slub: make ->size unsigned int
[platform/kernel/linux-rpi.git] / mm / zsmalloc.c
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *      page->private: points to zspage
20  *      page->freelist(index): links together all component pages of a zspage
21  *              For the huge page, this is always 0, so we use this field
22  *              to store handle.
23  *      page->units: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *      PG_private: identifies the first component page
27  *      PG_owner_priv_1: identifies the huge component page
28  *
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/migrate.h>
56 #include <linux/pagemap.h>
57 #include <linux/fs.h>
58
59 #define ZSPAGE_MAGIC    0x58
60
61 /*
62  * This must be power of 2 and greater than of equal to sizeof(link_free).
63  * These two conditions ensure that any 'struct link_free' itself doesn't
64  * span more than 1 page which avoids complex case of mapping 2 pages simply
65  * to restore link_free pointer values.
66  */
67 #define ZS_ALIGN                8
68
69 /*
70  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
71  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
72  */
73 #define ZS_MAX_ZSPAGE_ORDER 2
74 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
75
76 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
77
78 /*
79  * Object location (<PFN>, <obj_idx>) is encoded as
80  * as single (unsigned long) handle value.
81  *
82  * Note that object index <obj_idx> starts from 0.
83  *
84  * This is made more complicated by various memory models and PAE.
85  */
86
87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
88 #ifdef MAX_PHYSMEM_BITS
89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
90 #else
91 /*
92  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93  * be PAGE_SHIFT
94  */
95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
96 #endif
97 #endif
98
99 #define _PFN_BITS               (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
100
101 /*
102  * Memory for allocating for handle keeps object position by
103  * encoding <page, obj_idx> and the encoded value has a room
104  * in least bit(ie, look at obj_to_location).
105  * We use the bit to synchronize between object access by
106  * user and migration.
107  */
108 #define HANDLE_PIN_BIT  0
109
110 /*
111  * Head in allocated object should have OBJ_ALLOCATED_TAG
112  * to identify the object was allocated or not.
113  * It's okay to add the status bit in the least bit because
114  * header keeps handle which is 4byte-aligned address so we
115  * have room for two bit at least.
116  */
117 #define OBJ_ALLOCATED_TAG 1
118 #define OBJ_TAG_BITS 1
119 #define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
120 #define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
121
122 #define FULLNESS_BITS   2
123 #define CLASS_BITS      8
124 #define ISOLATED_BITS   3
125 #define MAGIC_VAL_BITS  8
126
127 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
128 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
129 #define ZS_MIN_ALLOC_SIZE \
130         MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
131 /* each chunk includes extra space to keep handle */
132 #define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
133
134 /*
135  * On systems with 4K page size, this gives 255 size classes! There is a
136  * trader-off here:
137  *  - Large number of size classes is potentially wasteful as free page are
138  *    spread across these classes
139  *  - Small number of size classes causes large internal fragmentation
140  *  - Probably its better to use specific size classes (empirically
141  *    determined). NOTE: all those class sizes must be set as multiple of
142  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
143  *
144  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
145  *  (reason above)
146  */
147 #define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
148 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
149                                       ZS_SIZE_CLASS_DELTA) + 1)
150
151 enum fullness_group {
152         ZS_EMPTY,
153         ZS_ALMOST_EMPTY,
154         ZS_ALMOST_FULL,
155         ZS_FULL,
156         NR_ZS_FULLNESS,
157 };
158
159 enum zs_stat_type {
160         CLASS_EMPTY,
161         CLASS_ALMOST_EMPTY,
162         CLASS_ALMOST_FULL,
163         CLASS_FULL,
164         OBJ_ALLOCATED,
165         OBJ_USED,
166         NR_ZS_STAT_TYPE,
167 };
168
169 struct zs_size_stat {
170         unsigned long objs[NR_ZS_STAT_TYPE];
171 };
172
173 #ifdef CONFIG_ZSMALLOC_STAT
174 static struct dentry *zs_stat_root;
175 #endif
176
177 #ifdef CONFIG_COMPACTION
178 static struct vfsmount *zsmalloc_mnt;
179 #endif
180
181 /*
182  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
183  *      n <= N / f, where
184  * n = number of allocated objects
185  * N = total number of objects zspage can store
186  * f = fullness_threshold_frac
187  *
188  * Similarly, we assign zspage to:
189  *      ZS_ALMOST_FULL  when n > N / f
190  *      ZS_EMPTY        when n == 0
191  *      ZS_FULL         when n == N
192  *
193  * (see: fix_fullness_group())
194  */
195 static const int fullness_threshold_frac = 4;
196
197 struct size_class {
198         spinlock_t lock;
199         struct list_head fullness_list[NR_ZS_FULLNESS];
200         /*
201          * Size of objects stored in this class. Must be multiple
202          * of ZS_ALIGN.
203          */
204         int size;
205         int objs_per_zspage;
206         /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
207         int pages_per_zspage;
208
209         unsigned int index;
210         struct zs_size_stat stats;
211 };
212
213 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
214 static void SetPageHugeObject(struct page *page)
215 {
216         SetPageOwnerPriv1(page);
217 }
218
219 static void ClearPageHugeObject(struct page *page)
220 {
221         ClearPageOwnerPriv1(page);
222 }
223
224 static int PageHugeObject(struct page *page)
225 {
226         return PageOwnerPriv1(page);
227 }
228
229 /*
230  * Placed within free objects to form a singly linked list.
231  * For every zspage, zspage->freeobj gives head of this list.
232  *
233  * This must be power of 2 and less than or equal to ZS_ALIGN
234  */
235 struct link_free {
236         union {
237                 /*
238                  * Free object index;
239                  * It's valid for non-allocated object
240                  */
241                 unsigned long next;
242                 /*
243                  * Handle of allocated object.
244                  */
245                 unsigned long handle;
246         };
247 };
248
249 struct zs_pool {
250         const char *name;
251
252         struct size_class *size_class[ZS_SIZE_CLASSES];
253         struct kmem_cache *handle_cachep;
254         struct kmem_cache *zspage_cachep;
255
256         atomic_long_t pages_allocated;
257
258         struct zs_pool_stats stats;
259
260         /* Compact classes */
261         struct shrinker shrinker;
262
263 #ifdef CONFIG_ZSMALLOC_STAT
264         struct dentry *stat_dentry;
265 #endif
266 #ifdef CONFIG_COMPACTION
267         struct inode *inode;
268         struct work_struct free_work;
269 #endif
270 };
271
272 struct zspage {
273         struct {
274                 unsigned int fullness:FULLNESS_BITS;
275                 unsigned int class:CLASS_BITS + 1;
276                 unsigned int isolated:ISOLATED_BITS;
277                 unsigned int magic:MAGIC_VAL_BITS;
278         };
279         unsigned int inuse;
280         unsigned int freeobj;
281         struct page *first_page;
282         struct list_head list; /* fullness list */
283 #ifdef CONFIG_COMPACTION
284         rwlock_t lock;
285 #endif
286 };
287
288 struct mapping_area {
289 #ifdef CONFIG_PGTABLE_MAPPING
290         struct vm_struct *vm; /* vm area for mapping object that span pages */
291 #else
292         char *vm_buf; /* copy buffer for objects that span pages */
293 #endif
294         char *vm_addr; /* address of kmap_atomic()'ed pages */
295         enum zs_mapmode vm_mm; /* mapping mode */
296 };
297
298 #ifdef CONFIG_COMPACTION
299 static int zs_register_migration(struct zs_pool *pool);
300 static void zs_unregister_migration(struct zs_pool *pool);
301 static void migrate_lock_init(struct zspage *zspage);
302 static void migrate_read_lock(struct zspage *zspage);
303 static void migrate_read_unlock(struct zspage *zspage);
304 static void kick_deferred_free(struct zs_pool *pool);
305 static void init_deferred_free(struct zs_pool *pool);
306 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
307 #else
308 static int zsmalloc_mount(void) { return 0; }
309 static void zsmalloc_unmount(void) {}
310 static int zs_register_migration(struct zs_pool *pool) { return 0; }
311 static void zs_unregister_migration(struct zs_pool *pool) {}
312 static void migrate_lock_init(struct zspage *zspage) {}
313 static void migrate_read_lock(struct zspage *zspage) {}
314 static void migrate_read_unlock(struct zspage *zspage) {}
315 static void kick_deferred_free(struct zs_pool *pool) {}
316 static void init_deferred_free(struct zs_pool *pool) {}
317 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
318 #endif
319
320 static int create_cache(struct zs_pool *pool)
321 {
322         pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
323                                         0, 0, NULL);
324         if (!pool->handle_cachep)
325                 return 1;
326
327         pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
328                                         0, 0, NULL);
329         if (!pool->zspage_cachep) {
330                 kmem_cache_destroy(pool->handle_cachep);
331                 pool->handle_cachep = NULL;
332                 return 1;
333         }
334
335         return 0;
336 }
337
338 static void destroy_cache(struct zs_pool *pool)
339 {
340         kmem_cache_destroy(pool->handle_cachep);
341         kmem_cache_destroy(pool->zspage_cachep);
342 }
343
344 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
345 {
346         return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
347                         gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
348 }
349
350 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
351 {
352         kmem_cache_free(pool->handle_cachep, (void *)handle);
353 }
354
355 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
356 {
357         return kmem_cache_alloc(pool->zspage_cachep,
358                         flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
359 }
360
361 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
362 {
363         kmem_cache_free(pool->zspage_cachep, zspage);
364 }
365
366 static void record_obj(unsigned long handle, unsigned long obj)
367 {
368         /*
369          * lsb of @obj represents handle lock while other bits
370          * represent object value the handle is pointing so
371          * updating shouldn't do store tearing.
