2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
23 * page->units: first object offset in a subpage of zspage
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <linux/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/pseudo_fs.h>
56 #include <linux/migrate.h>
57 #include <linux/wait.h>
58 #include <linux/pagemap.h>
61 #define ZSPAGE_MAGIC 0x58
64 * This must be power of 2 and greater than of equal to sizeof(link_free).
65 * These two conditions ensure that any 'struct link_free' itself doesn't
66 * span more than 1 page which avoids complex case of mapping 2 pages simply
67 * to restore link_free pointer values.
72 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
73 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
75 #define ZS_MAX_ZSPAGE_ORDER 2
76 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
78 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
81 * Object location (<PFN>, <obj_idx>) is encoded as
82 * a single (unsigned long) handle value.
84 * Note that object index <obj_idx> starts from 0.
86 * This is made more complicated by various memory models and PAE.
89 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
90 #ifdef MAX_PHYSMEM_BITS
91 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
94 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
97 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
101 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
104 * Memory for allocating for handle keeps object position by
105 * encoding <page, obj_idx> and the encoded value has a room
106 * in least bit(ie, look at obj_to_location).
107 * We use the bit to synchronize between object access by
108 * user and migration.
110 #define HANDLE_PIN_BIT 0
113 * Head in allocated object should have OBJ_ALLOCATED_TAG
114 * to identify the object was allocated or not.
115 * It's okay to add the status bit in the least bit because
116 * header keeps handle which is 4byte-aligned address so we
117 * have room for two bit at least.
119 #define OBJ_ALLOCATED_TAG 1
120 #define OBJ_TAG_BITS 1
121 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
122 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
124 #define FULLNESS_BITS 2
126 #define ISOLATED_BITS 3
127 #define MAGIC_VAL_BITS 8
129 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
130 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
131 #define ZS_MIN_ALLOC_SIZE \
132 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
133 /* each chunk includes extra space to keep handle */
134 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
137 * On systems with 4K page size, this gives 255 size classes! There is a
139 * - Large number of size classes is potentially wasteful as free page are
140 * spread across these classes
141 * - Small number of size classes causes large internal fragmentation
142 * - Probably its better to use specific size classes (empirically
143 * determined). NOTE: all those class sizes must be set as multiple of
144 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
146 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
149 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
150 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
151 ZS_SIZE_CLASS_DELTA) + 1)
153 enum fullness_group {
171 struct zs_size_stat {
172 unsigned long objs[NR_ZS_STAT_TYPE];
175 #ifdef CONFIG_ZSMALLOC_STAT
176 static struct dentry *zs_stat_root;
179 #ifdef CONFIG_COMPACTION
180 static struct vfsmount *zsmalloc_mnt;
184 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
186 * n = number of allocated objects
187 * N = total number of objects zspage can store
188 * f = fullness_threshold_frac
190 * Similarly, we assign zspage to:
191 * ZS_ALMOST_FULL when n > N / f
192 * ZS_EMPTY when n == 0
193 * ZS_FULL when n == N
195 * (see: fix_fullness_group())
197 static const int fullness_threshold_frac = 4;
198 static size_t huge_class_size;
202 struct list_head fullness_list[NR_ZS_FULLNESS];
204 * Size of objects stored in this class. Must be multiple
209 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
210 int pages_per_zspage;
213 struct zs_size_stat stats;
216 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
217 static void SetPageHugeObject(struct page *page)
219 SetPageOwnerPriv1(page);
222 static void ClearPageHugeObject(struct page *page)
224 ClearPageOwnerPriv1(page);
227 static int PageHugeObject(struct page *page)
229 return PageOwnerPriv1(page);
233 * Placed within free objects to form a singly linked list.
234 * For every zspage, zspage->freeobj gives head of this list.
236 * This must be power of 2 and less than or equal to ZS_ALIGN
242 * It's valid for non-allocated object
246 * Handle of allocated object.
248 unsigned long handle;
255 struct size_class *size_class[ZS_SIZE_CLASSES];
256 struct kmem_cache *handle_cachep;
257 struct kmem_cache *zspage_cachep;
259 atomic_long_t pages_allocated;
261 struct zs_pool_stats stats;
263 /* Compact classes */
264 struct shrinker shrinker;
266 #ifdef CONFIG_ZSMALLOC_STAT
267 struct dentry *stat_dentry;
269 #ifdef CONFIG_COMPACTION
271 struct work_struct free_work;
272 /* A wait queue for when migration races with async_free_zspage() */
273 struct wait_queue_head migration_wait;
274 atomic_long_t isolated_pages;
281 unsigned int fullness:FULLNESS_BITS;
282 unsigned int class:CLASS_BITS + 1;
283 unsigned int isolated:ISOLATED_BITS;
284 unsigned int magic:MAGIC_VAL_BITS;
287 unsigned int freeobj;
288 struct page *first_page;
289 struct list_head list; /* fullness list */
290 #ifdef CONFIG_COMPACTION
295 struct mapping_area {
296 #ifdef CONFIG_ZSMALLOC_PGTABLE_MAPPING
297 struct vm_struct *vm; /* vm area for mapping object that span pages */
299 char *vm_buf; /* copy buffer for objects that span pages */
301 char *vm_addr; /* address of kmap_atomic()'ed pages */
302 enum zs_mapmode vm_mm; /* mapping mode */
305 #ifdef CONFIG_COMPACTION
306 static int zs_register_migration(struct zs_pool *pool);
307 static void zs_unregister_migration(struct zs_pool *pool);
308 static void migrate_lock_init(struct zspage *zspage);
309 static void migrate_read_lock(struct zspage *zspage);
310 static void migrate_read_unlock(struct zspage *zspage);
311 static void kick_deferred_free(struct zs_pool *pool);
312 static void init_deferred_free(struct zs_pool *pool);
313 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
315 static int zsmalloc_mount(void) { return 0; }
316 static void zsmalloc_unmount(void) {}
317 static int zs_register_migration(struct zs_pool *pool) { return 0; }
318 static void zs_unregister_migration(struct zs_pool *pool) {}
319 static void migrate_lock_init(struct zspage *zspage) {}
320 static void migrate_read_lock(struct zspage *zspage) {}
321 static void migrate_read_unlock(struct zspage *zspage) {}
322 static void kick_deferred_free(struct zs_pool *pool) {}
323 static void init_deferred_free(struct zs_pool *pool) {}
324 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
327 static int create_cache(struct zs_pool *pool)
329 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
331 if (!pool->handle_cachep)
334 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
336 if (!pool->zspage_cachep) {
337 kmem_cache_destroy(pool->handle_cachep);
338 pool->handle_cachep = NULL;
345 static void destroy_cache(struct zs_pool *pool)
347 kmem_cache_destroy(pool->handle_cachep);
348 kmem_cache_destroy(pool->zspage_cachep);
351 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
353 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
354 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
357 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
359 kmem_cache_free(pool->handle_cachep, (void *)handle);
362 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
364 return kmem_cache_alloc(pool->zspage_cachep,
365 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
368 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
370 kmem_cache_free(pool->zspage_cachep, zspage);
373 static void record_obj(unsigned long handle, unsigned long obj)
376 * lsb of @obj represents handle lock while other bits
377 * represent object value the handle is pointing so
378 * updating shouldn't do store tearing.
