Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[platform/kernel/linux-rpi.git] / mm / zsmalloc.c
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *      page->private: points to zspage
20  *      page->freelist(index): links together all component pages of a zspage
21  *              For the huge page, this is always 0, so we use this field
22  *              to store handle.
23  *      page->units: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *      PG_private: identifies the first component page
27  *      PG_owner_priv_1: identifies the huge component page
28  *
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <linux/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/pseudo_fs.h>
56 #include <linux/migrate.h>
57 #include <linux/wait.h>
58 #include <linux/pagemap.h>
59 #include <linux/fs.h>
60
61 #define ZSPAGE_MAGIC    0x58
62
63 /*
64  * This must be power of 2 and greater than of equal to sizeof(link_free).
65  * These two conditions ensure that any 'struct link_free' itself doesn't
66  * span more than 1 page which avoids complex case of mapping 2 pages simply
67  * to restore link_free pointer values.
68  */
69 #define ZS_ALIGN                8
70
71 /*
72  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
73  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
74  */
75 #define ZS_MAX_ZSPAGE_ORDER 2
76 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
77
78 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
79
80 /*
81  * Object location (<PFN>, <obj_idx>) is encoded as
82  * a single (unsigned long) handle value.
83  *
84  * Note that object index <obj_idx> starts from 0.
85  *
86  * This is made more complicated by various memory models and PAE.
87  */
88
89 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
90 #ifdef MAX_PHYSMEM_BITS
91 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
92 #else
93 /*
94  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
95  * be PAGE_SHIFT
96  */
97 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
98 #endif
99 #endif
100
101 #define _PFN_BITS               (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
102
103 /*
104  * Memory for allocating for handle keeps object position by
105  * encoding <page, obj_idx> and the encoded value has a room
106  * in least bit(ie, look at obj_to_location).
107  * We use the bit to synchronize between object access by
108  * user and migration.
109  */
110 #define HANDLE_PIN_BIT  0
111
112 /*
113  * Head in allocated object should have OBJ_ALLOCATED_TAG
114  * to identify the object was allocated or not.
115  * It's okay to add the status bit in the least bit because
116  * header keeps handle which is 4byte-aligned address so we
117  * have room for two bit at least.
118  */
119 #define OBJ_ALLOCATED_TAG 1
120 #define OBJ_TAG_BITS 1
121 #define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
122 #define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
123
124 #define FULLNESS_BITS   2
125 #define CLASS_BITS      8
126 #define ISOLATED_BITS   3
127 #define MAGIC_VAL_BITS  8
128
129 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
130 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
131 #define ZS_MIN_ALLOC_SIZE \
132         MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
133 /* each chunk includes extra space to keep handle */
134 #define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
135
136 /*
137  * On systems with 4K page size, this gives 255 size classes! There is a
138  * trader-off here:
139  *  - Large number of size classes is potentially wasteful as free page are
140  *    spread across these classes
141  *  - Small number of size classes causes large internal fragmentation
142  *  - Probably its better to use specific size classes (empirically
143  *    determined). NOTE: all those class sizes must be set as multiple of
144  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
145  *
146  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
147  *  (reason above)
148  */
149 #define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
150 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
151                                       ZS_SIZE_CLASS_DELTA) + 1)
152
153 enum fullness_group {
154         ZS_EMPTY,
155         ZS_ALMOST_EMPTY,
156         ZS_ALMOST_FULL,
157         ZS_FULL,
158         NR_ZS_FULLNESS,
159 };
160
161 enum zs_stat_type {
162         CLASS_EMPTY,
163         CLASS_ALMOST_EMPTY,
164         CLASS_ALMOST_FULL,
165         CLASS_FULL,
166         OBJ_ALLOCATED,
167         OBJ_USED,
168         NR_ZS_STAT_TYPE,
169 };
170
171 struct zs_size_stat {
172         unsigned long objs[NR_ZS_STAT_TYPE];
173 };
174
175 #ifdef CONFIG_ZSMALLOC_STAT
176 static struct dentry *zs_stat_root;
177 #endif
178
179 #ifdef CONFIG_COMPACTION
180 static struct vfsmount *zsmalloc_mnt;
181 #endif
182
183 /*
184  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
185  *      n <= N / f, where
186  * n = number of allocated objects
187  * N = total number of objects zspage can store
188  * f = fullness_threshold_frac
189  *
190  * Similarly, we assign zspage to:
191  *      ZS_ALMOST_FULL  when n > N / f
192  *      ZS_EMPTY        when n == 0
193  *      ZS_FULL         when n == N
194  *
195  * (see: fix_fullness_group())
196  */
197 static const int fullness_threshold_frac = 4;
198 static size_t huge_class_size;
199
200 struct size_class {
201         spinlock_t lock;
202         struct list_head fullness_list[NR_ZS_FULLNESS];
203         /*
204          * Size of objects stored in this class. Must be multiple
205          * of ZS_ALIGN.
206          */
207         int size;
208         int objs_per_zspage;
209         /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
210         int pages_per_zspage;
211
212         unsigned int index;
213         struct zs_size_stat stats;
214 };
215
216 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
217 static void SetPageHugeObject(struct page *page)
218 {
219         SetPageOwnerPriv1(page);
220 }
221
222 static void ClearPageHugeObject(struct page *page)
223 {
224         ClearPageOwnerPriv1(page);
225 }
226
227 static int PageHugeObject(struct page *page)
228 {
229         return PageOwnerPriv1(page);
230 }
231
232 /*
233  * Placed within free objects to form a singly linked list.
234  * For every zspage, zspage->freeobj gives head of this list.
235  *
236  * This must be power of 2 and less than or equal to ZS_ALIGN
237  */
238 struct link_free {
239         union {
240                 /*
241                  * Free object index;
242                  * It's valid for non-allocated object
243                  */
244                 unsigned long next;
245                 /*
246                  * Handle of allocated object.
247                  */
248                 unsigned long handle;
249         };
250 };
251
252 struct zs_pool {
253         const char *name;
254
255         struct size_class *size_class[ZS_SIZE_CLASSES];
256         struct kmem_cache *handle_cachep;
257         struct kmem_cache *zspage_cachep;
258
259         atomic_long_t pages_allocated;
260
261         struct zs_pool_stats stats;
262
263         /* Compact classes */
264         struct shrinker shrinker;
265
266 #ifdef CONFIG_ZSMALLOC_STAT
267         struct dentry *stat_dentry;
268 #endif
269 #ifdef CONFIG_COMPACTION
270         struct inode *inode;
271         struct work_struct free_work;
272         /* A wait queue for when migration races with async_free_zspage() */
273         struct wait_queue_head migration_wait;
274         atomic_long_t isolated_pages;
275         bool destroying;
276 #endif
277 };
278
279 struct zspage {
280         struct {
281                 unsigned int fullness:FULLNESS_BITS;
282                 unsigned int class:CLASS_BITS + 1;
283                 unsigned int isolated:ISOLATED_BITS;
284                 unsigned int magic:MAGIC_VAL_BITS;
285         };
286         unsigned int inuse;
287         unsigned int freeobj;
288         struct page *first_page;
289         struct list_head list; /* fullness list */
290 #ifdef CONFIG_COMPACTION
291         rwlock_t lock;
292 #endif
293 };
294
295 struct mapping_area {
296         char *vm_buf; /* copy buffer for objects that span pages */
297         char *vm_addr; /* address of kmap_atomic()'ed pages */
298         enum zs_mapmode vm_mm; /* mapping mode */
299 };
300
301 #ifdef CONFIG_COMPACTION
302 static int zs_register_migration(struct zs_pool *pool);
303 static void zs_unregister_migration(struct zs_pool *pool);
304 static void migrate_lock_init(struct zspage *zspage);
305 static void migrate_read_lock(struct zspage *zspage);
306 static void migrate_read_unlock(struct zspage *zspage);
307 static void kick_deferred_free(struct zs_pool *pool);
308 static void init_deferred_free(struct zs_pool *pool);
309 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
310 #else
311 static int zsmalloc_mount(void) { return 0; }
312 static void zsmalloc_unmount(void) {}
313 static int zs_register_migration(struct zs_pool *pool) { return 0; }
314 static void zs_unregister_migration(struct zs_pool *pool) {}
315 static void migrate_lock_init(struct zspage *zspage) {}
316 static void migrate_read_lock(struct zspage *zspage) {}
317 static void migrate_read_unlock(struct zspage *zspage) {}
318 static void kick_deferred_free(struct zs_pool *pool) {}
319 static void init_deferred_free(struct zs_pool *pool) {}
320 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
321 #endif
322
323 static int create_cache(struct zs_pool *pool)
324 {
325         pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
326                                         0, 0, NULL);
327         if (!pool->handle_cachep)
328                 return 1;
329
330         pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
331                                         0, 0, NULL);
332         if (!pool->zspage_cachep) {
333                 kmem_cache_destroy(pool->handle_cachep);
334                 pool->handle_cachep = NULL;
335                 return 1;
336         }
337
338         return 0;
339 }
340
341 static void destroy_cache(struct zs_pool *pool)
342 {
343         kmem_cache_destroy(pool->handle_cachep);
344         kmem_cache_destroy(pool->zspage_cachep);
345 }
346
347 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
348 {
349         return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
350                         gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
351 }
352
353 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
354 {
355         kmem_cache_free(pool->handle_cachep, (void *)handle);
356 }
357
358 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
359 {
360         return kmem_cache_alloc(pool->zspage_cachep,
361                         flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
362 }
363
364 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
365 {
366         kmem_cache_free(pool->zspage_cachep, zspage);
367 }
368
369 static void record_obj(unsigned long handle, unsigned long obj)
370 {
371         /*
372          * lsb of @obj represents handle lock while other bits
373          * represent object value the handle is pointing so
374          * updating shouldn't do store tearing.
