Merge tag 'for-linus-5.10b-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-rpi.git] / mm / zsmalloc.c
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *      page->private: points to zspage
20  *      page->freelist(index): links together all component pages of a zspage
21  *              For the huge page, this is always 0, so we use this field
22  *              to store handle.
23  *      page->units: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *      PG_private: identifies the first component page
27  *      PG_owner_priv_1: identifies the huge component page
28  *
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <linux/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/pseudo_fs.h>
56 #include <linux/migrate.h>
57 #include <linux/wait.h>
58 #include <linux/pagemap.h>
59 #include <linux/fs.h>
60
61 #define ZSPAGE_MAGIC    0x58
62
63 /*
64  * This must be power of 2 and greater than of equal to sizeof(link_free).
65  * These two conditions ensure that any 'struct link_free' itself doesn't
66  * span more than 1 page which avoids complex case of mapping 2 pages simply
67  * to restore link_free pointer values.
68  */
69 #define ZS_ALIGN                8
70
71 /*
72  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
73  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
74  */
75 #define ZS_MAX_ZSPAGE_ORDER 2
76 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
77
78 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
79
80 /*
81  * Object location (<PFN>, <obj_idx>) is encoded as
82  * a single (unsigned long) handle value.
83  *
84  * Note that object index <obj_idx> starts from 0.
85  *
86  * This is made more complicated by various memory models and PAE.
87  */
88
89 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
90 #ifdef MAX_PHYSMEM_BITS
91 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
92 #else
93 /*
94  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
95  * be PAGE_SHIFT
96  */
97 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
98 #endif
99 #endif
100
101 #define _PFN_BITS               (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
102
103 /*
104  * Memory for allocating for handle keeps object position by
105  * encoding <page, obj_idx> and the encoded value has a room
106  * in least bit(ie, look at obj_to_location).
107  * We use the bit to synchronize between object access by
108  * user and migration.
109  */
110 #define HANDLE_PIN_BIT  0
111
112 /*
113  * Head in allocated object should have OBJ_ALLOCATED_TAG
114  * to identify the object was allocated or not.
115  * It's okay to add the status bit in the least bit because
116  * header keeps handle which is 4byte-aligned address so we
117  * have room for two bit at least.
118  */
119 #define OBJ_ALLOCATED_TAG 1
120 #define OBJ_TAG_BITS 1
121 #define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
122 #define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
123
124 #define FULLNESS_BITS   2
125 #define CLASS_BITS      8
126 #define ISOLATED_BITS   3
127 #define MAGIC_VAL_BITS  8
128
129 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
130 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
131 #define ZS_MIN_ALLOC_SIZE \
132         MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
133 /* each chunk includes extra space to keep handle */
134 #define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
135
136 /*
137  * On systems with 4K page size, this gives 255 size classes! There is a
138  * trader-off here:
139  *  - Large number of size classes is potentially wasteful as free page are
140  *    spread across these classes
141  *  - Small number of size classes causes large internal fragmentation
142  *  - Probably its better to use specific size classes (empirically
143  *    determined). NOTE: all those class sizes must be set as multiple of
144  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
145  *
146  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
147  *  (reason above)
148  */
149 #define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
150 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
151                                       ZS_SIZE_CLASS_DELTA) + 1)
152
153 enum fullness_group {
154         ZS_EMPTY,
155         ZS_ALMOST_EMPTY,
156         ZS_ALMOST_FULL,
157         ZS_FULL,
158         NR_ZS_FULLNESS,
159 };
160
161 enum zs_stat_type {
162         CLASS_EMPTY,
163         CLASS_ALMOST_EMPTY,
164         CLASS_ALMOST_FULL,
165         CLASS_FULL,
166         OBJ_ALLOCATED,
167         OBJ_USED,
168         NR_ZS_STAT_TYPE,
169 };
170
171 struct zs_size_stat {
172         unsigned long objs[NR_ZS_STAT_TYPE];
173 };
174
175 #ifdef CONFIG_ZSMALLOC_STAT
176 static struct dentry *zs_stat_root;
177 #endif
178
179 #ifdef CONFIG_COMPACTION
180 static struct vfsmount *zsmalloc_mnt;
181 #endif
182
183 /*
184  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
185  *      n <= N / f, where
186  * n = number of allocated objects
187  * N = total number of objects zspage can store
188  * f = fullness_threshold_frac
189  *
190  * Similarly, we assign zspage to:
191  *      ZS_ALMOST_FULL  when n > N / f
192  *      ZS_EMPTY        when n == 0
193  *      ZS_FULL         when n == N
194  *
195  * (see: fix_fullness_group())
196  */
197 static const int fullness_threshold_frac = 4;
198 static size_t huge_class_size;
199
200 struct size_class {
201         spinlock_t lock;
202         struct list_head fullness_list[NR_ZS_FULLNESS];
203         /*
204          * Size of objects stored in this class. Must be multiple
205          * of ZS_ALIGN.
206          */
207         int size;
208         int objs_per_zspage;
209         /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
210         int pages_per_zspage;
211
212         unsigned int index;
213         struct zs_size_stat stats;
214 };
215
216 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
217 static void SetPageHugeObject(struct page *page)
218 {
219         SetPageOwnerPriv1(page);
220 }
221
222 static void ClearPageHugeObject(struct page *page)
223 {
224         ClearPageOwnerPriv1(page);
225 }
226
227 static int PageHugeObject(struct page *page)
228 {
229         return PageOwnerPriv1(page);
230 }
231
232 /*
233  * Placed within free objects to form a singly linked list.
234  * For every zspage, zspage->freeobj gives head of this list.
235  *
236  * This must be power of 2 and less than or equal to ZS_ALIGN
237  */
238 struct link_free {
239         union {
240                 /*
241                  * Free object index;
242                  * It's valid for non-allocated object
243                  */
244                 unsigned long next;
245                 /*
246                  * Handle of allocated object.
247                  */
248                 unsigned long handle;
249         };
250 };
251
252 struct zs_pool {
253         const char *name;
254
255         struct size_class *size_class[ZS_SIZE_CLASSES];
256         struct kmem_cache *handle_cachep;
257         struct kmem_cache *zspage_cachep;
258
259         atomic_long_t pages_allocated;
260
261         struct zs_pool_stats stats;
262
263         /* Compact classes */
264         struct shrinker shrinker;
265
266 #ifdef CONFIG_ZSMALLOC_STAT
267         struct dentry *stat_dentry;
268 #endif
269 #ifdef CONFIG_COMPACTION
270         struct inode *inode;
271         struct work_struct free_work;
272         /* A wait queue for when migration races with async_free_zspage() */
273         struct wait_queue_head migration_wait;
274         atomic_long_t isolated_pages;
275         bool destroying;
276 #endif
277 };
278
279 struct zspage {
280         struct {
281                 unsigned int fullness:FULLNESS_BITS;
282                 unsigned int class:CLASS_BITS + 1;
283                 unsigned int isolated:ISOLATED_BITS;
284                 unsigned int magic:MAGIC_VAL_BITS;
285         };
286         unsigned int inuse;
287         unsigned int freeobj;
288         struct page *first_page;
289         struct list_head list; /* fullness list */
290 #ifdef CONFIG_COMPACTION
291         rwlock_t lock;
292 #endif
293 };
294
295 struct mapping_area {
296 #ifdef CONFIG_ZSMALLOC_PGTABLE_MAPPING
297         struct vm_struct *vm; /* vm area for mapping object that span pages */
298 #else
299         char *vm_buf; /* copy buffer for objects that span pages */
300 #endif
301         char *vm_addr; /* address of kmap_atomic()'ed pages */
302         enum zs_mapmode vm_mm; /* mapping mode */
303 };
304
305 #ifdef CONFIG_COMPACTION
306 static int zs_register_migration(struct zs_pool *pool);
307 static void zs_unregister_migration(struct zs_pool *pool);
308 static void migrate_lock_init(struct zspage *zspage);
309 static void migrate_read_lock(struct zspage *zspage);
310 static void migrate_read_unlock(struct zspage *zspage);
311 static void kick_deferred_free(struct zs_pool *pool);
312 static void init_deferred_free(struct zs_pool *pool);
313 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
314 #else
315 static int zsmalloc_mount(void) { return 0; }
316 static void zsmalloc_unmount(void) {}
317 static int zs_register_migration(struct zs_pool *pool) { return 0; }
318 static void zs_unregister_migration(struct zs_pool *pool) {}
319 static void migrate_lock_init(struct zspage *zspage) {}
320 static void migrate_read_lock(struct zspage *zspage) {}
321 static void migrate_read_unlock(struct zspage *zspage) {}
322 static void kick_deferred_free(struct zs_pool *pool) {}
323 static void init_deferred_free(struct zs_pool *pool) {}
324 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
325 #endif
326
327 static int create_cache(struct zs_pool *pool)
328 {
329         pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
330                                         0, 0, NULL);
331         if (!pool->handle_cachep)
332                 return 1;
333
334         pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
335                                         0, 0, NULL);
336         if (!pool->zspage_cachep) {
337                 kmem_cache_destroy(pool->handle_cachep);
338                 pool->handle_cachep = NULL;
339                 return 1;
340         }
341
342         return 0;
343 }
344
345 static void destroy_cache(struct zs_pool *pool)
346 {
347         kmem_cache_destroy(pool->handle_cachep);
348         kmem_cache_destroy(pool->zspage_cachep);
349 }
350
351 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
352 {
353         return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
354                         gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
355 }
356
357 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
358 {
359         kmem_cache_free(pool->handle_cachep, (void *)handle);
360 }
361
362 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
363 {
364         return kmem_cache_alloc(pool->zspage_cachep,
365                         flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
366 }
367
368 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
369 {
370         kmem_cache_free(pool->zspage_cachep, zspage);
371 }
372
373 static void record_obj(unsigned long handle, unsigned long obj)
374 {
375         /*
376          * lsb of @obj represents handle lock while other bits
377          * represent object value the handle is pointing so
378          * updating shouldn't do store tearing.