372          */
373         WRITE_ONCE(*(unsigned long *)handle, obj);
374 }
375
376 /* zpool driver */
377
378 #ifdef CONFIG_ZPOOL
379
380 static void *zs_zpool_create(const char *name, gfp_t gfp,
381                              const struct zpool_ops *zpool_ops,
382                              struct zpool *zpool)
383 {
384         /*
385          * Ignore global gfp flags: zs_malloc() may be invoked from
386          * different contexts and its caller must provide a valid
387          * gfp mask.
388          */
389         return zs_create_pool(name);
390 }
391
392 static void zs_zpool_destroy(void *pool)
393 {
394         zs_destroy_pool(pool);
395 }
396
397 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
398                         unsigned long *handle)
399 {
400         *handle = zs_malloc(pool, size, gfp);
401         return *handle ? 0 : -1;
402 }
403 static void zs_zpool_free(void *pool, unsigned long handle)
404 {
405         zs_free(pool, handle);
406 }
407
408 static void *zs_zpool_map(void *pool, unsigned long handle,
409                         enum zpool_mapmode mm)
410 {
411         enum zs_mapmode zs_mm;
412
413         switch (mm) {
414         case ZPOOL_MM_RO:
415                 zs_mm = ZS_MM_RO;
416                 break;
417         case ZPOOL_MM_WO:
418                 zs_mm = ZS_MM_WO;
419                 break;
420         case ZPOOL_MM_RW: /* fallthru */
421         default:
422                 zs_mm = ZS_MM_RW;
423                 break;
424         }
425
426         return zs_map_object(pool, handle, zs_mm);
427 }
428 static void zs_zpool_unmap(void *pool, unsigned long handle)
429 {
430         zs_unmap_object(pool, handle);
431 }
432
433 static u64 zs_zpool_total_size(void *pool)
434 {
435         return zs_get_total_pages(pool) << PAGE_SHIFT;
436 }
437
438 static struct zpool_driver zs_zpool_driver = {
439         .type =         "zsmalloc",
440         .owner =        THIS_MODULE,
441         .create =       zs_zpool_create,
442         .destroy =      zs_zpool_destroy,
443         .malloc =       zs_zpool_malloc,
444         .free =         zs_zpool_free,
445         .map =          zs_zpool_map,
446         .unmap =        zs_zpool_unmap,
447         .total_size =   zs_zpool_total_size,
448 };
449
450 MODULE_ALIAS("zpool-zsmalloc");
451 #endif /* CONFIG_ZPOOL */
452
453 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
454 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
455
456 static bool is_zspage_isolated(struct zspage *zspage)
457 {
458         return zspage->isolated;
459 }
460
461 static __maybe_unused int is_first_page(struct page *page)
462 {
463         return PagePrivate(page);
464 }
465
466 /* Protected by class->lock */
467 static inline int get_zspage_inuse(struct zspage *zspage)
468 {
469         return zspage->inuse;
470 }
471
472 static inline void set_zspage_inuse(struct zspage *zspage, int val)
473 {
474         zspage->inuse = val;
475 }
476
477 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
478 {
479         zspage->inuse += val;
480 }
481
482 static inline struct page *get_first_page(struct zspage *zspage)
483 {
484         struct page *first_page = zspage->first_page;
485
486         VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
487         return first_page;
488 }
489
490 static inline int get_first_obj_offset(struct page *page)
491 {
492         return page->units;
493 }
494
495 static inline void set_first_obj_offset(struct page *page, int offset)
496 {
497         page->units = offset;
498 }
499
500 static inline unsigned int get_freeobj(struct zspage *zspage)
501 {
502         return zspage->freeobj;
503 }
504
505 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
506 {
507         zspage->freeobj = obj;
508 }
509
510 static void get_zspage_mapping(struct zspage *zspage,
511                                 unsigned int *class_idx,
512                                 enum fullness_group *fullness)
513 {
514         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
515
516         *fullness = zspage->fullness;
517         *class_idx = zspage->class;
518 }
519
520 static void set_zspage_mapping(struct zspage *zspage,
521                                 unsigned int class_idx,
522                                 enum fullness_group fullness)
523 {
524         zspage->class = class_idx;
525         zspage->fullness = fullness;
526 }
527
528 /*
529  * zsmalloc divides the pool into various size classes where each
530  * class maintains a list of zspages where each zspage is divided
531  * into equal sized chunks. Each allocation falls into one of these
532  * classes depending on its size. This function returns index of the
533  * size class which has chunk size big enough to hold the give size.
