zsmalloc: add a LRU to zs_pool to keep track of zspages in LRU order
[platform/kernel/linux-starfive.git] / mm / zsmalloc.c
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *      page->private: points to zspage
20  *      page->index: links together all component pages of a zspage
21  *              For the huge page, this is always 0, so we use this field
22  *              to store handle.
23  *      page->page_type: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *      PG_private: identifies the first component page
27  *      PG_owner_priv_1: identifies the huge component page
28  *
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 /*
34  * lock ordering:
35  *      page_lock
36  *      pool->lock
37  *      zspage->lock
38  */
39
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/sched.h>
43 #include <linux/bitops.h>
44 #include <linux/errno.h>
45 #include <linux/highmem.h>
46 #include <linux/string.h>
47 #include <linux/slab.h>
48 #include <linux/pgtable.h>
49 #include <asm/tlbflush.h>
50 #include <linux/cpumask.h>
51 #include <linux/cpu.h>
52 #include <linux/vmalloc.h>
53 #include <linux/preempt.h>
54 #include <linux/spinlock.h>
55 #include <linux/shrinker.h>
56 #include <linux/types.h>
57 #include <linux/debugfs.h>
58 #include <linux/zsmalloc.h>
59 #include <linux/zpool.h>
60 #include <linux/migrate.h>
61 #include <linux/wait.h>
62 #include <linux/pagemap.h>
63 #include <linux/fs.h>
64 #include <linux/local_lock.h>
65
66 #define ZSPAGE_MAGIC    0x58
67
68 /*
69  * This must be power of 2 and greater than or equal to sizeof(link_free).
70  * These two conditions ensure that any 'struct link_free' itself doesn't
71  * span more than 1 page which avoids complex case of mapping 2 pages simply
72  * to restore link_free pointer values.
73  */
74 #define ZS_ALIGN                8
75
76 /*
77  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
78  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
79  */
80 #define ZS_MAX_ZSPAGE_ORDER 2
81 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
82
83 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
84
85 /*
86  * Object location (<PFN>, <obj_idx>) is encoded as
87  * a single (unsigned long) handle value.
88  *
89  * Note that object index <obj_idx> starts from 0.
90  *
91  * This is made more complicated by various memory models and PAE.
92  */
93
94 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
95 #ifdef MAX_PHYSMEM_BITS
96 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
97 #else
98 /*
99  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
100  * be PAGE_SHIFT
101  */
102 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
103 #endif
104 #endif
105
106 #define _PFN_BITS               (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
107
108 /*
109  * Head in allocated object should have OBJ_ALLOCATED_TAG
110  * to identify the object was allocated or not.
111  * It's okay to add the status bit in the least bit because
112  * header keeps handle which is 4byte-aligned address so we
113  * have room for two bit at least.
114  */
115 #define OBJ_ALLOCATED_TAG 1
116 #define OBJ_TAG_BITS 1
117 #define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
118 #define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
119
120 #define HUGE_BITS       1
121 #define FULLNESS_BITS   2
122 #define CLASS_BITS      8
123 #define ISOLATED_BITS   3
124 #define MAGIC_VAL_BITS  8
125
126 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
127 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
128 #define ZS_MIN_ALLOC_SIZE \
129         MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
130 /* each chunk includes extra space to keep handle */
131 #define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
132
133 /*
134  * On systems with 4K page size, this gives 255 size classes! There is a
135  * trader-off here:
136  *  - Large number of size classes is potentially wasteful as free page are
137  *    spread across these classes
138  *  - Small number of size classes causes large internal fragmentation
139  *  - Probably its better to use specific size classes (empirically
140  *    determined). NOTE: all those class sizes must be set as multiple of
141  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
142  *
143  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
144  *  (reason above)
145  */
146 #define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
147 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
148                                       ZS_SIZE_CLASS_DELTA) + 1)
149
150 enum fullness_group {
151         ZS_EMPTY,
152         ZS_ALMOST_EMPTY,
153         ZS_ALMOST_FULL,
154         ZS_FULL,
155         NR_ZS_FULLNESS,
156 };
157
158 enum class_stat_type {
159         CLASS_EMPTY,
160         CLASS_ALMOST_EMPTY,
161         CLASS_ALMOST_FULL,
162         CLASS_FULL,
163         OBJ_ALLOCATED,
164         OBJ_USED,
165         NR_ZS_STAT_TYPE,
166 };
167
168 struct zs_size_stat {
169         unsigned long objs[NR_ZS_STAT_TYPE];
170 };
171
172 #ifdef CONFIG_ZSMALLOC_STAT
173 static struct dentry *zs_stat_root;
174 #endif
175
176 /*
177  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
178  *      n <= N / f, where
179  * n = number of allocated objects
180  * N = total number of objects zspage can store
181  * f = fullness_threshold_frac
182  *
183  * Similarly, we assign zspage to:
184  *      ZS_ALMOST_FULL  when n > N / f
185  *      ZS_EMPTY        when n == 0
186  *      ZS_FULL         when n == N
187  *
188  * (see: fix_fullness_group())
189  */
190 static const int fullness_threshold_frac = 4;
191 static size_t huge_class_size;
192
193 struct size_class {
194         struct list_head fullness_list[NR_ZS_FULLNESS];
195         /*
196          * Size of objects stored in this class. Must be multiple
197          * of ZS_ALIGN.
198          */
199         int size;
200         int objs_per_zspage;
201         /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
202         int pages_per_zspage;
203
204         unsigned int index;
205         struct zs_size_stat stats;
206 };
207
208 /*
209  * Placed within free objects to form a singly linked list.
210  * For every zspage, zspage->freeobj gives head of this list.
211  *
212  * This must be power of 2 and less than or equal to ZS_ALIGN
213  */
214 struct link_free {
215         union {
216                 /*
217                  * Free object index;
218                  * It's valid for non-allocated object
219                  */
220                 unsigned long next;
221                 /*
222                  * Handle of allocated object.
223                  */
224                 unsigned long handle;
225         };
226 };
227
228 struct zs_pool {
229         const char *name;
230
231         struct size_class *size_class[ZS_SIZE_CLASSES];
232         struct kmem_cache *handle_cachep;
233         struct kmem_cache *zspage_cachep;
234
235         atomic_long_t pages_allocated;
236
237         struct zs_pool_stats stats;
238
239         /* Compact classes */
240         struct shrinker shrinker;
241
242 #ifdef CONFIG_ZPOOL
243         /* List tracking the zspages in LRU order by most recently added object */
244         struct list_head lru;
245 #endif
246
247 #ifdef CONFIG_ZSMALLOC_STAT
248         struct dentry *stat_dentry;
249 #endif
250 #ifdef CONFIG_COMPACTION
251         struct work_struct free_work;
252 #endif
253         spinlock_t lock;
254 };
255
256 struct zspage {
257         struct {
258                 unsigned int huge:HUGE_BITS;
259                 unsigned int fullness:FULLNESS_BITS;
260                 unsigned int class:CLASS_BITS + 1;
261                 unsigned int isolated:ISOLATED_BITS;
262                 unsigned int magic:MAGIC_VAL_BITS;
263         };
264         unsigned int inuse;
265         unsigned int freeobj;
266         struct page *first_page;
267         struct list_head list; /* fullness list */
268
269 #ifdef CONFIG_ZPOOL
270         /* links the zspage to the lru list in the pool */
271         struct list_head lru;
272 #endif
273
274         struct zs_pool *pool;
275 #ifdef CONFIG_COMPACTION
276         rwlock_t lock;
277 #endif
278 };
279
280 struct mapping_area {
281         local_lock_t lock;
282         char *vm_buf; /* copy buffer for objects that span pages */
283         char *vm_addr; /* address of kmap_atomic()'ed pages */
284         enum zs_mapmode vm_mm; /* mapping mode */
285 };
286
287 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
288 static void SetZsHugePage(struct zspage *zspage)
289 {
290         zspage->huge = 1;
291 }
292
293 static bool ZsHugePage(struct zspage *zspage)
294 {
295         return zspage->huge;
296 }
297
298 #ifdef CONFIG_COMPACTION
299 static void migrate_lock_init(struct zspage *zspage);
300 static void migrate_read_lock(struct zspage *zspage);
301 static void migrate_read_unlock(struct zspage *zspage);
302 static void migrate_write_lock(struct zspage *zspage);
303 static void migrate_write_lock_nested(struct zspage *zspage);
304 static void migrate_write_unlock(struct zspage *zspage);
305 static void kick_deferred_free(struct zs_pool *pool);
306 static void init_deferred_free(struct zs_pool *pool);
307 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
308 #else
309 static void migrate_lock_init(struct zspage *zspage) {}
310 static void migrate_read_lock(struct zspage *zspage) {}
311 static void migrate_read_unlock(struct zspage *zspage) {}
312 static void migrate_write_lock(struct zspage *zspage) {}
313 static void migrate_write_lock_nested(struct zspage *zspage) {}
314 static void migrate_write_unlock(struct zspage *zspage) {}
315 static void kick_deferred_free(struct zs_pool *pool) {}
316 static void init_deferred_free(struct zs_pool *pool) {}
317 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
318 #endif
319
320 static int create_cache(struct zs_pool *pool)
321 {
322         pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
323                                         0, 0, NULL);
324         if (!pool->handle_cachep)
325                 return 1;
326
327         pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
328                                         0, 0, NULL);
329         if (!pool->zspage_cachep) {
330                 kmem_cache_destroy(pool->handle_cachep);
331                 pool->handle_cachep = NULL;
332                 return 1;
333         }
334
335         return 0;
336 }
337
338 static void destroy_cache(struct zs_pool *pool)
339 {
340         kmem_cache_destroy(pool->handle_cachep);
341         kmem_cache_destroy(pool->zspage_cachep);
342 }
343
344 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
345 {
346         return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
347                         gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
348 }
349
350 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
351 {
352         kmem_cache_free(pool->handle_cachep, (void *)handle);
353 }
354
355 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
356 {
357         return kmem_cache_zalloc(pool->zspage_cachep,
358                         flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
359 }
360
361 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
362 {
363         kmem_cache_free(pool->zspage_cachep, zspage);
364 }
365
366 /* pool->lock(which owns the handle) synchronizes races */
367 static void record_obj(unsigned long handle, unsigned long obj)
368 {
369         *(unsigned long *)handle = obj;
370 }
371
372 /* zpool driver */
373
374 #ifdef CONFIG_ZPOOL
375
376 static void *zs_zpool_create(const char *name, gfp_t gfp,
377                              const struct zpool_ops *zpool_ops,
378                              struct zpool *zpool)
379 {
380         /*
381          * Ignore global gfp flags: zs_malloc() may be invoked from
382          * different contexts and its caller must provide a valid
383          * gfp mask.