375          */
376         WRITE_ONCE(*(unsigned long *)handle, obj);
377 }
378
379 /* zpool driver */
380
381 #ifdef CONFIG_ZPOOL
382
383 static void *zs_zpool_create(const char *name, gfp_t gfp,
384                              const struct zpool_ops *zpool_ops,
385                              struct zpool *zpool)
386 {
387         /*
388          * Ignore global gfp flags: zs_malloc() may be invoked from
389          * different contexts and its caller must provide a valid
390          * gfp mask.
391          */
392         return zs_create_pool(name);
393 }
394
395 static void zs_zpool_destroy(void *pool)
396 {
397         zs_destroy_pool(pool);
398 }
399
400 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
401                         unsigned long *handle)
402 {
403         *handle = zs_malloc(pool, size, gfp);
404         return *handle ? 0 : -1;
405 }
406 static void zs_zpool_free(void *pool, unsigned long handle)
407 {
408         zs_free(pool, handle);
409 }
410
411 static void *zs_zpool_map(void *pool, unsigned long handle,
412                         enum zpool_mapmode mm)
413 {
414         enum zs_mapmode zs_mm;
415
416         switch (mm) {
417         case ZPOOL_MM_RO:
418                 zs_mm = ZS_MM_RO;
419                 break;
420         case ZPOOL_MM_WO:
421                 zs_mm = ZS_MM_WO;
422                 break;
423         case ZPOOL_MM_RW:
424         default:
425                 zs_mm = ZS_MM_RW;
426                 break;
427         }
428
429         return zs_map_object(pool, handle, zs_mm);
430 }
431 static void zs_zpool_unmap(void *pool, unsigned long handle)
432 {
433         zs_unmap_object(pool, handle);
434 }
435
436 static u64 zs_zpool_total_size(void *pool)
437 {
438         return zs_get_total_pages(pool) << PAGE_SHIFT;
439 }
440
441 static struct zpool_driver zs_zpool_driver = {
442         .type =                   "zsmalloc",
443         .owner =                  THIS_MODULE,
444         .create =                 zs_zpool_create,
445         .destroy =                zs_zpool_destroy,
446         .malloc_support_movable = true,
447         .malloc =                 zs_zpool_malloc,
448         .free =                   zs_zpool_free,
449         .map =                    zs_zpool_map,
450         .unmap =                  zs_zpool_unmap,
451         .total_size =             zs_zpool_total_size,
452 };
453
454 MODULE_ALIAS("zpool-zsmalloc");
455 #endif /* CONFIG_ZPOOL */
456
457 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
458 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
459
460 static bool is_zspage_isolated(struct zspage *zspage)
461 {
462         return zspage->isolated;
463 }
464
465 static __maybe_unused int is_first_page(struct page *page)
466 {
467         return PagePrivate(page);
468 }
469
470 /* Protected by class->lock */
471 static inline int get_zspage_inuse(struct zspage *zspage)
472 {
473         return zspage->inuse;
474 }
475
476
477 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
478 {
479         zspage->inuse += val;
480 }
481
482 static inline struct page *get_first_page(struct zspage *zspage)
483 {
484         struct page *first_page = zspage->first_page;
485
486         VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
487         return first_page;
488 }
489
490 static inline int get_first_obj_offset(struct page *page)
491 {
492         return page->units;
493 }
494
495 static inline void set_first_obj_offset(struct page *page, int offset)
496 {
497         page->units = offset;
498 }
499
500 static inline unsigned int get_freeobj(struct zspage *zspage)
501 {
502         return zspage->freeobj;
503 }
504
505 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
506 {
507         zspage->freeobj = obj;
508 }
509
510 static void get_zspage_mapping(struct zspage *zspage,
511                                 unsigned int *class_idx,
512                                 enum fullness_group *fullness)
513 {
514         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
515
516         *fullness = zspage->fullness;
517         *class_idx = zspage->class;
518 }
519
520 static void set_zspage_mapping(struct zspage *zspage,
521                                 unsigned int class_idx,
522                                 enum fullness_group fullness)
523 {
524         zspage->class = class_idx;
525         zspage->fullness = fullness;
526 }
527
528 /*
529  * zsmalloc divides the pool into various size classes where each
530  * class maintains a list of zspages where each zspage is divided
531  * into equal sized chunks. Each allocation falls into one of these
532  * classes depending on its size. This function returns index of the
533  * size class which has chunk size big enough to hold the give size.
534  */
535 static int get_size_class_index(int size)
536 {
537         int idx = 0;
538
539         if (likely(size > ZS_MIN_ALLOC_SIZE))
540                 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
541                                 ZS_SIZE_CLASS_DELTA);
542
543         return min_t(int, ZS_SIZE_CLASSES - 1, idx);
544 }
545
546 /* type can be of enum type zs_stat_type or fullness_group */
547 static inline void zs_stat_inc(struct size_class *class,
548                                 int type, unsigned long cnt)
549 {
550         class->stats.objs[type] += cnt;
551 }
552
553 /* type can be of enum type zs_stat_type or fullness_group */
554 static inline void zs_stat_dec(struct size_class *class,
555                                 int type, unsigned long cnt)
556 {
557         class->stats.objs[type] -= cnt;
558 }
559
560 /* type can be of enum type zs_stat_type or fullness_group */
561 static inline unsigned long zs_stat_get(struct size_class *class,
562                                 int type)
563 {
564         return class->stats.objs[type];
565 }
566
567 #ifdef CONFIG_ZSMALLOC_STAT
568
569 static void __init zs_stat_init(void)
570 {
571         if (!debugfs_initialized()) {
572                 pr_warn("debugfs not available, stat dir not created\n");
573                 return;
574         }
575
576         zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
577 }
578
579 static void __exit zs_stat_exit(void)
580 {
581         debugfs_remove_recursive(zs_stat_root);
582 }
583
584 static unsigned long zs_can_compact(struct size_class *class);
585
586 static int zs_stats_size_show(struct seq_file *s, void *v)
587 {
588         int i;
589         struct zs_pool *pool = s->private;
590         struct size_class *class;
591         int objs_per_zspage;
592         unsigned long class_almost_full, class_almost_empty;
593         unsigned long obj_allocated, obj_used, pages_used, freeable;
594         unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
595         unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
596         unsigned long total_freeable = 0;
597
598         seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
599                         "class", "size", "almost_full", "almost_empty",
600                         "obj_allocated", "obj_used", "pages_used",
601                         "pages_per_zspage", "freeable");
602
603         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
604                 class = pool->size_class[i];
605
606                 if (class->index != i)
607                         continue;
608
609                 spin_lock(&class->lock);
610                 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
611                 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
612                 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
613                 obj_used = zs_stat_get(class, OBJ_USED);
614                 freeable = zs_can_compact(class);
615                 spin_unlock(&class->lock);
616
617                 objs_per_zspage = class->objs_per_zspage;
618                 pages_used = obj_allocated / objs_per_zspage *
619                                 class->pages_per_zspage;
620
621                 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
622                                 " %10lu %10lu %16d %8lu\n",
623                         i, class->size, class_almost_full, class_almost_empty,
624                         obj_allocated, obj_used, pages_used,
625                         class->pages_per_zspage, freeable);
626
627                 total_class_almost_full += class_almost_full;
628                 total_class_almost_empty += class_almost_empty;
629                 total_objs += obj_allocated;
630                 total_used_objs += obj_used;
631                 total_pages += pages_used;
632                 total_freeable += freeable;
633         }
634
635         seq_puts(s, "\n");
636         seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
637                         "Total", "", total_class_almost_full,
638                         total_class_almost_empty, total_objs,
639                         total_used_objs, total_pages, "", total_freeable);
640
641         return 0;
642 }
643 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
644
645 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
646 {
647         if (!zs_stat_root) {
648                 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
649                 return;
650         }
651
652         pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
653
654         debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
655                             &zs_stats_size_fops);
656 }
657
658 static void zs_pool_stat_destroy(struct zs_pool *pool)
659 {
660         debugfs_remove_recursive(pool->stat_dentry);
661 }
662
663 #else /* CONFIG_ZSMALLOC_STAT */
664 static void __init zs_stat_init(void)
665 {
666 }
667
668 static void __exit zs_stat_exit(void)
669 {
670 }
671
672 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
673 {
674 }
675
676 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
677 {
678 }
679 #endif
680
681
682 /*
683  * For each size class, zspages are divided into different groups
684  * depending on how "full" they are. This was done so that we could
685  * easily find empty or nearly empty zspages when we try to shrink
686  * the pool (not yet implemented). This function returns fullness
687  * status of the given page.
688  */
689 static enum fullness_group get_fullness_group(struct size_class *class,
690                                                 struct zspage *zspage)
691 {
692         int inuse, objs_per_zspage;
693         enum fullness_group fg;
694
695         inuse = get_zspage_inuse(zspage);
696         objs_per_zspage = class->objs_per_zspage;
697
698         if (inuse == 0)
699                 fg = ZS_EMPTY;
700         else if (inuse == objs_per_zspage)
701                 fg = ZS_FULL;
702         else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
703                 fg = ZS_ALMOST_EMPTY;
704         else
705                 fg = ZS_ALMOST_FULL;
706
707         return fg;
708 }
709
710 /*
711  * Each size class maintains various freelists and zspages are assigned
712  * to one of these freelists based on the number of live objects they
713  * have. This functions inserts the given zspage into the freelist
714  * identified by <class, fullness_group>.