380 WRITE_ONCE(*(unsigned long *)handle, obj);
387 static void *zs_zpool_create(const char *name, gfp_t gfp,
388 const struct zpool_ops *zpool_ops,
392 * Ignore global gfp flags: zs_malloc() may be invoked from
393 * different contexts and its caller must provide a valid
396 return zs_create_pool(name);
399 static void zs_zpool_destroy(void *pool)
401 zs_destroy_pool(pool);
404 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
405 unsigned long *handle)
407 *handle = zs_malloc(pool, size, gfp);
408 return *handle ? 0 : -1;
410 static void zs_zpool_free(void *pool, unsigned long handle)
412 zs_free(pool, handle);
415 static void *zs_zpool_map(void *pool, unsigned long handle,
416 enum zpool_mapmode mm)
418 enum zs_mapmode zs_mm;
433 return zs_map_object(pool, handle, zs_mm);
435 static void zs_zpool_unmap(void *pool, unsigned long handle)
437 zs_unmap_object(pool, handle);
440 static u64 zs_zpool_total_size(void *pool)
442 return zs_get_total_pages(pool) << PAGE_SHIFT;
445 static struct zpool_driver zs_zpool_driver = {
447 .owner = THIS_MODULE,
448 .create = zs_zpool_create,
449 .destroy = zs_zpool_destroy,
450 .malloc_support_movable = true,
451 .malloc = zs_zpool_malloc,
452 .free = zs_zpool_free,
454 .unmap = zs_zpool_unmap,
455 .total_size = zs_zpool_total_size,
458 MODULE_ALIAS("zpool-zsmalloc");
459 #endif /* CONFIG_ZPOOL */
461 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
462 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
464 static bool is_zspage_isolated(struct zspage *zspage)
466 return zspage->isolated;
469 static __maybe_unused int is_first_page(struct page *page)
471 return PagePrivate(page);
474 /* Protected by class->lock */
475 static inline int get_zspage_inuse(struct zspage *zspage)
477 return zspage->inuse;
481 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
483 zspage->inuse += val;
486 static inline struct page *get_first_page(struct zspage *zspage)
488 struct page *first_page = zspage->first_page;
490 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
494 static inline int get_first_obj_offset(struct page *page)
499 static inline void set_first_obj_offset(struct page *page, int offset)
501 page->units = offset;
504 static inline unsigned int get_freeobj(struct zspage *zspage)
506 return zspage->freeobj;
509 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
511 zspage->freeobj = obj;
514 static void get_zspage_mapping(struct zspage *zspage,
515 unsigned int *class_idx,
516 enum fullness_group *fullness)
518 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
520 *fullness = zspage->fullness;
521 *class_idx = zspage->class;
524 static void set_zspage_mapping(struct zspage *zspage,
525 unsigned int class_idx,
526 enum fullness_group fullness)
528 zspage->class = class_idx;
529 zspage->fullness = fullness;
533 * zsmalloc divides the pool into various size classes where each
534 * class maintains a list of zspages where each zspage is divided
535 * into equal sized chunks. Each allocation falls into one of these
536 * classes depending on its size. This function returns index of the
537 * size class which has chunk size big enough to hold the give size.
539 static int get_size_class_index(int size)
543 if (likely(size > ZS_MIN_ALLOC_SIZE))
544 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
545 ZS_SIZE_CLASS_DELTA);
547 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
550 /* type can be of enum type zs_stat_type or fullness_group */
551 static inline void zs_stat_inc(struct size_class *class,
552 int type, unsigned long cnt)
554 class->stats.objs[type] += cnt;
557 /* type can be of enum type zs_stat_type or fullness_group */
558 static inline void zs_stat_dec(struct size_class *class,
559 int type, unsigned long cnt)
561 class->stats.objs[type] -= cnt;
564 /* type can be of enum type zs_stat_type or fullness_group */
565 static inline unsigned long zs_stat_get(struct size_class *class,
568 return class->stats.objs[type];
571 #ifdef CONFIG_ZSMALLOC_STAT
573 static void __init zs_stat_init(void)
575 if (!debugfs_initialized()) {
576 pr_warn("debugfs not available, stat dir not created\n");
580 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
583 static void __exit zs_stat_exit(void)
585 debugfs_remove_recursive(zs_stat_root);
588 static unsigned long zs_can_compact(struct size_class *class);
590 static int zs_stats_size_show(struct seq_file *s, void *v)
593 struct zs_pool *pool = s->private;
594 struct size_class *class;
596 unsigned long class_almost_full, class_almost_empty;
597 unsigned long obj_allocated, obj_used, pages_used, freeable;
598 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
599 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
600 unsigned long total_freeable = 0;
602 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
603 "class", "size", "almost_full", "almost_empty",
604 "obj_allocated", "obj_used", "pages_used",
605 "pages_per_zspage", "freeable");
607 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
608 class = pool->size_class[i];
610 if (class->index != i)
613 spin_lock(&class->lock);
614 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
615 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
616 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
617 obj_used = zs_stat_get(class, OBJ_USED);
618 freeable = zs_can_compact(class);
619 spin_unlock(&class->lock);
621 objs_per_zspage = class->objs_per_zspage;
622 pages_used = obj_allocated / objs_per_zspage *
623 class->pages_per_zspage;
625 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
626 " %10lu %10lu %16d %8lu\n",
627 i, class->size, class_almost_full, class_almost_empty,
628 obj_allocated, obj_used, pages_used,
629 class->pages_per_zspage, freeable);
631 total_class_almost_full += class_almost_full;
632 total_class_almost_empty += class_almost_empty;
633 total_objs += obj_allocated;
634 total_used_objs += obj_used;
635 total_pages += pages_used;
636 total_freeable += freeable;
640 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
641 "Total", "", total_class_almost_full,
642 total_class_almost_empty, total_objs,
643 total_used_objs, total_pages, "", total_freeable);
647 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
649 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
652 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
656 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
658 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
659 &zs_stats_size_fops);
662 static void zs_pool_stat_destroy(struct zs_pool *pool)
664 debugfs_remove_recursive(pool->stat_dentry);
667 #else /* CONFIG_ZSMALLOC_STAT */
668 static void __init zs_stat_init(void)
672 static void __exit zs_stat_exit(void)
676 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
680 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
687 * For each size class, zspages are divided into different groups
688 * depending on how "full" they are. This was done so that we could
689 * easily find empty or nearly empty zspages when we try to shrink
690 * the pool (not yet implemented). This function returns fullness
691 * status of the given page.
693 static enum fullness_group get_fullness_group(struct size_class *class,
694 struct zspage *zspage)
696 int inuse, objs_per_zspage;
697 enum fullness_group fg;
699 inuse = get_zspage_inuse(zspage);
700 objs_per_zspage = class->objs_per_zspage;
704 else if (inuse == objs_per_zspage)
706 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
707 fg = ZS_ALMOST_EMPTY;
715 * Each size class maintains various freelists and zspages are assigned
716 * to one of these freelists based on the number of live objects they
717 * have. This functions inserts the given zspage into the freelist
718 * identified by <class, fullness_group>.
720 static void insert_zspage(struct size_class *class,
721 struct zspage *zspage,
722 enum fullness_group fullness)
726 zs_stat_inc(class, fullness, 1);
727 head = list_first_entry_or_null(&class->fullness_list[fullness],
728 struct zspage, list);
730 * We want to see more ZS_FULL pages and less almost empty/full.
731 * Put pages with higher ->inuse first.