384          */
385         return zs_create_pool(name);
386 }
387
388 static void zs_zpool_destroy(void *pool)
389 {
390         zs_destroy_pool(pool);
391 }
392
393 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
394                         unsigned long *handle)
395 {
396         *handle = zs_malloc(pool, size, gfp);
397
398         if (IS_ERR_VALUE(*handle))
399                 return PTR_ERR((void *)*handle);
400         return 0;
401 }
402 static void zs_zpool_free(void *pool, unsigned long handle)
403 {
404         zs_free(pool, handle);
405 }
406
407 static void *zs_zpool_map(void *pool, unsigned long handle,
408                         enum zpool_mapmode mm)
409 {
410         enum zs_mapmode zs_mm;
411
412         switch (mm) {
413         case ZPOOL_MM_RO:
414                 zs_mm = ZS_MM_RO;
415                 break;
416         case ZPOOL_MM_WO:
417                 zs_mm = ZS_MM_WO;
418                 break;
419         case ZPOOL_MM_RW:
420         default:
421                 zs_mm = ZS_MM_RW;
422                 break;
423         }
424
425         return zs_map_object(pool, handle, zs_mm);
426 }
427 static void zs_zpool_unmap(void *pool, unsigned long handle)
428 {
429         zs_unmap_object(pool, handle);
430 }
431
432 static u64 zs_zpool_total_size(void *pool)
433 {
434         return zs_get_total_pages(pool) << PAGE_SHIFT;
435 }
436
437 static struct zpool_driver zs_zpool_driver = {
438         .type =                   "zsmalloc",
439         .owner =                  THIS_MODULE,
440         .create =                 zs_zpool_create,
441         .destroy =                zs_zpool_destroy,
442         .malloc_support_movable = true,
443         .malloc =                 zs_zpool_malloc,
444         .free =                   zs_zpool_free,
445         .map =                    zs_zpool_map,
446         .unmap =                  zs_zpool_unmap,
447         .total_size =             zs_zpool_total_size,
448 };
449
450 MODULE_ALIAS("zpool-zsmalloc");
451 #endif /* CONFIG_ZPOOL */
452
453 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
454 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
455         .lock   = INIT_LOCAL_LOCK(lock),
456 };
457
458 static __maybe_unused int is_first_page(struct page *page)
459 {
460         return PagePrivate(page);
461 }
462
463 /* Protected by pool->lock */
464 static inline int get_zspage_inuse(struct zspage *zspage)
465 {
466         return zspage->inuse;
467 }
468
469
470 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
471 {
472         zspage->inuse += val;
473 }
474
475 static inline struct page *get_first_page(struct zspage *zspage)
476 {
477         struct page *first_page = zspage->first_page;
478
479         VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
480         return first_page;
481 }
482
483 static inline unsigned int get_first_obj_offset(struct page *page)
484 {
485         return page->page_type;
486 }
487
488 static inline void set_first_obj_offset(struct page *page, unsigned int offset)
489 {
490         page->page_type = offset;
491 }
492
493 static inline unsigned int get_freeobj(struct zspage *zspage)
494 {
495         return zspage->freeobj;
496 }
497
498 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
499 {
500         zspage->freeobj = obj;
501 }
502
503 static void get_zspage_mapping(struct zspage *zspage,
504                                 unsigned int *class_idx,
505                                 enum fullness_group *fullness)
506 {
507         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
508
509         *fullness = zspage->fullness;
510         *class_idx = zspage->class;
511 }
512
513 static struct size_class *zspage_class(struct zs_pool *pool,
514                                              struct zspage *zspage)
515 {
516         return pool->size_class[zspage->class];
517 }
518
519 static void set_zspage_mapping(struct zspage *zspage,
520                                 unsigned int class_idx,
521                                 enum fullness_group fullness)
522 {
523         zspage->class = class_idx;
524         zspage->fullness = fullness;
525 }
526
527 /*
528  * zsmalloc divides the pool into various size classes where each
529  * class maintains a list of zspages where each zspage is divided
530  * into equal sized chunks. Each allocation falls into one of these
531  * classes depending on its size. This function returns index of the
532  * size class which has chunk size big enough to hold the given size.
533  */
534 static int get_size_class_index(int size)
535 {
536         int idx = 0;
537
538         if (likely(size > ZS_MIN_ALLOC_SIZE))
539                 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
540                                 ZS_SIZE_CLASS_DELTA);
541
542         return min_t(int, ZS_SIZE_CLASSES - 1, idx);
543 }
544
545 /* type can be of enum type class_stat_type or fullness_group */
546 static inline void class_stat_inc(struct size_class *class,
547                                 int type, unsigned long cnt)
548 {
549         class->stats.objs[type] += cnt;
550 }
551
552 /* type can be of enum type class_stat_type or fullness_group */
553 static inline void class_stat_dec(struct size_class *class,
554                                 int type, unsigned long cnt)
555 {
556         class->stats.objs[type] -= cnt;
557 }
558
559 /* type can be of enum type class_stat_type or fullness_group */
560 static inline unsigned long zs_stat_get(struct size_class *class,
561                                 int type)
562 {
563         return class->stats.objs[type];
564 }
565
566 #ifdef CONFIG_ZSMALLOC_STAT
567
568 static void __init zs_stat_init(void)
569 {
570         if (!debugfs_initialized()) {
571                 pr_warn("debugfs not available, stat dir not created\n");
572                 return;
573         }
574
575         zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
576 }
577
578 static void __exit zs_stat_exit(void)
579 {
580         debugfs_remove_recursive(zs_stat_root);
581 }
582
583 static unsigned long zs_can_compact(struct size_class *class);
584
585 static int zs_stats_size_show(struct seq_file *s, void *v)
586 {
587         int i;
588         struct zs_pool *pool = s->private;
589         struct size_class *class;
590         int objs_per_zspage;
591         unsigned long class_almost_full, class_almost_empty;
592         unsigned long obj_allocated, obj_used, pages_used, freeable;
593         unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
594         unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
595         unsigned long total_freeable = 0;
596
597         seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
598                         "class", "size", "almost_full", "almost_empty",
599                         "obj_allocated", "obj_used", "pages_used",
600                         "pages_per_zspage", "freeable");
601
602         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
603                 class = pool->size_class[i];
604
605                 if (class->index != i)
606                         continue;
607
608                 spin_lock(&pool->lock);
609                 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
610                 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
611                 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
612                 obj_used = zs_stat_get(class, OBJ_USED);
613                 freeable = zs_can_compact(class);
614                 spin_unlock(&pool->lock);
615
616                 objs_per_zspage = class->objs_per_zspage;
617                 pages_used = obj_allocated / objs_per_zspage *
618                                 class->pages_per_zspage;
619
620                 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
621                                 " %10lu %10lu %16d %8lu\n",
622                         i, class->size, class_almost_full, class_almost_empty,
623                         obj_allocated, obj_used, pages_used,
624                         class->pages_per_zspage, freeable);
625
626                 total_class_almost_full += class_almost_full;
627                 total_class_almost_empty += class_almost_empty;
628                 total_objs += obj_allocated;
629                 total_used_objs += obj_used;
630                 total_pages += pages_used;
631                 total_freeable += freeable;
632         }
633
634         seq_puts(s, "\n");
635         seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
636                         "Total", "", total_class_almost_full,
637                         total_class_almost_empty, total_objs,
638                         total_used_objs, total_pages, "", total_freeable);
639
640         return 0;
641 }
642 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
643
644 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
645 {
646         if (!zs_stat_root) {
647                 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
648                 return;
649         }
650
651         pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
652
653         debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
654                             &zs_stats_size_fops);
655 }
656
657 static void zs_pool_stat_destroy(struct zs_pool *pool)
658 {
659         debugfs_remove_recursive(pool->stat_dentry);
660 }
661
662 #else /* CONFIG_ZSMALLOC_STAT */
663 static void __init zs_stat_init(void)
664 {
665 }
666
667 static void __exit zs_stat_exit(void)
668 {
669 }
670
671 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
672 {
673 }
674
675 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
676 {
677 }
678 #endif
679
680
681 /*
682  * For each size class, zspages are divided into different groups
683  * depending on how "full" they are. This was done so that we could
684  * easily find empty or nearly empty zspages when we try to shrink
685  * the pool (not yet implemented). This function returns fullness
686  * status of the given page.