379          */
380         WRITE_ONCE(*(unsigned long *)handle, obj);
381 }
382
383 /* zpool driver */
384
385 #ifdef CONFIG_ZPOOL
386
387 static void *zs_zpool_create(const char *name, gfp_t gfp,
388                              const struct zpool_ops *zpool_ops,
389                              struct zpool *zpool)
390 {
391         /*
392          * Ignore global gfp flags: zs_malloc() may be invoked from
393          * different contexts and its caller must provide a valid
394          * gfp mask.
395          */
396         return zs_create_pool(name);
397 }
398
399 static void zs_zpool_destroy(void *pool)
400 {
401         zs_destroy_pool(pool);
402 }
403
404 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
405                         unsigned long *handle)
406 {
407         *handle = zs_malloc(pool, size, gfp);
408         return *handle ? 0 : -1;
409 }
410 static void zs_zpool_free(void *pool, unsigned long handle)
411 {
412         zs_free(pool, handle);
413 }
414
415 static void *zs_zpool_map(void *pool, unsigned long handle,
416                         enum zpool_mapmode mm)
417 {
418         enum zs_mapmode zs_mm;
419
420         switch (mm) {
421         case ZPOOL_MM_RO:
422                 zs_mm = ZS_MM_RO;
423                 break;
424         case ZPOOL_MM_WO:
425                 zs_mm = ZS_MM_WO;
426                 break;
427         case ZPOOL_MM_RW:
428         default:
429                 zs_mm = ZS_MM_RW;
430                 break;
431         }
432
433         return zs_map_object(pool, handle, zs_mm);
434 }
435 static void zs_zpool_unmap(void *pool, unsigned long handle)
436 {
437         zs_unmap_object(pool, handle);
438 }
439
440 static u64 zs_zpool_total_size(void *pool)
441 {
442         return zs_get_total_pages(pool) << PAGE_SHIFT;
443 }
444
445 static struct zpool_driver zs_zpool_driver = {
446         .type =                   "zsmalloc",
447         .owner =                  THIS_MODULE,
448         .create =                 zs_zpool_create,
449         .destroy =                zs_zpool_destroy,
450         .malloc_support_movable = true,
451         .malloc =                 zs_zpool_malloc,
452         .free =                   zs_zpool_free,
453         .map =                    zs_zpool_map,
454         .unmap =                  zs_zpool_unmap,
455         .total_size =             zs_zpool_total_size,
456 };
457
458 MODULE_ALIAS("zpool-zsmalloc");
459 #endif /* CONFIG_ZPOOL */
460
461 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
462 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
463
464 static bool is_zspage_isolated(struct zspage *zspage)
465 {
466         return zspage->isolated;
467 }
468
469 static __maybe_unused int is_first_page(struct page *page)
470 {
471         return PagePrivate(page);
472 }
473
474 /* Protected by class->lock */
475 static inline int get_zspage_inuse(struct zspage *zspage)
476 {
477         return zspage->inuse;
478 }
479
480
481 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
482 {
483         zspage->inuse += val;
484 }
485
486 static inline struct page *get_first_page(struct zspage *zspage)
487 {
488         struct page *first_page = zspage->first_page;
489
490         VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
491         return first_page;
492 }
493
494 static inline int get_first_obj_offset(struct page *page)
495 {
496         return page->units;
497 }
498
499 static inline void set_first_obj_offset(struct page *page, int offset)
500 {
501         page->units = offset;
502 }
503
504 static inline unsigned int get_freeobj(struct zspage *zspage)
505 {
506         return zspage->freeobj;
507 }
508
509 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
510 {
511         zspage->freeobj = obj;
512 }
513
514 static void get_zspage_mapping(struct zspage *zspage,
515                                 unsigned int *class_idx,
516                                 enum fullness_group *fullness)
517 {
518         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
519
520         *fullness = zspage->fullness;
521         *class_idx = zspage->class;
522 }
523
524 static void set_zspage_mapping(struct zspage *zspage,
525                                 unsigned int class_idx,
526                                 enum fullness_group fullness)
527 {
528         zspage->class = class_idx;
529         zspage->fullness = fullness;
530 }
531
532 /*
533  * zsmalloc divides the pool into various size classes where each
534  * class maintains a list of zspages where each zspage is divided
535  * into equal sized chunks. Each allocation falls into one of these
536  * classes depending on its size. This function returns index of the
537  * size class which has chunk size big enough to hold the give size.
538  */
539 static int get_size_class_index(int size)
540 {
541         int idx = 0;
542
543         if (likely(size > ZS_MIN_ALLOC_SIZE))
544                 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
545                                 ZS_SIZE_CLASS_DELTA);
546
547         return min_t(int, ZS_SIZE_CLASSES - 1, idx);
548 }
549
550 /* type can be of enum type zs_stat_type or fullness_group */
551 static inline void zs_stat_inc(struct size_class *class,
552                                 int type, unsigned long cnt)
553 {
554         class->stats.objs[type] += cnt;
555 }
556
557 /* type can be of enum type zs_stat_type or fullness_group */
558 static inline void zs_stat_dec(struct size_class *class,
559                                 int type, unsigned long cnt)
560 {
561         class->stats.objs[type] -= cnt;
562 }
563
564 /* type can be of enum type zs_stat_type or fullness_group */
565 static inline unsigned long zs_stat_get(struct size_class *class,
566                                 int type)
567 {
568         return class->stats.objs[type];
569 }
570
571 #ifdef CONFIG_ZSMALLOC_STAT
572
573 static void __init zs_stat_init(void)
574 {
575         if (!debugfs_initialized()) {
576                 pr_warn("debugfs not available, stat dir not created\n");
577                 return;
578         }
579
580         zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
581 }
582
583 static void __exit zs_stat_exit(void)
584 {
585         debugfs_remove_recursive(zs_stat_root);
586 }
587
588 static unsigned long zs_can_compact(struct size_class *class);
589
590 static int zs_stats_size_show(struct seq_file *s, void *v)
591 {
592         int i;
593         struct zs_pool *pool = s->private;
594         struct size_class *class;
595         int objs_per_zspage;
596         unsigned long class_almost_full, class_almost_empty;
597         unsigned long obj_allocated, obj_used, pages_used, freeable;
598         unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
599         unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
600         unsigned long total_freeable = 0;
601
602         seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
603                         "class", "size", "almost_full", "almost_empty",
604                         "obj_allocated", "obj_used", "pages_used",
605                         "pages_per_zspage", "freeable");
606
607         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
608                 class = pool->size_class[i];
609
610                 if (class->index != i)
611                         continue;
612
613                 spin_lock(&class->lock);
614                 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
615                 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
616                 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
617                 obj_used = zs_stat_get(class, OBJ_USED);
618                 freeable = zs_can_compact(class);
619                 spin_unlock(&class->lock);
620
621                 objs_per_zspage = class->objs_per_zspage;
622                 pages_used = obj_allocated / objs_per_zspage *
623                                 class->pages_per_zspage;
624
625                 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
626                                 " %10lu %10lu %16d %8lu\n",
627                         i, class->size, class_almost_full, class_almost_empty,
628                         obj_allocated, obj_used, pages_used,
629                         class->pages_per_zspage, freeable);
630
631                 total_class_almost_full += class_almost_full;
632                 total_class_almost_empty += class_almost_empty;
633                 total_objs += obj_allocated;
634                 total_used_objs += obj_used;
635                 total_pages += pages_used;
636                 total_freeable += freeable;
637         }
638
639         seq_puts(s, "\n");
640         seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
641                         "Total", "", total_class_almost_full,
642                         total_class_almost_empty, total_objs,
643                         total_used_objs, total_pages, "", total_freeable);
644
645         return 0;
646 }
647 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
648
649 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
650 {
651         if (!zs_stat_root) {
652                 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
653                 return;
654         }
655
656         pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
657
658         debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
659                             &zs_stats_size_fops);
660 }
661
662 static void zs_pool_stat_destroy(struct zs_pool *pool)
663 {
664         debugfs_remove_recursive(pool->stat_dentry);
665 }
666
667 #else /* CONFIG_ZSMALLOC_STAT */
668 static void __init zs_stat_init(void)
669 {
670 }
671
672 static void __exit zs_stat_exit(void)
673 {
674 }
675
676 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
677 {
678 }
679
680 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
681 {
682 }
683 #endif
684
685
686 /*
687  * For each size class, zspages are divided into different groups
688  * depending on how "full" they are. This was done so that we could
689  * easily find empty or nearly empty zspages when we try to shrink
690  * the pool (not yet implemented). This function returns fullness
691  * status of the given page.
692  */
693 static enum fullness_group get_fullness_group(struct size_class *class,
694                                                 struct zspage *zspage)
695 {
696         int inuse, objs_per_zspage;
697         enum fullness_group fg;
698
699         inuse = get_zspage_inuse(zspage);
700         objs_per_zspage = class->objs_per_zspage;
701
702         if (inuse == 0)
703                 fg = ZS_EMPTY;
704         else if (inuse == objs_per_zspage)
705                 fg = ZS_FULL;
706         else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
707                 fg = ZS_ALMOST_EMPTY;
708         else
709                 fg = ZS_ALMOST_FULL;
710
711         return fg;
712 }
713
714 /*
715  * Each size class maintains various freelists and zspages are assigned
716  * to one of these freelists based on the number of live objects they
717  * have. This functions inserts the given zspage into the freelist
718  * identified by <class, fullness_group>.
719  */
720 static void insert_zspage(struct size_class *class,
721                                 struct zspage *zspage,
722                                 enum fullness_group fullness)
723 {
724         struct zspage *head;
725
726         zs_stat_inc(class, fullness, 1);
727         head = list_first_entry_or_null(&class->fullness_list[fullness],
728                                         struct zspage, list);
729         /*
730          * We want to see more ZS_FULL pages and less almost empty/full.