734 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
735 list_add(&zspage->list, &head->list);
739 list_add(&zspage->list, &class->fullness_list[fullness]);
743 * This function removes the given zspage from the freelist identified
744 * by <class, fullness_group>.
746 static void remove_zspage(struct size_class *class,
747 struct zspage *zspage,
748 enum fullness_group fullness)
750 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
751 VM_BUG_ON(is_zspage_isolated(zspage));
753 list_del_init(&zspage->list);
754 zs_stat_dec(class, fullness, 1);
758 * Each size class maintains zspages in different fullness groups depending
759 * on the number of live objects they contain. When allocating or freeing
760 * objects, the fullness status of the page can change, say, from ALMOST_FULL
761 * to ALMOST_EMPTY when freeing an object. This function checks if such
762 * a status change has occurred for the given page and accordingly moves the
763 * page from the freelist of the old fullness group to that of the new
766 static enum fullness_group fix_fullness_group(struct size_class *class,
767 struct zspage *zspage)
770 enum fullness_group currfg, newfg;
772 get_zspage_mapping(zspage, &class_idx, &currfg);
773 newfg = get_fullness_group(class, zspage);
777 if (!is_zspage_isolated(zspage)) {
778 remove_zspage(class, zspage, currfg);
779 insert_zspage(class, zspage, newfg);
782 set_zspage_mapping(zspage, class_idx, newfg);
789 * We have to decide on how many pages to link together
790 * to form a zspage for each size class. This is important
791 * to reduce wastage due to unusable space left at end of
792 * each zspage which is given as:
793 * wastage = Zp % class_size
794 * usage = Zp - wastage
795 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
797 * For example, for size class of 3/8 * PAGE_SIZE, we should
798 * link together 3 PAGE_SIZE sized pages to form a zspage
799 * since then we can perfectly fit in 8 such objects.
801 static int get_pages_per_zspage(int class_size)
803 int i, max_usedpc = 0;
804 /* zspage order which gives maximum used size per KB */
805 int max_usedpc_order = 1;
807 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
811 zspage_size = i * PAGE_SIZE;
812 waste = zspage_size % class_size;
813 usedpc = (zspage_size - waste) * 100 / zspage_size;
815 if (usedpc > max_usedpc) {
817 max_usedpc_order = i;
821 return max_usedpc_order;
824 static struct zspage *get_zspage(struct page *page)
826 struct zspage *zspage = (struct zspage *)page->private;
828 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
832 static struct page *get_next_page(struct page *page)
834 if (unlikely(PageHugeObject(page)))
837 return page->freelist;
841 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
842 * @obj: the encoded object value
843 * @page: page object resides in zspage
844 * @obj_idx: object index
846 static void obj_to_location(unsigned long obj, struct page **page,
847 unsigned int *obj_idx)
849 obj >>= OBJ_TAG_BITS;
850 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
851 *obj_idx = (obj & OBJ_INDEX_MASK);
855 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
856 * @page: page object resides in zspage
857 * @obj_idx: object index
859 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
863 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
864 obj |= obj_idx & OBJ_INDEX_MASK;
865 obj <<= OBJ_TAG_BITS;
870 static unsigned long handle_to_obj(unsigned long handle)
872 return *(unsigned long *)handle;
875 static unsigned long obj_to_head(struct page *page, void *obj)
877 if (unlikely(PageHugeObject(page))) {
878 VM_BUG_ON_PAGE(!is_first_page(page), page);
881 return *(unsigned long *)obj;
884 static inline int testpin_tag(unsigned long handle)
886 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
889 static inline int trypin_tag(unsigned long handle)
891 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
894 static void pin_tag(unsigned long handle) __acquires(bitlock)
896 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
899 static void unpin_tag(unsigned long handle) __releases(bitlock)
901 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
904 static void reset_page(struct page *page)
906 __ClearPageMovable(page);
907 ClearPagePrivate(page);
908 set_page_private(page, 0);
909 page_mapcount_reset(page);
910 ClearPageHugeObject(page);
911 page->freelist = NULL;
914 static int trylock_zspage(struct zspage *zspage)
916 struct page *cursor, *fail;
918 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
919 get_next_page(cursor)) {
920 if (!trylock_page(cursor)) {
928 for (cursor = get_first_page(zspage); cursor != fail; cursor =
929 get_next_page(cursor))
935 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
936 struct zspage *zspage)
938 struct page *page, *next;
939 enum fullness_group fg;
940 unsigned int class_idx;
942 get_zspage_mapping(zspage, &class_idx, &fg);
944 assert_spin_locked(&class->lock);
946 VM_BUG_ON(get_zspage_inuse(zspage));
947 VM_BUG_ON(fg != ZS_EMPTY);
949 next = page = get_first_page(zspage);
951 VM_BUG_ON_PAGE(!PageLocked(page), page);
952 next = get_next_page(page);
955 dec_zone_page_state(page, NR_ZSPAGES);
958 } while (page != NULL);
960 cache_free_zspage(pool, zspage);
962 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
963 atomic_long_sub(class->pages_per_zspage,
964 &pool->pages_allocated);
967 static void free_zspage(struct zs_pool *pool, struct size_class *class,
968 struct zspage *zspage)
970 VM_BUG_ON(get_zspage_inuse(zspage));
971 VM_BUG_ON(list_empty(&zspage->list));
973 if (!trylock_zspage(zspage)) {
974 kick_deferred_free(pool);
978 remove_zspage(class, zspage, ZS_EMPTY);
979 __free_zspage(pool, class, zspage);
982 /* Initialize a newly allocated zspage */
983 static void init_zspage(struct size_class *class, struct zspage *zspage)
985 unsigned int freeobj = 1;
986 unsigned long off = 0;
987 struct page *page = get_first_page(zspage);
990 struct page *next_page;
991 struct link_free *link;
994 set_first_obj_offset(page, off);
996 vaddr = kmap_atomic(page);
997 link = (struct link_free *)vaddr + off / sizeof(*link);
999 while ((off += class->size) < PAGE_SIZE) {
1000 link->next = freeobj++ << OBJ_TAG_BITS;
1001 link += class->size / sizeof(*link);
1005 * We now come to the last (full or partial) object on this
1006 * page, which must point to the first object on the next
1009 next_page = get_next_page(page);
1011 link->next = freeobj++ << OBJ_TAG_BITS;
1014 * Reset OBJ_TAG_BITS bit to last link to tell
1015 * whether it's allocated object or not.
1017 link->next = -1UL << OBJ_TAG_BITS;
1019 kunmap_atomic(vaddr);
1024 set_freeobj(zspage, 0);
1027 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1028 struct page *pages[])
1032 struct page *prev_page = NULL;
1033 int nr_pages = class->pages_per_zspage;
1036 * Allocate individual pages and link them together as:
1037 * 1. all pages are linked together using page->freelist
1038 * 2. each sub-page point to zspage using page->private
1040 * we set PG_private to identify the first page (i.e. no other sub-page
1041 * has this flag set).