687  */
688 static enum fullness_group get_fullness_group(struct size_class *class,
689                                                 struct zspage *zspage)
690 {
691         int inuse, objs_per_zspage;
692         enum fullness_group fg;
693
694         inuse = get_zspage_inuse(zspage);
695         objs_per_zspage = class->objs_per_zspage;
696
697         if (inuse == 0)
698                 fg = ZS_EMPTY;
699         else if (inuse == objs_per_zspage)
700                 fg = ZS_FULL;
701         else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
702                 fg = ZS_ALMOST_EMPTY;
703         else
704                 fg = ZS_ALMOST_FULL;
705
706         return fg;
707 }
708
709 /*
710  * Each size class maintains various freelists and zspages are assigned
711  * to one of these freelists based on the number of live objects they
712  * have. This functions inserts the given zspage into the freelist
713  * identified by <class, fullness_group>.
714  */
715 static void insert_zspage(struct size_class *class,
716                                 struct zspage *zspage,
717                                 enum fullness_group fullness)
718 {
719         struct zspage *head;
720
721         class_stat_inc(class, fullness, 1);
722         head = list_first_entry_or_null(&class->fullness_list[fullness],
723                                         struct zspage, list);
724         /*
725          * We want to see more ZS_FULL pages and less almost empty/full.
726          * Put pages with higher ->inuse first.
727          */
728         if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
729                 list_add(&zspage->list, &head->list);
730         else
731                 list_add(&zspage->list, &class->fullness_list[fullness]);
732 }
733
734 /*
735  * This function removes the given zspage from the freelist identified
736  * by <class, fullness_group>.
737  */
738 static void remove_zspage(struct size_class *class,
739                                 struct zspage *zspage,
740                                 enum fullness_group fullness)
741 {
742         VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
743
744         list_del_init(&zspage->list);
745         class_stat_dec(class, fullness, 1);
746 }
747
748 /*
749  * Each size class maintains zspages in different fullness groups depending
750  * on the number of live objects they contain. When allocating or freeing
751  * objects, the fullness status of the page can change, say, from ALMOST_FULL
752  * to ALMOST_EMPTY when freeing an object. This function checks if such
753  * a status change has occurred for the given page and accordingly moves the
754  * page from the freelist of the old fullness group to that of the new
755  * fullness group.
756  */
757 static enum fullness_group fix_fullness_group(struct size_class *class,
758                                                 struct zspage *zspage)
759 {
760         int class_idx;
761         enum fullness_group currfg, newfg;
762
763         get_zspage_mapping(zspage, &class_idx, &currfg);
764         newfg = get_fullness_group(class, zspage);
765         if (newfg == currfg)
766                 goto out;
767
768         remove_zspage(class, zspage, currfg);
769         insert_zspage(class, zspage, newfg);
770         set_zspage_mapping(zspage, class_idx, newfg);
771 out:
772         return newfg;
773 }
774
775 /*
776  * We have to decide on how many pages to link together
777  * to form a zspage for each size class. This is important
778  * to reduce wastage due to unusable space left at end of
779  * each zspage which is given as:
780  *     wastage = Zp % class_size
781  *     usage = Zp - wastage
782  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
783  *
784  * For example, for size class of 3/8 * PAGE_SIZE, we should
785  * link together 3 PAGE_SIZE sized pages to form a zspage
786  * since then we can perfectly fit in 8 such objects.
787  */
788 static int get_pages_per_zspage(int class_size)
789 {
790         int i, max_usedpc = 0;
791         /* zspage order which gives maximum used size per KB */
792         int max_usedpc_order = 1;
793
794         for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
795                 int zspage_size;
796                 int waste, usedpc;
797
798                 zspage_size = i * PAGE_SIZE;
799                 waste = zspage_size % class_size;
800                 usedpc = (zspage_size - waste) * 100 / zspage_size;
801
802                 if (usedpc > max_usedpc) {
803                         max_usedpc = usedpc;
804                         max_usedpc_order = i;
805                 }
806         }
807
808         return max_usedpc_order;
809 }
810
811 static struct zspage *get_zspage(struct page *page)
812 {
813         struct zspage *zspage = (struct zspage *)page_private(page);
814
815         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
816         return zspage;
817 }
818
819 static struct page *get_next_page(struct page *page)
820 {
821         struct zspage *zspage = get_zspage(page);
822
823         if (unlikely(ZsHugePage(zspage)))
824                 return NULL;
825
826         return (struct page *)page->index;
827 }
828
829 /**
830  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
831  * @obj: the encoded object value
832  * @page: page object resides in zspage
833  * @obj_idx: object index
834  */
835 static void obj_to_location(unsigned long obj, struct page **page,
836                                 unsigned int *obj_idx)
837 {
838         obj >>= OBJ_TAG_BITS;
839         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
840         *obj_idx = (obj & OBJ_INDEX_MASK);
841 }
842
843 static void obj_to_page(unsigned long obj, struct page **page)
844 {
845         obj >>= OBJ_TAG_BITS;
846         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
847 }
848
849 /**
850  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
851  * @page: page object resides in zspage
852  * @obj_idx: object index
853  */
854 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
855 {
856         unsigned long obj;
857
858         obj = page_to_pfn(page) << OBJ_INDEX_BITS;
859         obj |= obj_idx & OBJ_INDEX_MASK;
860         obj <<= OBJ_TAG_BITS;
861
862         return obj;
863 }
864
865 static unsigned long handle_to_obj(unsigned long handle)
866 {
867         return *(unsigned long *)handle;
868 }
869
870 static bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
871 {
872         unsigned long handle;
873         struct zspage *zspage = get_zspage(page);
874
875         if (unlikely(ZsHugePage(zspage))) {
876                 VM_BUG_ON_PAGE(!is_first_page(page), page);
877                 handle = page->index;
878         } else
879                 handle = *(unsigned long *)obj;
880
881         if (!(handle & OBJ_ALLOCATED_TAG))
882                 return false;
883
884         *phandle = handle & ~OBJ_ALLOCATED_TAG;
885         return true;
886 }
887
888 static void reset_page(struct page *page)
889 {
890         __ClearPageMovable(page);
891         ClearPagePrivate(page);
892         set_page_private(page, 0);
893         page_mapcount_reset(page);
894         page->index = 0;
895 }
896
897 static int trylock_zspage(struct zspage *zspage)
898 {
899         struct page *cursor, *fail;
900
901         for (cursor = get_first_page(zspage); cursor != NULL; cursor =
902                                         get_next_page(cursor)) {
903                 if (!trylock_page(cursor)) {
904                         fail = cursor;
905                         goto unlock;
906                 }
907         }
908
909         return 1;
910 unlock:
911         for (cursor = get_first_page(zspage); cursor != fail; cursor =
912                                         get_next_page(cursor))
913                 unlock_page(cursor);
914
915         return 0;
916 }
917
918 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
919                                 struct zspage *zspage)
920 {
921         struct page *page, *next;
922         enum fullness_group fg;
923         unsigned int class_idx;
924
925         get_zspage_mapping(zspage, &class_idx, &fg);
926
927         assert_spin_locked(&pool->lock);
928
929         VM_BUG_ON(get_zspage_inuse(zspage));
930         VM_BUG_ON(fg != ZS_EMPTY);
931
932         next = page = get_first_page(zspage);
933         do {
934                 VM_BUG_ON_PAGE(!PageLocked(page), page);
935                 next = get_next_page(page);
936                 reset_page(page);
937                 unlock_page(page);
938                 dec_zone_page_state(page, NR_ZSPAGES);
939                 put_page(page);
940                 page = next;
941         } while (page != NULL);
942
943         cache_free_zspage(pool, zspage);
944
945         class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
946         atomic_long_sub(class->pages_per_zspage,
947                                         &pool->pages_allocated);
948 }
949
950 static void free_zspage(struct zs_pool *pool, struct size_class *class,
951                                 struct zspage *zspage)
952 {
953         VM_BUG_ON(get_zspage_inuse(zspage));
954         VM_BUG_ON(list_empty(&zspage->list));
955
956         /*
957          * Since zs_free couldn't be sleepable, this function cannot call
958          * lock_page. The page locks trylock_zspage got will be released
959          * by __free_zspage.