715  */
716 static void insert_zspage(struct size_class *class,
717                                 struct zspage *zspage,
718                                 enum fullness_group fullness)
719 {
720         struct zspage *head;
721
722         zs_stat_inc(class, fullness, 1);
723         head = list_first_entry_or_null(&class->fullness_list[fullness],
724                                         struct zspage, list);
725         /*
726          * We want to see more ZS_FULL pages and less almost empty/full.
727          * Put pages with higher ->inuse first.
728          */
729         if (head) {
730                 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
731                         list_add(&zspage->list, &head->list);
732                         return;
733                 }
734         }
735         list_add(&zspage->list, &class->fullness_list[fullness]);
736 }
737
738 /*
739  * This function removes the given zspage from the freelist identified
740  * by <class, fullness_group>.
741  */
742 static void remove_zspage(struct size_class *class,
743                                 struct zspage *zspage,
744                                 enum fullness_group fullness)
745 {
746         VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
747         VM_BUG_ON(is_zspage_isolated(zspage));
748
749         list_del_init(&zspage->list);
750         zs_stat_dec(class, fullness, 1);
751 }
752
753 /*
754  * Each size class maintains zspages in different fullness groups depending
755  * on the number of live objects they contain. When allocating or freeing
756  * objects, the fullness status of the page can change, say, from ALMOST_FULL
757  * to ALMOST_EMPTY when freeing an object. This function checks if such
758  * a status change has occurred for the given page and accordingly moves the
759  * page from the freelist of the old fullness group to that of the new
760  * fullness group.
761  */
762 static enum fullness_group fix_fullness_group(struct size_class *class,
763                                                 struct zspage *zspage)
764 {
765         int class_idx;
766         enum fullness_group currfg, newfg;
767
768         get_zspage_mapping(zspage, &class_idx, &currfg);
769         newfg = get_fullness_group(class, zspage);
770         if (newfg == currfg)
771                 goto out;
772
773         if (!is_zspage_isolated(zspage)) {
774                 remove_zspage(class, zspage, currfg);
775                 insert_zspage(class, zspage, newfg);
776         }
777
778         set_zspage_mapping(zspage, class_idx, newfg);
779
780 out:
781         return newfg;
782 }
783
784 /*
785  * We have to decide on how many pages to link together
786  * to form a zspage for each size class. This is important
787  * to reduce wastage due to unusable space left at end of
788  * each zspage which is given as:
789  *     wastage = Zp % class_size
790  *     usage = Zp - wastage
791  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
792  *
793  * For example, for size class of 3/8 * PAGE_SIZE, we should
794  * link together 3 PAGE_SIZE sized pages to form a zspage
795  * since then we can perfectly fit in 8 such objects.
796  */
797 static int get_pages_per_zspage(int class_size)
798 {
799         int i, max_usedpc = 0;
800         /* zspage order which gives maximum used size per KB */
801         int max_usedpc_order = 1;
802
803         for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
804                 int zspage_size;
805                 int waste, usedpc;
806
807                 zspage_size = i * PAGE_SIZE;
808                 waste = zspage_size % class_size;
809                 usedpc = (zspage_size - waste) * 100 / zspage_size;
810
811                 if (usedpc > max_usedpc) {
812                         max_usedpc = usedpc;
813                         max_usedpc_order = i;
814                 }
815         }
816
817         return max_usedpc_order;
818 }
819
820 static struct zspage *get_zspage(struct page *page)
821 {
822         struct zspage *zspage = (struct zspage *)page->private;
823
824         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
825         return zspage;
826 }
827
828 static struct page *get_next_page(struct page *page)
829 {
830         if (unlikely(PageHugeObject(page)))
831                 return NULL;
832
833         return page->freelist;
834 }
835
836 /**
837  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
838  * @obj: the encoded object value
839  * @page: page object resides in zspage
840  * @obj_idx: object index
841  */
842 static void obj_to_location(unsigned long obj, struct page **page,
843                                 unsigned int *obj_idx)
844 {
845         obj >>= OBJ_TAG_BITS;
846         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
847         *obj_idx = (obj & OBJ_INDEX_MASK);
848 }
849
850 /**
851  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
852  * @page: page object resides in zspage
853  * @obj_idx: object index
854  */
855 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
856 {
857         unsigned long obj;
858
859         obj = page_to_pfn(page) << OBJ_INDEX_BITS;
860         obj |= obj_idx & OBJ_INDEX_MASK;
861         obj <<= OBJ_TAG_BITS;
862
863         return obj;
864 }
865
866 static unsigned long handle_to_obj(unsigned long handle)
867 {
868         return *(unsigned long *)handle;
869 }
870
871 static unsigned long obj_to_head(struct page *page, void *obj)
872 {
873         if (unlikely(PageHugeObject(page))) {
874                 VM_BUG_ON_PAGE(!is_first_page(page), page);
875                 return page->index;
876         } else
877                 return *(unsigned long *)obj;
878 }
879
880 static inline int testpin_tag(unsigned long handle)
881 {
882         return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
883 }
884
885 static inline int trypin_tag(unsigned long handle)
886 {
887         return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
888 }
889
890 static void pin_tag(unsigned long handle) __acquires(bitlock)
891 {
892         bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
893 }
894
895 static void unpin_tag(unsigned long handle) __releases(bitlock)
896 {
897         bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
898 }
899
900 static void reset_page(struct page *page)
901 {
902         __ClearPageMovable(page);
903         ClearPagePrivate(page);
904         set_page_private(page, 0);
905         page_mapcount_reset(page);
906         ClearPageHugeObject(page);
907         page->freelist = NULL;
908 }
909
910 static int trylock_zspage(struct zspage *zspage)
911 {
912         struct page *cursor, *fail;
913
914         for (cursor = get_first_page(zspage); cursor != NULL; cursor =
915                                         get_next_page(cursor)) {
916                 if (!trylock_page(cursor)) {
917                         fail = cursor;
918                         goto unlock;
919                 }
920         }
921
922         return 1;
923 unlock:
924         for (cursor = get_first_page(zspage); cursor != fail; cursor =
925                                         get_next_page(cursor))
926                 unlock_page(cursor);
927
928         return 0;
929 }
930
931 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
932                                 struct zspage *zspage)
933 {
934         struct page *page, *next;
935         enum fullness_group fg;
936         unsigned int class_idx;
937
938         get_zspage_mapping(zspage, &class_idx, &fg);
939
940         assert_spin_locked(&class->lock);
941
942         VM_BUG_ON(get_zspage_inuse(zspage));
943         VM_BUG_ON(fg != ZS_EMPTY);
944
945         next = page = get_first_page(zspage);
946         do {
947                 VM_BUG_ON_PAGE(!PageLocked(page), page);
948                 next = get_next_page(page);
949                 reset_page(page);
950                 unlock_page(page);
951                 dec_zone_page_state(page, NR_ZSPAGES);
952                 put_page(page);
953                 page = next;
954         } while (page != NULL);
955
956         cache_free_zspage(pool, zspage);
957
958         zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
959         atomic_long_sub(class->pages_per_zspage,
960                                         &pool->pages_allocated);
961 }
962
963 static void free_zspage(struct zs_pool *pool, struct size_class *class,
964                                 struct zspage *zspage)
965 {
966         VM_BUG_ON(get_zspage_inuse(zspage));
967         VM_BUG_ON(list_empty(&zspage->list));
968
969         if (!trylock_zspage(zspage)) {
970                 kick_deferred_free(pool);
971                 return;
972         }
973
974         remove_zspage(class, zspage, ZS_EMPTY);
975         __free_zspage(pool, class, zspage);
976 }
977
978 /* Initialize a newly allocated zspage */
979 static void init_zspage(struct size_class *class, struct zspage *zspage)
980 {
981         unsigned int freeobj = 1;
982         unsigned long off = 0;
983         struct page *page = get_first_page(zspage);
984
985         while (page) {
986                 struct page *next_page;
987                 struct link_free *link;
988                 void *vaddr;
989
990                 set_first_obj_offset(page, off);
991
992                 vaddr = kmap_atomic(page);
993                 link = (struct link_free *)vaddr + off / sizeof(*link);
994
995                 while ((off += class->size) < PAGE_SIZE) {
996                         link->next = freeobj++ << OBJ_TAG_BITS;
997                         link += class->size / sizeof(*link);
998                 }
999
1000                 /*
1001                  * We now come to the last (full or partial) object on this
1002                  * page, which must point to the first object on the next
1003                  * page (if present)
1004                  */
1005                 next_page = get_next_page(page);
1006                 if (next_page) {
1007                         link->next = freeobj++ << OBJ_TAG_BITS;
1008                 } else {
1009                         /*
1010                          * Reset OBJ_TAG_BITS bit to last link to tell
1011                          * whether it's allocated object or not.
1012                          */
1013                         link->next = -1UL << OBJ_TAG_BITS;
1014                 }
1015                 kunmap_atomic(vaddr);
1016                 page = next_page;
1017                 off %= PAGE_SIZE;
1018         }
1019
1020         set_freeobj(zspage, 0);
1021 }
1022
1023 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1024                                 struct page *pages[])
1025 {
1026         int i;
1027         struct page *page;
1028         struct page *prev_page = NULL;
1029         int nr_pages = class->pages_per_zspage;
1030
1031         /*
1032          * Allocate individual pages and link them together as:
1033          * 1. all pages are linked together using page->freelist
1034          * 2. each sub-page point to zspage using page->private
1035          *
1036          * we set PG_private to identify the first page (i.e. no other sub-page
1037          * has this flag set).
