;
1381 m_page = get_first_page(zspage);
1383 for (i = 0; i < nr_page; i++)
1384 m_page = get_next_page(m_page);
1386 vaddr = kmap_atomic(m_page);
1387 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1388 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1389 if (likely(!ZsHugePage(zspage)))
1390 /* record handle in the header of allocated chunk */
1391 link->handle = handle;
1393 /* record handle to page->index */
1394 zspage->first_page->index = handle;
1396 kunmap_atomic(vaddr);
1397 mod_zspage_inuse(zspage, 1);
1399 obj = location_to_obj(m_page, obj);
1406 * zs_malloc - Allocate block of given size from pool.
1407 * @pool: pool to allocate from
1408 * @size: size of block to allocate
1409 * @gfp: gfp flags when allocating object
1411 * On success, handle to the allocated object is returned,
1412 * otherwise an ERR_PTR().
1413 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1415 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1417 unsigned long handle, obj;
1418 struct size_class *class;
1419 enum fullness_group newfg;
1420 struct zspage *zspage;
1422 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1423 return (unsigned long)ERR_PTR(-EINVAL);
1425 handle = cache_alloc_handle(pool, gfp);
1427 return (unsigned long)ERR_PTR(-ENOMEM);
1429 /* extra space in chunk to keep the handle */
1430 size += ZS_HANDLE_SIZE;
1431 class = pool->size_class[get_size_class_index(size)];
1433 /* pool->lock effectively protects the zpage migration */
1434 spin_lock(&pool->lock);
1435 zspage = find_get_zspage(class);
1436 if (likely(zspage)) {
1437 obj = obj_malloc(pool, zspage, handle);
1438 /* Now move the zspage to another fullness group, if required */
1439 fix_fullness_group(class, zspage);
1440 record_obj(handle, obj);
1441 class_stat_inc(class, OBJ_USED, 1);
1442 spin_unlock(&pool->lock);
1447 spin_unlock(&pool->lock);
1449 zspage = alloc_zspage(pool, class, gfp);
1451 cache_free_handle(pool, handle);
1452 return (unsigned long)ERR_PTR(-ENOMEM);
1455 spin_lock(&pool->lock);
1456 obj = obj_malloc(pool, zspage, handle);
1457 newfg = get_fullness_group(class, zspage);
1458 insert_zspage(class, zspage, newfg);
1459 set_zspage_mapping(zspage, class->index, newfg);
1460 record_obj(handle, obj);
1461 atomic_long_add(class->pages_per_zspage,
1462 &pool->pages_allocated);
1463 class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1464 class_stat_inc(class, OBJ_USED, 1);
1466 /* We completely set up zspage so mark them as movable */
1467 SetZsPageMovable(pool, zspage);
1468 spin_unlock(&pool->lock);
1472 EXPORT_SYMBOL_GPL(zs_malloc);
1474 static void obj_free(int class_size, unsigned long obj)
1476 struct link_free *link;
1477 struct zspage *zspage;
1478 struct page *f_page;
1479 unsigned long f_offset;
1480 unsigned int f_objidx;
1483 obj_to_location(obj, &f_page, &f_objidx);
1484 f_offset = (class_size * f_objidx) & ~PAGE_MASK;
1485 zspage = get_zspage(f_page);
1487 vaddr = kmap_atomic(f_page);
1489 /* Insert this object in containing zspage's freelist */
1490 link = (struct link_free *)(vaddr + f_offset);
1491 if (likely(!ZsHugePage(zspage)))
1492 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1495 kunmap_atomic(vaddr);
1496 set_freeobj(zspage, f_objidx);
1497 mod_zspage_inuse(zspage, -1);
1500 void zs_free(struct zs_pool *pool, unsigned long handle)
1502 struct zspage *zspage;
1503 struct page *f_page;
1505 struct size_class *class;
1506 enum fullness_group fullness;
1508 if (IS_ERR_OR_NULL((void *)handle))
1512 * The pool->lock protects the race with zpage's migration
1513 * so it's safe to get the page from handle.