1043 for (i = 0; i < nr_pages; i++) {
1045 set_page_private(page, (unsigned long)zspage);
1046 page->freelist = NULL;
1048 zspage->first_page = page;
1049 SetPagePrivate(page);
1050 if (unlikely(class->objs_per_zspage == 1 &&
1051 class->pages_per_zspage == 1))
1052 SetPageHugeObject(page);
1054 prev_page->freelist = page;
1061 * Allocate a zspage for the given size class
1063 static struct zspage *alloc_zspage(struct zs_pool *pool,
1064 struct size_class *class,
1068 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1069 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1074 memset(zspage, 0, sizeof(struct zspage));
1075 zspage->magic = ZSPAGE_MAGIC;
1076 migrate_lock_init(zspage);
1078 for (i = 0; i < class->pages_per_zspage; i++) {
1081 page = alloc_page(gfp);
1084 dec_zone_page_state(pages[i], NR_ZSPAGES);
1085 __free_page(pages[i]);
1087 cache_free_zspage(pool, zspage);
1091 inc_zone_page_state(page, NR_ZSPAGES);
1095 create_page_chain(class, zspage, pages);
1096 init_zspage(class, zspage);
1101 static struct zspage *find_get_zspage(struct size_class *class)
1104 struct zspage *zspage;
1106 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1107 zspage = list_first_entry_or_null(&class->fullness_list[i],
1108 struct zspage, list);
1116 #ifdef CONFIG_ZSMALLOC_PGTABLE_MAPPING
1117 static inline int __zs_cpu_up(struct mapping_area *area)
1120 * Make sure we don't leak memory if a cpu UP notification
1121 * and zs_init() race and both call zs_cpu_up() on the same cpu
1125 area->vm = get_vm_area(PAGE_SIZE * 2, 0);
1130 * Populate ptes in advance to avoid pte allocation with GFP_KERNEL
1131 * in non-preemtible context of zs_map_object.
1133 return apply_to_page_range(&init_mm, (unsigned long)area->vm->addr,
1134 PAGE_SIZE * 2, NULL, NULL);
1137 static inline void __zs_cpu_down(struct mapping_area *area)
1140 free_vm_area(area->vm);
1144 static inline void *__zs_map_object(struct mapping_area *area,
1145 struct page *pages[2], int off, int size)
1147 unsigned long addr = (unsigned long)area->vm->addr;
1149 BUG_ON(map_kernel_range(addr, PAGE_SIZE * 2, PAGE_KERNEL, pages) < 0);
1150 area->vm_addr = area->vm->addr;
1151 return area->vm_addr + off;
1154 static inline void __zs_unmap_object(struct mapping_area *area,
1155 struct page *pages[2], int off, int size)
1157 unsigned long addr = (unsigned long)area->vm_addr;
1159 unmap_kernel_range(addr, PAGE_SIZE * 2);
1162 #else /* CONFIG_ZSMALLOC_PGTABLE_MAPPING */
1164 static inline int __zs_cpu_up(struct mapping_area *area)
1167 * Make sure we don't leak memory if a cpu UP notification
1168 * and zs_init() race and both call zs_cpu_up() on the same cpu
1172 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1178 static inline void __zs_cpu_down(struct mapping_area *area)
1180 kfree(area->vm_buf);
1181 area->vm_buf = NULL;
1184 static void *__zs_map_object(struct mapping_area *area,
1185 struct page *pages[2], int off, int size)
1189 char *buf = area->vm_buf;
1191 /* disable page faults to match kmap_atomic() return conditions */
1192 pagefault_disable();
1194 /* no read fastpath */
1195 if (area->vm_mm == ZS_MM_WO)
1198 sizes[0] = PAGE_SIZE - off;
1199 sizes[1] = size - sizes[0];
1201 /* copy object to per-cpu buffer */
1202 addr = kmap_atomic(pages[0]);
1203 memcpy(buf, addr + off, sizes[0]);
1204 kunmap_atomic(addr);
1205 addr = kmap_atomic(pages[1]);
1206 memcpy(buf + sizes[0], addr, sizes[1]);
1207 kunmap_atomic(addr);
1209 return area->vm_buf;
1212 static void __zs_unmap_object(struct mapping_area *area,
1213 struct page *pages[2], int off, int size)
1219 /* no write fastpath */
1220 if (area->vm_mm == ZS_MM_RO)
1224 buf = buf + ZS_HANDLE_SIZE;
1225 size -= ZS_HANDLE_SIZE;
1226 off += ZS_HANDLE_SIZE;
1228 sizes[0] = PAGE_SIZE - off;
1229 sizes[1] = size - sizes[0];
1231 /* copy per-cpu buffer to object */
1232 addr = kmap_atomic(pages[0]);
1233 memcpy(addr + off, buf, sizes[0]);
1234 kunmap_atomic(addr);
1235 addr = kmap_atomic(pages[1]);
1236 memcpy(addr, buf + sizes[0], sizes[1]);
1237 kunmap_atomic(addr);
1240 /* enable page faults to match kunmap_atomic() return conditions */
1244 #endif /* CONFIG_ZSMALLOC_PGTABLE_MAPPING */
1246 static int zs_cpu_prepare(unsigned int cpu)
1248 struct mapping_area *area;
1250 area = &per_cpu(zs_map_area, cpu);
1251 return __zs_cpu_up(area);
1254 static int zs_cpu_dead(unsigned int cpu)
1256 struct mapping_area *area;
1258 area = &per_cpu(zs_map_area, cpu);
1259 __zs_cpu_down(area);
1263 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1264 int objs_per_zspage)
1266 if (prev->pages_per_zspage == pages_per_zspage &&
1267 prev->objs_per_zspage == objs_per_zspage)
1273 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1275 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1278 unsigned long zs_get_total_pages(struct zs_pool *pool)
1280 return atomic_long_read(&pool->pages_allocated);
1282 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1285 * zs_map_object - get address of allocated object from handle.
1286 * @pool: pool from which the object was allocated
1287 * @handle: handle returned from zs_malloc
1288 * @mm: maping mode to use
1290 * Before using an object allocated from zs_malloc, it must be mapped using
1291 * this function. When done with the object, it must be unmapped using
1294 * Only one object can be mapped per cpu at a time. There is no protection
1295 * against nested mappings.
1297 * This function returns with preemption and page faults disabled.
1299 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1302 struct zspage *zspage;
1304 unsigned long obj, off;
1305 unsigned int obj_idx;
1307 unsigned int class_idx;
1308 enum fullness_group fg;
1309 struct size_class *class;
1310 struct mapping_area *area;
1311 struct page *pages[2];
1315 * Because we use per-cpu mapping areas shared among the
1316 * pools/users, we can't allow mapping in interrupt context
1317 * because it can corrupt another users mappings.
1319 BUG_ON(in_interrupt());
1321 /* From now on, migration cannot move the object */
1324 obj = handle_to_obj(handle);
1325 obj_to_location(obj, &page, &obj_idx);
1326 zspage = get_zspage(page);
1328 /* migration cannot move any subpage in this zspage */
1329 migrate_read_lock(zspage);
1331 get_zspage_mapping(zspage, &class_idx, &fg);
1332 class = pool->size_class[class_idx];
1333 off = (class->size * obj_idx) & ~PAGE_MASK;
1335 area = &get_cpu_var(zs_map_area);
1337 if (off + class->size <= PAGE_SIZE) {
1338 /* this object is contained entirely within a page */
1339 area->vm_addr = kmap_atomic(page);
1340 ret = area->vm_addr + off;
1344 /* this object spans two pages */
1346 pages[1] = get_next_page(page);
1349 ret = __zs_map_object(area, pages, off, class->size);
1351 if (likely(!PageHugeObject(page)))
1352 ret += ZS_HANDLE_SIZE;
1356 EXPORT_SYMBOL_GPL(zs_map_object);
1358 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1360 struct zspage *zspage;
1362 unsigned long obj, off;
1363 unsigned int obj_idx;
1365 unsigned int class_idx;
1366 enum fullness_group fg;
1367 struct size_class *class;
1368 struct mapping_area *area;
1370 obj = handle_to_obj(handle);
1371 obj_to_location(obj, &page, &obj_idx);
1372 zspage = get_zspage(page);
1373 get_zspage_mapping(zspage, &class_idx, &fg);
1374 class = pool->size_class[class_idx];
1375 off = (class->size * obj_idx) & ~PAGE_MASK;
1377 area = this_cpu_ptr(&zs_map_area);
1378 if (off + class->size <= PAGE_SIZE)
1379 kunmap_atomic(area->vm_addr);
1381 struct page *pages[2];
1384 pages[1] = get_next_page(page);
1387 __zs_unmap_object(area, pages, off, class->size);
1389 put_cpu_var(zs_map_area);
1391 migrate_read_unlock(zspage);
1394 EXPORT_SYMBOL_GPL(zs_unmap_object);
1397 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1398 * zsmalloc &size_class.