960          */
961         if (!trylock_zspage(zspage)) {
962                 kick_deferred_free(pool);
963                 return;
964         }
965
966         remove_zspage(class, zspage, ZS_EMPTY);
967 #ifdef CONFIG_ZPOOL
968         list_del(&zspage->lru);
969 #endif
970         __free_zspage(pool, class, zspage);
971 }
972
973 /* Initialize a newly allocated zspage */
974 static void init_zspage(struct size_class *class, struct zspage *zspage)
975 {
976         unsigned int freeobj = 1;
977         unsigned long off = 0;
978         struct page *page = get_first_page(zspage);
979
980         while (page) {
981                 struct page *next_page;
982                 struct link_free *link;
983                 void *vaddr;
984
985                 set_first_obj_offset(page, off);
986
987                 vaddr = kmap_atomic(page);
988                 link = (struct link_free *)vaddr + off / sizeof(*link);
989
990                 while ((off += class->size) < PAGE_SIZE) {
991                         link->next = freeobj++ << OBJ_TAG_BITS;
992                         link += class->size / sizeof(*link);
993                 }
994
995                 /*
996                  * We now come to the last (full or partial) object on this
997                  * page, which must point to the first object on the next
998                  * page (if present)
999                  */
1000                 next_page = get_next_page(page);
1001                 if (next_page) {
1002                         link->next = freeobj++ << OBJ_TAG_BITS;
1003                 } else {
1004                         /*
1005                          * Reset OBJ_TAG_BITS bit to last link to tell
1006                          * whether it's allocated object or not.
1007                          */
1008                         link->next = -1UL << OBJ_TAG_BITS;
1009                 }
1010                 kunmap_atomic(vaddr);
1011                 page = next_page;
1012                 off %= PAGE_SIZE;
1013         }
1014
1015 #ifdef CONFIG_ZPOOL
1016         INIT_LIST_HEAD(&zspage->lru);
1017 #endif
1018
1019         set_freeobj(zspage, 0);
1020 }
1021
1022 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1023                                 struct page *pages[])
1024 {
1025         int i;
1026         struct page *page;
1027         struct page *prev_page = NULL;
1028         int nr_pages = class->pages_per_zspage;
1029
1030         /*
1031          * Allocate individual pages and link them together as:
1032          * 1. all pages are linked together using page->index
1033          * 2. each sub-page point to zspage using page->private
1034          *
1035          * we set PG_private to identify the first page (i.e. no other sub-page
1036          * has this flag set).
1037          */
1038         for (i = 0; i < nr_pages; i++) {
1039                 page = pages[i];
1040                 set_page_private(page, (unsigned long)zspage);
1041                 page->index = 0;
1042                 if (i == 0) {
1043                         zspage->first_page = page;
1044                         SetPagePrivate(page);
1045                         if (unlikely(class->objs_per_zspage == 1 &&
1046                                         class->pages_per_zspage == 1))
1047                                 SetZsHugePage(zspage);
1048                 } else {
1049                         prev_page->index = (unsigned long)page;
1050                 }
1051                 prev_page = page;
1052         }
1053 }
1054
1055 /*
1056  * Allocate a zspage for the given size class
1057  */
1058 static struct zspage *alloc_zspage(struct zs_pool *pool,
1059                                         struct size_class *class,
1060                                         gfp_t gfp)
1061 {
1062         int i;
1063         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1064         struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1065
1066         if (!zspage)
1067                 return NULL;
1068
1069         zspage->magic = ZSPAGE_MAGIC;
1070         migrate_lock_init(zspage);
1071
1072         for (i = 0; i < class->pages_per_zspage; i++) {
1073                 struct page *page;
1074
1075                 page = alloc_page(gfp);
1076                 if (!page) {
1077                         while (--i >= 0) {
1078                                 dec_zone_page_state(pages[i], NR_ZSPAGES);
1079                                 __free_page(pages[i]);
1080                         }
1081                         cache_free_zspage(pool, zspage);
1082                         return NULL;
1083                 }
1084
1085                 inc_zone_page_state(page, NR_ZSPAGES);
1086                 pages[i] = page;
1087         }
1088
1089         create_page_chain(class, zspage, pages);
1090         init_zspage(class, zspage);
1091         zspage->pool = pool;
1092
1093         return zspage;
1094 }
1095
1096 static struct zspage *find_get_zspage(struct size_class *class)
1097 {
1098         int i;
1099         struct zspage *zspage;
1100
1101         for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1102                 zspage = list_first_entry_or_null(&class->fullness_list[i],
1103                                 struct zspage, list);
1104                 if (zspage)
1105                         break;
1106         }
1107
1108         return zspage;
1109 }
1110
1111 static inline int __zs_cpu_up(struct mapping_area *area)
1112 {
1113         /*
1114          * Make sure we don't leak memory if a cpu UP notification
1115          * and zs_init() race and both call zs_cpu_up() on the same cpu
1116          */
1117         if (area->vm_buf)
1118                 return 0;
1119         area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1120         if (!area->vm_buf)
1121                 return -ENOMEM;
1122         return 0;
1123 }
1124
1125 static inline void __zs_cpu_down(struct mapping_area *area)
1126 {
1127         kfree(area->vm_buf);
1128         area->vm_buf = NULL;
1129 }
1130
1131 static void *__zs_map_object(struct mapping_area *area,
1132                         struct page *pages[2], int off, int size)
1133 {
1134         int sizes[2];
1135         void *addr;
1136         char *buf = area->vm_buf;
1137
1138         /* disable page faults to match kmap_atomic() return conditions */
1139         pagefault_disable();
1140
1141         /* no read fastpath */
1142         if (area->vm_mm == ZS_MM_WO)
1143                 goto out;
1144
1145         sizes[0] = PAGE_SIZE - off;
1146         sizes[1] = size - sizes[0];
1147
1148         /* copy object to per-cpu buffer */
1149         addr = kmap_atomic(pages[0]);
1150         memcpy(buf, addr + off, sizes[0]);
1151         kunmap_atomic(addr);
1152         addr = kmap_atomic(pages[1]);
1153         memcpy(buf + sizes[0], addr, sizes[1]);
1154         kunmap_atomic(addr);
1155 out:
1156         return area->vm_buf;
1157 }
1158
1159 static void __zs_unmap_object(struct mapping_area *area,
1160                         struct page *pages[2], int off, int size)
1161 {
1162         int sizes[2];
1163         void *addr;
1164         char *buf;
1165
1166         /* no write fastpath */
1167         if (area->vm_mm == ZS_MM_RO)
1168                 goto out;
1169
1170         buf = area->vm_buf;
1171         buf = buf + ZS_HANDLE_SIZE;
1172         size -= ZS_HANDLE_SIZE;
1173         off += ZS_HANDLE_SIZE;
1174
1175         sizes[0] = PAGE_SIZE - off;
1176         sizes[1] = size - sizes[0];
1177
1178         /* copy per-cpu buffer to object */
1179         addr = kmap_atomic(pages[0]);
1180         memcpy(addr + off, buf, sizes[0]);
1181         kunmap_atomic(addr);
1182         addr = kmap_atomic(pages[1]);
1183         memcpy(addr, buf + sizes[0], sizes[1]);
1184         kunmap_atomic(addr);
1185
1186 out:
1187         /* enable page faults to match kunmap_atomic() return conditions */
1188         pagefault_enable();
1189 }
1190
1191 static int zs_cpu_prepare(unsigned int cpu)
1192 {
1193         struct mapping_area *area;
1194
1195         area = &per_cpu(zs_map_area, cpu);
1196         return __zs_cpu_up(area);
1197 }
1198
1199 static int zs_cpu_dead(unsigned int cpu)
1200 {
1201         struct mapping_area *area;
1202
1203         area = &per_cpu(zs_map_area, cpu);
1204         __zs_cpu_down(area);
1205         return 0;
1206 }
1207
1208 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1209                                         int objs_per_zspage)
1210 {
1211         if (prev->pages_per_zspage == pages_per_zspage &&
1212                 prev->objs_per_zspage == objs_per_zspage)
1213                 return true;
1214
1215         return false;
1216 }
1217
1218 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1219 {
1220         return get_zspage_inuse(zspage) == class->objs_per_zspage;
1221 }
1222
1223 /**
1224  * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1225  * that hold objects of the provided size.
1226  * @pool: zsmalloc pool to use
1227  * @size: object size
1228  *
1229  * Context: Any context.
1230  *
1231  * Return: the index of the zsmalloc &size_class that hold objects of the
1232  * provided size.
1233  */
1234 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1235 {
1236         struct size_class *class;
1237
1238         class = pool->size_class[get_size_class_index(size)];
1239
1240         return class->index;
1241 }
1242 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1243
1244 unsigned long zs_get_total_pages(struct zs_pool *pool)
1245 {
1246         return atomic_long_read(&pool->pages_allocated);
1247 }
1248 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1249
1250 /**
1251  * zs_map_object - get address of allocated object from handle.
1252  * @pool: pool from which the object was allocated
1253  * @handle: handle returned from zs_malloc
1254  * @mm: mapping mode to use
1255  *
1256  * Before using an object allocated from zs_malloc, it must be mapped using
1257  * this function. When done with the object, it must be unmapped using
1258  * zs_unmap_object.
1259  *
1260  * Only one object can be mapped per cpu at a time. There is no protection
1261  * against nested mappings.
1262  *
1263  * This function returns with preemption and page faults disabled.
1264  */
1265 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1266                         enum zs_mapmode mm)
1267 {
1268         struct zspage *zspage;
1269         struct page *page;
1270         unsigned long obj, off;
1271         unsigned int obj_idx;
1272
1273         struct size_class *class;
1274         struct mapping_area *area;
1275         struct page *pages[2];
1276         void *ret;
1277
1278         /*
1279          * Because we use per-cpu mapping areas shared among the
1280          * pools/users, we can't allow mapping in interrupt context
1281          * because it can corrupt another users mappings.