1515 spin_lock(&pool->lock);
1516 obj = handle_to_obj(handle);
1517 obj_to_page(obj, &f_page);
1518 zspage = get_zspage(f_page);
1519 class = zspage_class(pool, zspage);
1521 obj_free(class->size, obj);
1522 class_stat_dec(class, OBJ_USED, 1);
1523 fullness = fix_fullness_group(class, zspage);
1524 if (fullness != ZS_EMPTY)
1527 free_zspage(pool, class, zspage);
1529 spin_unlock(&pool->lock);
1530 cache_free_handle(pool, handle);
1532 EXPORT_SYMBOL_GPL(zs_free);
1534 static void zs_object_copy(struct size_class *class, unsigned long dst,
1537 struct page *s_page, *d_page;
1538 unsigned int s_objidx, d_objidx;
1539 unsigned long s_off, d_off;
1540 void *s_addr, *d_addr;
1541 int s_size, d_size, size;
1544 s_size = d_size = class->size;
1546 obj_to_location(src, &s_page, &s_objidx);
1547 obj_to_location(dst, &d_page, &d_objidx);
1549 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1550 d_off = (class->size * d_objidx) & ~PAGE_MASK;
1552 if (s_off + class->size > PAGE_SIZE)
1553 s_size = PAGE_SIZE - s_off;
1555 if (d_off + class->size > PAGE_SIZE)
1556 d_size = PAGE_SIZE - d_off;
1558 s_addr = kmap_atomic(s_page);
1559 d_addr = kmap_atomic(d_page);
1562 size = min(s_size, d_size);
1563 memcpy(d_addr + d_off, s_addr + s_off, size);
1566 if (written == class->size)
1575 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1576 * calls must occurs in reverse order of calls to kmap_atomic().
1577 * So, to call kunmap_atomic(s_addr) we should first call
1578 * kunmap_atomic(d_addr). For more details see
1579 * Documentation/mm/highmem.rst.
1581 if (s_off >= PAGE_SIZE) {
1582 kunmap_atomic(d_addr);
1583 kunmap_atomic(s_addr);
1584 s_page = get_next_page(s_page);
1585 s_addr = kmap_atomic(s_page);
1586 d_addr = kmap_atomic(d_page);
1587 s_size = class->size - written;
1591 if (d_off >= PAGE_SIZE) {
1592 kunmap_atomic(d_addr);
1593 d_page = get_next_page(d_page);
1594 d_addr = kmap_atomic(d_page);
1595 d_size = class->size - written;
1600 kunmap_atomic(d_addr);
1601 kunmap_atomic(s_addr);
1605 * Find alloced object in zspage from index object and
1608 static unsigned long find_alloced_obj(struct size_class *class,
1609 struct page *page, int *obj_idx)
1611 unsigned int offset;
1612 int index = *obj_idx;
1613 unsigned long handle = 0;
1614 void *addr = kmap_atomic(page);
1616 offset = get_first_obj_offset(page);
1617 offset += class->size * index;
1619 while (offset < PAGE_SIZE) {
1620 if (obj_allocated(page, addr + offset, &handle))
1623 offset += class->size;
1627 kunmap_atomic(addr);
1634 struct zs_compact_control {
1635 /* Source spage for migration which could be a subpage of zspage */
1636 struct page *s_page;
1637 /* Destination page for migration which should be a first page
1639 struct page *d_page;
1640 /* Starting object index within @s_page which used for live object
1641 * in the subpage. */
1645 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1646 struct zs_compact_control *cc)
1648 unsigned long used_obj, free_obj;
1649 unsigned long handle;
1650 struct page *s_page = cc->s_page;
1651 struct page *d_page = cc->d_page;
1652 int obj_idx = cc->obj_idx;
1656 handle = find_alloced_obj(class, s_page, &obj_idx);
1658 s_page = get_next_page(s_page);
1665 /* Stop if there is no more space */
1666 if (zspage_full(class, get_zspage(d_page))) {
1671 used_obj = handle_to_obj(handle);
1672 free_obj = obj_malloc(pool, get_zspage(d_page), handle);
1673 zs_object_copy(class, free_obj, used_obj);
1675 record_obj(handle, free_obj);
1676 obj_free(class->size, used_obj);