534  */
535 static int get_size_class_index(int size)
536 {
537         int idx = 0;
538
539         if (likely(size > ZS_MIN_ALLOC_SIZE))
540                 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
541                                 ZS_SIZE_CLASS_DELTA);
542
543         return min_t(int, ZS_SIZE_CLASSES - 1, idx);
544 }
545
546 /* type can be of enum type zs_stat_type or fullness_group */
547 static inline void zs_stat_inc(struct size_class *class,
548                                 int type, unsigned long cnt)
549 {
550         class->stats.objs[type] += cnt;
551 }
552
553 /* type can be of enum type zs_stat_type or fullness_group */
554 static inline void zs_stat_dec(struct size_class *class,
555                                 int type, unsigned long cnt)
556 {
557         class->stats.objs[type] -= cnt;
558 }
559
560 /* type can be of enum type zs_stat_type or fullness_group */
561 static inline unsigned long zs_stat_get(struct size_class *class,
562                                 int type)
563 {
564         return class->stats.objs[type];
565 }
566
567 #ifdef CONFIG_ZSMALLOC_STAT
568
569 static void __init zs_stat_init(void)
570 {
571         if (!debugfs_initialized()) {
572                 pr_warn("debugfs not available, stat dir not created\n");
573                 return;
574         }
575
576         zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
577         if (!zs_stat_root)
578                 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
579 }
580
581 static void __exit zs_stat_exit(void)
582 {
583         debugfs_remove_recursive(zs_stat_root);
584 }
585
586 static unsigned long zs_can_compact(struct size_class *class);
587
588 static int zs_stats_size_show(struct seq_file *s, void *v)
589 {
590         int i;
591         struct zs_pool *pool = s->private;
592         struct size_class *class;
593         int objs_per_zspage;
594         unsigned long class_almost_full, class_almost_empty;
595         unsigned long obj_allocated, obj_used, pages_used, freeable;
596         unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
597         unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
598         unsigned long total_freeable = 0;
599
600         seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
601                         "class", "size", "almost_full", "almost_empty",
602                         "obj_allocated", "obj_used", "pages_used",
603                         "pages_per_zspage", "freeable");
604
605         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
606                 class = pool->size_class[i];
607
608                 if (class->index != i)
609                         continue;
610
611                 spin_lock(&class->lock);
612                 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
613                 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
614                 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
615                 obj_used = zs_stat_get(class, OBJ_USED);
616                 freeable = zs_can_compact(class);
617                 spin_unlock(&class->lock);
618
619                 objs_per_zspage = class->objs_per_zspage;
620                 pages_used = obj_allocated / objs_per_zspage *
621                                 class->pages_per_zspage;
622
623                 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
624                                 " %10lu %10lu %16d %8lu\n",
625                         i, class->size, class_almost_full, class_almost_empty,
626                         obj_allocated, obj_used, pages_used,
627                         class->pages_per_zspage, freeable);
628
629                 total_class_almost_full += class_almost_full;
630                 total_class_almost_empty += class_almost_empty;
631                 total_objs += obj_allocated;
632                 total_used_objs += obj_used;
633                 total_pages += pages_used;
634                 total_freeable += freeable;
635         }
636
637         seq_puts(s, "\n");
638         seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
639                         "Total", "", total_class_almost_full,
640                         total_class_almost_empty, total_objs,
641                         total_used_objs, total_pages, "", total_freeable);
642
643         return 0;
644 }
645
646 static int zs_stats_size_open(struct inode *inode, struct file *file)
647 {
648         return single_open(file, zs_stats_size_show, inode->i_private);
649 }
650
651 static const struct file_operations zs_stat_size_ops = {
652         .open           = zs_stats_size_open,
653         .read           = seq_read,
654         .llseek         = seq_lseek,
655         .release        = single_release,
656 };
657
658 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
659 {
660         struct dentry *entry;
661
662         if (!zs_stat_root) {
663                 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
664                 return;
665         }
666
667         entry = debugfs_create_dir(name, zs_stat_root);
668         if (!entry) {
669                 pr_warn("debugfs dir <%s> creation failed\n", name);
670                 return;
671         }
672         pool->stat_dentry = entry;
673
674         entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
675                         pool->stat_dentry, pool, &zs_stat_size_ops);
676         if (!entry) {
677                 pr_warn("%s: debugfs file entry <%s> creation failed\n",
678                                 name, "classes");
679                 debugfs_remove_recursive(pool->stat_dentry);
680                 pool->stat_dentry = NULL;
681         }
682 }
683
684 static void zs_pool_stat_destroy(struct zs_pool *pool)
685 {
686         debugfs_remove_recursive(pool->stat_dentry);
687 }
688
689 #else /* CONFIG_ZSMALLOC_STAT */
690 static void __init zs_stat_init(void)
691 {
692 }
693
694 static void __exit zs_stat_exit(void)
695 {
696 }
697
698 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
699 {
700 }
701
702 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
703 {
704 }
705 #endif
706
707
708 /*
709  * For each size class, zspages are divided into different groups
710  * depending on how "full" they are. This was done so that we could
711  * easily find empty or nearly empty zspages when we try to shrink
712  * the pool (not yet implemented). This function returns fullness
713  * status of the given page.
714  */
715 static enum fullness_group get_fullness_group(struct size_class *class,
716                                                 struct zspage *zspage)
717 {
718         int inuse, objs_per_zspage;
719         enum fullness_group fg;
720
721         inuse = get_zspage_inuse(zspage);
722         objs_per_zspage = class->objs_per_zspage;
723
724         if (inuse == 0)
725                 fg = ZS_EMPTY;
726         else if (inuse == objs_per_zspage)
727                 fg = ZS_FULL;
728         else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
729                 fg = ZS_ALMOST_EMPTY;
730         else
731                 fg = ZS_ALMOST_FULL;
732
733         return fg;
734 }
735
736 /*
737  * Each size class maintains various freelists and zspages are assigned
738  * to one of these freelists based on the number of live objects they
739  * have. This functions inserts the given zspage into the freelist
740  * identified by <class, fullness_group>.
741  */
742 static void insert_zspage(struct size_class *class,
743                                 struct zspage *zspage,
744                                 enum fullness_group fullness)
745 {
746         struct zspage *head;
747
748         zs_stat_inc(class, fullness, 1);
749         head = list_first_entry_or_null(&class->fullness_list[fullness],
750                                         struct zspage, list);
751         /*
752          * We want to see more ZS_FULL pages and less almost empty/full.
753          * Put pages with higher ->inuse first.
754          */
755         if (head) {
756                 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
757                         list_add(&zspage->list, &head->list);
758                         return;
759                 }
760         }
761         list_add(&zspage->list, &class->fullness_list[fullness]);
762 }
763
764 /*
765  * This function removes the given zspage from the freelist identified
766  * by <class, fullness_group>.
767  */
768 static void remove_zspage(struct size_class *class,
769                                 struct zspage *zspage,
770                                 enum fullness_group fullness)
771 {
772         VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
773         VM_BUG_ON(is_zspage_isolated(zspage));
774
775         list_del_init(&zspage->list);
776         zs_stat_dec(class, fullness, 1);
777 }
778
779 /*
780  * Each size class maintains zspages in different fullness groups depending
781  * on the number of live objects they contain. When allocating or freeing
782  * objects, the fullness status of the page can change, say, from ALMOST_FULL
783  * to ALMOST_EMPTY when freeing an object. This function checks if such
784  * a status change has occurred for the given page and accordingly moves the
785  * page from the freelist of the old fullness group to that of the new
786  * fullness group.
787  */
788 static enum fullness_group fix_fullness_group(struct size_class *class,
789                                                 struct zspage *zspage)
790 {
791         int class_idx;
792         enum fullness_group currfg, newfg;
793
794         get_zspage_mapping(zspage, &class_idx, &currfg);
795         newfg = get_fullness_group(class, zspage);
796         if (newfg == currfg)
797                 goto out;
798
799         if (!is_zspage_isolated(zspage)) {
800                 remove_zspage(class, zspage, currfg);
801                 insert_zspage(class, zspage, newfg);
802         }
803
804         set_zspage_mapping(zspage, class_idx, newfg);
805
806 out:
807         return newfg;
808 }
809
810 /*
811  * We have to decide on how many pages to link together
812  * to form a zspage for each size class. This is important
813  * to reduce wastage due to unusable space left at end of
814  * each zspage which is given as:
815  *     wastage = Zp % class_size
816  *     usage = Zp - wastage
817  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
818  *
819  * For example, for size class of 3/8 * PAGE_SIZE, we should
820  * link together 3 PAGE_SIZE sized pages to form a zspage
821  * since then we can perfectly fit in 8 such objects.