1282          */
1283         BUG_ON(in_interrupt());
1284
1285         /* It guarantees it can get zspage from handle safely */
1286         spin_lock(&pool->lock);
1287         obj = handle_to_obj(handle);
1288         obj_to_location(obj, &page, &obj_idx);
1289         zspage = get_zspage(page);
1290
1291 #ifdef CONFIG_ZPOOL
1292         /*
1293          * Move the zspage to front of pool's LRU.
1294          *
1295          * Note that this is swap-specific, so by definition there are no ongoing
1296          * accesses to the memory while the page is swapped out that would make
1297          * it "hot". A new entry is hot, then ages to the tail until it gets either
1298          * written back or swaps back in.
1299          *
1300          * Furthermore, map is also called during writeback. We must not put an
1301          * isolated page on the LRU mid-reclaim.
1302          *
1303          * As a result, only update the LRU when the page is mapped for write
1304          * when it's first instantiated.
1305          *
1306          * This is a deviation from the other backends, which perform this update
1307          * in the allocation function (zbud_alloc, z3fold_alloc).
1308          */
1309         if (mm == ZS_MM_WO) {
1310                 if (!list_empty(&zspage->lru))
1311                         list_del(&zspage->lru);
1312                 list_add(&zspage->lru, &pool->lru);
1313         }
1314 #endif
1315
1316         /*
1317          * migration cannot move any zpages in this zspage. Here, pool->lock
1318          * is too heavy since callers would take some time until they calls
1319          * zs_unmap_object API so delegate the locking from class to zspage
1320          * which is smaller granularity.
1321          */
1322         migrate_read_lock(zspage);
1323         spin_unlock(&pool->lock);
1324
1325         class = zspage_class(pool, zspage);
1326         off = (class->size * obj_idx) & ~PAGE_MASK;
1327
1328         local_lock(&zs_map_area.lock);
1329         area = this_cpu_ptr(&zs_map_area);
1330         area->vm_mm = mm;
1331         if (off + class->size <= PAGE_SIZE) {
1332                 /* this object is contained entirely within a page */
1333                 area->vm_addr = kmap_atomic(page);
1334                 ret = area->vm_addr + off;
1335                 goto out;
1336         }
1337
1338         /* this object spans two pages */
1339         pages[0] = page;
1340         pages[1] = get_next_page(page);
1341         BUG_ON(!pages[1]);
1342
1343         ret = __zs_map_object(area, pages, off, class->size);
1344 out:
1345         if (likely(!ZsHugePage(zspage)))
1346                 ret += ZS_HANDLE_SIZE;
1347
1348         return ret;
1349 }
1350 EXPORT_SYMBOL_GPL(zs_map_object);
1351
1352 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1353 {
1354         struct zspage *zspage;
1355         struct page *page;
1356         unsigned long obj, off;
1357         unsigned int obj_idx;
1358
1359         struct size_class *class;
1360         struct mapping_area *area;
1361
1362         obj = handle_to_obj(handle);
1363         obj_to_location(obj, &page, &obj_idx);
1364         zspage = get_zspage(page);
1365         class = zspage_class(pool, zspage);
1366         off = (class->size * obj_idx) & ~PAGE_MASK;
1367
1368         area = this_cpu_ptr(&zs_map_area);
1369         if (off + class->size <= PAGE_SIZE)
1370                 kunmap_atomic(area->vm_addr);
1371         else {
1372                 struct page *pages[2];
1373
1374                 pages[0] = page;
1375                 pages[1] = get_next_page(page);
1376                 BUG_ON(!pages[1]);
1377
1378                 __zs_unmap_object(area, pages, off, class->size);
1379         }
1380         local_unlock(&zs_map_area.lock);
1381
1382         migrate_read_unlock(zspage);
1383 }
1384 EXPORT_SYMBOL_GPL(zs_unmap_object);
1385
1386 /**
1387  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1388  *                        zsmalloc &size_class.
1389  * @pool: zsmalloc pool to use
1390  *
1391  * The function returns the size of the first huge class - any object of equal
1392  * or bigger size will be stored in zspage consisting of a single physical
1393  * page.
1394  *
1395  * Context: Any context.
1396  *
1397  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1398  */
1399 size_t zs_huge_class_size(struct zs_pool *pool)
1400 {
1401         return huge_class_size;
1402 }
1403 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1404
1405 static unsigned long obj_malloc(struct zs_pool *pool,
1406                                 struct zspage *zspage, unsigned long handle)
1407 {
1408         int i, nr_page, offset;
1409         unsigned long obj;
1410         struct link_free *link;
1411         struct size_class *class;
1412
1413         struct page *m_page;
1414         unsigned long m_offset;
1415         void *vaddr;
1416
1417         class = pool->size_class[zspage->class];
1418         handle |= OBJ_ALLOCATED_TAG;
1419         obj = get_freeobj(zspage);
1420
1421         offset = obj * class->size;
1422         nr_page = offset >> PAGE_SHIFT;
1423         m_offset = offset & ~PAGE_MASK;
1424         m_page = get_first_page(zspage);
1425
1426         for (i = 0; i < nr_page; i++)
1427                 m_page = get_next_page(m_page);
1428
1429         vaddr = kmap_atomic(m_page);
1430         link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1431         set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1432         if (likely(!ZsHugePage(zspage)))
1433                 /* record handle in the header of allocated chunk */
1434                 link->handle = handle;
1435         else
1436                 /* record handle to page->index */
1437                 zspage->first_page->index = handle;
1438
1439         kunmap_atomic(vaddr);
1440         mod_zspage_inuse(zspage, 1);
1441
1442         obj = location_to_obj(m_page, obj);
1443
1444         return obj;
1445 }
1446
1447
1448 /**
1449  * zs_malloc - Allocate block of given size from pool.
1450  * @pool: pool to allocate from
1451  * @size: size of block to allocate
1452  * @gfp: gfp flags when allocating object
1453  *
1454  * On success, handle to the allocated object is returned,
1455  * otherwise an ERR_PTR().
1456  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1457  */
1458 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1459 {
1460         unsigned long handle, obj;
1461         struct size_class *class;
1462         enum fullness_group newfg;
1463         struct zspage *zspage;
1464
1465         if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1466                 return (unsigned long)ERR_PTR(-EINVAL);
1467
1468         handle = cache_alloc_handle(pool, gfp);
1469         if (!handle)
1470                 return (unsigned long)ERR_PTR(-ENOMEM);
1471
1472         /* extra space in chunk to keep the handle */
1473         size += ZS_HANDLE_SIZE;
1474         class = pool->size_class[get_size_class_index(size)];
1475
1476         /* pool->lock effectively protects the zpage migration */
1477         spin_lock(&pool->lock);
1478         zspage = find_get_zspage(class);
1479         if (likely(zspage)) {
1480                 obj = obj_malloc(pool, zspage, handle);
1481                 /* Now move the zspage to another fullness group, if required */
1482                 fix_fullness_group(class, zspage);
1483                 record_obj(handle, obj);
1484                 class_stat_inc(class, OBJ_USED, 1);
1485                 spin_unlock(&pool->lock);
1486
1487                 return handle;
1488         }
1489
1490         spin_unlock(&pool->lock);
1491
1492         zspage = alloc_zspage(pool, class, gfp);
1493         if (!zspage) {
1494                 cache_free_handle(pool, handle);
1495                 return (unsigned long)ERR_PTR(-ENOMEM);
1496         }
1497
1498         spin_lock(&pool->lock);
1499         obj = obj_malloc(pool, zspage, handle);
1500         newfg = get_fullness_group(class, zspage);
1501         insert_zspage(class, zspage, newfg);
1502         set_zspage_mapping(zspage, class->index, newfg);
1503         record_obj(handle, obj);
1504         atomic_long_add(class->pages_per_zspage,
1505                                 &pool->pages_allocated);
1506         class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1507         class_stat_inc(class, OBJ_USED, 1);
1508
1509         /* We completely set up zspage so mark them as movable */
1510         SetZsPageMovable(pool, zspage);
1511         spin_unlock(&pool->lock);
1512
1513         return handle;
1514 }
1515 EXPORT_SYMBOL_GPL(zs_malloc);
1516
1517 static void obj_free(int class_size, unsigned long obj)
1518 {
1519         struct link_free *link;
1520         struct zspage *zspage;
1521         struct page *f_page;
1522         unsigned long f_offset;
1523         unsigned int f_objidx;
1524         void *vaddr;
1525
1526         obj_to_location(obj, &f_page, &f_objidx);
1527         f_offset = (class_size * f_objidx) & ~PAGE_MASK;
1528         zspage = get_zspage(f_page);
1529
1530         vaddr = kmap_atomic(f_page);
1531
1532         /* Insert this object in containing zspage's freelist */
1533         link = (struct link_free *)(vaddr + f_offset);
1534         if (likely(!ZsHugePage(zspage)))
1535                 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1536         else
1537                 f_page->index = 0;
1538         kunmap_atomic(vaddr);
1539         set_freeobj(zspage, f_objidx);
1540         mod_zspage_inuse(zspage, -1);
1541 }
1542
1543 void zs_free(struct zs_pool *pool, unsigned long handle)
1544 {
1545         struct zspage *zspage;
1546         struct page *f_page;
1547         unsigned long obj;
1548         struct size_class *class;
1549         enum fullness_group fullness;
1550
1551         if (IS_ERR_OR_NULL((void *)handle))
1552                 return;
1553
1554         /*
1555          * The pool->lock protects the race with zpage's migration
1556          * so it's safe to get the page from handle.