1679 /* Remember last position in this iteration */
1680 cc->s_page = s_page;
1681 cc->obj_idx = obj_idx;
1686 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1689 struct zspage *zspage;
1690 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1693 fg[0] = ZS_ALMOST_FULL;
1694 fg[1] = ZS_ALMOST_EMPTY;
1697 for (i = 0; i < 2; i++) {
1698 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1699 struct zspage, list);
1701 remove_zspage(class, zspage, fg[i]);
1710 * putback_zspage - add @zspage into right class's fullness list
1711 * @class: destination class
1712 * @zspage: target page
1714 * Return @zspage's fullness_group
1716 static enum fullness_group putback_zspage(struct size_class *class,
1717 struct zspage *zspage)
1719 enum fullness_group fullness;
1721 fullness = get_fullness_group(class, zspage);
1722 insert_zspage(class, zspage, fullness);
1723 set_zspage_mapping(zspage, class->index, fullness);
1728 #ifdef CONFIG_COMPACTION
1730 * To prevent zspage destroy during migration, zspage freeing should
1731 * hold locks of all pages in the zspage.
1733 static void lock_zspage(struct zspage *zspage)
1735 struct page *curr_page, *page;
1738 * Pages we haven't locked yet can be migrated off the list while we're
1739 * trying to lock them, so we need to be careful and only attempt to
1740 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1741 * may no longer belong to the zspage. This means that we may wait for
1742 * the wrong page to unlock, so we must take a reference to the page
1743 * prior to waiting for it to unlock outside migrate_read_lock().
1746 migrate_read_lock(zspage);
1747 page = get_first_page(zspage);
1748 if (trylock_page(page))
1751 migrate_read_unlock(zspage);
1752 wait_on_page_locked(page);
1757 while ((page = get_next_page(curr_page))) {
1758 if (trylock_page(page)) {
1762 migrate_read_unlock(zspage);
1763 wait_on_page_locked(page);
1765 migrate_read_lock(zspage);
1768 migrate_read_unlock(zspage);
1771 static void migrate_lock_init(struct zspage *zspage)
1773 rwlock_init(&zspage->lock);
1776 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1778 read_lock(&zspage->lock);
1781 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1783 read_unlock(&zspage->lock);
1786 static void migrate_write_lock(struct zspage *zspage)
1788 write_lock(&zspage->lock);
1791 static void migrate_write_lock_nested(struct zspage *zspage)
1793 write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
1796 static void migrate_write_unlock(struct zspage *zspage)
1798 write_unlock(&zspage->lock);
1801 /* Number of isolated subpage for *page migration* in this zspage */
1802 static void inc_zspage_isolation(struct zspage *zspage)
1807 static void dec_zspage_isolation(struct zspage *zspage)
1809 VM_BUG_ON(zspage->isolated == 0);
1813 static const struct movable_operations zsmalloc_mops;
1815 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1816 struct page *newpage, struct page *oldpage)
1819 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1822 page = get_first_page(zspage);
1824 if (page == oldpage)
1825 pages[idx] = newpage;
1829 } while ((page = get_next_page(page)) != NULL);
1831 create_page_chain(class, zspage, pages);
1832 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1833 if (unlikely(ZsHugePage(zspage)))
1834 newpage->index = oldpage->index;
1835 __SetPageMovable(newpage, &zsmalloc_mops);
1838 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1840 struct zspage *zspage;
1843 * Page is locked so zspage couldn't be destroyed. For detail, look at
1844 * lock_zspage in free_zspage.