1399 * @pool: zsmalloc pool to use
1401 * The function returns the size of the first huge class - any object of equal
1402 * or bigger size will be stored in zspage consisting of a single physical
1405 * Context: Any context.
1407 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1409 size_t zs_huge_class_size(struct zs_pool *pool)
1411 return huge_class_size;
1413 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1415 static unsigned long obj_malloc(struct size_class *class,
1416 struct zspage *zspage, unsigned long handle)
1418 int i, nr_page, offset;
1420 struct link_free *link;
1422 struct page *m_page;
1423 unsigned long m_offset;
1426 handle |= OBJ_ALLOCATED_TAG;
1427 obj = get_freeobj(zspage);
1429 offset = obj * class->size;
1430 nr_page = offset >> PAGE_SHIFT;
1431 m_offset = offset & ~PAGE_MASK;
1432 m_page = get_first_page(zspage);
1434 for (i = 0; i < nr_page; i++)
1435 m_page = get_next_page(m_page);
1437 vaddr = kmap_atomic(m_page);
1438 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1439 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1440 if (likely(!PageHugeObject(m_page)))
1441 /* record handle in the header of allocated chunk */
1442 link->handle = handle;
1444 /* record handle to page->index */
1445 zspage->first_page->index = handle;
1447 kunmap_atomic(vaddr);
1448 mod_zspage_inuse(zspage, 1);
1449 zs_stat_inc(class, OBJ_USED, 1);
1451 obj = location_to_obj(m_page, obj);
1458 * zs_malloc - Allocate block of given size from pool.
1459 * @pool: pool to allocate from
1460 * @size: size of block to allocate
1461 * @gfp: gfp flags when allocating object
1463 * On success, handle to the allocated object is returned,
1465 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1467 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1469 unsigned long handle, obj;
1470 struct size_class *class;
1471 enum fullness_group newfg;
1472 struct zspage *zspage;
1474 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1477 handle = cache_alloc_handle(pool, gfp);
1481 /* extra space in chunk to keep the handle */
1482 size += ZS_HANDLE_SIZE;
1483 class = pool->size_class[get_size_class_index(size)];
1485 spin_lock(&class->lock);
1486 zspage = find_get_zspage(class);
1487 if (likely(zspage)) {
1488 obj = obj_malloc(class, zspage, handle);
1489 /* Now move the zspage to another fullness group, if required */
1490 fix_fullness_group(class, zspage);
1491 record_obj(handle, obj);
1492 spin_unlock(&class->lock);
1497 spin_unlock(&class->lock);
1499 zspage = alloc_zspage(pool, class, gfp);
1501 cache_free_handle(pool, handle);
1505 spin_lock(&class->lock);
1506 obj = obj_malloc(class, zspage, handle);
1507 newfg = get_fullness_group(class, zspage);
1508 insert_zspage(class, zspage, newfg);
1509 set_zspage_mapping(zspage, class->index, newfg);
1510 record_obj(handle, obj);
1511 atomic_long_add(class->pages_per_zspage,
1512 &pool->pages_allocated);
1513 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1515 /* We completely set up zspage so mark them as movable */
1516 SetZsPageMovable(pool, zspage);
1517 spin_unlock(&class->lock);
1521 EXPORT_SYMBOL_GPL(zs_malloc);
1523 static void obj_free(struct size_class *class, unsigned long obj)
1525 struct link_free *link;
1526 struct zspage *zspage;
1527 struct page *f_page;
1528 unsigned long f_offset;
1529 unsigned int f_objidx;
1532 obj &= ~OBJ_ALLOCATED_TAG;
1533 obj_to_location(obj, &f_page, &f_objidx);
1534 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1535 zspage = get_zspage(f_page);
1537 vaddr = kmap_atomic(f_page);
1539 /* Insert this object in containing zspage's freelist */
1540 link = (struct link_free *)(vaddr + f_offset);
1541 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1542 kunmap_atomic(vaddr);
1543 set_freeobj(zspage, f_objidx);
1544 mod_zspage_inuse(zspage, -1);
1545 zs_stat_dec(class, OBJ_USED, 1);
1548 void zs_free(struct zs_pool *pool, unsigned long handle)
1550 struct zspage *zspage;
1551 struct page *f_page;
1553 unsigned int f_objidx;
1555 struct size_class *class;
1556 enum fullness_group fullness;
1559 if (unlikely(!handle))
1563 obj = handle_to_obj(handle);
1564 obj_to_location(obj, &f_page, &f_objidx);
1565 zspage = get_zspage(f_page);
1567 migrate_read_lock(zspage);
1569 get_zspage_mapping(zspage, &class_idx, &fullness);
1570 class = pool->size_class[class_idx];
1572 spin_lock(&class->lock);
1573 obj_free(class, obj);
1574 fullness = fix_fullness_group(class, zspage);
1575 if (fullness != ZS_EMPTY) {
1576 migrate_read_unlock(zspage);
1580 isolated = is_zspage_isolated(zspage);
1581 migrate_read_unlock(zspage);
1582 /* If zspage is isolated, zs_page_putback will free the zspage */
1583 if (likely(!isolated))
1584 free_zspage(pool, class, zspage);
1587 spin_unlock(&class->lock);
1589 cache_free_handle(pool, handle);
1591 EXPORT_SYMBOL_GPL(zs_free);
1593 static void zs_object_copy(struct size_class *class, unsigned long dst,
1596 struct page *s_page, *d_page;
1597 unsigned int s_objidx, d_objidx;
1598 unsigned long s_off, d_off;
1599 void *s_addr, *d_addr;
1600 int s_size, d_size, size;
1603 s_size = d_size = class->size;
1605 obj_to_location(src, &s_page, &s_objidx);
1606 obj_to_location(dst, &d_page, &d_objidx);
1608 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1609 d_off = (class->size * d_objidx) & ~PAGE_MASK;
1611 if (s_off + class->size > PAGE_SIZE)
1612 s_size = PAGE_SIZE - s_off;
1614 if (d_off + class->size > PAGE_SIZE)
1615 d_size = PAGE_SIZE - d_off;
1617 s_addr = kmap_atomic(s_page);
1618 d_addr = kmap_atomic(d_page);
1621 size = min(s_size, d_size);
1622 memcpy(d_addr + d_off, s_addr + s_off, size);
1625 if (written == class->size)
1633 if (s_off >= PAGE_SIZE) {
1634 kunmap_atomic(d_addr);
1635 kunmap_atomic(s_addr);
1636 s_page = get_next_page(s_page);
1637 s_addr = kmap_atomic(s_page);
1638 d_addr = kmap_atomic(d_page);
1639 s_size = class->size - written;
1643 if (d_off >= PAGE_SIZE) {
1644 kunmap_atomic(d_addr);
1645 d_page = get_next_page(d_page);
1646 d_addr = kmap_atomic(d_page);
1647 d_size = class->size - written;
1652 kunmap_atomic(d_addr);
1653 kunmap_atomic(s_addr);
1657 * Find alloced object in zspage from index object and
1660 static unsigned long find_alloced_obj(struct size_class *class,
1661 struct page *page, int *obj_idx)
1665 int index = *obj_idx;
1666 unsigned long handle = 0;
1667 void *addr = kmap_atomic(page);
1669 offset = get_first_obj_offset(page);