1557          */
1558         spin_lock(&pool->lock);
1559         obj = handle_to_obj(handle);
1560         obj_to_page(obj, &f_page);
1561         zspage = get_zspage(f_page);
1562         class = zspage_class(pool, zspage);
1563
1564         obj_free(class->size, obj);
1565         class_stat_dec(class, OBJ_USED, 1);
1566         fullness = fix_fullness_group(class, zspage);
1567         if (fullness != ZS_EMPTY)
1568                 goto out;
1569
1570         free_zspage(pool, class, zspage);
1571 out:
1572         spin_unlock(&pool->lock);
1573         cache_free_handle(pool, handle);
1574 }
1575 EXPORT_SYMBOL_GPL(zs_free);
1576
1577 static void zs_object_copy(struct size_class *class, unsigned long dst,
1578                                 unsigned long src)
1579 {
1580         struct page *s_page, *d_page;
1581         unsigned int s_objidx, d_objidx;
1582         unsigned long s_off, d_off;
1583         void *s_addr, *d_addr;
1584         int s_size, d_size, size;
1585         int written = 0;
1586
1587         s_size = d_size = class->size;
1588
1589         obj_to_location(src, &s_page, &s_objidx);
1590         obj_to_location(dst, &d_page, &d_objidx);
1591
1592         s_off = (class->size * s_objidx) & ~PAGE_MASK;
1593         d_off = (class->size * d_objidx) & ~PAGE_MASK;
1594
1595         if (s_off + class->size > PAGE_SIZE)
1596                 s_size = PAGE_SIZE - s_off;
1597
1598         if (d_off + class->size > PAGE_SIZE)
1599                 d_size = PAGE_SIZE - d_off;
1600
1601         s_addr = kmap_atomic(s_page);
1602         d_addr = kmap_atomic(d_page);
1603
1604         while (1) {
1605                 size = min(s_size, d_size);
1606                 memcpy(d_addr + d_off, s_addr + s_off, size);
1607                 written += size;
1608
1609                 if (written == class->size)
1610                         break;
1611
1612                 s_off += size;
1613                 s_size -= size;
1614                 d_off += size;
1615                 d_size -= size;
1616
1617                 /*
1618                  * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1619                  * calls must occurs in reverse order of calls to kmap_atomic().
1620                  * So, to call kunmap_atomic(s_addr) we should first call
1621                  * kunmap_atomic(d_addr). For more details see
1622                  * Documentation/mm/highmem.rst.
1623                  */
1624                 if (s_off >= PAGE_SIZE) {
1625                         kunmap_atomic(d_addr);
1626                         kunmap_atomic(s_addr);
1627                         s_page = get_next_page(s_page);
1628                         s_addr = kmap_atomic(s_page);
1629                         d_addr = kmap_atomic(d_page);
1630                         s_size = class->size - written;
1631                         s_off = 0;
1632                 }
1633
1634                 if (d_off >= PAGE_SIZE) {
1635                         kunmap_atomic(d_addr);
1636                         d_page = get_next_page(d_page);
1637                         d_addr = kmap_atomic(d_page);
1638                         d_size = class->size - written;
1639                         d_off = 0;
1640                 }
1641         }
1642
1643         kunmap_atomic(d_addr);
1644         kunmap_atomic(s_addr);
1645 }
1646
1647 /*
1648  * Find alloced object in zspage from index object and
1649  * return handle.
1650  */
1651 static unsigned long find_alloced_obj(struct size_class *class,
1652                                         struct page *page, int *obj_idx)
1653 {
1654         unsigned int offset;
1655         int index = *obj_idx;
1656         unsigned long handle = 0;
1657         void *addr = kmap_atomic(page);
1658
1659         offset = get_first_obj_offset(page);
1660         offset += class->size * index;
1661
1662         while (offset < PAGE_SIZE) {
1663                 if (obj_allocated(page, addr + offset, &handle))
1664                         break;
1665
1666                 offset += class->size;
1667                 index++;
1668         }
1669
1670         kunmap_atomic(addr);
1671
1672         *obj_idx = index;
1673
1674         return handle;
1675 }
1676
1677 struct zs_compact_control {
1678         /* Source spage for migration which could be a subpage of zspage */
1679         struct page *s_page;
1680         /* Destination page for migration which should be a first page
1681          * of zspage. */
1682         struct page *d_page;
1683          /* Starting object index within @s_page which used for live object
1684           * in the subpage. */
1685         int obj_idx;
1686 };
1687
1688 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1689                                 struct zs_compact_control *cc)
1690 {
1691         unsigned long used_obj, free_obj;
1692         unsigned long handle;
1693         struct page *s_page = cc->s_page;
1694         struct page *d_page = cc->d_page;
1695         int obj_idx = cc->obj_idx;
1696         int ret = 0;
1697
1698         while (1) {
1699                 handle = find_alloced_obj(class, s_page, &obj_idx);
1700                 if (!handle) {
1701                         s_page = get_next_page(s_page);
1702                         if (!s_page)
1703                                 break;
1704                         obj_idx = 0;
1705                         continue;
1706                 }
1707
1708                 /* Stop if there is no more space */
1709                 if (zspage_full(class, get_zspage(d_page))) {
1710                         ret = -ENOMEM;
1711                         break;
1712                 }
1713
1714                 used_obj = handle_to_obj(handle);
1715                 free_obj = obj_malloc(pool, get_zspage(d_page), handle);
1716                 zs_object_copy(class, free_obj, used_obj);
1717                 obj_idx++;
1718                 record_obj(handle, free_obj);
1719                 obj_free(class->size, used_obj);
1720         }
1721
1722         /* Remember last position in this iteration */
1723         cc->s_page = s_page;
1724         cc->obj_idx = obj_idx;
1725
1726         return ret;
1727 }
1728
1729 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1730 {
1731         int i;
1732         struct zspage *zspage;
1733         enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1734
1735         if (!source) {
1736                 fg[0] = ZS_ALMOST_FULL;
1737                 fg[1] = ZS_ALMOST_EMPTY;
1738         }
1739
1740         for (i = 0; i < 2; i++) {
1741                 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1742                                                         struct zspage, list);
1743                 if (zspage) {
1744                         remove_zspage(class, zspage, fg[i]);
1745                         return zspage;
1746                 }
1747         }
1748
1749         return zspage;
1750 }
1751
1752 /*
1753  * putback_zspage - add @zspage into right class's fullness list
1754  * @class: destination class
1755  * @zspage: target page
1756  *
1757  * Return @zspage's fullness_group
1758  */
1759 static enum fullness_group putback_zspage(struct size_class *class,
1760                         struct zspage *zspage)
1761 {
1762         enum fullness_group fullness;
1763
1764         fullness = get_fullness_group(class, zspage);
1765         insert_zspage(class, zspage, fullness);
1766         set_zspage_mapping(zspage, class->index, fullness);
1767
1768         return fullness;
1769 }
1770
1771 #ifdef CONFIG_COMPACTION
1772 /*
1773  * To prevent zspage destroy during migration, zspage freeing should
1774  * hold locks of all pages in the zspage.
1775  */
1776 static void lock_zspage(struct zspage *zspage)
1777 {
1778         struct page *curr_page, *page;
1779
1780         /*
1781          * Pages we haven't locked yet can be migrated off the list while we're
1782          * trying to lock them, so we need to be careful and only attempt to
1783          * lock each page under migrate_read_lock(). Otherwise, the page we lock
1784          * may no longer belong to the zspage. This means that we may wait for
1785          * the wrong page to unlock, so we must take a reference to the page
1786          * prior to waiting for it to unlock outside migrate_read_lock().