1846 VM_BUG_ON_PAGE(!PageMovable(page), page);
1847 VM_BUG_ON_PAGE(PageIsolated(page), page);
1849 zspage = get_zspage(page);
1850 migrate_write_lock(zspage);
1851 inc_zspage_isolation(zspage);
1852 migrate_write_unlock(zspage);
1857 static int zs_page_migrate(struct page *newpage, struct page *page,
1858 enum migrate_mode mode)
1860 struct zs_pool *pool;
1861 struct size_class *class;
1862 struct zspage *zspage;
1864 void *s_addr, *d_addr, *addr;
1865 unsigned int offset;
1866 unsigned long handle;
1867 unsigned long old_obj, new_obj;
1868 unsigned int obj_idx;
1871 * We cannot support the _NO_COPY case here, because copy needs to
1872 * happen under the zs lock, which does not work with
1873 * MIGRATE_SYNC_NO_COPY workflow.
1875 if (mode == MIGRATE_SYNC_NO_COPY)
1878 VM_BUG_ON_PAGE(!PageMovable(page), page);
1879 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1881 /* The page is locked, so this pointer must remain valid */
1882 zspage = get_zspage(page);
1883 pool = zspage->pool;
1886 * The pool's lock protects the race between zpage migration
1889 spin_lock(&pool->lock);
1890 class = zspage_class(pool, zspage);
1892 /* the migrate_write_lock protects zpage access via zs_map_object */
1893 migrate_write_lock(zspage);
1895 offset = get_first_obj_offset(page);
1896 s_addr = kmap_atomic(page);
1899 * Here, any user cannot access all objects in the zspage so let's move.
1901 d_addr = kmap_atomic(newpage);
1902 memcpy(d_addr, s_addr, PAGE_SIZE);
1903 kunmap_atomic(d_addr);
1905 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1906 addr += class->size) {
1907 if (obj_allocated(page, addr, &handle)) {
1909 old_obj = handle_to_obj(handle);
1910 obj_to_location(old_obj, &dummy, &obj_idx);
1911 new_obj = (unsigned long)location_to_obj(newpage,
1913 record_obj(handle, new_obj);
1916 kunmap_atomic(s_addr);
1918 replace_sub_page(class, zspage, newpage, page);
1920 * Since we complete the data copy and set up new zspage structure,
1921 * it's okay to release the pool's lock.
1923 spin_unlock(&pool->lock);
1924 dec_zspage_isolation(zspage);
1925 migrate_write_unlock(zspage);
1928 if (page_zone(newpage) != page_zone(page)) {
1929 dec_zone_page_state(page, NR_ZSPAGES);
1930 inc_zone_page_state(newpage, NR_ZSPAGES);
1936 return MIGRATEPAGE_SUCCESS;
1939 static void zs_page_putback(struct page *page)
1941 struct zspage *zspage;
1943 VM_BUG_ON_PAGE(!PageMovable(page), page);
1944 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1946 zspage = get_zspage(page);
1947 migrate_write_lock(zspage);
1948 dec_zspage_isolation(zspage);
1949 migrate_write_unlock(zspage);
1952 static const struct movable_operations zsmalloc_mops = {
1953 .isolate_page = zs_page_isolate,
1954 .migrate_page = zs_page_migrate,
1955 .putback_page = zs_page_putback,
1959 * Caller should hold page_lock of all pages in the zspage
1960 * In here, we cannot use zspage meta data.
1962 static void async_free_zspage(struct work_struct *work)
1965 struct size_class *class;
1966 unsigned int class_idx;
1967 enum fullness_group fullness;
1968 struct zspage *zspage, *tmp;
1969 LIST_HEAD(free_pages);
1970 struct zs_pool *pool = container_of(work, struct zs_pool,
1973 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1974 class = pool->size_class[i];
1975 if (class->index != i)
1978 spin_lock(&pool->lock);
1979 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
1980 spin_unlock(&pool->lock);
1983 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1984 list_del(&zspage->list);
1985 lock_zspage(zspage);
1987 get_zspage_mapping(zspage, &class_idx, &fullness);
1988 VM_BUG_ON(fullness != ZS_EMPTY);
1989 class = pool->size_class[class_idx];
1990 spin_lock(&pool->lock);
1991 __free_zspage(pool, class, zspage);
1992 spin_unlock(&pool->lock);
1996 static void kick_deferred_free(struct zs_pool *pool)
1998 schedule_work(&pool->free_work);
2001 static void zs_flush_migration(struct zs_pool *pool)
2003 flush_work(&pool->free_work);
2006 static void init_deferred_free(struct zs_pool *pool)
2008 INIT_WORK(&pool->free_work, async_free_zspage);
2011 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2013 struct page *page = get_first_page(zspage);
2016 WARN_ON(!trylock_page(page));
2017 __SetPageMovable(page, &zsmalloc_mops);
2019 } while ((page = get_next_page(page)) != NULL);
2022 static inline void zs_flush_migration(struct zs_pool *pool) { }
2027 * Based on the number of unused allocated objects calculate
2028 * and return the number of pages that we can free.