731          * Put pages with higher ->inuse first.
732          */
733         if (head) {
734                 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
735                         list_add(&zspage->list, &head->list);
736                         return;
737                 }
738         }
739         list_add(&zspage->list, &class->fullness_list[fullness]);
740 }
741
742 /*
743  * This function removes the given zspage from the freelist identified
744  * by <class, fullness_group>.
745  */
746 static void remove_zspage(struct size_class *class,
747                                 struct zspage *zspage,
748                                 enum fullness_group fullness)
749 {
750         VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
751         VM_BUG_ON(is_zspage_isolated(zspage));
752
753         list_del_init(&zspage->list);
754         zs_stat_dec(class, fullness, 1);
755 }
756
757 /*
758  * Each size class maintains zspages in different fullness groups depending
759  * on the number of live objects they contain. When allocating or freeing
760  * objects, the fullness status of the page can change, say, from ALMOST_FULL
761  * to ALMOST_EMPTY when freeing an object. This function checks if such
762  * a status change has occurred for the given page and accordingly moves the
763  * page from the freelist of the old fullness group to that of the new
764  * fullness group.
765  */
766 static enum fullness_group fix_fullness_group(struct size_class *class,
767                                                 struct zspage *zspage)
768 {
769         int class_idx;
770         enum fullness_group currfg, newfg;
771
772         get_zspage_mapping(zspage, &class_idx, &currfg);
773         newfg = get_fullness_group(class, zspage);
774         if (newfg == currfg)
775                 goto out;
776
777         if (!is_zspage_isolated(zspage)) {
778                 remove_zspage(class, zspage, currfg);
779                 insert_zspage(class, zspage, newfg);
780         }
781
782         set_zspage_mapping(zspage, class_idx, newfg);
783
784 out:
785         return newfg;
786 }
787
788 /*
789  * We have to decide on how many pages to link together
790  * to form a zspage for each size class. This is important
791  * to reduce wastage due to unusable space left at end of
792  * each zspage which is given as:
793  *     wastage = Zp % class_size
794  *     usage = Zp - wastage
795  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
796  *
797  * For example, for size class of 3/8 * PAGE_SIZE, we should
798  * link together 3 PAGE_SIZE sized pages to form a zspage
799  * since then we can perfectly fit in 8 such objects.
800  */
801 static int get_pages_per_zspage(int class_size)
802 {
803         int i, max_usedpc = 0;
804         /* zspage order which gives maximum used size per KB */
805         int max_usedpc_order = 1;
806
807         for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
808                 int zspage_size;
809                 int waste, usedpc;
810
811                 zspage_size = i * PAGE_SIZE;
812                 waste = zspage_size % class_size;
813                 usedpc = (zspage_size - waste) * 100 / zspage_size;
814
815                 if (usedpc > max_usedpc) {
816                         max_usedpc = usedpc;
817                         max_usedpc_order = i;
818                 }
819         }
820
821         return max_usedpc_order;
822 }
823
824 static struct zspage *get_zspage(struct page *page)
825 {
826         struct zspage *zspage = (struct zspage *)page->private;
827
828         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
829         return zspage;
830 }
831
832 static struct page *get_next_page(struct page *page)
833 {
834         if (unlikely(PageHugeObject(page)))
835                 return NULL;
836
837         return page->freelist;
838 }
839
840 /**
841  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
842  * @obj: the encoded object value
843  * @page: page object resides in zspage
844  * @obj_idx: object index
845  */
846 static void obj_to_location(unsigned long obj, struct page **page,
847                                 unsigned int *obj_idx)
848 {
849         obj >>= OBJ_TAG_BITS;
850         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
851         *obj_idx = (obj & OBJ_INDEX_MASK);
852 }
853
854 /**
855  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
856  * @page: page object resides in zspage
857  * @obj_idx: object index
858  */
859 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
860 {
861         unsigned long obj;
862
863         obj = page_to_pfn(page) << OBJ_INDEX_BITS;
864         obj |= obj_idx & OBJ_INDEX_MASK;
865         obj <<= OBJ_TAG_BITS;
866
867         return obj;
868 }
869
870 static unsigned long handle_to_obj(unsigned long handle)
871 {
872         return *(unsigned long *)handle;
873 }
874
875 static unsigned long obj_to_head(struct page *page, void *obj)
876 {
877         if (unlikely(PageHugeObject(page))) {
878                 VM_BUG_ON_PAGE(!is_first_page(page), page);
879                 return page->index;
880         } else
881                 return *(unsigned long *)obj;
882 }
883
884 static inline int testpin_tag(unsigned long handle)
885 {
886         return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
887 }
888
889 static inline int trypin_tag(unsigned long handle)
890 {
891         return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
892 }
893
894 static void pin_tag(unsigned long handle) __acquires(bitlock)
895 {
896         bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
897 }
898
899 static void unpin_tag(unsigned long handle) __releases(bitlock)
900 {
901         bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
902 }
903
904 static void reset_page(struct page *page)
905 {
906         __ClearPageMovable(page);
907         ClearPagePrivate(page);
908         set_page_private(page, 0);
909         page_mapcount_reset(page);
910         ClearPageHugeObject(page);
911         page->freelist = NULL;
912 }
913
914 static int trylock_zspage(struct zspage *zspage)
915 {
916         struct page *cursor, *fail;
917
918         for (cursor = get_first_page(zspage); cursor != NULL; cursor =
919                                         get_next_page(cursor)) {
920                 if (!trylock_page(cursor)) {
921                         fail = cursor;
922                         goto unlock;
923                 }
924         }
925
926         return 1;
927 unlock:
928         for (cursor = get_first_page(zspage); cursor != fail; cursor =
929                                         get_next_page(cursor))
930                 unlock_page(cursor);
931
932         return 0;
933 }
934
935 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
936                                 struct zspage *zspage)
937 {
938         struct page *page, *next;
939         enum fullness_group fg;
940         unsigned int class_idx;
941
942         get_zspage_mapping(zspage, &class_idx, &fg);
943
944         assert_spin_locked(&class->lock);
945
946         VM_BUG_ON(get_zspage_inuse(zspage));
947         VM_BUG_ON(fg != ZS_EMPTY);
948
949         next = page = get_first_page(zspage);
950         do {
951                 VM_BUG_ON_PAGE(!PageLocked(page), page);
952                 next = get_next_page(page);
953                 reset_page(page);
954                 unlock_page(page);
955                 dec_zone_page_state(page, NR_ZSPAGES);
956                 put_page(page);
957                 page = next;
958         } while (page != NULL);
959
960         cache_free_zspage(pool, zspage);
961
962         zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
963         atomic_long_sub(class->pages_per_zspage,
964                                         &pool->pages_allocated);
965 }
966
967 static void free_zspage(struct zs_pool *pool, struct size_class *class,
968                                 struct zspage *zspage)
969 {
970         VM_BUG_ON(get_zspage_inuse(zspage));
971         VM_BUG_ON(list_empty(&zspage->list));
972
973         if (!trylock_zspage(zspage)) {
974                 kick_deferred_free(pool);
975                 return;
976         }
977
978         remove_zspage(class, zspage, ZS_EMPTY);
979         __free_zspage(pool, class, zspage);
980 }
981
982 /* Initialize a newly allocated zspage */
983 static void init_zspage(struct size_class *class, struct zspage *zspage)
984 {
985         unsigned int freeobj = 1;
986         unsigned long off = 0;
987         struct page *page = get_first_page(zspage);
988
989         while (page) {
990                 struct page *next_page;
991                 struct link_free *link;
992                 void *vaddr;
993
994                 set_first_obj_offset(page, off);
995
996                 vaddr = kmap_atomic(page);
997                 link = (struct link_free *)vaddr + off / sizeof(*link);
998
999                 while ((off += class->size) < PAGE_SIZE) {
1000                         link->next = freeobj++ << OBJ_TAG_BITS;
1001                         link += class->size / sizeof(*link);
1002                 }
1003
1004                 /*
1005                  * We now come to the last (full or partial) object on this
1006                  * page, which must point to the first object on the next
1007                  * page (if present)
1008                  */
1009                 next_page = get_next_page(page);
1010                 if (next_page) {
1011                         link->next = freeobj++ << OBJ_TAG_BITS;
1012                 } else {
1013                         /*
1014                          * Reset OBJ_TAG_BITS bit to last link to tell
1015                          * whether it's allocated object or not.
1016                          */
1017                         link->next = -1UL << OBJ_TAG_BITS;
1018                 }
1019                 kunmap_atomic(vaddr);
1020                 page = next_page;
1021                 off %= PAGE_SIZE;
1022         }
1023
1024         set_freeobj(zspage, 0);
1025 }
1026
1027 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1028                                 struct page *pages[])
1029 {
1030         int i;
1031         struct page *page;
1032         struct page *prev_page = NULL;
1033         int nr_pages = class->pages_per_zspage;
1034
1035         /*
1036          * Allocate individual pages and link them together as:
1037          * 1. all pages are linked together using page->freelist
1038          * 2. each sub-page point to zspage using page->private
1039          *
1040          * we set PG_private to identify the first page (i.e. no other sub-page
1041          * has this flag set).