1787          */
1788         while (1) {
1789                 migrate_read_lock(zspage);
1790                 page = get_first_page(zspage);
1791                 if (trylock_page(page))
1792                         break;
1793                 get_page(page);
1794                 migrate_read_unlock(zspage);
1795                 wait_on_page_locked(page);
1796                 put_page(page);
1797         }
1798
1799         curr_page = page;
1800         while ((page = get_next_page(curr_page))) {
1801                 if (trylock_page(page)) {
1802                         curr_page = page;
1803                 } else {
1804                         get_page(page);
1805                         migrate_read_unlock(zspage);
1806                         wait_on_page_locked(page);
1807                         put_page(page);
1808                         migrate_read_lock(zspage);
1809                 }
1810         }
1811         migrate_read_unlock(zspage);
1812 }
1813
1814 static void migrate_lock_init(struct zspage *zspage)
1815 {
1816         rwlock_init(&zspage->lock);
1817 }
1818
1819 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1820 {
1821         read_lock(&zspage->lock);
1822 }
1823
1824 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1825 {
1826         read_unlock(&zspage->lock);
1827 }
1828
1829 static void migrate_write_lock(struct zspage *zspage)
1830 {
1831         write_lock(&zspage->lock);
1832 }
1833
1834 static void migrate_write_lock_nested(struct zspage *zspage)
1835 {
1836         write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
1837 }
1838
1839 static void migrate_write_unlock(struct zspage *zspage)
1840 {
1841         write_unlock(&zspage->lock);
1842 }
1843
1844 /* Number of isolated subpage for *page migration* in this zspage */
1845 static void inc_zspage_isolation(struct zspage *zspage)
1846 {
1847         zspage->isolated++;
1848 }
1849
1850 static void dec_zspage_isolation(struct zspage *zspage)
1851 {
1852         VM_BUG_ON(zspage->isolated == 0);
1853         zspage->isolated--;
1854 }
1855
1856 static const struct movable_operations zsmalloc_mops;
1857
1858 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1859                                 struct page *newpage, struct page *oldpage)
1860 {
1861         struct page *page;
1862         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1863         int idx = 0;
1864
1865         page = get_first_page(zspage);
1866         do {
1867                 if (page == oldpage)
1868                         pages[idx] = newpage;
1869                 else
1870                         pages[idx] = page;
1871                 idx++;
1872         } while ((page = get_next_page(page)) != NULL);
1873
1874         create_page_chain(class, zspage, pages);
1875         set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1876         if (unlikely(ZsHugePage(zspage)))
1877                 newpage->index = oldpage->index;
1878         __SetPageMovable(newpage, &zsmalloc_mops);
1879 }
1880
1881 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1882 {
1883         struct zspage *zspage;
1884
1885         /*
1886          * Page is locked so zspage couldn't be destroyed. For detail, look at
1887          * lock_zspage in free_zspage.
1888          */
1889         VM_BUG_ON_PAGE(!PageMovable(page), page);
1890         VM_BUG_ON_PAGE(PageIsolated(page), page);
1891
1892         zspage = get_zspage(page);
1893         migrate_write_lock(zspage);
1894         inc_zspage_isolation(zspage);
1895         migrate_write_unlock(zspage);
1896
1897         return true;
1898 }
1899
1900 static int zs_page_migrate(struct page *newpage, struct page *page,
1901                 enum migrate_mode mode)
1902 {
1903         struct zs_pool *pool;
1904         struct size_class *class;
1905         struct zspage *zspage;
1906         struct page *dummy;
1907         void *s_addr, *d_addr, *addr;
1908         unsigned int offset;
1909         unsigned long handle;
1910         unsigned long old_obj, new_obj;
1911         unsigned int obj_idx;
1912
1913         /*
1914          * We cannot support the _NO_COPY case here, because copy needs to
1915          * happen under the zs lock, which does not work with
1916          * MIGRATE_SYNC_NO_COPY workflow.
1917          */
1918         if (mode == MIGRATE_SYNC_NO_COPY)
1919                 return -EINVAL;
1920
1921         VM_BUG_ON_PAGE(!PageMovable(page), page);
1922         VM_BUG_ON_PAGE(!PageIsolated(page), page);
1923
1924         /* The page is locked, so this pointer must remain valid */
1925         zspage = get_zspage(page);
1926         pool = zspage->pool;
1927
1928         /*
1929          * The pool's lock protects the race between zpage migration
1930          * and zs_free.
1931          */
1932         spin_lock(&pool->lock);
1933         class = zspage_class(pool, zspage);
1934
1935         /* the migrate_write_lock protects zpage access via zs_map_object */
1936         migrate_write_lock(zspage);
1937
1938         offset = get_first_obj_offset(page);
1939         s_addr = kmap_atomic(page);
1940
1941         /*
1942          * Here, any user cannot access all objects in the zspage so let's move.
1943          */
1944         d_addr = kmap_atomic(newpage);
1945         memcpy(d_addr, s_addr, PAGE_SIZE);
1946         kunmap_atomic(d_addr);
1947
1948         for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1949                                         addr += class->size) {
1950                 if (obj_allocated(page, addr, &handle)) {
1951
1952                         old_obj = handle_to_obj(handle);
1953                         obj_to_location(old_obj, &dummy, &obj_idx);
1954                         new_obj = (unsigned long)location_to_obj(newpage,
1955                                                                 obj_idx);
1956                         record_obj(handle, new_obj);
1957                 }
1958         }
1959         kunmap_atomic(s_addr);
1960
1961         replace_sub_page(class, zspage, newpage, page);
1962         /*
1963          * Since we complete the data copy and set up new zspage structure,
1964          * it's okay to release the pool's lock.
1965          */
1966         spin_unlock(&pool->lock);
1967         dec_zspage_isolation(zspage);
1968         migrate_write_unlock(zspage);
1969
1970         get_page(newpage);
1971         if (page_zone(newpage) != page_zone(page)) {
1972                 dec_zone_page_state(page, NR_ZSPAGES);
1973                 inc_zone_page_state(newpage, NR_ZSPAGES);
1974         }
1975
1976         reset_page(page);
1977         put_page(page);
1978
1979         return MIGRATEPAGE_SUCCESS;
1980 }
1981
1982 static void zs_page_putback(struct page *page)
1983 {
1984         struct zspage *zspage;
1985
1986         VM_BUG_ON_PAGE(!PageMovable(page), page);
1987         VM_BUG_ON_PAGE(!PageIsolated(page), page);
1988
1989         zspage = get_zspage(page);
1990         migrate_write_lock(zspage);
1991         dec_zspage_isolation(zspage);
1992         migrate_write_unlock(zspage);
1993 }
1994
1995 static const struct movable_operations zsmalloc_mops = {
1996         .isolate_page = zs_page_isolate,
1997         .migrate_page = zs_page_migrate,
1998         .putback_page = zs_page_putback,
1999 };
2000
2001 /*
2002  * Caller should hold page_lock of all pages in the zspage
2003  * In here, we cannot use zspage meta data.
2004  */
2005 static void async_free_zspage(struct work_struct *work)
2006 {
2007         int i;
2008         struct size_class *class;
2009         unsigned int class_idx;
2010         enum fullness_group fullness;
2011         struct zspage *zspage, *tmp;
2012         LIST_HEAD(free_pages);
2013         struct zs_pool *pool = container_of(work, struct zs_pool,
2014                                         free_work);
2015
2016         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2017                 class = pool->size_class[i];
2018                 if (class->index != i)
2019                         continue;
2020
2021                 spin_lock(&pool->lock);
2022                 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2023                 spin_unlock(&pool->lock);
2024         }
2025
2026         list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2027                 list_del(&zspage->list);
2028                 lock_zspage(zspage);
2029
2030                 get_zspage_mapping(zspage, &class_idx, &fullness);
2031                 VM_BUG_ON(fullness != ZS_EMPTY);
2032                 class = pool->size_class[class_idx];
2033                 spin_lock(&pool->lock);
2034 #ifdef CONFIG_ZPOOL
2035                 list_del(&zspage->lru);
2036 #endif
2037                 __free_zspage(pool, class, zspage);
2038                 spin_unlock(&pool->lock);
2039         }
2040 };
2041
2042 static void kick_deferred_free(struct zs_pool *pool)
2043 {
2044         schedule_work(&pool->free_work);
2045 }
2046
2047 static void zs_flush_migration(struct zs_pool *pool)
2048 {
2049         flush_work(&pool->free_work);
2050 }
2051
2052 static void init_deferred_free(struct zs_pool *pool)
2053 {
2054         INIT_WORK(&pool->free_work, async_free_zspage);
2055 }
2056
2057 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2058 {
2059         struct page *page = get_first_page(zspage);
2060
2061         do {
2062                 WARN_ON(!trylock_page(page));
2063                 __SetPageMovable(page, &zsmalloc_mops);
2064                 unlock_page(page);
2065         } while ((page = get_next_page(page)) != NULL);
2066 }
2067 #else
2068 static inline void zs_flush_migration(struct zs_pool *pool) { }
2069 #endif
2070
2071 /*
2072  *
2073  * Based on the number of unused allocated objects calculate
2074  * and return the number of pages that we can free.
2075  */
2076 static unsigned long zs_can_compact(struct size_class *class)
2077 {
2078         unsigned long obj_wasted;
2079         unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2080         unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2081
2082         if (obj_allocated <= obj_used)
2083                 return 0;
2084
2085         obj_wasted = obj_allocated - obj_used;
2086         obj_wasted /= class->objs_per_zspage;
2087
2088         return obj_wasted * class->pages_per_zspage;
2089 }
2090
2091 static unsigned long __zs_compact(struct zs_pool *pool,
2092                                   struct size_class *class)
2093 {
2094         struct zs_compact_control cc;
2095         struct zspage *src_zspage;
2096         struct zspage *dst_zspage = NULL;
2097         unsigned long pages_freed = 0;
2098
2099         /*
2100          * protect the race between zpage migration and zs_free
2101          * as well as zpage allocation/free
2102          */
2103         spin_lock(&pool->lock);
2104         while ((src_zspage = isolate_zspage(class, true))) {
2105                 /* protect someone accessing the zspage(i.e., zs_map_object) */
2106                 migrate_write_lock(src_zspage);
2107
2108                 if (!zs_can_compact(class))
2109                         break;
2110
2111                 cc.obj_idx = 0;
2112                 cc.s_page = get_first_page(src_zspage);
2113
2114                 while ((dst_zspage = isolate_zspage(class, false))) {
2115                         migrate_write_lock_nested(dst_zspage);
2116
2117                         cc.d_page = get_first_page(dst_zspage);
2118                         /*
2119                          * If there is no more space in dst_page, resched
2120                          * and see if anyone had allocated another zspage.