2030 static unsigned long zs_can_compact(struct size_class *class)
2032 unsigned long obj_wasted;
2033 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2034 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2036 if (obj_allocated <= obj_used)
2039 obj_wasted = obj_allocated - obj_used;
2040 obj_wasted /= class->objs_per_zspage;
2042 return obj_wasted * class->pages_per_zspage;
2045 static unsigned long __zs_compact(struct zs_pool *pool,
2046 struct size_class *class)
2048 struct zs_compact_control cc;
2049 struct zspage *src_zspage;
2050 struct zspage *dst_zspage = NULL;
2051 unsigned long pages_freed = 0;
2054 * protect the race between zpage migration and zs_free
2055 * as well as zpage allocation/free
2057 spin_lock(&pool->lock);
2058 while ((src_zspage = isolate_zspage(class, true))) {
2059 /* protect someone accessing the zspage(i.e., zs_map_object) */
2060 migrate_write_lock(src_zspage);
2062 if (!zs_can_compact(class))
2066 cc.s_page = get_first_page(src_zspage);
2068 while ((dst_zspage = isolate_zspage(class, false))) {
2069 migrate_write_lock_nested(dst_zspage);
2071 cc.d_page = get_first_page(dst_zspage);
2073 * If there is no more space in dst_page, resched
2074 * and see if anyone had allocated another zspage.
2076 if (!migrate_zspage(pool, class, &cc))
2079 putback_zspage(class, dst_zspage);
2080 migrate_write_unlock(dst_zspage);
2082 if (spin_is_contended(&pool->lock))
2086 /* Stop if we couldn't find slot */
2087 if (dst_zspage == NULL)
2090 putback_zspage(class, dst_zspage);
2091 migrate_write_unlock(dst_zspage);
2093 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2094 migrate_write_unlock(src_zspage);
2095 free_zspage(pool, class, src_zspage);
2096 pages_freed += class->pages_per_zspage;
2098 migrate_write_unlock(src_zspage);
2099 spin_unlock(&pool->lock);
2101 spin_lock(&pool->lock);
2105 putback_zspage(class, src_zspage);
2106 migrate_write_unlock(src_zspage);
2109 spin_unlock(&pool->lock);
2114 unsigned long zs_compact(struct zs_pool *pool)
2117 struct size_class *class;
2118 unsigned long pages_freed = 0;
2120 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2121 class = pool->size_class[i];
2122 if (class->index != i)
2124 pages_freed += __zs_compact(pool, class);
2126 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2130 EXPORT_SYMBOL_GPL(zs_compact);
2132 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2134 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2136 EXPORT_SYMBOL_GPL(zs_pool_stats);
2138 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2139 struct shrink_control *sc)
2141 unsigned long pages_freed;
2142 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2146 * Compact classes and calculate compaction delta.
2147 * Can run concurrently with a manually triggered
2148 * (by user) compaction.