1038          */
1039         for (i = 0; i < nr_pages; i++) {
1040                 page = pages[i];
1041                 set_page_private(page, (unsigned long)zspage);
1042                 page->freelist = NULL;
1043                 if (i == 0) {
1044                         zspage->first_page = page;
1045                         SetPagePrivate(page);
1046                         if (unlikely(class->objs_per_zspage == 1 &&
1047                                         class->pages_per_zspage == 1))
1048                                 SetPageHugeObject(page);
1049                 } else {
1050                         prev_page->freelist = page;
1051                 }
1052                 prev_page = page;
1053         }
1054 }
1055
1056 /*
1057  * Allocate a zspage for the given size class
1058  */
1059 static struct zspage *alloc_zspage(struct zs_pool *pool,
1060                                         struct size_class *class,
1061                                         gfp_t gfp)
1062 {
1063         int i;
1064         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1065         struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1066
1067         if (!zspage)
1068                 return NULL;
1069
1070         memset(zspage, 0, sizeof(struct zspage));
1071         zspage->magic = ZSPAGE_MAGIC;
1072         migrate_lock_init(zspage);
1073
1074         for (i = 0; i < class->pages_per_zspage; i++) {
1075                 struct page *page;
1076
1077                 page = alloc_page(gfp);
1078                 if (!page) {
1079                         while (--i >= 0) {
1080                                 dec_zone_page_state(pages[i], NR_ZSPAGES);
1081                                 __free_page(pages[i]);
1082                         }
1083                         cache_free_zspage(pool, zspage);
1084                         return NULL;
1085                 }
1086
1087                 inc_zone_page_state(page, NR_ZSPAGES);
1088                 pages[i] = page;
1089         }
1090
1091         create_page_chain(class, zspage, pages);
1092         init_zspage(class, zspage);
1093
1094         return zspage;
1095 }
1096
1097 static struct zspage *find_get_zspage(struct size_class *class)
1098 {
1099         int i;
1100         struct zspage *zspage;
1101
1102         for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1103                 zspage = list_first_entry_or_null(&class->fullness_list[i],
1104                                 struct zspage, list);
1105                 if (zspage)
1106                         break;
1107         }
1108
1109         return zspage;
1110 }
1111
1112 static inline int __zs_cpu_up(struct mapping_area *area)
1113 {
1114         /*
1115          * Make sure we don't leak memory if a cpu UP notification
1116          * and zs_init() race and both call zs_cpu_up() on the same cpu
1117          */
1118         if (area->vm_buf)
1119                 return 0;
1120         area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1121         if (!area->vm_buf)
1122                 return -ENOMEM;
1123         return 0;
1124 }
1125
1126 static inline void __zs_cpu_down(struct mapping_area *area)
1127 {
1128         kfree(area->vm_buf);
1129         area->vm_buf = NULL;
1130 }
1131
1132 static void *__zs_map_object(struct mapping_area *area,
1133                         struct page *pages[2], int off, int size)
1134 {
1135         int sizes[2];
1136         void *addr;
1137         char *buf = area->vm_buf;
1138
1139         /* disable page faults to match kmap_atomic() return conditions */
1140         pagefault_disable();
1141
1142         /* no read fastpath */
1143         if (area->vm_mm == ZS_MM_WO)
1144                 goto out;
1145
1146         sizes[0] = PAGE_SIZE - off;
1147         sizes[1] = size - sizes[0];
1148
1149         /* copy object to per-cpu buffer */
1150         addr = kmap_atomic(pages[0]);
1151         memcpy(buf, addr + off, sizes[0]);
1152         kunmap_atomic(addr);
1153         addr = kmap_atomic(pages[1]);
1154         memcpy(buf + sizes[0], addr, sizes[1]);
1155         kunmap_atomic(addr);
1156 out:
1157         return area->vm_buf;
1158 }
1159
1160 static void __zs_unmap_object(struct mapping_area *area,
1161                         struct page *pages[2], int off, int size)
1162 {
1163         int sizes[2];
1164         void *addr;
1165         char *buf;
1166
1167         /* no write fastpath */
1168         if (area->vm_mm == ZS_MM_RO)
1169                 goto out;
1170
1171         buf = area->vm_buf;
1172         buf = buf + ZS_HANDLE_SIZE;
1173         size -= ZS_HANDLE_SIZE;
1174         off += ZS_HANDLE_SIZE;
1175
1176         sizes[0] = PAGE_SIZE - off;
1177         sizes[1] = size - sizes[0];
1178
1179         /* copy per-cpu buffer to object */
1180         addr = kmap_atomic(pages[0]);
1181         memcpy(addr + off, buf, sizes[0]);
1182         kunmap_atomic(addr);
1183         addr = kmap_atomic(pages[1]);
1184         memcpy(addr, buf + sizes[0], sizes[1]);
1185         kunmap_atomic(addr);
1186
1187 out:
1188         /* enable page faults to match kunmap_atomic() return conditions */
1189         pagefault_enable();
1190 }
1191
1192 static int zs_cpu_prepare(unsigned int cpu)
1193 {
1194         struct mapping_area *area;
1195
1196         area = &per_cpu(zs_map_area, cpu);
1197         return __zs_cpu_up(area);
1198 }
1199
1200 static int zs_cpu_dead(unsigned int cpu)
1201 {
1202         struct mapping_area *area;
1203
1204         area = &per_cpu(zs_map_area, cpu);
1205         __zs_cpu_down(area);
1206         return 0;
1207 }
1208
1209 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1210                                         int objs_per_zspage)
1211 {
1212         if (prev->pages_per_zspage == pages_per_zspage &&
1213                 prev->objs_per_zspage == objs_per_zspage)
1214                 return true;
1215
1216         return false;
1217 }
1218
1219 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1220 {
1221         return get_zspage_inuse(zspage) == class->objs_per_zspage;
1222 }
1223
1224 unsigned long zs_get_total_pages(struct zs_pool *pool)
1225 {
1226         return atomic_long_read(&pool->pages_allocated);
1227 }
1228 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1229
1230 /**
1231  * zs_map_object - get address of allocated object from handle.
1232  * @pool: pool from which the object was allocated
1233  * @handle: handle returned from zs_malloc
1234  * @mm: maping mode to use
1235  *
1236  * Before using an object allocated from zs_malloc, it must be mapped using
1237  * this function. When done with the object, it must be unmapped using
1238  * zs_unmap_object.
1239  *
1240  * Only one object can be mapped per cpu at a time. There is no protection
1241  * against nested mappings.
1242  *
1243  * This function returns with preemption and page faults disabled.
1244  */
1245 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1246                         enum zs_mapmode mm)
1247 {
1248         struct zspage *zspage;
1249         struct page *page;
1250         unsigned long obj, off;
1251         unsigned int obj_idx;
1252
1253         unsigned int class_idx;
1254         enum fullness_group fg;
1255         struct size_class *class;
1256         struct mapping_area *area;
1257         struct page *pages[2];
1258         void *ret;
1259
1260         /*
1261          * Because we use per-cpu mapping areas shared among the
1262          * pools/users, we can't allow mapping in interrupt context
1263          * because it can corrupt another users mappings.
1264          */
1265         BUG_ON(in_interrupt());
1266
1267         /* From now on, migration cannot move the object */
1268         pin_tag(handle);
1269
1270         obj = handle_to_obj(handle);
1271         obj_to_location(obj, &page, &obj_idx);
1272         zspage = get_zspage(page);
1273
1274         /* migration cannot move any subpage in this zspage */
1275         migrate_read_lock(zspage);
1276
1277         get_zspage_mapping(zspage, &class_idx, &fg);
1278         class = pool->size_class[class_idx];
1279         off = (class->size * obj_idx) & ~PAGE_MASK;
1280
1281         area = &get_cpu_var(zs_map_area);
1282         area->vm_mm = mm;
1283         if (off + class->size <= PAGE_SIZE) {
1284                 /* this object is contained entirely within a page */
1285                 area->vm_addr = kmap_atomic(page);
1286                 ret = area->vm_addr + off;
1287                 goto out;
1288         }
1289
1290         /* this object spans two pages */
1291         pages[0] = page;
1292         pages[1] = get_next_page(page);
1293         BUG_ON(!pages[1]);
1294
1295         ret = __zs_map_object(area, pages, off, class->size);
1296 out:
1297         if (likely(!PageHugeObject(page)))
1298                 ret += ZS_HANDLE_SIZE;
1299
1300         return ret;
1301 }
1302 EXPORT_SYMBOL_GPL(zs_map_object);
1303
1304 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1305 {
1306         struct zspage *zspage;
1307         struct page *page;
1308         unsigned long obj, off;
1309         unsigned int obj_idx;
1310
1311         unsigned int class_idx;
1312         enum fullness_group fg;
1313         struct size_class *class;
1314         struct mapping_area *area;
1315
1316         obj = handle_to_obj(handle);
1317         obj_to_location(obj, &page, &obj_idx);
1318         zspage = get_zspage(page);
1319         get_zspage_mapping(zspage, &class_idx, &fg);
1320         class = pool->size_class[class_idx];
1321         off = (class->size * obj_idx) & ~PAGE_MASK;
1322
1323         area = this_cpu_ptr(&zs_map_area);
1324         if (off + class->size <= PAGE_SIZE)
1325                 kunmap_atomic(area->vm_addr);
1326         else {
1327                 struct page *pages[2];
1328
1329                 pages[0] = page;
1330                 pages[1] = get_next_page(page);
1331                 BUG_ON(!pages[1]);
1332
1333                 __zs_unmap_object(area, pages, off, class->size);
1334         }
1335         put_cpu_var(zs_map_area);
1336
1337         migrate_read_unlock(zspage);
1338         unpin_tag(handle);
1339 }
1340 EXPORT_SYMBOL_GPL(zs_unmap_object);
1341
1342 /**
1343  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1344  *                        zsmalloc &size_class.