822  */
823 static int get_pages_per_zspage(int class_size)
824 {
825         int i, max_usedpc = 0;
826         /* zspage order which gives maximum used size per KB */
827         int max_usedpc_order = 1;
828
829         for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
830                 int zspage_size;
831                 int waste, usedpc;
832
833                 zspage_size = i * PAGE_SIZE;
834                 waste = zspage_size % class_size;
835                 usedpc = (zspage_size - waste) * 100 / zspage_size;
836
837                 if (usedpc > max_usedpc) {
838                         max_usedpc = usedpc;
839                         max_usedpc_order = i;
840                 }
841         }
842
843         return max_usedpc_order;
844 }
845
846 static struct zspage *get_zspage(struct page *page)
847 {
848         struct zspage *zspage = (struct zspage *)page->private;
849
850         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
851         return zspage;
852 }
853
854 static struct page *get_next_page(struct page *page)
855 {
856         if (unlikely(PageHugeObject(page)))
857                 return NULL;
858
859         return page->freelist;
860 }
861
862 /**
863  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
864  * @page: page object resides in zspage
865  * @obj_idx: object index
866  */
867 static void obj_to_location(unsigned long obj, struct page **page,
868                                 unsigned int *obj_idx)
869 {
870         obj >>= OBJ_TAG_BITS;
871         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
872         *obj_idx = (obj & OBJ_INDEX_MASK);
873 }
874
875 /**
876  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
877  * @page: page object resides in zspage
878  * @obj_idx: object index
879  */
880 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
881 {
882         unsigned long obj;
883
884         obj = page_to_pfn(page) << OBJ_INDEX_BITS;
885         obj |= obj_idx & OBJ_INDEX_MASK;
886         obj <<= OBJ_TAG_BITS;
887
888         return obj;
889 }
890
891 static unsigned long handle_to_obj(unsigned long handle)
892 {
893         return *(unsigned long *)handle;
894 }
895
896 static unsigned long obj_to_head(struct page *page, void *obj)
897 {
898         if (unlikely(PageHugeObject(page))) {
899                 VM_BUG_ON_PAGE(!is_first_page(page), page);
900                 return page->index;
901         } else
902                 return *(unsigned long *)obj;
903 }
904
905 static inline int testpin_tag(unsigned long handle)
906 {
907         return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
908 }
909
910 static inline int trypin_tag(unsigned long handle)
911 {
912         return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
913 }
914
915 static void pin_tag(unsigned long handle)
916 {
917         bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
918 }
919
920 static void unpin_tag(unsigned long handle)
921 {
922         bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
923 }
924
925 static void reset_page(struct page *page)
926 {
927         __ClearPageMovable(page);
928         ClearPagePrivate(page);
929         set_page_private(page, 0);
930         page_mapcount_reset(page);
931         ClearPageHugeObject(page);
932         page->freelist = NULL;
933 }
934
935 /*
936  * To prevent zspage destroy during migration, zspage freeing should
937  * hold locks of all pages in the zspage.
938  */
939 void lock_zspage(struct zspage *zspage)
940 {
941         struct page *page = get_first_page(zspage);
942
943         do {
944                 lock_page(page);
945         } while ((page = get_next_page(page)) != NULL);
946 }
947
948 int trylock_zspage(struct zspage *zspage)
949 {
950         struct page *cursor, *fail;
951
952         for (cursor = get_first_page(zspage); cursor != NULL; cursor =
953                                         get_next_page(cursor)) {
954                 if (!trylock_page(cursor)) {
955                         fail = cursor;
956                         goto unlock;
957                 }
958         }
959
960         return 1;
961 unlock:
962         for (cursor = get_first_page(zspage); cursor != fail; cursor =
963                                         get_next_page(cursor))
964                 unlock_page(cursor);
965
966         return 0;
967 }
968
969 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
970                                 struct zspage *zspage)
971 {
972         struct page *page, *next;
973         enum fullness_group fg;
974         unsigned int class_idx;
975
976         get_zspage_mapping(zspage, &class_idx, &fg);
977
978         assert_spin_locked(&class->lock);
979
980         VM_BUG_ON(get_zspage_inuse(zspage));
981         VM_BUG_ON(fg != ZS_EMPTY);
982
983         next = page = get_first_page(zspage);
984         do {
985                 VM_BUG_ON_PAGE(!PageLocked(page), page);
986                 next = get_next_page(page);
987                 reset_page(page);
988                 unlock_page(page);
989                 dec_zone_page_state(page, NR_ZSPAGES);
990                 put_page(page);
991                 page = next;
992         } while (page != NULL);
993
994         cache_free_zspage(pool, zspage);
995
996         zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
997         atomic_long_sub(class->pages_per_zspage,
998                                         &pool->pages_allocated);
999 }
1000
1001 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1002                                 struct zspage *zspage)
1003 {
1004         VM_BUG_ON(get_zspage_inuse(zspage));
1005         VM_BUG_ON(list_empty(&zspage->list));
1006
1007         if (!trylock_zspage(zspage)) {
1008                 kick_deferred_free(pool);
1009                 return;
1010         }
1011
1012         remove_zspage(class, zspage, ZS_EMPTY);
1013         __free_zspage(pool, class, zspage);
1014 }
1015
1016 /* Initialize a newly allocated zspage */
1017 static void init_zspage(struct size_class *class, struct zspage *zspage)
1018 {
1019         unsigned int freeobj = 1;
1020         unsigned long off = 0;
1021         struct page *page = get_first_page(zspage);
1022
1023         while (page) {
1024                 struct page *next_page;
1025                 struct link_free *link;
1026                 void *vaddr;
1027
1028                 set_first_obj_offset(page, off);
1029
1030                 vaddr = kmap_atomic(page);
1031                 link = (struct link_free *)vaddr + off / sizeof(*link);
1032
1033                 while ((off += class->size) < PAGE_SIZE) {
1034                         link->next = freeobj++ << OBJ_TAG_BITS;
1035                         link += class->size / sizeof(*link);
1036                 }
1037
1038                 /*
1039                  * We now come to the last (full or partial) object on this
1040                  * page, which must point to the first object on the next
1041                  * page (if present)
1042                  */
1043                 next_page = get_next_page(page);
1044                 if (next_page) {
1045                         link->next = freeobj++ << OBJ_TAG_BITS;
1046                 } else {
1047                         /*
1048                          * Reset OBJ_TAG_BITS bit to last link to tell
1049                          * whether it's allocated object or not.
1050                          */
1051                         link->next = -1UL << OBJ_TAG_BITS;
1052                 }
1053                 kunmap_atomic(vaddr);
1054                 page = next_page;
1055                 off %= PAGE_SIZE;
1056         }
1057
1058         set_freeobj(zspage, 0);
1059 }
1060
1061 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1062                                 struct page *pages[])
1063 {
1064         int i;
1065         struct page *page;
1066         struct page *prev_page = NULL;
1067         int nr_pages = class->pages_per_zspage;
1068
1069         /*
1070          * Allocate individual pages and link them together as:
1071          * 1. all pages are linked together using page->freelist
1072          * 2. each sub-page point to zspage using page->private
1073          *
1074          * we set PG_private to identify the first page (i.e. no other sub-page
1075          * has this flag set).