1670 offset += class->size * index;
1672 while (offset < PAGE_SIZE) {
1673 head = obj_to_head(page, addr + offset);
1674 if (head & OBJ_ALLOCATED_TAG) {
1675 handle = head & ~OBJ_ALLOCATED_TAG;
1676 if (trypin_tag(handle))
1681 offset += class->size;
1685 kunmap_atomic(addr);
1692 struct zs_compact_control {
1693 /* Source spage for migration which could be a subpage of zspage */
1694 struct page *s_page;
1695 /* Destination page for migration which should be a first page
1697 struct page *d_page;
1698 /* Starting object index within @s_page which used for live object
1699 * in the subpage. */
1703 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1704 struct zs_compact_control *cc)
1706 unsigned long used_obj, free_obj;
1707 unsigned long handle;
1708 struct page *s_page = cc->s_page;
1709 struct page *d_page = cc->d_page;
1710 int obj_idx = cc->obj_idx;
1714 handle = find_alloced_obj(class, s_page, &obj_idx);
1716 s_page = get_next_page(s_page);
1723 /* Stop if there is no more space */
1724 if (zspage_full(class, get_zspage(d_page))) {
1730 used_obj = handle_to_obj(handle);
1731 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1732 zs_object_copy(class, free_obj, used_obj);
1735 * record_obj updates handle's value to free_obj and it will
1736 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1737 * breaks synchronization using pin_tag(e,g, zs_free) so
1738 * let's keep the lock bit.
1740 free_obj |= BIT(HANDLE_PIN_BIT);
1741 record_obj(handle, free_obj);
1743 obj_free(class, used_obj);
1746 /* Remember last position in this iteration */
1747 cc->s_page = s_page;
1748 cc->obj_idx = obj_idx;
1753 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1756 struct zspage *zspage;
1757 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1760 fg[0] = ZS_ALMOST_FULL;
1761 fg[1] = ZS_ALMOST_EMPTY;
1764 for (i = 0; i < 2; i++) {
1765 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1766 struct zspage, list);
1768 VM_BUG_ON(is_zspage_isolated(zspage));
1769 remove_zspage(class, zspage, fg[i]);
1778 * putback_zspage - add @zspage into right class's fullness list
1779 * @class: destination class
1780 * @zspage: target page
1782 * Return @zspage's fullness_group
1784 static enum fullness_group putback_zspage(struct size_class *class,
1785 struct zspage *zspage)
1787 enum fullness_group fullness;
1789 VM_BUG_ON(is_zspage_isolated(zspage));
1791 fullness = get_fullness_group(class, zspage);
1792 insert_zspage(class, zspage, fullness);
1793 set_zspage_mapping(zspage, class->index, fullness);
1798 #ifdef CONFIG_COMPACTION
1800 * To prevent zspage destroy during migration, zspage freeing should
1801 * hold locks of all pages in the zspage.
1803 static void lock_zspage(struct zspage *zspage)
1805 struct page *page = get_first_page(zspage);
1809 } while ((page = get_next_page(page)) != NULL);
1812 static int zs_init_fs_context(struct fs_context *fc)
1814 return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
1817 static struct file_system_type zsmalloc_fs = {
1819 .init_fs_context = zs_init_fs_context,
1820 .kill_sb = kill_anon_super,
1823 static int zsmalloc_mount(void)
1827 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1828 if (IS_ERR(zsmalloc_mnt))
1829 ret = PTR_ERR(zsmalloc_mnt);
1834 static void zsmalloc_unmount(void)
1836 kern_unmount(zsmalloc_mnt);
1839 static void migrate_lock_init(struct zspage *zspage)
1841 rwlock_init(&zspage->lock);
1844 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1846 read_lock(&zspage->lock);
1849 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1851 read_unlock(&zspage->lock);
1854 static void migrate_write_lock(struct zspage *zspage)
1856 write_lock(&zspage->lock);
1859 static void migrate_write_unlock(struct zspage *zspage)
1861 write_unlock(&zspage->lock);
1864 /* Number of isolated subpage for *page migration* in this zspage */
1865 static void inc_zspage_isolation(struct zspage *zspage)
1870 static void dec_zspage_isolation(struct zspage *zspage)
1875 static void putback_zspage_deferred(struct zs_pool *pool,
1876 struct size_class *class,
1877 struct zspage *zspage)
1879 enum fullness_group fg;
1881 fg = putback_zspage(class, zspage);
1883 schedule_work(&pool->free_work);
1887 static inline void zs_pool_dec_isolated(struct zs_pool *pool)
1889 VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0);
1890 atomic_long_dec(&pool->isolated_pages);
1892 * There's no possibility of racing, since wait_for_isolated_drain()
1893 * checks the isolated count under &class->lock after enqueuing
1894 * on migration_wait.
1896 if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying)
1897 wake_up_all(&pool->migration_wait);
1900 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1901 struct page *newpage, struct page *oldpage)
1904 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1907 page = get_first_page(zspage);
1909 if (page == oldpage)
1910 pages[idx] = newpage;
1914 } while ((page = get_next_page(page)) != NULL);
1916 create_page_chain(class, zspage, pages);
1917 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1918 if (unlikely(PageHugeObject(oldpage)))
1919 newpage->index = oldpage->index;
1920 __SetPageMovable(newpage, page_mapping(oldpage));
1923 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1925 struct zs_pool *pool;
1926 struct size_class *class;
1928 enum fullness_group fullness;
1929 struct zspage *zspage;
1930 struct address_space *mapping;
1933 * Page is locked so zspage couldn't be destroyed. For detail, look at
1934 * lock_zspage in free_zspage.
1936 VM_BUG_ON_PAGE(!PageMovable(page), page);
1937 VM_BUG_ON_PAGE(PageIsolated(page), page);
1939 zspage = get_zspage(page);
1942 * Without class lock, fullness could be stale while class_idx is okay
1943 * because class_idx is constant unless page is freed so we should get
1944 * fullness again under class lock.
1946 get_zspage_mapping(zspage, &class_idx, &fullness);
1947 mapping = page_mapping(page);
1948 pool = mapping->private_data;
1949 class = pool->size_class[class_idx];
1951 spin_lock(&class->lock);
1952 if (get_zspage_inuse(zspage) == 0) {
1953 spin_unlock(&class->lock);
1957 /* zspage is isolated for object migration */
1958 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1959 spin_unlock(&class->lock);
1964 * If this is first time isolation for the zspage, isolate zspage from
1965 * size_class to prevent further object allocation from the zspage.