1345  * @pool: zsmalloc pool to use
1346  *
1347  * The function returns the size of the first huge class - any object of equal
1348  * or bigger size will be stored in zspage consisting of a single physical
1349  * page.
1350  *
1351  * Context: Any context.
1352  *
1353  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1354  */
1355 size_t zs_huge_class_size(struct zs_pool *pool)
1356 {
1357         return huge_class_size;
1358 }
1359 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1360
1361 static unsigned long obj_malloc(struct size_class *class,
1362                                 struct zspage *zspage, unsigned long handle)
1363 {
1364         int i, nr_page, offset;
1365         unsigned long obj;
1366         struct link_free *link;
1367
1368         struct page *m_page;
1369         unsigned long m_offset;
1370         void *vaddr;
1371
1372         handle |= OBJ_ALLOCATED_TAG;
1373         obj = get_freeobj(zspage);
1374
1375         offset = obj * class->size;
1376         nr_page = offset >> PAGE_SHIFT;
1377         m_offset = offset & ~PAGE_MASK;
1378         m_page = get_first_page(zspage);
1379
1380         for (i = 0; i < nr_page; i++)
1381                 m_page = get_next_page(m_page);
1382
1383         vaddr = kmap_atomic(m_page);
1384         link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1385         set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1386         if (likely(!PageHugeObject(m_page)))
1387                 /* record handle in the header of allocated chunk */
1388                 link->handle = handle;
1389         else
1390                 /* record handle to page->index */
1391                 zspage->first_page->index = handle;
1392
1393         kunmap_atomic(vaddr);
1394         mod_zspage_inuse(zspage, 1);
1395         zs_stat_inc(class, OBJ_USED, 1);
1396
1397         obj = location_to_obj(m_page, obj);
1398
1399         return obj;
1400 }
1401
1402
1403 /**
1404  * zs_malloc - Allocate block of given size from pool.
1405  * @pool: pool to allocate from
1406  * @size: size of block to allocate
1407  * @gfp: gfp flags when allocating object
1408  *
1409  * On success, handle to the allocated object is returned,
1410  * otherwise 0.
1411  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1412  */
1413 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1414 {
1415         unsigned long handle, obj;
1416         struct size_class *class;
1417         enum fullness_group newfg;
1418         struct zspage *zspage;
1419
1420         if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1421                 return 0;
1422
1423         handle = cache_alloc_handle(pool, gfp);
1424         if (!handle)
1425                 return 0;
1426
1427         /* extra space in chunk to keep the handle */
1428         size += ZS_HANDLE_SIZE;
1429         class = pool->size_class[get_size_class_index(size)];
1430
1431         spin_lock(&class->lock);
1432         zspage = find_get_zspage(class);
1433         if (likely(zspage)) {
1434                 obj = obj_malloc(class, zspage, handle);
1435                 /* Now move the zspage to another fullness group, if required */
1436                 fix_fullness_group(class, zspage);
1437                 record_obj(handle, obj);
1438                 spin_unlock(&class->lock);
1439
1440                 return handle;
1441         }
1442
1443         spin_unlock(&class->lock);
1444
1445         zspage = alloc_zspage(pool, class, gfp);
1446         if (!zspage) {
1447                 cache_free_handle(pool, handle);
1448                 return 0;
1449         }
1450
1451         spin_lock(&class->lock);
1452         obj = obj_malloc(class, zspage, handle);
1453         newfg = get_fullness_group(class, zspage);
1454         insert_zspage(class, zspage, newfg);
1455         set_zspage_mapping(zspage, class->index, newfg);
1456         record_obj(handle, obj);
1457         atomic_long_add(class->pages_per_zspage,
1458                                 &pool->pages_allocated);
1459         zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1460
1461         /* We completely set up zspage so mark them as movable */
1462         SetZsPageMovable(pool, zspage);
1463         spin_unlock(&class->lock);
1464
1465         return handle;
1466 }
1467 EXPORT_SYMBOL_GPL(zs_malloc);
1468
1469 static void obj_free(struct size_class *class, unsigned long obj)
1470 {
1471         struct link_free *link;
1472         struct zspage *zspage;
1473         struct page *f_page;
1474         unsigned long f_offset;
1475         unsigned int f_objidx;
1476         void *vaddr;
1477
1478         obj &= ~OBJ_ALLOCATED_TAG;
1479         obj_to_location(obj, &f_page, &f_objidx);
1480         f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1481         zspage = get_zspage(f_page);
1482
1483         vaddr = kmap_atomic(f_page);
1484
1485         /* Insert this object in containing zspage's freelist */
1486         link = (struct link_free *)(vaddr + f_offset);
1487         link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1488         kunmap_atomic(vaddr);
1489         set_freeobj(zspage, f_objidx);
1490         mod_zspage_inuse(zspage, -1);
1491         zs_stat_dec(class, OBJ_USED, 1);
1492 }
1493
1494 void zs_free(struct zs_pool *pool, unsigned long handle)
1495 {
1496         struct zspage *zspage;
1497         struct page *f_page;
1498         unsigned long obj;
1499         unsigned int f_objidx;
1500         int class_idx;
1501         struct size_class *class;
1502         enum fullness_group fullness;
1503         bool isolated;
1504
1505         if (unlikely(!handle))
1506                 return;
1507
1508         pin_tag(handle);
1509         obj = handle_to_obj(handle);
1510         obj_to_location(obj, &f_page, &f_objidx);
1511         zspage = get_zspage(f_page);
1512
1513         migrate_read_lock(zspage);
1514
1515         get_zspage_mapping(zspage, &class_idx, &fullness);
1516         class = pool->size_class[class_idx];
1517
1518         spin_lock(&class->lock);
1519         obj_free(class, obj);
1520         fullness = fix_fullness_group(class, zspage);
1521         if (fullness != ZS_EMPTY) {
1522                 migrate_read_unlock(zspage);
1523                 goto out;
1524         }
1525
1526         isolated = is_zspage_isolated(zspage);
1527         migrate_read_unlock(zspage);
1528         /* If zspage is isolated, zs_page_putback will free the zspage */
1529         if (likely(!isolated))
1530                 free_zspage(pool, class, zspage);
1531 out:
1532
1533         spin_unlock(&class->lock);
1534         unpin_tag(handle);
1535         cache_free_handle(pool, handle);
1536 }
1537 EXPORT_SYMBOL_GPL(zs_free);
1538
1539 static void zs_object_copy(struct size_class *class, unsigned long dst,
1540                                 unsigned long src)
1541 {
1542         struct page *s_page, *d_page;
1543         unsigned int s_objidx, d_objidx;
1544         unsigned long s_off, d_off;
1545         void *s_addr, *d_addr;
1546         int s_size, d_size, size;
1547         int written = 0;
1548
1549         s_size = d_size = class->size;
1550
1551         obj_to_location(src, &s_page, &s_objidx);
1552         obj_to_location(dst, &d_page, &d_objidx);
1553
1554         s_off = (class->size * s_objidx) & ~PAGE_MASK;
1555         d_off = (class->size * d_objidx) & ~PAGE_MASK;
1556
1557         if (s_off + class->size > PAGE_SIZE)
1558                 s_size = PAGE_SIZE - s_off;
1559
1560         if (d_off + class->size > PAGE_SIZE)
1561                 d_size = PAGE_SIZE - d_off;
1562
1563         s_addr = kmap_atomic(s_page);
1564         d_addr = kmap_atomic(d_page);
1565
1566         while (1) {
1567                 size = min(s_size, d_size);
1568                 memcpy(d_addr + d_off, s_addr + s_off, size);
1569                 written += size;
1570
1571                 if (written == class->size)
1572                         break;
1573
1574                 s_off += size;
1575                 s_size -= size;
1576                 d_off += size;
1577                 d_size -= size;
1578
1579                 if (s_off >= PAGE_SIZE) {
1580                         kunmap_atomic(d_addr);
1581                         kunmap_atomic(s_addr);
1582                         s_page = get_next_page(s_page);
1583                         s_addr = kmap_atomic(s_page);
1584                         d_addr = kmap_atomic(d_page);
1585                         s_size = class->size - written;
1586                         s_off = 0;
1587                 }
1588
1589                 if (d_off >= PAGE_SIZE) {
1590                         kunmap_atomic(d_addr);
1591                         d_page = get_next_page(d_page);
1592                         d_addr = kmap_atomic(d_page);
1593                         d_size = class->size - written;
1594                         d_off = 0;
1595                 }
1596         }
1597
1598         kunmap_atomic(d_addr);
1599         kunmap_atomic(s_addr);
1600 }
1601
1602 /*
1603  * Find alloced object in zspage from index object and
1604  * return handle.