1076          */
1077         for (i = 0; i < nr_pages; i++) {
1078                 page = pages[i];
1079                 set_page_private(page, (unsigned long)zspage);
1080                 page->freelist = NULL;
1081                 if (i == 0) {
1082                         zspage->first_page = page;
1083                         SetPagePrivate(page);
1084                         if (unlikely(class->objs_per_zspage == 1 &&
1085                                         class->pages_per_zspage == 1))
1086                                 SetPageHugeObject(page);
1087                 } else {
1088                         prev_page->freelist = page;
1089                 }
1090                 prev_page = page;
1091         }
1092 }
1093
1094 /*
1095  * Allocate a zspage for the given size class
1096  */
1097 static struct zspage *alloc_zspage(struct zs_pool *pool,
1098                                         struct size_class *class,
1099                                         gfp_t gfp)
1100 {
1101         int i;
1102         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1103         struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1104
1105         if (!zspage)
1106                 return NULL;
1107
1108         memset(zspage, 0, sizeof(struct zspage));
1109         zspage->magic = ZSPAGE_MAGIC;
1110         migrate_lock_init(zspage);
1111
1112         for (i = 0; i < class->pages_per_zspage; i++) {
1113                 struct page *page;
1114
1115                 page = alloc_page(gfp);
1116                 if (!page) {
1117                         while (--i >= 0) {
1118                                 dec_zone_page_state(pages[i], NR_ZSPAGES);
1119                                 __free_page(pages[i]);
1120                         }
1121                         cache_free_zspage(pool, zspage);
1122                         return NULL;
1123                 }
1124
1125                 inc_zone_page_state(page, NR_ZSPAGES);
1126                 pages[i] = page;
1127         }
1128
1129         create_page_chain(class, zspage, pages);
1130         init_zspage(class, zspage);
1131
1132         return zspage;
1133 }
1134
1135 static struct zspage *find_get_zspage(struct size_class *class)
1136 {
1137         int i;
1138         struct zspage *zspage;
1139
1140         for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1141                 zspage = list_first_entry_or_null(&class->fullness_list[i],
1142                                 struct zspage, list);
1143                 if (zspage)
1144                         break;
1145         }
1146
1147         return zspage;
1148 }
1149
1150 #ifdef CONFIG_PGTABLE_MAPPING
1151 static inline int __zs_cpu_up(struct mapping_area *area)
1152 {
1153         /*
1154          * Make sure we don't leak memory if a cpu UP notification
1155          * and zs_init() race and both call zs_cpu_up() on the same cpu
1156          */
1157         if (area->vm)
1158                 return 0;
1159         area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1160         if (!area->vm)
1161                 return -ENOMEM;
1162         return 0;
1163 }
1164
1165 static inline void __zs_cpu_down(struct mapping_area *area)
1166 {
1167         if (area->vm)
1168                 free_vm_area(area->vm);
1169         area->vm = NULL;
1170 }
1171
1172 static inline void *__zs_map_object(struct mapping_area *area,
1173                                 struct page *pages[2], int off, int size)
1174 {
1175         BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1176         area->vm_addr = area->vm->addr;
1177         return area->vm_addr + off;
1178 }
1179
1180 static inline void __zs_unmap_object(struct mapping_area *area,
1181                                 struct page *pages[2], int off, int size)
1182 {
1183         unsigned long addr = (unsigned long)area->vm_addr;
1184
1185         unmap_kernel_range(addr, PAGE_SIZE * 2);
1186 }
1187
1188 #else /* CONFIG_PGTABLE_MAPPING */
1189
1190 static inline int __zs_cpu_up(struct mapping_area *area)
1191 {
1192         /*
1193          * Make sure we don't leak memory if a cpu UP notification
1194          * and zs_init() race and both call zs_cpu_up() on the same cpu
1195          */
1196         if (area->vm_buf)
1197                 return 0;
1198         area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1199         if (!area->vm_buf)
1200                 return -ENOMEM;
1201         return 0;
1202 }
1203
1204 static inline void __zs_cpu_down(struct mapping_area *area)
1205 {
1206         kfree(area->vm_buf);
1207         area->vm_buf = NULL;
1208 }
1209
1210 static void *__zs_map_object(struct mapping_area *area,
1211                         struct page *pages[2], int off, int size)
1212 {
1213         int sizes[2];
1214         void *addr;
1215         char *buf = area->vm_buf;
1216
1217         /* disable page faults to match kmap_atomic() return conditions */
1218         pagefault_disable();
1219
1220         /* no read fastpath */
1221         if (area->vm_mm == ZS_MM_WO)
1222                 goto out;
1223
1224         sizes[0] = PAGE_SIZE - off;
1225         sizes[1] = size - sizes[0];
1226
1227         /* copy object to per-cpu buffer */
1228         addr = kmap_atomic(pages[0]);
1229         memcpy(buf, addr + off, sizes[0]);
1230         kunmap_atomic(addr);
1231         addr = kmap_atomic(pages[1]);
1232         memcpy(buf + sizes[0], addr, sizes[1]);
1233         kunmap_atomic(addr);
1234 out:
1235         return area->vm_buf;
1236 }
1237
1238 static void __zs_unmap_object(struct mapping_area *area,
1239                         struct page *pages[2], int off, int size)
1240 {
1241         int sizes[2];
1242         void *addr;
1243         char *buf;
1244
1245         /* no write fastpath */
1246         if (area->vm_mm == ZS_MM_RO)
1247                 goto out;
1248
1249         buf = area->vm_buf;
1250         buf = buf + ZS_HANDLE_SIZE;
1251         size -= ZS_HANDLE_SIZE;
1252         off += ZS_HANDLE_SIZE;
1253
1254         sizes[0] = PAGE_SIZE - off;
1255         sizes[1] = size - sizes[0];
1256
1257         /* copy per-cpu buffer to object */
1258         addr = kmap_atomic(pages[0]);
1259         memcpy(addr + off, buf, sizes[0]);
1260         kunmap_atomic(addr);
1261         addr = kmap_atomic(pages[1]);
1262         memcpy(addr, buf + sizes[0], sizes[1]);
1263         kunmap_atomic(addr);
1264
1265 out:
1266         /* enable page faults to match kunmap_atomic() return conditions */
1267         pagefault_enable();
1268 }
1269
1270 #endif /* CONFIG_PGTABLE_MAPPING */
1271
1272 static int zs_cpu_prepare(unsigned int cpu)
1273 {
1274         struct mapping_area *area;
1275
1276         area = &per_cpu(zs_map_area, cpu);
1277         return __zs_cpu_up(area);
1278 }
1279
1280 static int zs_cpu_dead(unsigned int cpu)
1281 {
1282         struct mapping_area *area;
1283
1284         area = &per_cpu(zs_map_area, cpu);
1285         __zs_cpu_down(area);
1286         return 0;
1287 }
1288
1289 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1290                                         int objs_per_zspage)
1291 {
1292         if (prev->pages_per_zspage == pages_per_zspage &&
1293                 prev->objs_per_zspage == objs_per_zspage)
1294                 return true;
1295
1296         return false;
1297 }
1298
1299 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1300 {
1301         return get_zspage_inuse(zspage) == class->objs_per_zspage;
1302 }
1303
1304 unsigned long zs_get_total_pages(struct zs_pool *pool)
1305 {
1306         return atomic_long_read(&pool->pages_allocated);
1307 }
1308 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1309
1310 /**
1311  * zs_map_object - get address of allocated object from handle.
1312  * @pool: pool from which the object was allocated
1313  * @handle: handle returned from zs_malloc
1314  *
1315  * Before using an object allocated from zs_malloc, it must be mapped using
1316  * this function. When done with the object, it must be unmapped using
1317  * zs_unmap_object.
1318  *
1319  * Only one object can be mapped per cpu at a time. There is no protection
1320  * against nested mappings.
1321  *
1322  * This function returns with preemption and page faults disabled.
1323  */
1324 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1325                         enum zs_mapmode mm)
1326 {
1327         struct zspage *zspage;
1328         struct page *page;
1329         unsigned long obj, off;
1330         unsigned int obj_idx;
1331
1332         unsigned int class_idx;
1333         enum fullness_group fg;
1334         struct size_class *class;
1335         struct mapping_area *area;
1336         struct page *pages[2];
1337         void *ret;
1338
1339         /*
1340          * Because we use per-cpu mapping areas shared among the
1341          * pools/users, we can't allow mapping in interrupt context
1342          * because it can corrupt another users mappings.