2121                          */
2122                         if (!migrate_zspage(pool, class, &cc))
2123                                 break;
2124
2125                         putback_zspage(class, dst_zspage);
2126                         migrate_write_unlock(dst_zspage);
2127                         dst_zspage = NULL;
2128                         if (spin_is_contended(&pool->lock))
2129                                 break;
2130                 }
2131
2132                 /* Stop if we couldn't find slot */
2133                 if (dst_zspage == NULL)
2134                         break;
2135
2136                 putback_zspage(class, dst_zspage);
2137                 migrate_write_unlock(dst_zspage);
2138
2139                 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2140                         migrate_write_unlock(src_zspage);
2141                         free_zspage(pool, class, src_zspage);
2142                         pages_freed += class->pages_per_zspage;
2143                 } else
2144                         migrate_write_unlock(src_zspage);
2145                 spin_unlock(&pool->lock);
2146                 cond_resched();
2147                 spin_lock(&pool->lock);
2148         }
2149
2150         if (src_zspage) {
2151                 putback_zspage(class, src_zspage);
2152                 migrate_write_unlock(src_zspage);
2153         }
2154
2155         spin_unlock(&pool->lock);
2156
2157         return pages_freed;
2158 }
2159
2160 unsigned long zs_compact(struct zs_pool *pool)
2161 {
2162         int i;
2163         struct size_class *class;
2164         unsigned long pages_freed = 0;
2165
2166         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2167                 class = pool->size_class[i];
2168                 if (class->index != i)
2169                         continue;
2170                 pages_freed += __zs_compact(pool, class);
2171         }
2172         atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2173
2174         return pages_freed;
2175 }
2176 EXPORT_SYMBOL_GPL(zs_compact);
2177
2178 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2179 {
2180         memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2181 }
2182 EXPORT_SYMBOL_GPL(zs_pool_stats);
2183
2184 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2185                 struct shrink_control *sc)
2186 {
2187         unsigned long pages_freed;
2188         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2189                         shrinker);
2190
2191         /*
2192          * Compact classes and calculate compaction delta.
2193          * Can run concurrently with a manually triggered
2194          * (by user) compaction.
2195          */
2196         pages_freed = zs_compact(pool);
2197
2198         return pages_freed ? pages_freed : SHRINK_STOP;
2199 }
2200
2201 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2202                 struct shrink_control *sc)
2203 {
2204         int i;
2205         struct size_class *class;
2206         unsigned long pages_to_free = 0;
2207         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2208                         shrinker);
2209
2210         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2211                 class = pool->size_class[i];
2212                 if (class->index != i)
2213                         continue;
2214
2215                 pages_to_free += zs_can_compact(class);
2216         }
2217
2218         return pages_to_free;
2219 }
2220
2221 static void zs_unregister_shrinker(struct zs_pool *pool)
2222 {
2223         unregister_shrinker(&pool->shrinker);
2224 }
2225
2226 static int zs_register_shrinker(struct zs_pool *pool)
2227 {
2228         pool->shrinker.scan_objects = zs_shrinker_scan;
2229         pool->shrinker.count_objects = zs_shrinker_count;
2230         pool->shrinker.batch = 0;
2231         pool->shrinker.seeks = DEFAULT_SEEKS;
2232
2233         return register_shrinker(&pool->shrinker, "mm-zspool:%s",
2234                                  pool->name);
2235 }
2236
2237 /**
2238  * zs_create_pool - Creates an allocation pool to work from.
2239  * @name: pool name to be created
2240  *
2241  * This function must be called before anything when using
2242  * the zsmalloc allocator.
2243  *
2244  * On success, a pointer to the newly created pool is returned,
2245  * otherwise NULL.
2246  */
2247 struct zs_pool *zs_create_pool(const char *name)
2248 {
2249         int i;
2250         struct zs_pool *pool;
2251         struct size_class *prev_class = NULL;
2252
2253         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2254         if (!pool)
2255                 return NULL;
2256
2257         init_deferred_free(pool);
2258         spin_lock_init(&pool->lock);
2259
2260         pool->name = kstrdup(name, GFP_KERNEL);
2261         if (!pool->name)
2262                 goto err;
2263
2264         if (create_cache(pool))
2265                 goto err;
2266
2267         /*
2268          * Iterate reversely, because, size of size_class that we want to use
2269          * for merging should be larger or equal to current size.
2270          */
2271         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2272                 int size;
2273                 int pages_per_zspage;
2274                 int objs_per_zspage;
2275                 struct size_class *class;
2276                 int fullness = 0;
2277
2278                 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2279                 if (size > ZS_MAX_ALLOC_SIZE)
2280                         size = ZS_MAX_ALLOC_SIZE;
2281                 pages_per_zspage = get_pages_per_zspage(size);
2282                 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2283
2284                 /*
2285                  * We iterate from biggest down to smallest classes,
2286                  * so huge_class_size holds the size of the first huge
2287                  * class. Any object bigger than or equal to that will
2288                  * endup in the huge class.
2289                  */
2290                 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2291                                 !huge_class_size) {
2292                         huge_class_size = size;
2293                         /*
2294                          * The object uses ZS_HANDLE_SIZE bytes to store the
2295                          * handle. We need to subtract it, because zs_malloc()
2296                          * unconditionally adds handle size before it performs
2297                          * size class search - so object may be smaller than
2298                          * huge class size, yet it still can end up in the huge
2299                          * class because it grows by ZS_HANDLE_SIZE extra bytes
2300                          * right before class lookup.
2301                          */
2302                         huge_class_size -= (ZS_HANDLE_SIZE - 1);
2303                 }
2304
2305                 /*
2306                  * size_class is used for normal zsmalloc operation such
2307                  * as alloc/free for that size. Although it is natural that we
2308                  * have one size_class for each size, there is a chance that we
2309                  * can get more memory utilization if we use one size_class for
2310                  * many different sizes whose size_class have same
2311                  * characteristics. So, we makes size_class point to
2312                  * previous size_class if possible.
2313                  */
2314                 if (prev_class) {
2315                         if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2316                                 pool->size_class[i] = prev_class;
2317                                 continue;
2318                         }
2319                 }
2320
2321                 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2322                 if (!class)
2323                         goto err;
2324
2325                 class->size = size;
2326                 class->index = i;
2327                 class->pages_per_zspage = pages_per_zspage;
2328                 class->objs_per_zspage = objs_per_zspage;
2329                 pool->size_class[i] = class;
2330                 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2331                                                         fullness++)
2332                         INIT_LIST_HEAD(&class->fullness_list[fullness]);
2333
2334                 prev_class = class;
2335         }
2336
2337         /* debug only, don't abort if it fails */
2338         zs_pool_stat_create(pool, name);
2339
2340         /*
2341          * Not critical since shrinker is only used to trigger internal
2342          * defragmentation of the pool which is pretty optional thing.  If
2343          * registration fails we still can use the pool normally and user can
2344          * trigger compaction manually. Thus, ignore return code.
2345          */
2346         zs_register_shrinker(pool);
2347
2348 #ifdef CONFIG_ZPOOL
2349         INIT_LIST_HEAD(&pool->lru);
2350 #endif
2351
2352         return pool;
2353
2354 err:
2355         zs_destroy_pool(pool);
2356         return NULL;
2357 }
2358 EXPORT_SYMBOL_GPL(zs_create_pool);
2359
2360 void zs_destroy_pool(struct zs_pool *pool)
2361 {
2362         int i;
2363
2364         zs_unregister_shrinker(pool);
2365         zs_flush_migration(pool);
2366         zs_pool_stat_destroy(pool);
2367
2368         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2369                 int fg;
2370                 struct size_class *class = pool->size_class[i];
2371
2372                 if (!class)
2373                         continue;
2374
2375                 if (class->index != i)
2376                         continue;
2377
2378                 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2379                         if (!list_empty(&class->fullness_list[fg])) {
2380                                 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2381                                         class->size, fg);
2382                         }
2383                 }
2384                 kfree(class);
2385         }
2386
2387         destroy_cache(pool);
2388         kfree(pool->name);
2389         kfree(pool);
2390 }
2391 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2392
2393 static int __init zs_init(void)
2394 {
2395         int ret;
2396
2397         ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2398                                 zs_cpu_prepare, zs_cpu_dead);
2399         if (ret)
2400                 goto out;
2401
2402 #ifdef CONFIG_ZPOOL
2403         zpool_register_driver(&zs_zpool_driver);
2404 #endif
2405
2406         zs_stat_init();
2407
2408         return 0;
2409
2410 out:
2411         return ret;
2412 }
2413
2414 static void __exit zs_exit(void)
2415 {
2416 #ifdef CONFIG_ZPOOL
2417         zpool_unregister_driver(&zs_zpool_driver);
2418 #endif
2419         cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2420
2421         zs_stat_exit();
2422 }
2423
2424 module_init(zs_init);
2425 module_exit(zs_exit);
2426
2427 MODULE_LICENSE("Dual BSD/GPL");
2428 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");