1605  */
1606 static unsigned long find_alloced_obj(struct size_class *class,
1607                                         struct page *page, int *obj_idx)
1608 {
1609         unsigned long head;
1610         int offset = 0;
1611         int index = *obj_idx;
1612         unsigned long handle = 0;
1613         void *addr = kmap_atomic(page);
1614
1615         offset = get_first_obj_offset(page);
1616         offset += class->size * index;
1617
1618         while (offset < PAGE_SIZE) {
1619                 head = obj_to_head(page, addr + offset);
1620                 if (head & OBJ_ALLOCATED_TAG) {
1621                         handle = head & ~OBJ_ALLOCATED_TAG;
1622                         if (trypin_tag(handle))
1623                                 break;
1624                         handle = 0;
1625                 }
1626
1627                 offset += class->size;
1628                 index++;
1629         }
1630
1631         kunmap_atomic(addr);
1632
1633         *obj_idx = index;
1634
1635         return handle;
1636 }
1637
1638 struct zs_compact_control {
1639         /* Source spage for migration which could be a subpage of zspage */
1640         struct page *s_page;
1641         /* Destination page for migration which should be a first page
1642          * of zspage. */
1643         struct page *d_page;
1644          /* Starting object index within @s_page which used for live object
1645           * in the subpage. */
1646         int obj_idx;
1647 };
1648
1649 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1650                                 struct zs_compact_control *cc)
1651 {
1652         unsigned long used_obj, free_obj;
1653         unsigned long handle;
1654         struct page *s_page = cc->s_page;
1655         struct page *d_page = cc->d_page;
1656         int obj_idx = cc->obj_idx;
1657         int ret = 0;
1658
1659         while (1) {
1660                 handle = find_alloced_obj(class, s_page, &obj_idx);
1661                 if (!handle) {
1662                         s_page = get_next_page(s_page);
1663                         if (!s_page)
1664                                 break;
1665                         obj_idx = 0;
1666                         continue;
1667                 }
1668
1669                 /* Stop if there is no more space */
1670                 if (zspage_full(class, get_zspage(d_page))) {
1671                         unpin_tag(handle);
1672                         ret = -ENOMEM;
1673                         break;
1674                 }
1675
1676                 used_obj = handle_to_obj(handle);
1677                 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1678                 zs_object_copy(class, free_obj, used_obj);
1679                 obj_idx++;
1680                 /*
1681                  * record_obj updates handle's value to free_obj and it will
1682                  * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1683                  * breaks synchronization using pin_tag(e,g, zs_free) so
1684                  * let's keep the lock bit.
1685                  */
1686                 free_obj |= BIT(HANDLE_PIN_BIT);
1687                 record_obj(handle, free_obj);
1688                 unpin_tag(handle);
1689                 obj_free(class, used_obj);
1690         }
1691
1692         /* Remember last position in this iteration */
1693         cc->s_page = s_page;
1694         cc->obj_idx = obj_idx;
1695
1696         return ret;
1697 }
1698
1699 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1700 {
1701         int i;
1702         struct zspage *zspage;
1703         enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1704
1705         if (!source) {
1706                 fg[0] = ZS_ALMOST_FULL;
1707                 fg[1] = ZS_ALMOST_EMPTY;
1708         }
1709
1710         for (i = 0; i < 2; i++) {
1711                 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1712                                                         struct zspage, list);
1713                 if (zspage) {
1714                         VM_BUG_ON(is_zspage_isolated(zspage));
1715                         remove_zspage(class, zspage, fg[i]);
1716                         return zspage;
1717                 }
1718         }
1719
1720         return zspage;
1721 }
1722
1723 /*
1724  * putback_zspage - add @zspage into right class's fullness list
1725  * @class: destination class
1726  * @zspage: target page
1727  *
1728  * Return @zspage's fullness_group
1729  */
1730 static enum fullness_group putback_zspage(struct size_class *class,
1731                         struct zspage *zspage)
1732 {
1733         enum fullness_group fullness;
1734
1735         VM_BUG_ON(is_zspage_isolated(zspage));
1736
1737         fullness = get_fullness_group(class, zspage);
1738         insert_zspage(class, zspage, fullness);
1739         set_zspage_mapping(zspage, class->index, fullness);
1740
1741         return fullness;
1742 }
1743
1744 #ifdef CONFIG_COMPACTION
1745 /*
1746  * To prevent zspage destroy during migration, zspage freeing should
1747  * hold locks of all pages in the zspage.
1748  */
1749 static void lock_zspage(struct zspage *zspage)
1750 {
1751         struct page *page = get_first_page(zspage);
1752
1753         do {
1754                 lock_page(page);
1755         } while ((page = get_next_page(page)) != NULL);
1756 }
1757
1758 static int zs_init_fs_context(struct fs_context *fc)
1759 {
1760         return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
1761 }
1762
1763 static struct file_system_type zsmalloc_fs = {
1764         .name           = "zsmalloc",
1765         .init_fs_context = zs_init_fs_context,
1766         .kill_sb        = kill_anon_super,
1767 };
1768
1769 static int zsmalloc_mount(void)
1770 {
1771         int ret = 0;
1772
1773         zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1774         if (IS_ERR(zsmalloc_mnt))
1775                 ret = PTR_ERR(zsmalloc_mnt);
1776
1777         return ret;
1778 }
1779
1780 static void zsmalloc_unmount(void)
1781 {
1782         kern_unmount(zsmalloc_mnt);
1783 }
1784
1785 static void migrate_lock_init(struct zspage *zspage)
1786 {
1787         rwlock_init(&zspage->lock);
1788 }
1789
1790 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1791 {
1792         read_lock(&zspage->lock);
1793 }
1794
1795 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1796 {
1797         read_unlock(&zspage->lock);
1798 }
1799
1800 static void migrate_write_lock(struct zspage *zspage)
1801 {
1802         write_lock(&zspage->lock);
1803 }
1804
1805 static void migrate_write_unlock(struct zspage *zspage)
1806 {
1807         write_unlock(&zspage->lock);
1808 }
1809
1810 /* Number of isolated subpage for *page migration* in this zspage */
1811 static void inc_zspage_isolation(struct zspage *zspage)
1812 {
1813         zspage->isolated++;
1814 }
1815
1816 static void dec_zspage_isolation(struct zspage *zspage)
1817 {
1818         zspage->isolated--;
1819 }
1820
1821 static void putback_zspage_deferred(struct zs_pool *pool,
1822                                     struct size_class *class,
1823                                     struct zspage *zspage)
1824 {
1825         enum fullness_group fg;
1826
1827         fg = putback_zspage(class, zspage);
1828         if (fg == ZS_EMPTY)
1829                 schedule_work(&pool->free_work);
1830
1831 }
1832
1833 static inline void zs_pool_dec_isolated(struct zs_pool *pool)
1834 {
1835         VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0);
1836         atomic_long_dec(&pool->isolated_pages);
1837         /*
1838          * There's no possibility of racing, since wait_for_isolated_drain()
1839          * checks the isolated count under &class->lock after enqueuing
1840          * on migration_wait.
1841          */
1842         if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying)
1843                 wake_up_all(&pool->migration_wait);
1844 }
1845
1846 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1847                                 struct page *newpage, struct page *oldpage)
1848 {
1849         struct page *page;
1850         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1851         int idx = 0;
1852
1853         page = get_first_page(zspage);
1854         do {
1855                 if (page == oldpage)
1856                         pages[idx] = newpage;
1857                 else
1858                         pages[idx] = page;
1859                 idx++;
1860         } while ((page = get_next_page(page)) != NULL);
1861
1862         create_page_chain(class, zspage, pages);
1863         set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1864         if (unlikely(PageHugeObject(oldpage)))
1865                 newpage->index = oldpage->index;
1866         __SetPageMovable(newpage, page_mapping(oldpage));
1867 }
1868
1869 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1870 {
1871         struct zs_pool *pool;
1872         struct size_class *class;
1873         int class_idx;
1874         enum fullness_group fullness;
1875         struct zspage *zspage;
1876         struct address_space *mapping;
1877
1878         /*
1879          * Page is locked so zspage couldn't be destroyed. For detail, look at
1880          * lock_zspage in free_zspage.
1881          */
1882         VM_BUG_ON_PAGE(!PageMovable(page), page);
1883         VM_BUG_ON_PAGE(PageIsolated(page), page);
1884
1885         zspage = get_zspage(page);
1886
1887         /*
1888          * Without class lock, fullness could be stale while class_idx is okay
1889          * because class_idx is constant unless page is freed so we should get
1890          * fullness again under class lock.
1891          */
1892         get_zspage_mapping(zspage, &class_idx, &fullness);
1893         mapping = page_mapping(page);
1894         pool = mapping->private_data;
1895         class = pool->size_class[class_idx];
1896
1897         spin_lock(&class->lock);
1898         if (get_zspage_inuse(zspage) == 0) {
1899                 spin_unlock(&class->lock);
1900                 return false;
1901         }
1902
1903         /* zspage is isolated for object migration */
1904         if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1905                 spin_unlock(&class->lock);
1906                 return false;
1907         }
1908
1909         /*
1910          * If this is first time isolation for the zspage, isolate zspage from
1911          * size_class to prevent further object allocation from the zspage.
1912          */
1913         if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1914                 get_zspage_mapping(zspage, &class_idx, &fullness);
1915                 atomic_long_inc(&pool->isolated_pages);
1916                 remove_zspage(class, zspage, fullness);
1917         }
1918
1919         inc_zspage_isolation(zspage);
1920         spin_unlock(&class->lock);
1921
1922         return true;
1923 }
1924
1925 static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1926                 struct page *page, enum migrate_mode mode)
1927 {
1928         struct zs_pool *pool;
1929         struct size_class *class;
1930         int class_idx;
1931         enum fullness_group fullness;
1932         struct zspage *zspage;
1933         struct page *dummy;
1934         void *s_addr, *d_addr, *addr;
1935         int offset, pos;
1936         unsigned long handle, head;
1937         unsigned long old_obj, new_obj;
1938         unsigned int obj_idx;
1939         int ret = -EAGAIN;
1940
1941         /*
1942          * We cannot support the _NO_COPY case here, because copy needs to
1943          * happen under the zs lock, which does not work with
1944          * MIGRATE_SYNC_NO_COPY workflow.