1343          */
1344         BUG_ON(in_interrupt());
1345
1346         /* From now on, migration cannot move the object */
1347         pin_tag(handle);
1348
1349         obj = handle_to_obj(handle);
1350         obj_to_location(obj, &page, &obj_idx);
1351         zspage = get_zspage(page);
1352
1353         /* migration cannot move any subpage in this zspage */
1354         migrate_read_lock(zspage);
1355
1356         get_zspage_mapping(zspage, &class_idx, &fg);
1357         class = pool->size_class[class_idx];
1358         off = (class->size * obj_idx) & ~PAGE_MASK;
1359
1360         area = &get_cpu_var(zs_map_area);
1361         area->vm_mm = mm;
1362         if (off + class->size <= PAGE_SIZE) {
1363                 /* this object is contained entirely within a page */
1364                 area->vm_addr = kmap_atomic(page);
1365                 ret = area->vm_addr + off;
1366                 goto out;
1367         }
1368
1369         /* this object spans two pages */
1370         pages[0] = page;
1371         pages[1] = get_next_page(page);
1372         BUG_ON(!pages[1]);
1373
1374         ret = __zs_map_object(area, pages, off, class->size);
1375 out:
1376         if (likely(!PageHugeObject(page)))
1377                 ret += ZS_HANDLE_SIZE;
1378
1379         return ret;
1380 }
1381 EXPORT_SYMBOL_GPL(zs_map_object);
1382
1383 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1384 {
1385         struct zspage *zspage;
1386         struct page *page;
1387         unsigned long obj, off;
1388         unsigned int obj_idx;
1389
1390         unsigned int class_idx;
1391         enum fullness_group fg;
1392         struct size_class *class;
1393         struct mapping_area *area;
1394
1395         obj = handle_to_obj(handle);
1396         obj_to_location(obj, &page, &obj_idx);
1397         zspage = get_zspage(page);
1398         get_zspage_mapping(zspage, &class_idx, &fg);
1399         class = pool->size_class[class_idx];
1400         off = (class->size * obj_idx) & ~PAGE_MASK;
1401
1402         area = this_cpu_ptr(&zs_map_area);
1403         if (off + class->size <= PAGE_SIZE)
1404                 kunmap_atomic(area->vm_addr);
1405         else {
1406                 struct page *pages[2];
1407
1408                 pages[0] = page;
1409                 pages[1] = get_next_page(page);
1410                 BUG_ON(!pages[1]);
1411
1412                 __zs_unmap_object(area, pages, off, class->size);
1413         }
1414         put_cpu_var(zs_map_area);
1415
1416         migrate_read_unlock(zspage);
1417         unpin_tag(handle);
1418 }
1419 EXPORT_SYMBOL_GPL(zs_unmap_object);
1420
1421 static unsigned long obj_malloc(struct size_class *class,
1422                                 struct zspage *zspage, unsigned long handle)
1423 {
1424         int i, nr_page, offset;
1425         unsigned long obj;
1426         struct link_free *link;
1427
1428         struct page *m_page;
1429         unsigned long m_offset;
1430         void *vaddr;
1431
1432         handle |= OBJ_ALLOCATED_TAG;
1433         obj = get_freeobj(zspage);
1434
1435         offset = obj * class->size;
1436         nr_page = offset >> PAGE_SHIFT;
1437         m_offset = offset & ~PAGE_MASK;
1438         m_page = get_first_page(zspage);
1439
1440         for (i = 0; i < nr_page; i++)
1441                 m_page = get_next_page(m_page);
1442
1443         vaddr = kmap_atomic(m_page);
1444         link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1445         set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1446         if (likely(!PageHugeObject(m_page)))
1447                 /* record handle in the header of allocated chunk */
1448                 link->handle = handle;
1449         else
1450                 /* record handle to page->index */
1451                 zspage->first_page->index = handle;
1452
1453         kunmap_atomic(vaddr);
1454         mod_zspage_inuse(zspage, 1);
1455         zs_stat_inc(class, OBJ_USED, 1);
1456
1457         obj = location_to_obj(m_page, obj);
1458
1459         return obj;
1460 }
1461
1462
1463 /**
1464  * zs_malloc - Allocate block of given size from pool.
1465  * @pool: pool to allocate from
1466  * @size: size of block to allocate
1467  * @gfp: gfp flags when allocating object
1468  *
1469  * On success, handle to the allocated object is returned,
1470  * otherwise 0.
1471  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1472  */
1473 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1474 {
1475         unsigned long handle, obj;
1476         struct size_class *class;
1477         enum fullness_group newfg;
1478         struct zspage *zspage;
1479
1480         if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1481                 return 0;
1482
1483         handle = cache_alloc_handle(pool, gfp);
1484         if (!handle)
1485                 return 0;
1486
1487         /* extra space in chunk to keep the handle */
1488         size += ZS_HANDLE_SIZE;
1489         class = pool->size_class[get_size_class_index(size)];
1490
1491         spin_lock(&class->lock);
1492         zspage = find_get_zspage(class);
1493         if (likely(zspage)) {
1494                 obj = obj_malloc(class, zspage, handle);
1495                 /* Now move the zspage to another fullness group, if required */
1496                 fix_fullness_group(class, zspage);
1497                 record_obj(handle, obj);
1498                 spin_unlock(&class->lock);
1499
1500                 return handle;
1501         }
1502
1503         spin_unlock(&class->lock);
1504
1505         zspage = alloc_zspage(pool, class, gfp);
1506         if (!zspage) {
1507                 cache_free_handle(pool, handle);
1508                 return 0;
1509         }
1510
1511         spin_lock(&class->lock);
1512         obj = obj_malloc(class, zspage, handle);
1513         newfg = get_fullness_group(class, zspage);
1514         insert_zspage(class, zspage, newfg);
1515         set_zspage_mapping(zspage, class->index, newfg);
1516         record_obj(handle, obj);
1517         atomic_long_add(class->pages_per_zspage,
1518                                 &pool->pages_allocated);
1519         zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1520
1521         /* We completely set up zspage so mark them as movable */
1522         SetZsPageMovable(pool, zspage);
1523         spin_unlock(&class->lock);
1524
1525         return handle;
1526 }
1527 EXPORT_SYMBOL_GPL(zs_malloc);
1528
1529 static void obj_free(struct size_class *class, unsigned long obj)
1530 {
1531         struct link_free *link;
1532         struct zspage *zspage;
1533         struct page *f_page;
1534         unsigned long f_offset;
1535         unsigned int f_objidx;
1536         void *vaddr;
1537
1538         obj &= ~OBJ_ALLOCATED_TAG;
1539         obj_to_location(obj, &f_page, &f_objidx);
1540         f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1541         zspage = get_zspage(f_page);
1542
1543         vaddr = kmap_atomic(f_page);
1544
1545         /* Insert this object in containing zspage's freelist */
1546         link = (struct link_free *)(vaddr + f_offset);
1547         link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1548         kunmap_atomic(vaddr);
1549         set_freeobj(zspage, f_objidx);
1550         mod_zspage_inuse(zspage, -1);
1551         zs_stat_dec(class, OBJ_USED, 1);
1552 }
1553
1554 void zs_free(struct zs_pool *pool, unsigned long handle)
1555 {
1556         struct zspage *zspage;
1557         struct page *f_page;
1558         unsigned long obj;
1559         unsigned int f_objidx;
1560         int class_idx;
1561         struct size_class *class;
1562         enum fullness_group fullness;
1563         bool isolated;
1564
1565         if (unlikely(!handle))
1566                 return;
1567
1568         pin_tag(handle);
1569         obj = handle_to_obj(handle);
1570         obj_to_location(obj, &f_page, &f_objidx);
1571         zspage = get_zspage(f_page);
1572
1573         migrate_read_lock(zspage);
1574
1575         get_zspage_mapping(zspage, &class_idx, &fullness);
1576         class = pool->size_class[class_idx];
1577
1578         spin_lock(&class->lock);
1579         obj_free(class, obj);
1580         fullness = fix_fullness_group(class, zspage);
1581         if (fullness != ZS_EMPTY) {
1582                 migrate_read_unlock(zspage);
1583                 goto out;
1584         }
1585
1586         isolated = is_zspage_isolated(zspage);
1587         migrate_read_unlock(zspage);
1588         /* If zspage is isolated, zs_page_putback will free the zspage */
1589         if (likely(!isolated))
1590                 free_zspage(pool, class, zspage);
1591 out:
1592
1593         spin_unlock(&class->lock);
1594         unpin_tag(handle);
1595         cache_free_handle(pool, handle);
1596 }
1597 EXPORT_SYMBOL_GPL(zs_free);
1598
1599 static void zs_object_copy(struct size_class *class, unsigned long dst,
1600                                 unsigned long src)
1601 {
1602         struct page *s_page, *d_page;
1603         unsigned int s_objidx, d_objidx;
1604         unsigned long s_off, d_off;
1605         void *s_addr, *d_addr;
1606         int s_size, d_size, size;
1607         int written = 0;
1608
1609         s_size = d_size = class->size;
1610
1611         obj_to_location(src, &s_page, &s_objidx);
1612         obj_to_location(dst, &d_page, &d_objidx);
1613
1614         s_off = (class->size * s_objidx) & ~PAGE_MASK;
1615         d_off = (class->size * d_objidx) & ~PAGE_MASK;
1616
1617         if (s_off + class->size > PAGE_SIZE)
1618                 s_size = PAGE_SIZE - s_off;
1619
1620         if (d_off + class->size > PAGE_SIZE)
1621                 d_size = PAGE_SIZE - d_off;
1622
1623         s_addr = kmap_atomic(s_page);
1624         d_addr = kmap_atomic(d_page);
1625
1626         while (1) {
1627                 size = min(s_size, d_size);
1628                 memcpy(d_addr + d_off, s_addr + s_off, size);
1629                 written += size;
1630
1631                 if (written == class->size)
1632                         break;
1633
1634                 s_off += size;
1635                 s_size -= size;
1636                 d_off += size;
1637                 d_size -= size;
1638
1639                 if (s_off >= PAGE_SIZE) {
1640                         kunmap_atomic(d_addr);
1641                         kunmap_atomic(s_addr);
1642                         s_page = get_next_page(s_page);
1643                         s_addr = kmap_atomic(s_page);
1644                         d_addr = kmap_atomic(d_page);
1645                         s_size = class->size - written;
1646                         s_off = 0;
1647                 }
1648
1649                 if (d_off >= PAGE_SIZE) {
1650                         kunmap_atomic(d_addr);
1651                         d_page = get_next_page(d_page);
1652                         d_addr = kmap_atomic(d_page);
1653                         d_size = class->size - written;
1654                         d_off = 0;
1655                 }
1656         }
1657
1658         kunmap_atomic(d_addr);
1659         kunmap_atomic(s_addr);
1660 }
1661
1662 /*
1663  * Find alloced object in zspage from index object and
1664  * return handle.