1042          */
1043         for (i = 0; i < nr_pages; i++) {
1044                 page = pages[i];
1045                 set_page_private(page, (unsigned long)zspage);
1046                 page->freelist = NULL;
1047                 if (i == 0) {
1048                         zspage->first_page = page;
1049                         SetPagePrivate(page);
1050                         if (unlikely(class->objs_per_zspage == 1 &&
1051                                         class->pages_per_zspage == 1))
1052                                 SetPageHugeObject(page);
1053                 } else {
1054                         prev_page->freelist = page;
1055                 }
1056                 prev_page = page;
1057         }
1058 }
1059
1060 /*
1061  * Allocate a zspage for the given size class
1062  */
1063 static struct zspage *alloc_zspage(struct zs_pool *pool,
1064                                         struct size_class *class,
1065                                         gfp_t gfp)
1066 {
1067         int i;
1068         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1069         struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1070
1071         if (!zspage)
1072                 return NULL;
1073
1074         memset(zspage, 0, sizeof(struct zspage));
1075         zspage->magic = ZSPAGE_MAGIC;
1076         migrate_lock_init(zspage);
1077
1078         for (i = 0; i < class->pages_per_zspage; i++) {
1079                 struct page *page;
1080
1081                 page = alloc_page(gfp);
1082                 if (!page) {
1083                         while (--i >= 0) {
1084                                 dec_zone_page_state(pages[i], NR_ZSPAGES);
1085                                 __free_page(pages[i]);
1086                         }
1087                         cache_free_zspage(pool, zspage);
1088                         return NULL;
1089                 }
1090
1091                 inc_zone_page_state(page, NR_ZSPAGES);
1092                 pages[i] = page;
1093         }
1094
1095         create_page_chain(class, zspage, pages);
1096         init_zspage(class, zspage);
1097
1098         return zspage;
1099 }
1100
1101 static struct zspage *find_get_zspage(struct size_class *class)
1102 {
1103         int i;
1104         struct zspage *zspage;
1105
1106         for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1107                 zspage = list_first_entry_or_null(&class->fullness_list[i],
1108                                 struct zspage, list);
1109                 if (zspage)
1110                         break;
1111         }
1112
1113         return zspage;
1114 }
1115
1116 #ifdef CONFIG_ZSMALLOC_PGTABLE_MAPPING
1117 static inline int __zs_cpu_up(struct mapping_area *area)
1118 {
1119         /*
1120          * Make sure we don't leak memory if a cpu UP notification
1121          * and zs_init() race and both call zs_cpu_up() on the same cpu
1122          */
1123         if (area->vm)
1124                 return 0;
1125         area->vm = get_vm_area(PAGE_SIZE * 2, 0);
1126         if (!area->vm)
1127                 return -ENOMEM;
1128
1129         /*
1130          * Populate ptes in advance to avoid pte allocation with GFP_KERNEL
1131          * in non-preemtible context of zs_map_object.
1132          */
1133         return apply_to_page_range(&init_mm, (unsigned long)area->vm->addr,
1134                         PAGE_SIZE * 2, NULL, NULL);
1135 }
1136
1137 static inline void __zs_cpu_down(struct mapping_area *area)
1138 {
1139         if (area->vm)
1140                 free_vm_area(area->vm);
1141         area->vm = NULL;
1142 }
1143
1144 static inline void *__zs_map_object(struct mapping_area *area,
1145                                 struct page *pages[2], int off, int size)
1146 {
1147         unsigned long addr = (unsigned long)area->vm->addr;
1148
1149         BUG_ON(map_kernel_range(addr, PAGE_SIZE * 2, PAGE_KERNEL, pages) < 0);
1150         area->vm_addr = area->vm->addr;
1151         return area->vm_addr + off;
1152 }
1153
1154 static inline void __zs_unmap_object(struct mapping_area *area,
1155                                 struct page *pages[2], int off, int size)
1156 {
1157         unsigned long addr = (unsigned long)area->vm_addr;
1158
1159         unmap_kernel_range(addr, PAGE_SIZE * 2);
1160 }
1161
1162 #else /* CONFIG_ZSMALLOC_PGTABLE_MAPPING */
1163
1164 static inline int __zs_cpu_up(struct mapping_area *area)
1165 {
1166         /*
1167          * Make sure we don't leak memory if a cpu UP notification
1168          * and zs_init() race and both call zs_cpu_up() on the same cpu
1169          */
1170         if (area->vm_buf)
1171                 return 0;
1172         area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1173         if (!area->vm_buf)
1174                 return -ENOMEM;
1175         return 0;
1176 }
1177
1178 static inline void __zs_cpu_down(struct mapping_area *area)
1179 {
1180         kfree(area->vm_buf);
1181         area->vm_buf = NULL;
1182 }
1183
1184 static void *__zs_map_object(struct mapping_area *area,
1185                         struct page *pages[2], int off, int size)
1186 {
1187         int sizes[2];
1188         void *addr;
1189         char *buf = area->vm_buf;
1190
1191         /* disable page faults to match kmap_atomic() return conditions */
1192         pagefault_disable();
1193
1194         /* no read fastpath */
1195         if (area->vm_mm == ZS_MM_WO)
1196                 goto out;
1197
1198         sizes[0] = PAGE_SIZE - off;
1199         sizes[1] = size - sizes[0];
1200
1201         /* copy object to per-cpu buffer */
1202         addr = kmap_atomic(pages[0]);
1203         memcpy(buf, addr + off, sizes[0]);
1204         kunmap_atomic(addr);
1205         addr = kmap_atomic(pages[1]);
1206         memcpy(buf + sizes[0], addr, sizes[1]);
1207         kunmap_atomic(addr);
1208 out:
1209         return area->vm_buf;
1210 }
1211
1212 static void __zs_unmap_object(struct mapping_area *area,
1213                         struct page *pages[2], int off, int size)
1214 {
1215         int sizes[2];
1216         void *addr;
1217         char *buf;
1218
1219         /* no write fastpath */
1220         if (area->vm_mm == ZS_MM_RO)
1221                 goto out;
1222
1223         buf = area->vm_buf;
1224         buf = buf + ZS_HANDLE_SIZE;
1225         size -= ZS_HANDLE_SIZE;
1226         off += ZS_HANDLE_SIZE;
1227
1228         sizes[0] = PAGE_SIZE - off;
1229         sizes[1] = size - sizes[0];
1230
1231         /* copy per-cpu buffer to object */
1232         addr = kmap_atomic(pages[0]);
1233         memcpy(addr + off, buf, sizes[0]);
1234         kunmap_atomic(addr);
1235         addr = kmap_atomic(pages[1]);
1236         memcpy(addr, buf + sizes[0], sizes[1]);
1237         kunmap_atomic(addr);
1238
1239 out:
1240         /* enable page faults to match kunmap_atomic() return conditions */
1241         pagefault_enable();
1242 }
1243
1244 #endif /* CONFIG_ZSMALLOC_PGTABLE_MAPPING */
1245
1246 static int zs_cpu_prepare(unsigned int cpu)
1247 {
1248         struct mapping_area *area;
1249
1250         area = &per_cpu(zs_map_area, cpu);
1251         return __zs_cpu_up(area);
1252 }
1253
1254 static int zs_cpu_dead(unsigned int cpu)
1255 {
1256         struct mapping_area *area;
1257
1258         area = &per_cpu(zs_map_area, cpu);
1259         __zs_cpu_down(area);
1260         return 0;
1261 }
1262
1263 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1264                                         int objs_per_zspage)
1265 {
1266         if (prev->pages_per_zspage == pages_per_zspage &&
1267                 prev->objs_per_zspage == objs_per_zspage)
1268                 return true;
1269
1270         return false;
1271 }
1272
1273 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1274 {
1275         return get_zspage_inuse(zspage) == class->objs_per_zspage;
1276 }
1277
1278 unsigned long zs_get_total_pages(struct zs_pool *pool)
1279 {
1280         return atomic_long_read(&pool->pages_allocated);
1281 }
1282 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1283
1284 /**
1285  * zs_map_object - get address of allocated object from handle.
1286  * @pool: pool from which the object was allocated
1287  * @handle: handle returned from zs_malloc
1288  * @mm: maping mode to use
1289  *
1290  * Before using an object allocated from zs_malloc, it must be mapped using
1291  * this function. When done with the object, it must be unmapped using
1292  * zs_unmap_object.
1293  *
1294  * Only one object can be mapped per cpu at a time. There is no protection
1295  * against nested mappings.
1296  *
1297  * This function returns with preemption and page faults disabled.
1298  */
1299 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1300                         enum zs_mapmode mm)
1301 {
1302         struct zspage *zspage;
1303         struct page *page;
1304         unsigned long obj, off;
1305         unsigned int obj_idx;
1306
1307         unsigned int class_idx;
1308         enum fullness_group fg;
1309         struct size_class *class;
1310         struct mapping_area *area;
1311         struct page *pages[2];
1312         void *ret;
1313
1314         /*
1315          * Because we use per-cpu mapping areas shared among the
1316          * pools/users, we can't allow mapping in interrupt context
1317          * because it can corrupt another users mappings.