1945          */
1946         if (mode == MIGRATE_SYNC_NO_COPY)
1947                 return -EINVAL;
1948
1949         VM_BUG_ON_PAGE(!PageMovable(page), page);
1950         VM_BUG_ON_PAGE(!PageIsolated(page), page);
1951
1952         zspage = get_zspage(page);
1953
1954         /* Concurrent compactor cannot migrate any subpage in zspage */
1955         migrate_write_lock(zspage);
1956         get_zspage_mapping(zspage, &class_idx, &fullness);
1957         pool = mapping->private_data;
1958         class = pool->size_class[class_idx];
1959         offset = get_first_obj_offset(page);
1960
1961         spin_lock(&class->lock);
1962         if (!get_zspage_inuse(zspage)) {
1963                 /*
1964                  * Set "offset" to end of the page so that every loops
1965                  * skips unnecessary object scanning.
1966                  */
1967                 offset = PAGE_SIZE;
1968         }
1969
1970         pos = offset;
1971         s_addr = kmap_atomic(page);
1972         while (pos < PAGE_SIZE) {
1973                 head = obj_to_head(page, s_addr + pos);
1974                 if (head & OBJ_ALLOCATED_TAG) {
1975                         handle = head & ~OBJ_ALLOCATED_TAG;
1976                         if (!trypin_tag(handle))
1977                                 goto unpin_objects;
1978                 }
1979                 pos += class->size;
1980         }
1981
1982         /*
1983          * Here, any user cannot access all objects in the zspage so let's move.
1984          */
1985         d_addr = kmap_atomic(newpage);
1986         memcpy(d_addr, s_addr, PAGE_SIZE);
1987         kunmap_atomic(d_addr);
1988
1989         for (addr = s_addr + offset; addr < s_addr + pos;
1990                                         addr += class->size) {
1991                 head = obj_to_head(page, addr);
1992                 if (head & OBJ_ALLOCATED_TAG) {
1993                         handle = head & ~OBJ_ALLOCATED_TAG;
1994                         if (!testpin_tag(handle))
1995                                 BUG();
1996
1997                         old_obj = handle_to_obj(handle);
1998                         obj_to_location(old_obj, &dummy, &obj_idx);
1999                         new_obj = (unsigned long)location_to_obj(newpage,
2000                                                                 obj_idx);
2001                         new_obj |= BIT(HANDLE_PIN_BIT);
2002                         record_obj(handle, new_obj);
2003                 }
2004         }
2005
2006         replace_sub_page(class, zspage, newpage, page);
2007         get_page(newpage);
2008
2009         dec_zspage_isolation(zspage);
2010
2011         /*
2012          * Page migration is done so let's putback isolated zspage to
2013          * the list if @page is final isolated subpage in the zspage.
2014          */
2015         if (!is_zspage_isolated(zspage)) {
2016                 /*
2017                  * We cannot race with zs_destroy_pool() here because we wait
2018                  * for isolation to hit zero before we start destroying.
2019                  * Also, we ensure that everyone can see pool->destroying before
2020                  * we start waiting.
2021                  */
2022                 putback_zspage_deferred(pool, class, zspage);
2023                 zs_pool_dec_isolated(pool);
2024         }
2025
2026         if (page_zone(newpage) != page_zone(page)) {
2027                 dec_zone_page_state(page, NR_ZSPAGES);
2028                 inc_zone_page_state(newpage, NR_ZSPAGES);
2029         }
2030
2031         reset_page(page);
2032         put_page(page);
2033         page = newpage;
2034
2035         ret = MIGRATEPAGE_SUCCESS;
2036 unpin_objects:
2037         for (addr = s_addr + offset; addr < s_addr + pos;
2038                                                 addr += class->size) {
2039                 head = obj_to_head(page, addr);
2040                 if (head & OBJ_ALLOCATED_TAG) {
2041                         handle = head & ~OBJ_ALLOCATED_TAG;
2042                         if (!testpin_tag(handle))
2043                                 BUG();
2044                         unpin_tag(handle);
2045                 }
2046         }
2047         kunmap_atomic(s_addr);
2048         spin_unlock(&class->lock);
2049         migrate_write_unlock(zspage);
2050
2051         return ret;
2052 }
2053
2054 static void zs_page_putback(struct page *page)
2055 {
2056         struct zs_pool *pool;
2057         struct size_class *class;
2058         int class_idx;
2059         enum fullness_group fg;
2060         struct address_space *mapping;
2061         struct zspage *zspage;
2062
2063         VM_BUG_ON_PAGE(!PageMovable(page), page);
2064         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2065
2066         zspage = get_zspage(page);
2067         get_zspage_mapping(zspage, &class_idx, &fg);
2068         mapping = page_mapping(page);
2069         pool = mapping->private_data;
2070         class = pool->size_class[class_idx];
2071
2072         spin_lock(&class->lock);
2073         dec_zspage_isolation(zspage);
2074         if (!is_zspage_isolated(zspage)) {
2075                 /*
2076                  * Due to page_lock, we cannot free zspage immediately
2077                  * so let's defer.
2078                  */
2079                 putback_zspage_deferred(pool, class, zspage);
2080                 zs_pool_dec_isolated(pool);
2081         }
2082         spin_unlock(&class->lock);
2083 }
2084
2085 static const struct address_space_operations zsmalloc_aops = {
2086         .isolate_page = zs_page_isolate,
2087         .migratepage = zs_page_migrate,
2088         .putback_page = zs_page_putback,
2089 };
2090
2091 static int zs_register_migration(struct zs_pool *pool)
2092 {
2093         pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2094         if (IS_ERR(pool->inode)) {
2095                 pool->inode = NULL;
2096                 return 1;
2097         }
2098
2099         pool->inode->i_mapping->private_data = pool;
2100         pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2101         return 0;
2102 }
2103
2104 static bool pool_isolated_are_drained(struct zs_pool *pool)
2105 {
2106         return atomic_long_read(&pool->isolated_pages) == 0;
2107 }
2108
2109 /* Function for resolving migration */
2110 static void wait_for_isolated_drain(struct zs_pool *pool)
2111 {
2112
2113         /*
2114          * We're in the process of destroying the pool, so there are no
2115          * active allocations. zs_page_isolate() fails for completely free
2116          * zspages, so we need only wait for the zs_pool's isolated
2117          * count to hit zero.
2118          */
2119         wait_event(pool->migration_wait,
2120                    pool_isolated_are_drained(pool));
2121 }
2122
2123 static void zs_unregister_migration(struct zs_pool *pool)
2124 {
2125         pool->destroying = true;
2126         /*
2127          * We need a memory barrier here to ensure global visibility of
2128          * pool->destroying. Thus pool->isolated pages will either be 0 in which
2129          * case we don't care, or it will be > 0 and pool->destroying will
2130          * ensure that we wake up once isolation hits 0.
2131          */
2132         smp_mb();
2133         wait_for_isolated_drain(pool); /* This can block */
2134         flush_work(&pool->free_work);
2135         iput(pool->inode);
2136 }
2137
2138 /*
2139  * Caller should hold page_lock of all pages in the zspage
2140  * In here, we cannot use zspage meta data.
2141  */
2142 static void async_free_zspage(struct work_struct *work)
2143 {
2144         int i;
2145         struct size_class *class;
2146         unsigned int class_idx;
2147         enum fullness_group fullness;
2148         struct zspage *zspage, *tmp;
2149         LIST_HEAD(free_pages);
2150         struct zs_pool *pool = container_of(work, struct zs_pool,
2151                                         free_work);
2152
2153         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2154                 class = pool->size_class[i];
2155                 if (class->index != i)
2156                         continue;
2157
2158                 spin_lock(&class->lock);
2159                 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2160                 spin_unlock(&class->lock);
2161         }
2162
2163
2164         list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2165                 list_del(&zspage->list);
2166                 lock_zspage(zspage);
2167
2168                 get_zspage_mapping(zspage, &class_idx, &fullness);
2169                 VM_BUG_ON(fullness != ZS_EMPTY);
2170                 class = pool->size_class[class_idx];
2171                 spin_lock(&class->lock);
2172                 __free_zspage(pool, pool->size_class[class_idx], zspage);
2173                 spin_unlock(&class->lock);
2174         }
2175 };
2176
2177 static void kick_deferred_free(struct zs_pool *pool)
2178 {
2179         schedule_work(&pool->free_work);
2180 }
2181
2182 static void init_deferred_free(struct zs_pool *pool)
2183 {
2184         INIT_WORK(&pool->free_work, async_free_zspage);
2185 }
2186
2187 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2188 {
2189         struct page *page = get_first_page(zspage);
2190
2191         do {
2192                 WARN_ON(!trylock_page(page));
2193                 __SetPageMovable(page, pool->inode->i_mapping);
2194                 unlock_page(page);
2195         } while ((page = get_next_page(page)) != NULL);
2196 }
2197 #endif
2198
2199 /*
2200  *
2201  * Based on the number of unused allocated objects calculate
2202  * and return the number of pages that we can free.