1665  */
1666 static unsigned long find_alloced_obj(struct size_class *class,
1667                                         struct page *page, int *obj_idx)
1668 {
1669         unsigned long head;
1670         int offset = 0;
1671         int index = *obj_idx;
1672         unsigned long handle = 0;
1673         void *addr = kmap_atomic(page);
1674
1675         offset = get_first_obj_offset(page);
1676         offset += class->size * index;
1677
1678         while (offset < PAGE_SIZE) {
1679                 head = obj_to_head(page, addr + offset);
1680                 if (head & OBJ_ALLOCATED_TAG) {
1681                         handle = head & ~OBJ_ALLOCATED_TAG;
1682                         if (trypin_tag(handle))
1683                                 break;
1684                         handle = 0;
1685                 }
1686
1687                 offset += class->size;
1688                 index++;
1689         }
1690
1691         kunmap_atomic(addr);
1692
1693         *obj_idx = index;
1694
1695         return handle;
1696 }
1697
1698 struct zs_compact_control {
1699         /* Source spage for migration which could be a subpage of zspage */
1700         struct page *s_page;
1701         /* Destination page for migration which should be a first page
1702          * of zspage. */
1703         struct page *d_page;
1704          /* Starting object index within @s_page which used for live object
1705           * in the subpage. */
1706         int obj_idx;
1707 };
1708
1709 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1710                                 struct zs_compact_control *cc)
1711 {
1712         unsigned long used_obj, free_obj;
1713         unsigned long handle;
1714         struct page *s_page = cc->s_page;
1715         struct page *d_page = cc->d_page;
1716         int obj_idx = cc->obj_idx;
1717         int ret = 0;
1718
1719         while (1) {
1720                 handle = find_alloced_obj(class, s_page, &obj_idx);
1721                 if (!handle) {
1722                         s_page = get_next_page(s_page);
1723                         if (!s_page)
1724                                 break;
1725                         obj_idx = 0;
1726                         continue;
1727                 }
1728
1729                 /* Stop if there is no more space */
1730                 if (zspage_full(class, get_zspage(d_page))) {
1731                         unpin_tag(handle);
1732                         ret = -ENOMEM;
1733                         break;
1734                 }
1735
1736                 used_obj = handle_to_obj(handle);
1737                 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1738                 zs_object_copy(class, free_obj, used_obj);
1739                 obj_idx++;
1740                 /*
1741                  * record_obj updates handle's value to free_obj and it will
1742                  * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1743                  * breaks synchronization using pin_tag(e,g, zs_free) so
1744                  * let's keep the lock bit.
1745                  */
1746                 free_obj |= BIT(HANDLE_PIN_BIT);
1747                 record_obj(handle, free_obj);
1748                 unpin_tag(handle);
1749                 obj_free(class, used_obj);
1750         }
1751
1752         /* Remember last position in this iteration */
1753         cc->s_page = s_page;
1754         cc->obj_idx = obj_idx;
1755
1756         return ret;
1757 }
1758
1759 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1760 {
1761         int i;
1762         struct zspage *zspage;
1763         enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1764
1765         if (!source) {
1766                 fg[0] = ZS_ALMOST_FULL;
1767                 fg[1] = ZS_ALMOST_EMPTY;
1768         }
1769
1770         for (i = 0; i < 2; i++) {
1771                 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1772                                                         struct zspage, list);
1773                 if (zspage) {
1774                         VM_BUG_ON(is_zspage_isolated(zspage));
1775                         remove_zspage(class, zspage, fg[i]);
1776                         return zspage;
1777                 }
1778         }
1779
1780         return zspage;
1781 }
1782
1783 /*
1784  * putback_zspage - add @zspage into right class's fullness list
1785  * @class: destination class
1786  * @zspage: target page
1787  *
1788  * Return @zspage's fullness_group
1789  */
1790 static enum fullness_group putback_zspage(struct size_class *class,
1791                         struct zspage *zspage)
1792 {
1793         enum fullness_group fullness;
1794
1795         VM_BUG_ON(is_zspage_isolated(zspage));
1796
1797         fullness = get_fullness_group(class, zspage);
1798         insert_zspage(class, zspage, fullness);
1799         set_zspage_mapping(zspage, class->index, fullness);
1800
1801         return fullness;
1802 }
1803
1804 #ifdef CONFIG_COMPACTION
1805 static struct dentry *zs_mount(struct file_system_type *fs_type,
1806                                 int flags, const char *dev_name, void *data)
1807 {
1808         static const struct dentry_operations ops = {
1809                 .d_dname = simple_dname,
1810         };
1811
1812         return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1813 }
1814
1815 static struct file_system_type zsmalloc_fs = {
1816         .name           = "zsmalloc",
1817         .mount          = zs_mount,
1818         .kill_sb        = kill_anon_super,
1819 };
1820
1821 static int zsmalloc_mount(void)
1822 {
1823         int ret = 0;
1824
1825         zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1826         if (IS_ERR(zsmalloc_mnt))
1827                 ret = PTR_ERR(zsmalloc_mnt);
1828
1829         return ret;
1830 }
1831
1832 static void zsmalloc_unmount(void)
1833 {
1834         kern_unmount(zsmalloc_mnt);
1835 }
1836
1837 static void migrate_lock_init(struct zspage *zspage)
1838 {
1839         rwlock_init(&zspage->lock);
1840 }
1841
1842 static void migrate_read_lock(struct zspage *zspage)
1843 {
1844         read_lock(&zspage->lock);
1845 }
1846
1847 static void migrate_read_unlock(struct zspage *zspage)
1848 {
1849         read_unlock(&zspage->lock);
1850 }
1851
1852 static void migrate_write_lock(struct zspage *zspage)
1853 {
1854         write_lock(&zspage->lock);
1855 }
1856
1857 static void migrate_write_unlock(struct zspage *zspage)
1858 {
1859         write_unlock(&zspage->lock);
1860 }
1861
1862 /* Number of isolated subpage for *page migration* in this zspage */
1863 static void inc_zspage_isolation(struct zspage *zspage)
1864 {
1865         zspage->isolated++;
1866 }
1867
1868 static void dec_zspage_isolation(struct zspage *zspage)
1869 {
1870         zspage->isolated--;
1871 }
1872
1873 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1874                                 struct page *newpage, struct page *oldpage)
1875 {
1876         struct page *page;
1877         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1878         int idx = 0;
1879
1880         page = get_first_page(zspage);
1881         do {
1882                 if (page == oldpage)
1883                         pages[idx] = newpage;
1884                 else
1885                         pages[idx] = page;
1886                 idx++;
1887         } while ((page = get_next_page(page)) != NULL);
1888
1889         create_page_chain(class, zspage, pages);
1890         set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1891         if (unlikely(PageHugeObject(oldpage)))
1892                 newpage->index = oldpage->index;
1893         __SetPageMovable(newpage, page_mapping(oldpage));
1894 }
1895
1896 bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1897 {
1898         struct zs_pool *pool;
1899         struct size_class *class;
1900         int class_idx;
1901         enum fullness_group fullness;
1902         struct zspage *zspage;
1903         struct address_space *mapping;
1904
1905         /*
1906          * Page is locked so zspage couldn't be destroyed. For detail, look at
1907          * lock_zspage in free_zspage.