1967 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1968 get_zspage_mapping(zspage, &class_idx, &fullness);
1969 atomic_long_inc(&pool->isolated_pages);
1970 remove_zspage(class, zspage, fullness);
1973 inc_zspage_isolation(zspage);
1974 spin_unlock(&class->lock);
1979 static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1980 struct page *page, enum migrate_mode mode)
1982 struct zs_pool *pool;
1983 struct size_class *class;
1985 enum fullness_group fullness;
1986 struct zspage *zspage;
1988 void *s_addr, *d_addr, *addr;
1990 unsigned long handle, head;
1991 unsigned long old_obj, new_obj;
1992 unsigned int obj_idx;
1996 * We cannot support the _NO_COPY case here, because copy needs to
1997 * happen under the zs lock, which does not work with
1998 * MIGRATE_SYNC_NO_COPY workflow.
2000 if (mode == MIGRATE_SYNC_NO_COPY)
2003 VM_BUG_ON_PAGE(!PageMovable(page), page);
2004 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2006 zspage = get_zspage(page);
2008 /* Concurrent compactor cannot migrate any subpage in zspage */
2009 migrate_write_lock(zspage);
2010 get_zspage_mapping(zspage, &class_idx, &fullness);
2011 pool = mapping->private_data;
2012 class = pool->size_class[class_idx];
2013 offset = get_first_obj_offset(page);
2015 spin_lock(&class->lock);
2016 if (!get_zspage_inuse(zspage)) {
2018 * Set "offset" to end of the page so that every loops
2019 * skips unnecessary object scanning.
2025 s_addr = kmap_atomic(page);
2026 while (pos < PAGE_SIZE) {
2027 head = obj_to_head(page, s_addr + pos);
2028 if (head & OBJ_ALLOCATED_TAG) {
2029 handle = head & ~OBJ_ALLOCATED_TAG;
2030 if (!trypin_tag(handle))
2037 * Here, any user cannot access all objects in the zspage so let's move.
2039 d_addr = kmap_atomic(newpage);
2040 memcpy(d_addr, s_addr, PAGE_SIZE);
2041 kunmap_atomic(d_addr);
2043 for (addr = s_addr + offset; addr < s_addr + pos;
2044 addr += class->size) {
2045 head = obj_to_head(page, addr);
2046 if (head & OBJ_ALLOCATED_TAG) {
2047 handle = head & ~OBJ_ALLOCATED_TAG;
2048 if (!testpin_tag(handle))
2051 old_obj = handle_to_obj(handle);
2052 obj_to_location(old_obj, &dummy, &obj_idx);
2053 new_obj = (unsigned long)location_to_obj(newpage,
2055 new_obj |= BIT(HANDLE_PIN_BIT);
2056 record_obj(handle, new_obj);
2060 replace_sub_page(class, zspage, newpage, page);
2063 dec_zspage_isolation(zspage);
2066 * Page migration is done so let's putback isolated zspage to
2067 * the list if @page is final isolated subpage in the zspage.
2069 if (!is_zspage_isolated(zspage)) {
2071 * We cannot race with zs_destroy_pool() here because we wait
2072 * for isolation to hit zero before we start destroying.
2073 * Also, we ensure that everyone can see pool->destroying before
2076 putback_zspage_deferred(pool, class, zspage);
2077 zs_pool_dec_isolated(pool);
2080 if (page_zone(newpage) != page_zone(page)) {
2081 dec_zone_page_state(page, NR_ZSPAGES);
2082 inc_zone_page_state(newpage, NR_ZSPAGES);
2089 ret = MIGRATEPAGE_SUCCESS;
2091 for (addr = s_addr + offset; addr < s_addr + pos;
2092 addr += class->size) {
2093 head = obj_to_head(page, addr);
2094 if (head & OBJ_ALLOCATED_TAG) {
2095 handle = head & ~OBJ_ALLOCATED_TAG;
2096 if (!testpin_tag(handle))
2101 kunmap_atomic(s_addr);
2102 spin_unlock(&class->lock);
2103 migrate_write_unlock(zspage);
2108 static void zs_page_putback(struct page *page)
2110 struct zs_pool *pool;
2111 struct size_class *class;
2113 enum fullness_group fg;
2114 struct address_space *mapping;
2115 struct zspage *zspage;
2117 VM_BUG_ON_PAGE(!PageMovable(page), page);
2118 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2120 zspage = get_zspage(page);
2121 get_zspage_mapping(zspage, &class_idx, &fg);
2122 mapping = page_mapping(page);
2123 pool = mapping->private_data;
2124 class = pool->size_class[class_idx];
2126 spin_lock(&class->lock);
2127 dec_zspage_isolation(zspage);
2128 if (!is_zspage_isolated(zspage)) {
2130 * Due to page_lock, we cannot free zspage immediately
2133 putback_zspage_deferred(pool, class, zspage);
2134 zs_pool_dec_isolated(pool);
2136 spin_unlock(&class->lock);
2139 static const struct address_space_operations zsmalloc_aops = {
2140 .isolate_page = zs_page_isolate,
2141 .migratepage = zs_page_migrate,
2142 .putback_page = zs_page_putback,
2145 static int zs_register_migration(struct zs_pool *pool)
2147 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2148 if (IS_ERR(pool->inode)) {
2153 pool->inode->i_mapping->private_data = pool;
2154 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2158 static bool pool_isolated_are_drained(struct zs_pool *pool)
2160 return atomic_long_read(&pool->isolated_pages) == 0;
2163 /* Function for resolving migration */
2164 static void wait_for_isolated_drain(struct zs_pool *pool)
2168 * We're in the process of destroying the pool, so there are no
2169 * active allocations. zs_page_isolate() fails for completely free
2170 * zspages, so we need only wait for the zs_pool's isolated
2171 * count to hit zero.
2173 wait_event(pool->migration_wait,
2174 pool_isolated_are_drained(pool));
2177 static void zs_unregister_migration(struct zs_pool *pool)
2179 pool->destroying = true;
2181 * We need a memory barrier here to ensure global visibility of
2182 * pool->destroying. Thus pool->isolated pages will either be 0 in which
2183 * case we don't care, or it will be > 0 and pool->destroying will
2184 * ensure that we wake up once isolation hits 0.
2187 wait_for_isolated_drain(pool); /* This can block */
2188 flush_work(&pool->free_work);
2193 * Caller should hold page_lock of all pages in the zspage
2194 * In here, we cannot use zspage meta data.
2196 static void async_free_zspage(struct work_struct *work)
2199 struct size_class *class;
2200 unsigned int class_idx;
2201 enum fullness_group fullness;
2202 struct zspage *zspage, *tmp;
2203 LIST_HEAD(free_pages);
2204 struct zs_pool *pool = container_of(work, struct zs_pool,
2207 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2208 class = pool->size_class[i];
2209 if (class->index != i)
2212 spin_lock(&class->lock);
2213 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2214 spin_unlock(&class->lock);
2218 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2219 list_del(&zspage->list);
2220 lock_zspage(zspage);
2222 get_zspage_mapping(zspage, &class_idx, &fullness);
2223 VM_BUG_ON(fullness != ZS_EMPTY);
2224 class = pool->size_class[class_idx];
2225 spin_lock(&class->lock);
2226 __free_zspage(pool, pool->size_class[class_idx], zspage);
2227 spin_unlock(&class->lock);
2231 static void kick_deferred_free(struct zs_pool *pool)
2233 schedule_work(&pool->free_work);
2236 static void init_deferred_free(struct zs_pool *pool)
2238 INIT_WORK(&pool->free_work, async_free_zspage);
2241 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2243 struct page *page = get_first_page(zspage);
2246 WARN_ON(!trylock_page(page));
2247 __SetPageMovable(page, pool->inode->i_mapping);
2249 } while ((page = get_next_page(page)) != NULL);
2255 * Based on the number of unused allocated objects calculate
2256 * and return the number of pages that we can free.