1318          */
1319         BUG_ON(in_interrupt());
1320
1321         /* From now on, migration cannot move the object */
1322         pin_tag(handle);
1323
1324         obj = handle_to_obj(handle);
1325         obj_to_location(obj, &page, &obj_idx);
1326         zspage = get_zspage(page);
1327
1328         /* migration cannot move any subpage in this zspage */
1329         migrate_read_lock(zspage);
1330
1331         get_zspage_mapping(zspage, &class_idx, &fg);
1332         class = pool->size_class[class_idx];
1333         off = (class->size * obj_idx) & ~PAGE_MASK;
1334
1335         area = &get_cpu_var(zs_map_area);
1336         area->vm_mm = mm;
1337         if (off + class->size <= PAGE_SIZE) {
1338                 /* this object is contained entirely within a page */
1339                 area->vm_addr = kmap_atomic(page);
1340                 ret = area->vm_addr + off;
1341                 goto out;
1342         }
1343
1344         /* this object spans two pages */
1345         pages[0] = page;
1346         pages[1] = get_next_page(page);
1347         BUG_ON(!pages[1]);
1348
1349         ret = __zs_map_object(area, pages, off, class->size);
1350 out:
1351         if (likely(!PageHugeObject(page)))
1352                 ret += ZS_HANDLE_SIZE;
1353
1354         return ret;
1355 }
1356 EXPORT_SYMBOL_GPL(zs_map_object);
1357
1358 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1359 {
1360         struct zspage *zspage;
1361         struct page *page;
1362         unsigned long obj, off;
1363         unsigned int obj_idx;
1364
1365         unsigned int class_idx;
1366         enum fullness_group fg;
1367         struct size_class *class;
1368         struct mapping_area *area;
1369
1370         obj = handle_to_obj(handle);
1371         obj_to_location(obj, &page, &obj_idx);
1372         zspage = get_zspage(page);
1373         get_zspage_mapping(zspage, &class_idx, &fg);
1374         class = pool->size_class[class_idx];
1375         off = (class->size * obj_idx) & ~PAGE_MASK;
1376
1377         area = this_cpu_ptr(&zs_map_area);
1378         if (off + class->size <= PAGE_SIZE)
1379                 kunmap_atomic(area->vm_addr);
1380         else {
1381                 struct page *pages[2];
1382
1383                 pages[0] = page;
1384                 pages[1] = get_next_page(page);
1385                 BUG_ON(!pages[1]);
1386
1387                 __zs_unmap_object(area, pages, off, class->size);
1388         }
1389         put_cpu_var(zs_map_area);
1390
1391         migrate_read_unlock(zspage);
1392         unpin_tag(handle);
1393 }
1394 EXPORT_SYMBOL_GPL(zs_unmap_object);
1395
1396 /**
1397  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1398  *                        zsmalloc &size_class.
1399  * @pool: zsmalloc pool to use
1400  *
1401  * The function returns the size of the first huge class - any object of equal
1402  * or bigger size will be stored in zspage consisting of a single physical
1403  * page.
1404  *
1405  * Context: Any context.
1406  *
1407  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1408  */
1409 size_t zs_huge_class_size(struct zs_pool *pool)
1410 {
1411         return huge_class_size;
1412 }
1413 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1414
1415 static unsigned long obj_malloc(struct size_class *class,
1416                                 struct zspage *zspage, unsigned long handle)
1417 {
1418         int i, nr_page, offset;
1419         unsigned long obj;
1420         struct link_free *link;
1421
1422         struct page *m_page;
1423         unsigned long m_offset;
1424         void *vaddr;
1425
1426         handle |= OBJ_ALLOCATED_TAG;
1427         obj = get_freeobj(zspage);
1428
1429         offset = obj * class->size;
1430         nr_page = offset >> PAGE_SHIFT;
1431         m_offset = offset & ~PAGE_MASK;
1432         m_page = get_first_page(zspage);
1433
1434         for (i = 0; i < nr_page; i++)
1435                 m_page = get_next_page(m_page);
1436
1437         vaddr = kmap_atomic(m_page);
1438         link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1439         set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1440         if (likely(!PageHugeObject(m_page)))
1441                 /* record handle in the header of allocated chunk */
1442                 link->handle = handle;
1443         else
1444                 /* record handle to page->index */
1445                 zspage->first_page->index = handle;
1446
1447         kunmap_atomic(vaddr);
1448         mod_zspage_inuse(zspage, 1);
1449         zs_stat_inc(class, OBJ_USED, 1);
1450
1451         obj = location_to_obj(m_page, obj);
1452
1453         return obj;
1454 }
1455
1456
1457 /**
1458  * zs_malloc - Allocate block of given size from pool.
1459  * @pool: pool to allocate from
1460  * @size: size of block to allocate
1461  * @gfp: gfp flags when allocating object
1462  *
1463  * On success, handle to the allocated object is returned,
1464  * otherwise 0.
1465  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1466  */
1467 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1468 {
1469         unsigned long handle, obj;
1470         struct size_class *class;
1471         enum fullness_group newfg;
1472         struct zspage *zspage;
1473
1474         if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1475                 return 0;
1476
1477         handle = cache_alloc_handle(pool, gfp);
1478         if (!handle)
1479                 return 0;
1480
1481         /* extra space in chunk to keep the handle */
1482         size += ZS_HANDLE_SIZE;
1483         class = pool->size_class[get_size_class_index(size)];
1484
1485         spin_lock(&class->lock);
1486         zspage = find_get_zspage(class);
1487         if (likely(zspage)) {
1488                 obj = obj_malloc(class, zspage, handle);
1489                 /* Now move the zspage to another fullness group, if required */
1490                 fix_fullness_group(class, zspage);
1491                 record_obj(handle, obj);
1492                 spin_unlock(&class->lock);
1493
1494                 return handle;
1495         }
1496
1497         spin_unlock(&class->lock);
1498
1499         zspage = alloc_zspage(pool, class, gfp);
1500         if (!zspage) {
1501                 cache_free_handle(pool, handle);
1502                 return 0;
1503         }
1504
1505         spin_lock(&class->lock);
1506         obj = obj_malloc(class, zspage, handle);
1507         newfg = get_fullness_group(class, zspage);
1508         insert_zspage(class, zspage, newfg);
1509         set_zspage_mapping(zspage, class->index, newfg);
1510         record_obj(handle, obj);
1511         atomic_long_add(class->pages_per_zspage,
1512                                 &pool->pages_allocated);
1513         zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1514
1515         /* We completely set up zspage so mark them as movable */
1516         SetZsPageMovable(pool, zspage);
1517         spin_unlock(&class->lock);
1518
1519         return handle;
1520 }
1521 EXPORT_SYMBOL_GPL(zs_malloc);
1522
1523 static void obj_free(struct size_class *class, unsigned long obj)
1524 {
1525         struct link_free *link;
1526         struct zspage *zspage;
1527         struct page *f_page;
1528         unsigned long f_offset;
1529         unsigned int f_objidx;
1530         void *vaddr;
1531
1532         obj &= ~OBJ_ALLOCATED_TAG;
1533         obj_to_location(obj, &f_page, &f_objidx);
1534         f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1535         zspage = get_zspage(f_page);
1536
1537         vaddr = kmap_atomic(f_page);
1538
1539         /* Insert this object in containing zspage's freelist */
1540         link = (struct link_free *)(vaddr + f_offset);
1541         link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1542         kunmap_atomic(vaddr);
1543         set_freeobj(zspage, f_objidx);
1544         mod_zspage_inuse(zspage, -1);
1545         zs_stat_dec(class, OBJ_USED, 1);
1546 }
1547
1548 void zs_free(struct zs_pool *pool, unsigned long handle)
1549 {
1550         struct zspage *zspage;
1551         struct page *f_page;
1552         unsigned long obj;
1553         unsigned int f_objidx;
1554         int class_idx;
1555         struct size_class *class;
1556         enum fullness_group fullness;
1557         bool isolated;
1558
1559         if (unlikely(!handle))
1560                 return;
1561
1562         pin_tag(handle);
1563         obj = handle_to_obj(handle);
1564         obj_to_location(obj, &f_page, &f_objidx);
1565         zspage = get_zspage(f_page);
1566
1567         migrate_read_lock(zspage);
1568
1569         get_zspage_mapping(zspage, &class_idx, &fullness);
1570         class = pool->size_class[class_idx];
1571
1572         spin_lock(&class->lock);
1573         obj_free(class, obj);
1574         fullness = fix_fullness_group(class, zspage);
1575         if (fullness != ZS_EMPTY) {
1576                 migrate_read_unlock(zspage);
1577                 goto out;
1578         }
1579
1580         isolated = is_zspage_isolated(zspage);
1581         migrate_read_unlock(zspage);
1582         /* If zspage is isolated, zs_page_putback will free the zspage */
1583         if (likely(!isolated))
1584                 free_zspage(pool, class, zspage);
1585 out:
1586
1587         spin_unlock(&class->lock);
1588         unpin_tag(handle);
1589         cache_free_handle(pool, handle);
1590 }
1591 EXPORT_SYMBOL_GPL(zs_free);
1592
1593 static void zs_object_copy(struct size_class *class, unsigned long dst,
1594                                 unsigned long src)
1595 {
1596         struct page *s_page, *d_page;
1597         unsigned int s_objidx, d_objidx;
1598         unsigned long s_off, d_off;
1599         void *s_addr, *d_addr;
1600         int s_size, d_size, size;
1601         int written = 0;
1602
1603         s_size = d_size = class->size;
1604
1605         obj_to_location(src, &s_page, &s_objidx);
1606         obj_to_location(dst, &d_page, &d_objidx);
1607
1608         s_off = (class->size * s_objidx) & ~PAGE_MASK;
1609         d_off = (class->size * d_objidx) & ~PAGE_MASK;
1610
1611         if (s_off + class->size > PAGE_SIZE)
1612                 s_size = PAGE_SIZE - s_off;
1613
1614         if (d_off + class->size > PAGE_SIZE)
1615                 d_size = PAGE_SIZE - d_off;
1616
1617         s_addr = kmap_atomic(s_page);
1618         d_addr = kmap_atomic(d_page);
1619
1620         while (1) {
1621                 size = min(s_size, d_size);
1622                 memcpy(d_addr + d_off, s_addr + s_off, size);
1623                 written += size;
1624
1625                 if (written == class->size)
1626                         break;
1627
1628                 s_off += size;
1629                 s_size -= size;
1630                 d_off += size;
1631                 d_size -= size;
1632
1633                 if (s_off >= PAGE_SIZE) {
1634                         kunmap_atomic(d_addr);
1635                         kunmap_atomic(s_addr);
1636                         s_page = get_next_page(s_page);
1637                         s_addr = kmap_atomic(s_page);
1638                         d_addr = kmap_atomic(d_page);
1639                         s_size = class->size - written;
1640                         s_off = 0;
1641                 }
1642
1643                 if (d_off >= PAGE_SIZE) {
1644                         kunmap_atomic(d_addr);
1645                         d_page = get_next_page(d_page);
1646                         d_addr = kmap_atomic(d_page);
1647                         d_size = class->size - written;
1648                         d_off = 0;
1649                 }
1650         }
1651
1652         kunmap_atomic(d_addr);
1653         kunmap_atomic(s_addr);
1654 }
1655
1656 /*
1657  * Find alloced object in zspage from index object and
1658  * return handle.