2150 pages_freed = zs_compact(pool);
2152 return pages_freed ? pages_freed : SHRINK_STOP;
2155 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2156 struct shrink_control *sc)
2159 struct size_class *class;
2160 unsigned long pages_to_free = 0;
2161 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2164 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2165 class = pool->size_class[i];
2166 if (class->index != i)
2169 pages_to_free += zs_can_compact(class);
2172 return pages_to_free;
2175 static void zs_unregister_shrinker(struct zs_pool *pool)
2177 unregister_shrinker(&pool->shrinker);
2180 static int zs_register_shrinker(struct zs_pool *pool)
2182 pool->shrinker.scan_objects = zs_shrinker_scan;
2183 pool->shrinker.count_objects = zs_shrinker_count;
2184 pool->shrinker.batch = 0;
2185 pool->shrinker.seeks = DEFAULT_SEEKS;
2187 return register_shrinker(&pool->shrinker, "mm-zspool:%s",
2192 * zs_create_pool - Creates an allocation pool to work from.
2193 * @name: pool name to be created
2195 * This function must be called before anything when using
2196 * the zsmalloc allocator.
2198 * On success, a pointer to the newly created pool is returned,
2201 struct zs_pool *zs_create_pool(const char *name)
2204 struct zs_pool *pool;
2205 struct size_class *prev_class = NULL;
2207 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2211 init_deferred_free(pool);
2212 spin_lock_init(&pool->lock);
2214 pool->name = kstrdup(name, GFP_KERNEL);
2218 if (create_cache(pool))
2222 * Iterate reversely, because, size of size_class that we want to use
2223 * for merging should be larger or equal to current size.
2225 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2227 int pages_per_zspage;
2228 int objs_per_zspage;
2229 struct size_class *class;
2232 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2233 if (size > ZS_MAX_ALLOC_SIZE)
2234 size = ZS_MAX_ALLOC_SIZE;
2235 pages_per_zspage = get_pages_per_zspage(size);
2236 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2239 * We iterate from biggest down to smallest classes,
2240 * so huge_class_size holds the size of the first huge
2241 * class. Any object bigger than or equal to that will
2242 * endup in the huge class.
2244 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2246 huge_class_size = size;
2248 * The object uses ZS_HANDLE_SIZE bytes to store the
2249 * handle. We need to subtract it, because zs_malloc()
2250 * unconditionally adds handle size before it performs
2251 * size class search - so object may be smaller than
2252 * huge class size, yet it still can end up in the huge
2253 * class because it grows by ZS_HANDLE_SIZE extra bytes
2254 * right before class lookup.
2256 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2260 * size_class is used for normal zsmalloc operation such
2261 * as alloc/free for that size. Although it is natural that we
2262 * have one size_class for each size, there is a chance that we
2263 * can get more memory utilization if we use one size_class for
2264 * many different sizes whose size_class have same
2265 * characteristics. So, we makes size_class point to
2266 * previous size_class if possible.
2269 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2270 pool->size_class[i] = prev_class;
2275 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2281 class->pages_per_zspage = pages_per_zspage;
2282 class->objs_per_zspage = objs_per_zspage;
2283 pool->size_class[i] = class;
2284 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2286 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2291 /* debug only, don't abort if it fails */
2292 zs_pool_stat_create(pool, name);
2295 * Not critical since shrinker is only used to trigger internal
2296 * defragmentation of the pool which is pretty optional thing. If
2297 * registration fails we still can use the pool normally and user can
2298 * trigger compaction manually. Thus, ignore return code.
2300 zs_register_shrinker(pool);
2305 zs_destroy_pool(pool);
2308 EXPORT_SYMBOL_GPL(zs_create_pool);
2310 void zs_destroy_pool(struct zs_pool *pool)
2314 zs_unregister_shrinker(pool);
2315 zs_flush_migration(pool);
2316 zs_pool_stat_destroy(pool);
2318 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2320 struct size_class *class = pool->size_class[i];
2325 if (class->index != i)
2328 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2329 if (!list_empty(&class->fullness_list[fg])) {
2330 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2337 destroy_cache(pool);
2341 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2343 static int __init zs_init(void)
2347 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2348 zs_cpu_prepare, zs_cpu_dead);
2353 zpool_register_driver(&zs_zpool_driver);
2364 static void __exit zs_exit(void)
2367 zpool_unregister_driver(&zs_zpool_driver);
2369 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2374 module_init(zs_init);
2375 module_exit(zs_exit);
2377 MODULE_LICENSE("Dual BSD/GPL");
2378 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");