2258 static unsigned long zs_can_compact(struct size_class *class)
2260 unsigned long obj_wasted;
2261 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2262 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2264 if (obj_allocated <= obj_used)
2267 obj_wasted = obj_allocated - obj_used;
2268 obj_wasted /= class->objs_per_zspage;
2270 return obj_wasted * class->pages_per_zspage;
2273 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2275 struct zs_compact_control cc;
2276 struct zspage *src_zspage;
2277 struct zspage *dst_zspage = NULL;
2279 spin_lock(&class->lock);
2280 while ((src_zspage = isolate_zspage(class, true))) {
2282 if (!zs_can_compact(class))
2286 cc.s_page = get_first_page(src_zspage);
2288 while ((dst_zspage = isolate_zspage(class, false))) {
2289 cc.d_page = get_first_page(dst_zspage);
2291 * If there is no more space in dst_page, resched
2292 * and see if anyone had allocated another zspage.
2294 if (!migrate_zspage(pool, class, &cc))
2297 putback_zspage(class, dst_zspage);
2300 /* Stop if we couldn't find slot */
2301 if (dst_zspage == NULL)
2304 putback_zspage(class, dst_zspage);
2305 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2306 free_zspage(pool, class, src_zspage);
2307 pool->stats.pages_compacted += class->pages_per_zspage;
2309 spin_unlock(&class->lock);
2311 spin_lock(&class->lock);
2315 putback_zspage(class, src_zspage);
2317 spin_unlock(&class->lock);
2320 unsigned long zs_compact(struct zs_pool *pool)
2323 struct size_class *class;
2325 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2326 class = pool->size_class[i];
2329 if (class->index != i)
2331 __zs_compact(pool, class);
2334 return pool->stats.pages_compacted;
2336 EXPORT_SYMBOL_GPL(zs_compact);
2338 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2340 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2342 EXPORT_SYMBOL_GPL(zs_pool_stats);
2344 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2345 struct shrink_control *sc)
2347 unsigned long pages_freed;
2348 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2351 pages_freed = pool->stats.pages_compacted;
2353 * Compact classes and calculate compaction delta.
2354 * Can run concurrently with a manually triggered
2355 * (by user) compaction.
2357 pages_freed = zs_compact(pool) - pages_freed;
2359 return pages_freed ? pages_freed : SHRINK_STOP;
2362 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2363 struct shrink_control *sc)
2366 struct size_class *class;
2367 unsigned long pages_to_free = 0;
2368 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2371 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2372 class = pool->size_class[i];
2375 if (class->index != i)
2378 pages_to_free += zs_can_compact(class);
2381 return pages_to_free;
2384 static void zs_unregister_shrinker(struct zs_pool *pool)
2386 unregister_shrinker(&pool->shrinker);
2389 static int zs_register_shrinker(struct zs_pool *pool)
2391 pool->shrinker.scan_objects = zs_shrinker_scan;
2392 pool->shrinker.count_objects = zs_shrinker_count;
2393 pool->shrinker.batch = 0;
2394 pool->shrinker.seeks = DEFAULT_SEEKS;
2396 return register_shrinker(&pool->shrinker);
2400 * zs_create_pool - Creates an allocation pool to work from.
2401 * @name: pool name to be created
2403 * This function must be called before anything when using
2404 * the zsmalloc allocator.
2406 * On success, a pointer to the newly created pool is returned,
2409 struct zs_pool *zs_create_pool(const char *name)
2412 struct zs_pool *pool;
2413 struct size_class *prev_class = NULL;
2415 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2419 init_deferred_free(pool);
2421 pool->name = kstrdup(name, GFP_KERNEL);
2425 #ifdef CONFIG_COMPACTION
2426 init_waitqueue_head(&pool->migration_wait);
2429 if (create_cache(pool))
2433 * Iterate reversely, because, size of size_class that we want to use
2434 * for merging should be larger or equal to current size.
2436 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2438 int pages_per_zspage;
2439 int objs_per_zspage;
2440 struct size_class *class;
2443 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2444 if (size > ZS_MAX_ALLOC_SIZE)
2445 size = ZS_MAX_ALLOC_SIZE;
2446 pages_per_zspage = get_pages_per_zspage(size);
2447 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2450 * We iterate from biggest down to smallest classes,
2451 * so huge_class_size holds the size of the first huge
2452 * class. Any object bigger than or equal to that will
2453 * endup in the huge class.
2455 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2457 huge_class_size = size;
2459 * The object uses ZS_HANDLE_SIZE bytes to store the
2460 * handle. We need to subtract it, because zs_malloc()
2461 * unconditionally adds handle size before it performs
2462 * size class search - so object may be smaller than
2463 * huge class size, yet it still can end up in the huge
2464 * class because it grows by ZS_HANDLE_SIZE extra bytes
2465 * right before class lookup.
2467 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2471 * size_class is used for normal zsmalloc operation such
2472 * as alloc/free for that size. Although it is natural that we
2473 * have one size_class for each size, there is a chance that we
2474 * can get more memory utilization if we use one size_class for
2475 * many different sizes whose size_class have same
2476 * characteristics. So, we makes size_class point to
2477 * previous size_class if possible.
2480 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2481 pool->size_class[i] = prev_class;
2486 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2492 class->pages_per_zspage = pages_per_zspage;
2493 class->objs_per_zspage = objs_per_zspage;
2494 spin_lock_init(&class->lock);
2495 pool->size_class[i] = class;
2496 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2498 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2503 /* debug only, don't abort if it fails */
2504 zs_pool_stat_create(pool, name);
2506 if (zs_register_migration(pool))
2510 * Not critical since shrinker is only used to trigger internal
2511 * defragmentation of the pool which is pretty optional thing. If
2512 * registration fails we still can use the pool normally and user can
2513 * trigger compaction manually. Thus, ignore return code.
2515 zs_register_shrinker(pool);
2520 zs_destroy_pool(pool);
2523 EXPORT_SYMBOL_GPL(zs_create_pool);
2525 void zs_destroy_pool(struct zs_pool *pool)
2529 zs_unregister_shrinker(pool);
2530 zs_unregister_migration(pool);
2531 zs_pool_stat_destroy(pool);
2533 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2535 struct size_class *class = pool->size_class[i];
2540 if (class->index != i)
2543 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2544 if (!list_empty(&class->fullness_list[fg])) {
2545 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2552 destroy_cache(pool);
2556 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2558 static int __init zs_init(void)
2562 ret = zsmalloc_mount();
2566 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2567 zs_cpu_prepare, zs_cpu_dead);
2572 zpool_register_driver(&zs_zpool_driver);
2585 static void __exit zs_exit(void)
2588 zpool_unregister_driver(&zs_zpool_driver);
2591 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2596 module_init(zs_init);
2597 module_exit(zs_exit);
2599 MODULE_LICENSE("Dual BSD/GPL");
2600 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");