1659  */
1660 static unsigned long find_alloced_obj(struct size_class *class,
1661                                         struct page *page, int *obj_idx)
1662 {
1663         unsigned long head;
1664         int offset = 0;
1665         int index = *obj_idx;
1666         unsigned long handle = 0;
1667         void *addr = kmap_atomic(page);
1668
1669         offset = get_first_obj_offset(page);
1670         offset += class->size * index;
1671
1672         while (offset < PAGE_SIZE) {
1673                 head = obj_to_head(page, addr + offset);
1674                 if (head & OBJ_ALLOCATED_TAG) {
1675                         handle = head & ~OBJ_ALLOCATED_TAG;
1676                         if (trypin_tag(handle))
1677                                 break;
1678                         handle = 0;
1679                 }
1680
1681                 offset += class->size;
1682                 index++;
1683         }
1684
1685         kunmap_atomic(addr);
1686
1687         *obj_idx = index;
1688
1689         return handle;
1690 }
1691
1692 struct zs_compact_control {
1693         /* Source spage for migration which could be a subpage of zspage */
1694         struct page *s_page;
1695         /* Destination page for migration which should be a first page
1696          * of zspage. */
1697         struct page *d_page;
1698          /* Starting object index within @s_page which used for live object
1699           * in the subpage. */
1700         int obj_idx;
1701 };
1702
1703 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1704                                 struct zs_compact_control *cc)
1705 {
1706         unsigned long used_obj, free_obj;
1707         unsigned long handle;
1708         struct page *s_page = cc->s_page;
1709         struct page *d_page = cc->d_page;
1710         int obj_idx = cc->obj_idx;
1711         int ret = 0;
1712
1713         while (1) {
1714                 handle = find_alloced_obj(class, s_page, &obj_idx);
1715                 if (!handle) {
1716                         s_page = get_next_page(s_page);
1717                         if (!s_page)
1718                                 break;
1719                         obj_idx = 0;
1720                         continue;
1721                 }
1722
1723                 /* Stop if there is no more space */
1724                 if (zspage_full(class, get_zspage(d_page))) {
1725                         unpin_tag(handle);
1726                         ret = -ENOMEM;
1727                         break;
1728                 }
1729
1730                 used_obj = handle_to_obj(handle);
1731                 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1732                 zs_object_copy(class, free_obj, used_obj);
1733                 obj_idx++;
1734                 /*
1735                  * record_obj updates handle's value to free_obj and it will
1736                  * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1737                  * breaks synchronization using pin_tag(e,g, zs_free) so
1738                  * let's keep the lock bit.
1739                  */
1740                 free_obj |= BIT(HANDLE_PIN_BIT);
1741                 record_obj(handle, free_obj);
1742                 unpin_tag(handle);
1743                 obj_free(class, used_obj);
1744         }
1745
1746         /* Remember last position in this iteration */
1747         cc->s_page = s_page;
1748         cc->obj_idx = obj_idx;
1749
1750         return ret;
1751 }
1752
1753 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1754 {
1755         int i;
1756         struct zspage *zspage;
1757         enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1758
1759         if (!source) {
1760                 fg[0] = ZS_ALMOST_FULL;
1761                 fg[1] = ZS_ALMOST_EMPTY;
1762         }
1763
1764         for (i = 0; i < 2; i++) {
1765                 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1766                                                         struct zspage, list);
1767                 if (zspage) {
1768                         VM_BUG_ON(is_zspage_isolated(zspage));
1769                         remove_zspage(class, zspage, fg[i]);
1770                         return zspage;
1771                 }
1772         }
1773
1774         return zspage;
1775 }
1776
1777 /*
1778  * putback_zspage - add @zspage into right class's fullness list
1779  * @class: destination class
1780  * @zspage: target page
1781  *
1782  * Return @zspage's fullness_group
1783  */
1784 static enum fullness_group putback_zspage(struct size_class *class,
1785                         struct zspage *zspage)
1786 {
1787         enum fullness_group fullness;
1788
1789         VM_BUG_ON(is_zspage_isolated(zspage));
1790
1791         fullness = get_fullness_group(class, zspage);
1792         insert_zspage(class, zspage, fullness);
1793         set_zspage_mapping(zspage, class->index, fullness);
1794
1795         return fullness;
1796 }
1797
1798 #ifdef CONFIG_COMPACTION
1799 /*
1800  * To prevent zspage destroy during migration, zspage freeing should
1801  * hold locks of all pages in the zspage.
1802  */
1803 static void lock_zspage(struct zspage *zspage)
1804 {
1805         struct page *page = get_first_page(zspage);
1806
1807         do {
1808                 lock_page(page);
1809         } while ((page = get_next_page(page)) != NULL);
1810 }
1811
1812 static int zs_init_fs_context(struct fs_context *fc)
1813 {
1814         return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
1815 }
1816
1817 static struct file_system_type zsmalloc_fs = {
1818         .name           = "zsmalloc",
1819         .init_fs_context = zs_init_fs_context,
1820         .kill_sb        = kill_anon_super,
1821 };
1822
1823 static int zsmalloc_mount(void)
1824 {
1825         int ret = 0;
1826
1827         zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1828         if (IS_ERR(zsmalloc_mnt))
1829                 ret = PTR_ERR(zsmalloc_mnt);
1830
1831         return ret;
1832 }
1833
1834 static void zsmalloc_unmount(void)
1835 {
1836         kern_unmount(zsmalloc_mnt);
1837 }
1838
1839 static void migrate_lock_init(struct zspage *zspage)
1840 {
1841         rwlock_init(&zspage->lock);
1842 }
1843
1844 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1845 {
1846         read_lock(&zspage->lock);
1847 }
1848
1849 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1850 {
1851         read_unlock(&zspage->lock);
1852 }
1853
1854 static void migrate_write_lock(struct zspage *zspage)
1855 {
1856         write_lock(&zspage->lock);
1857 }
1858
1859 static void migrate_write_unlock(struct zspage *zspage)
1860 {
1861         write_unlock(&zspage->lock);
1862 }
1863
1864 /* Number of isolated subpage for *page migration* in this zspage */
1865 static void inc_zspage_isolation(struct zspage *zspage)
1866 {
1867         zspage->isolated++;
1868 }
1869
1870 static void dec_zspage_isolation(struct zspage *zspage)
1871 {
1872         zspage->isolated--;
1873 }
1874
1875 static void putback_zspage_deferred(struct zs_pool *pool,
1876                                     struct size_class *class,
1877                                     struct zspage *zspage)
1878 {
1879         enum fullness_group fg;
1880
1881         fg = putback_zspage(class, zspage);
1882         if (fg == ZS_EMPTY)
1883                 schedule_work(&pool->free_work);
1884
1885 }
1886
1887 static inline void zs_pool_dec_isolated(struct zs_pool *pool)
1888 {
1889         VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0);
1890         atomic_long_dec(&pool->isolated_pages);
1891         /*
1892          * There's no possibility of racing, since wait_for_isolated_drain()
1893          * checks the isolated count under &class->lock after enqueuing
1894          * on migration_wait.
1895          */
1896         if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying)
1897                 wake_up_all(&pool->migration_wait);
1898 }
1899
1900 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1901                                 struct page *newpage, struct page *oldpage)
1902 {
1903         struct page *page;
1904         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1905         int idx = 0;
1906
1907         page = get_first_page(zspage);
1908         do {
1909                 if (page == oldpage)
1910                         pages[idx] = newpage;
1911                 else
1912                         pages[idx] = page;
1913                 idx++;
1914         } while ((page = get_next_page(page)) != NULL);
1915
1916         create_page_chain(class, zspage, pages);
1917         set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1918         if (unlikely(PageHugeObject(oldpage)))
1919                 newpage->index = oldpage->index;
1920         __SetPageMovable(newpage, page_mapping(oldpage));
1921 }
1922
1923 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1924 {
1925         struct zs_pool *pool;
1926         struct size_class *class;
1927         int class_idx;
1928         enum fullness_group fullness;
1929         struct zspage *zspage;
1930         struct address_space *mapping;
1931
1932         /*
1933          * Page is locked so zspage couldn't be destroyed. For detail, look at
1934          * lock_zspage in free_zspage.
1935          */
1936         VM_BUG_ON_PAGE(!PageMovable(page), page);
1937         VM_BUG_ON_PAGE(PageIsolated(page), page);
1938
1939         zspage = get_zspage(page);
1940
1941         /*
1942          * Without class lock, fullness could be stale while class_idx is okay
1943          * because class_idx is constant unless page is freed so we should get
1944          * fullness again under class lock.
1945          */
1946         get_zspage_mapping(zspage, &class_idx, &fullness);
1947         mapping = page_mapping(page);
1948         pool = mapping->private_data;
1949         class = pool->size_class[class_idx];
1950
1951         spin_lock(&class->lock);
1952         if (get_zspage_inuse(zspage) == 0) {
1953                 spin_unlock(&class->lock);
1954                 return false;
1955         }
1956
1957         /* zspage is isolated for object migration */
1958         if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1959                 spin_unlock(&class->lock);
1960                 return false;
1961         }
1962
1963         /*
1964          * If this is first time isolation for the zspage, isolate zspage from
1965          * size_class to prevent further object allocation from the zspage.