2203  */
2204 static unsigned long zs_can_compact(struct size_class *class)
2205 {
2206         unsigned long obj_wasted;
2207         unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2208         unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2209
2210         if (obj_allocated <= obj_used)
2211                 return 0;
2212
2213         obj_wasted = obj_allocated - obj_used;
2214         obj_wasted /= class->objs_per_zspage;
2215
2216         return obj_wasted * class->pages_per_zspage;
2217 }
2218
2219 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2220 {
2221         struct zs_compact_control cc;
2222         struct zspage *src_zspage;
2223         struct zspage *dst_zspage = NULL;
2224
2225         spin_lock(&class->lock);
2226         while ((src_zspage = isolate_zspage(class, true))) {
2227
2228                 if (!zs_can_compact(class))
2229                         break;
2230
2231                 cc.obj_idx = 0;
2232                 cc.s_page = get_first_page(src_zspage);
2233
2234                 while ((dst_zspage = isolate_zspage(class, false))) {
2235                         cc.d_page = get_first_page(dst_zspage);
2236                         /*
2237                          * If there is no more space in dst_page, resched
2238                          * and see if anyone had allocated another zspage.
2239                          */
2240                         if (!migrate_zspage(pool, class, &cc))
2241                                 break;
2242
2243                         putback_zspage(class, dst_zspage);
2244                 }
2245
2246                 /* Stop if we couldn't find slot */
2247                 if (dst_zspage == NULL)
2248                         break;
2249
2250                 putback_zspage(class, dst_zspage);
2251                 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2252                         free_zspage(pool, class, src_zspage);
2253                         pool->stats.pages_compacted += class->pages_per_zspage;
2254                 }
2255                 spin_unlock(&class->lock);
2256                 cond_resched();
2257                 spin_lock(&class->lock);
2258         }
2259
2260         if (src_zspage)
2261                 putback_zspage(class, src_zspage);
2262
2263         spin_unlock(&class->lock);
2264 }
2265
2266 unsigned long zs_compact(struct zs_pool *pool)
2267 {
2268         int i;
2269         struct size_class *class;
2270
2271         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2272                 class = pool->size_class[i];
2273                 if (!class)
2274                         continue;
2275                 if (class->index != i)
2276                         continue;
2277                 __zs_compact(pool, class);
2278         }
2279
2280         return pool->stats.pages_compacted;
2281 }
2282 EXPORT_SYMBOL_GPL(zs_compact);
2283
2284 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2285 {
2286         memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2287 }
2288 EXPORT_SYMBOL_GPL(zs_pool_stats);
2289
2290 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2291                 struct shrink_control *sc)
2292 {
2293         unsigned long pages_freed;
2294         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2295                         shrinker);
2296
2297         pages_freed = pool->stats.pages_compacted;
2298         /*
2299          * Compact classes and calculate compaction delta.
2300          * Can run concurrently with a manually triggered
2301          * (by user) compaction.
2302          */
2303         pages_freed = zs_compact(pool) - pages_freed;
2304
2305         return pages_freed ? pages_freed : SHRINK_STOP;
2306 }
2307
2308 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2309                 struct shrink_control *sc)
2310 {
2311         int i;
2312         struct size_class *class;
2313         unsigned long pages_to_free = 0;
2314         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2315                         shrinker);
2316
2317         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2318                 class = pool->size_class[i];
2319                 if (!class)
2320                         continue;
2321                 if (class->index != i)
2322                         continue;
2323
2324                 pages_to_free += zs_can_compact(class);
2325         }
2326
2327         return pages_to_free;
2328 }
2329
2330 static void zs_unregister_shrinker(struct zs_pool *pool)
2331 {
2332         unregister_shrinker(&pool->shrinker);
2333 }
2334
2335 static int zs_register_shrinker(struct zs_pool *pool)
2336 {
2337         pool->shrinker.scan_objects = zs_shrinker_scan;
2338         pool->shrinker.count_objects = zs_shrinker_count;
2339         pool->shrinker.batch = 0;
2340         pool->shrinker.seeks = DEFAULT_SEEKS;
2341
2342         return register_shrinker(&pool->shrinker);
2343 }
2344
2345 /**
2346  * zs_create_pool - Creates an allocation pool to work from.
2347  * @name: pool name to be created
2348  *
2349  * This function must be called before anything when using
2350  * the zsmalloc allocator.
2351  *
2352  * On success, a pointer to the newly created pool is returned,
2353  * otherwise NULL.
2354  */
2355 struct zs_pool *zs_create_pool(const char *name)
2356 {
2357         int i;
2358         struct zs_pool *pool;
2359         struct size_class *prev_class = NULL;
2360
2361         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2362         if (!pool)
2363                 return NULL;
2364
2365         init_deferred_free(pool);
2366
2367         pool->name = kstrdup(name, GFP_KERNEL);
2368         if (!pool->name)
2369                 goto err;
2370
2371 #ifdef CONFIG_COMPACTION
2372         init_waitqueue_head(&pool->migration_wait);
2373 #endif
2374
2375         if (create_cache(pool))
2376                 goto err;
2377
2378         /*
2379          * Iterate reversely, because, size of size_class that we want to use
2380          * for merging should be larger or equal to current size.
2381          */
2382         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2383                 int size;
2384                 int pages_per_zspage;
2385                 int objs_per_zspage;
2386                 struct size_class *class;
2387                 int fullness = 0;
2388
2389                 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2390                 if (size > ZS_MAX_ALLOC_SIZE)
2391                         size = ZS_MAX_ALLOC_SIZE;
2392                 pages_per_zspage = get_pages_per_zspage(size);
2393                 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2394
2395                 /*
2396                  * We iterate from biggest down to smallest classes,
2397                  * so huge_class_size holds the size of the first huge
2398                  * class. Any object bigger than or equal to that will
2399                  * endup in the huge class.
2400                  */
2401                 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2402                                 !huge_class_size) {
2403                         huge_class_size = size;
2404                         /*
2405                          * The object uses ZS_HANDLE_SIZE bytes to store the
2406                          * handle. We need to subtract it, because zs_malloc()
2407                          * unconditionally adds handle size before it performs
2408                          * size class search - so object may be smaller than
2409                          * huge class size, yet it still can end up in the huge
2410                          * class because it grows by ZS_HANDLE_SIZE extra bytes
2411                          * right before class lookup.
2412                          */
2413                         huge_class_size -= (ZS_HANDLE_SIZE - 1);
2414                 }
2415
2416                 /*
2417                  * size_class is used for normal zsmalloc operation such
2418                  * as alloc/free for that size. Although it is natural that we
2419                  * have one size_class for each size, there is a chance that we
2420                  * can get more memory utilization if we use one size_class for
2421                  * many different sizes whose size_class have same
2422                  * characteristics. So, we makes size_class point to
2423                  * previous size_class if possible.
2424                  */
2425                 if (prev_class) {
2426                         if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2427                                 pool->size_class[i] = prev_class;
2428                                 continue;
2429                         }
2430                 }
2431
2432                 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2433                 if (!class)
2434                         goto err;
2435
2436                 class->size = size;
2437                 class->index = i;
2438                 class->pages_per_zspage = pages_per_zspage;
2439                 class->objs_per_zspage = objs_per_zspage;
2440                 spin_lock_init(&class->lock);
2441                 pool->size_class[i] = class;
2442                 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2443                                                         fullness++)
2444                         INIT_LIST_HEAD(&class->fullness_list[fullness]);
2445
2446                 prev_class = class;
2447         }
2448
2449         /* debug only, don't abort if it fails */
2450         zs_pool_stat_create(pool, name);
2451
2452         if (zs_register_migration(pool))
2453                 goto err;
2454
2455         /*
2456          * Not critical since shrinker is only used to trigger internal
2457          * defragmentation of the pool which is pretty optional thing.  If
2458          * registration fails we still can use the pool normally and user can
2459          * trigger compaction manually. Thus, ignore return code.
2460          */
2461         zs_register_shrinker(pool);
2462
2463         return pool;
2464
2465 err:
2466         zs_destroy_pool(pool);
2467         return NULL;
2468 }
2469 EXPORT_SYMBOL_GPL(zs_create_pool);
2470
2471 void zs_destroy_pool(struct zs_pool *pool)
2472 {
2473         int i;
2474
2475         zs_unregister_shrinker(pool);
2476         zs_unregister_migration(pool);
2477         zs_pool_stat_destroy(pool);
2478
2479         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2480                 int fg;
2481                 struct size_class *class = pool->size_class[i];
2482
2483                 if (!class)
2484                         continue;
2485
2486                 if (class->index != i)
2487                         continue;
2488
2489                 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2490                         if (!list_empty(&class->fullness_list[fg])) {
2491                                 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2492                                         class->size, fg);
2493                         }
2494                 }
2495                 kfree(class);
2496         }
2497
2498         destroy_cache(pool);
2499         kfree(pool->name);
2500         kfree(pool);
2501 }
2502 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2503
2504 static int __init zs_init(void)
2505 {
2506         int ret;
2507
2508         ret = zsmalloc_mount();
2509         if (ret)
2510                 goto out;
2511
2512         ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2513                                 zs_cpu_prepare, zs_cpu_dead);
2514         if (ret)
2515                 goto hp_setup_fail;
2516
2517 #ifdef CONFIG_ZPOOL
2518         zpool_register_driver(&zs_zpool_driver);
2519 #endif
2520
2521         zs_stat_init();
2522
2523         return 0;
2524
2525 hp_setup_fail:
2526         zsmalloc_unmount();
2527 out:
2528         return ret;
2529 }
2530
2531 static void __exit zs_exit(void)
2532 {
2533 #ifdef CONFIG_ZPOOL
2534         zpool_unregister_driver(&zs_zpool_driver);
2535 #endif
2536         zsmalloc_unmount();
2537         cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2538
2539         zs_stat_exit();
2540 }
2541
2542 module_init(zs_init);
2543 module_exit(zs_exit);
2544
2545 MODULE_LICENSE("Dual BSD/GPL");
2546 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");