1966          */
1967         if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1968                 get_zspage_mapping(zspage, &class_idx, &fullness);
1969                 atomic_long_inc(&pool->isolated_pages);
1970                 remove_zspage(class, zspage, fullness);
1971         }
1972
1973         inc_zspage_isolation(zspage);
1974         spin_unlock(&class->lock);
1975
1976         return true;
1977 }
1978
1979 static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1980                 struct page *page, enum migrate_mode mode)
1981 {
1982         struct zs_pool *pool;
1983         struct size_class *class;
1984         int class_idx;
1985         enum fullness_group fullness;
1986         struct zspage *zspage;
1987         struct page *dummy;
1988         void *s_addr, *d_addr, *addr;
1989         int offset, pos;
1990         unsigned long handle, head;
1991         unsigned long old_obj, new_obj;
1992         unsigned int obj_idx;
1993         int ret = -EAGAIN;
1994
1995         /*
1996          * We cannot support the _NO_COPY case here, because copy needs to
1997          * happen under the zs lock, which does not work with
1998          * MIGRATE_SYNC_NO_COPY workflow.
1999          */
2000         if (mode == MIGRATE_SYNC_NO_COPY)
2001                 return -EINVAL;
2002
2003         VM_BUG_ON_PAGE(!PageMovable(page), page);
2004         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2005
2006         zspage = get_zspage(page);
2007
2008         /* Concurrent compactor cannot migrate any subpage in zspage */
2009         migrate_write_lock(zspage);
2010         get_zspage_mapping(zspage, &class_idx, &fullness);
2011         pool = mapping->private_data;
2012         class = pool->size_class[class_idx];
2013         offset = get_first_obj_offset(page);
2014
2015         spin_lock(&class->lock);
2016         if (!get_zspage_inuse(zspage)) {
2017                 /*
2018                  * Set "offset" to end of the page so that every loops
2019                  * skips unnecessary object scanning.
2020                  */
2021                 offset = PAGE_SIZE;
2022         }
2023
2024         pos = offset;
2025         s_addr = kmap_atomic(page);
2026         while (pos < PAGE_SIZE) {
2027                 head = obj_to_head(page, s_addr + pos);
2028                 if (head & OBJ_ALLOCATED_TAG) {
2029                         handle = head & ~OBJ_ALLOCATED_TAG;
2030                         if (!trypin_tag(handle))
2031                                 goto unpin_objects;
2032                 }
2033                 pos += class->size;
2034         }
2035
2036         /*
2037          * Here, any user cannot access all objects in the zspage so let's move.
2038          */
2039         d_addr = kmap_atomic(newpage);
2040         memcpy(d_addr, s_addr, PAGE_SIZE);
2041         kunmap_atomic(d_addr);
2042
2043         for (addr = s_addr + offset; addr < s_addr + pos;
2044                                         addr += class->size) {
2045                 head = obj_to_head(page, addr);
2046                 if (head & OBJ_ALLOCATED_TAG) {
2047                         handle = head & ~OBJ_ALLOCATED_TAG;
2048                         if (!testpin_tag(handle))
2049                                 BUG();
2050
2051                         old_obj = handle_to_obj(handle);
2052                         obj_to_location(old_obj, &dummy, &obj_idx);
2053                         new_obj = (unsigned long)location_to_obj(newpage,
2054                                                                 obj_idx);
2055                         new_obj |= BIT(HANDLE_PIN_BIT);
2056                         record_obj(handle, new_obj);
2057                 }
2058         }
2059
2060         replace_sub_page(class, zspage, newpage, page);
2061         get_page(newpage);
2062
2063         dec_zspage_isolation(zspage);
2064
2065         /*
2066          * Page migration is done so let's putback isolated zspage to
2067          * the list if @page is final isolated subpage in the zspage.
2068          */
2069         if (!is_zspage_isolated(zspage)) {
2070                 /*
2071                  * We cannot race with zs_destroy_pool() here because we wait
2072                  * for isolation to hit zero before we start destroying.
2073                  * Also, we ensure that everyone can see pool->destroying before
2074                  * we start waiting.
2075                  */
2076                 putback_zspage_deferred(pool, class, zspage);
2077                 zs_pool_dec_isolated(pool);
2078         }
2079
2080         if (page_zone(newpage) != page_zone(page)) {
2081                 dec_zone_page_state(page, NR_ZSPAGES);
2082                 inc_zone_page_state(newpage, NR_ZSPAGES);
2083         }
2084
2085         reset_page(page);
2086         put_page(page);
2087         page = newpage;
2088
2089         ret = MIGRATEPAGE_SUCCESS;
2090 unpin_objects:
2091         for (addr = s_addr + offset; addr < s_addr + pos;
2092                                                 addr += class->size) {
2093                 head = obj_to_head(page, addr);
2094                 if (head & OBJ_ALLOCATED_TAG) {
2095                         handle = head & ~OBJ_ALLOCATED_TAG;
2096                         if (!testpin_tag(handle))
2097                                 BUG();
2098                         unpin_tag(handle);
2099                 }
2100         }
2101         kunmap_atomic(s_addr);
2102         spin_unlock(&class->lock);
2103         migrate_write_unlock(zspage);
2104
2105         return ret;
2106 }
2107
2108 static void zs_page_putback(struct page *page)
2109 {
2110         struct zs_pool *pool;
2111         struct size_class *class;
2112         int class_idx;
2113         enum fullness_group fg;
2114         struct address_space *mapping;
2115         struct zspage *zspage;
2116
2117         VM_BUG_ON_PAGE(!PageMovable(page), page);
2118         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2119
2120         zspage = get_zspage(page);
2121         get_zspage_mapping(zspage, &class_idx, &fg);
2122         mapping = page_mapping(page);
2123         pool = mapping->private_data;
2124         class = pool->size_class[class_idx];
2125
2126         spin_lock(&class->lock);
2127         dec_zspage_isolation(zspage);
2128         if (!is_zspage_isolated(zspage)) {
2129                 /*
2130                  * Due to page_lock, we cannot free zspage immediately
2131                  * so let's defer.
2132                  */
2133                 putback_zspage_deferred(pool, class, zspage);
2134                 zs_pool_dec_isolated(pool);
2135         }
2136         spin_unlock(&class->lock);
2137 }
2138
2139 static const struct address_space_operations zsmalloc_aops = {
2140         .isolate_page = zs_page_isolate,
2141         .migratepage = zs_page_migrate,
2142         .putback_page = zs_page_putback,
2143 };
2144
2145 static int zs_register_migration(struct zs_pool *pool)
2146 {
2147         pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2148         if (IS_ERR(pool->inode)) {
2149                 pool->inode = NULL;
2150                 return 1;
2151         }
2152
2153         pool->inode->i_mapping->private_data = pool;
2154         pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2155         return 0;
2156 }
2157
2158 static bool pool_isolated_are_drained(struct zs_pool *pool)
2159 {
2160         return atomic_long_read(&pool->isolated_pages) == 0;
2161 }
2162
2163 /* Function for resolving migration */
2164 static void wait_for_isolated_drain(struct zs_pool *pool)
2165 {
2166
2167         /*
2168          * We're in the process of destroying the pool, so there are no
2169          * active allocations. zs_page_isolate() fails for completely free
2170          * zspages, so we need only wait for the zs_pool's isolated
2171          * count to hit zero.
2172          */
2173         wait_event(pool->migration_wait,
2174                    pool_isolated_are_drained(pool));
2175 }
2176
2177 static void zs_unregister_migration(struct zs_pool *pool)
2178 {
2179         pool->destroying = true;
2180         /*
2181          * We need a memory barrier here to ensure global visibility of
2182          * pool->destroying. Thus pool->isolated pages will either be 0 in which
2183          * case we don't care, or it will be > 0 and pool->destroying will
2184          * ensure that we wake up once isolation hits 0.
2185          */
2186         smp_mb();
2187         wait_for_isolated_drain(pool); /* This can block */
2188         flush_work(&pool->free_work);
2189         iput(pool->inode);
2190 }
2191
2192 /*
2193  * Caller should hold page_lock of all pages in the zspage
2194  * In here, we cannot use zspage meta data.
2195  */
2196 static void async_free_zspage(struct work_struct *work)
2197 {
2198         int i;
2199         struct size_class *class;
2200         unsigned int class_idx;
2201         enum fullness_group fullness;
2202         struct zspage *zspage, *tmp;
2203         LIST_HEAD(free_pages);
2204         struct zs_pool *pool = container_of(work, struct zs_pool,
2205                                         free_work);
2206
2207         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2208                 class = pool->size_class[i];
2209                 if (class->index != i)
2210                         continue;
2211
2212                 spin_lock(&class->lock);
2213                 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2214                 spin_unlock(&class->lock);
2215         }
2216
2217
2218         list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2219                 list_del(&zspage->list);
2220                 lock_zspage(zspage);
2221
2222                 get_zspage_mapping(zspage, &class_idx, &fullness);
2223                 VM_BUG_ON(fullness != ZS_EMPTY);
2224                 class = pool->size_class[class_idx];
2225                 spin_lock(&class->lock);
2226                 __free_zspage(pool, pool->size_class[class_idx], zspage);
2227                 spin_unlock(&class->lock);
2228         }
2229 };
2230
2231 static void kick_deferred_free(struct zs_pool *pool)
2232 {
2233         schedule_work(&pool->free_work);
2234 }
2235
2236 static void init_deferred_free(struct zs_pool *pool)
2237 {
2238         INIT_WORK(&pool->free_work, async_free_zspage);
2239 }
2240
2241 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2242 {
2243         struct page *page = get_first_page(zspage);
2244
2245         do {
2246                 WARN_ON(!trylock_page(page));
2247                 __SetPageMovable(page, pool->inode->i_mapping);
2248                 unlock_page(page);
2249         } while ((page = get_next_page(page)) != NULL);
2250 }
2251 #endif
2252
2253 /*
2254  *
2255  * Based on the number of unused allocated objects calculate
2256  * and return the number of pages that we can free.
2257  */
2258 static unsigned long zs_can_compact(struct size_class *class)
2259 {
2260         unsigned long obj_wasted;
2261         unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2262         unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2263
2264         if (obj_allocated <= obj_used)
2265                 return 0;
2266
2267         obj_wasted = obj_allocated - obj_used;
2268         obj_wasted /= class->objs_per_zspage;
2269
2270         return obj_wasted * class->pages_per_zspage;
2271 }
2272
2273 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2274 {
2275         struct zs_compact_control cc;
2276         struct zspage *src_zspage;
2277         struct zspage *dst_zspage = NULL;
2278
2279         spin_lock(&class->lock);
2280         while ((src_zspage = isolate_zspage(class, true))) {
2281
2282                 if (!zs_can_compact(class))
2283                         break;
2284
2285                 cc.obj_idx = 0;
2286                 cc.s_page = get_first_page(src_zspage);
2287
2288                 while ((dst_zspage = isolate_zspage(class, false))) {
2289                         cc.d_page = get_first_page(dst_zspage);
2290                         /*
2291                          * If there is no more space in dst_page, resched
2292                          * and see if anyone had allocated another zspage.
2293                          */
2294                         if (!migrate_zspage(pool, class, &cc))
2295                                 break;
2296
2297                         putback_zspage(class, dst_zspage);
2298                 }
2299
2300                 /* Stop if we couldn't find slot */
2301                 if (dst_zspage == NULL)
2302                         break;
2303
2304                 putback_zspage(class, dst_zspage);
2305                 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2306                         free_zspage(pool, class, src_zspage);
2307                         pool->stats.pages_compacted += class->pages_per_zspage;
2308                 }
2309                 spin_unlock(&class->lock);
2310                 cond_resched();
2311                 spin_lock(&class->lock);
2312         }
2313
2314         if (src_zspage)
2315                 putback_zspage(class, src_zspage);
2316
2317         spin_unlock(&class->lock);
2318 }
2319
2320 unsigned long zs_compact(struct zs_pool *pool)
2321 {
2322         int i;
2323         struct size_class *class;
2324
2325         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2326                 class = pool->size_class[i];
2327                 if (!class)
2328                         continue;
2329                 if (class->index != i)
2330                         continue;
2331                 __zs_compact(pool, class);
2332         }
2333
2334         return pool->stats.pages_compacted;
2335 }
2336 EXPORT_SYMBOL_GPL(zs_compact);
2337
2338 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2339 {
2340         memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2341 }
2342 EXPORT_SYMBOL_GPL(zs_pool_stats);
2343
2344 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2345                 struct shrink_control *sc)
2346 {
2347         unsigned long pages_freed;
2348         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2349                         shrinker);
2350
2351         pages_freed = pool->stats.pages_compacted;
2352         /*
2353          * Compact classes and calculate compaction delta.
2354          * Can run concurrently with a manually triggered
2355          * (by user) compaction.
2356          */
2357         pages_freed = zs_compact(pool) - pages_freed;
2358
2359         return pages_freed ? pages_freed : SHRINK_STOP;
2360 }
2361
2362 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2363                 struct shrink_control *sc)
2364 {
2365         int i;
2366         struct size_class *class;
2367         unsigned long pages_to_free = 0;
2368         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2369                         shrinker);
2370
2371         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2372                 class = pool->size_class[i];
2373                 if (!class)
2374                         continue;
2375                 if (class->index != i)
2376                         continue;
2377
2378                 pages_to_free += zs_can_compact(class);
2379         }
2380
2381         return pages_to_free;
2382 }
2383
2384 static void zs_unregister_shrinker(struct zs_pool *pool)
2385 {
2386         unregister_shrinker(&pool->shrinker);
2387 }
2388
2389 static int zs_register_shrinker(struct zs_pool *pool)
2390 {
2391         pool->shrinker.scan_objects = zs_shrinker_scan;
2392         pool->shrinker.count_objects = zs_shrinker_count;
2393         pool->shrinker.batch = 0;
2394         pool->shrinker.seeks = DEFAULT_SEEKS;
2395
2396         return register_shrinker(&pool->shrinker);
2397 }
2398
2399 /**
2400  * zs_create_pool - Creates an allocation pool to work from.
2401  * @name: pool name to be created
2402  *
2403  * This function must be called before anything when using
2404  * the zsmalloc allocator.
2405  *
2406  * On success, a pointer to the newly created pool is returned,
2407  * otherwise NULL.
2408  */
2409 struct zs_pool *zs_create_pool(const char *name)
2410 {
2411         int i;
2412         struct zs_pool *pool;
2413         struct size_class *prev_class = NULL;
2414
2415         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2416         if (!pool)
2417                 return NULL;
2418
2419         init_deferred_free(pool);
2420
2421         pool->name = kstrdup(name, GFP_KERNEL);
2422         if (!pool->name)
2423                 goto err;
2424
2425 #ifdef CONFIG_COMPACTION
2426         init_waitqueue_head(&pool->migration_wait);
2427 #endif
2428
2429         if (create_cache(pool))
2430                 goto err;
2431
2432         /*
2433          * Iterate reversely, because, size of size_class that we want to use
2434          * for merging should be larger or equal to current size.
2435          */
2436         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2437                 int size;
2438                 int pages_per_zspage;
2439                 int objs_per_zspage;
2440                 struct size_class *class;
2441                 int fullness = 0;
2442
2443                 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2444                 if (size > ZS_MAX_ALLOC_SIZE)
2445                         size = ZS_MAX_ALLOC_SIZE;
2446                 pages_per_zspage = get_pages_per_zspage(size);
2447                 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2448
2449                 /*
2450                  * We iterate from biggest down to smallest classes,
2451                  * so huge_class_size holds the size of the first huge
2452                  * class. Any object bigger than or equal to that will
2453                  * endup in the huge class.
2454                  */
2455                 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2456                                 !huge_class_size) {
2457                         huge_class_size = size;
2458                         /*
2459                          * The object uses ZS_HANDLE_SIZE bytes to store the
2460                          * handle. We need to subtract it, because zs_malloc()
2461                          * unconditionally adds handle size before it performs
2462                          * size class search - so object may be smaller than
2463                          * huge class size, yet it still can end up in the huge
2464                          * class because it grows by ZS_HANDLE_SIZE extra bytes
2465                          * right before class lookup.
2466                          */
2467                         huge_class_size -= (ZS_HANDLE_SIZE - 1);
2468                 }
2469
2470                 /*
2471                  * size_class is used for normal zsmalloc operation such
2472                  * as alloc/free for that size. Although it is natural that we
2473                  * have one size_class for each size, there is a chance that we
2474                  * can get more memory utilization if we use one size_class for
2475                  * many different sizes whose size_class have same
2476                  * characteristics. So, we makes size_class point to
2477                  * previous size_class if possible.
2478                  */
2479                 if (prev_class) {
2480                         if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2481                                 pool->size_class[i] = prev_class;
2482                                 continue;
2483                         }
2484                 }
2485
2486                 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2487                 if (!class)
2488                         goto err;
2489
2490                 class->size = size;
2491                 class->index = i;
2492                 class->pages_per_zspage = pages_per_zspage;
2493                 class->objs_per_zspage = objs_per_zspage;
2494                 spin_lock_init(&class->lock);
2495                 pool->size_class[i] = class;
2496                 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2497                                                         fullness++)
2498                         INIT_LIST_HEAD(&class->fullness_list[fullness]);
2499
2500                 prev_class = class;
2501         }
2502
2503         /* debug only, don't abort if it fails */
2504         zs_pool_stat_create(pool, name);
2505
2506         if (zs_register_migration(pool))
2507                 goto err;
2508
2509         /*
2510          * Not critical since shrinker is only used to trigger internal
2511          * defragmentation of the pool which is pretty optional thing.  If
2512          * registration fails we still can use the pool normally and user can
2513          * trigger compaction manually. Thus, ignore return code.
2514          */
2515         zs_register_shrinker(pool);
2516
2517         return pool;
2518
2519 err:
2520         zs_destroy_pool(pool);
2521         return NULL;
2522 }
2523 EXPORT_SYMBOL_GPL(zs_create_pool);
2524
2525 void zs_destroy_pool(struct zs_pool *pool)
2526 {
2527         int i;
2528
2529         zs_unregister_shrinker(pool);
2530         zs_unregister_migration(pool);
2531         zs_pool_stat_destroy(pool);
2532
2533         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2534                 int fg;
2535                 struct size_class *class = pool->size_class[i];
2536
2537                 if (!class)
2538                         continue;
2539
2540                 if (class->index != i)
2541                         continue;
2542
2543                 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2544                         if (!list_empty(&class->fullness_list[fg])) {
2545                                 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2546                                         class->size, fg);
2547                         }
2548                 }
2549                 kfree(class);
2550         }
2551
2552         destroy_cache(pool);
2553         kfree(pool->name);
2554         kfree(pool);
2555 }
2556 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2557
2558 static int __init zs_init(void)
2559 {
2560         int ret;
2561
2562         ret = zsmalloc_mount();
2563         if (ret)
2564                 goto out;
2565
2566         ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2567                                 zs_cpu_prepare, zs_cpu_dead);
2568         if (ret)
2569                 goto hp_setup_fail;
2570
2571 #ifdef CONFIG_ZPOOL
2572         zpool_register_driver(&zs_zpool_driver);
2573 #endif
2574
2575         zs_stat_init();
2576
2577         return 0;
2578
2579 hp_setup_fail:
2580         zsmalloc_unmount();
2581 out:
2582         return ret;
2583 }
2584
2585 static void __exit zs_exit(void)
2586 {
2587 #ifdef CONFIG_ZPOOL
2588         zpool_unregister_driver(&zs_zpool_driver);
2589 #endif
2590         zsmalloc_unmount();
2591         cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2592
2593         zs_stat_exit();
2594 }
2595
2596 module_init(zs_init);
2597 module_exit(zs_exit);
2598
2599 MODULE_LICENSE("Dual BSD/GPL");
2600 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");