1908          */
1909         VM_BUG_ON_PAGE(!PageMovable(page), page);
1910         VM_BUG_ON_PAGE(PageIsolated(page), page);
1911
1912         zspage = get_zspage(page);
1913
1914         /*
1915          * Without class lock, fullness could be stale while class_idx is okay
1916          * because class_idx is constant unless page is freed so we should get
1917          * fullness again under class lock.
1918          */
1919         get_zspage_mapping(zspage, &class_idx, &fullness);
1920         mapping = page_mapping(page);
1921         pool = mapping->private_data;
1922         class = pool->size_class[class_idx];
1923
1924         spin_lock(&class->lock);
1925         if (get_zspage_inuse(zspage) == 0) {
1926                 spin_unlock(&class->lock);
1927                 return false;
1928         }
1929
1930         /* zspage is isolated for object migration */
1931         if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1932                 spin_unlock(&class->lock);
1933                 return false;
1934         }
1935
1936         /*
1937          * If this is first time isolation for the zspage, isolate zspage from
1938          * size_class to prevent further object allocation from the zspage.
1939          */
1940         if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1941                 get_zspage_mapping(zspage, &class_idx, &fullness);
1942                 remove_zspage(class, zspage, fullness);
1943         }
1944
1945         inc_zspage_isolation(zspage);
1946         spin_unlock(&class->lock);
1947
1948         return true;
1949 }
1950
1951 int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1952                 struct page *page, enum migrate_mode mode)
1953 {
1954         struct zs_pool *pool;
1955         struct size_class *class;
1956         int class_idx;
1957         enum fullness_group fullness;
1958         struct zspage *zspage;
1959         struct page *dummy;
1960         void *s_addr, *d_addr, *addr;
1961         int offset, pos;
1962         unsigned long handle, head;
1963         unsigned long old_obj, new_obj;
1964         unsigned int obj_idx;
1965         int ret = -EAGAIN;
1966
1967         /*
1968          * We cannot support the _NO_COPY case here, because copy needs to
1969          * happen under the zs lock, which does not work with
1970          * MIGRATE_SYNC_NO_COPY workflow.
1971          */
1972         if (mode == MIGRATE_SYNC_NO_COPY)
1973                 return -EINVAL;
1974
1975         VM_BUG_ON_PAGE(!PageMovable(page), page);
1976         VM_BUG_ON_PAGE(!PageIsolated(page), page);
1977
1978         zspage = get_zspage(page);
1979
1980         /* Concurrent compactor cannot migrate any subpage in zspage */
1981         migrate_write_lock(zspage);
1982         get_zspage_mapping(zspage, &class_idx, &fullness);
1983         pool = mapping->private_data;
1984         class = pool->size_class[class_idx];
1985         offset = get_first_obj_offset(page);
1986
1987         spin_lock(&class->lock);
1988         if (!get_zspage_inuse(zspage)) {
1989                 /*
1990                  * Set "offset" to end of the page so that every loops
1991                  * skips unnecessary object scanning.
1992                  */
1993                 offset = PAGE_SIZE;
1994         }
1995
1996         pos = offset;
1997         s_addr = kmap_atomic(page);
1998         while (pos < PAGE_SIZE) {
1999                 head = obj_to_head(page, s_addr + pos);
2000                 if (head & OBJ_ALLOCATED_TAG) {
2001                         handle = head & ~OBJ_ALLOCATED_TAG;
2002                         if (!trypin_tag(handle))
2003                                 goto unpin_objects;
2004                 }
2005                 pos += class->size;
2006         }
2007
2008         /*
2009          * Here, any user cannot access all objects in the zspage so let's move.
2010          */
2011         d_addr = kmap_atomic(newpage);
2012         memcpy(d_addr, s_addr, PAGE_SIZE);
2013         kunmap_atomic(d_addr);
2014
2015         for (addr = s_addr + offset; addr < s_addr + pos;
2016                                         addr += class->size) {
2017                 head = obj_to_head(page, addr);
2018                 if (head & OBJ_ALLOCATED_TAG) {
2019                         handle = head & ~OBJ_ALLOCATED_TAG;
2020                         if (!testpin_tag(handle))
2021                                 BUG();
2022
2023                         old_obj = handle_to_obj(handle);
2024                         obj_to_location(old_obj, &dummy, &obj_idx);
2025                         new_obj = (unsigned long)location_to_obj(newpage,
2026                                                                 obj_idx);
2027                         new_obj |= BIT(HANDLE_PIN_BIT);
2028                         record_obj(handle, new_obj);
2029                 }
2030         }
2031
2032         replace_sub_page(class, zspage, newpage, page);
2033         get_page(newpage);
2034
2035         dec_zspage_isolation(zspage);
2036
2037         /*
2038          * Page migration is done so let's putback isolated zspage to
2039          * the list if @page is final isolated subpage in the zspage.
2040          */
2041         if (!is_zspage_isolated(zspage))
2042                 putback_zspage(class, zspage);
2043
2044         reset_page(page);
2045         put_page(page);
2046         page = newpage;
2047
2048         ret = MIGRATEPAGE_SUCCESS;
2049 unpin_objects:
2050         for (addr = s_addr + offset; addr < s_addr + pos;
2051                                                 addr += class->size) {
2052                 head = obj_to_head(page, addr);
2053                 if (head & OBJ_ALLOCATED_TAG) {
2054                         handle = head & ~OBJ_ALLOCATED_TAG;
2055                         if (!testpin_tag(handle))
2056                                 BUG();
2057                         unpin_tag(handle);
2058                 }
2059         }
2060         kunmap_atomic(s_addr);
2061         spin_unlock(&class->lock);
2062         migrate_write_unlock(zspage);
2063
2064         return ret;
2065 }
2066
2067 void zs_page_putback(struct page *page)
2068 {
2069         struct zs_pool *pool;
2070         struct size_class *class;
2071         int class_idx;
2072         enum fullness_group fg;
2073         struct address_space *mapping;
2074         struct zspage *zspage;
2075
2076         VM_BUG_ON_PAGE(!PageMovable(page), page);
2077         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2078
2079         zspage = get_zspage(page);
2080         get_zspage_mapping(zspage, &class_idx, &fg);
2081         mapping = page_mapping(page);
2082         pool = mapping->private_data;
2083         class = pool->size_class[class_idx];
2084
2085         spin_lock(&class->lock);
2086         dec_zspage_isolation(zspage);
2087         if (!is_zspage_isolated(zspage)) {
2088                 fg = putback_zspage(class, zspage);
2089                 /*
2090                  * Due to page_lock, we cannot free zspage immediately
2091                  * so let's defer.
2092                  */
2093                 if (fg == ZS_EMPTY)
2094                         schedule_work(&pool->free_work);
2095         }
2096         spin_unlock(&class->lock);
2097 }
2098
2099 const struct address_space_operations zsmalloc_aops = {
2100         .isolate_page = zs_page_isolate,
2101         .migratepage = zs_page_migrate,
2102         .putback_page = zs_page_putback,
2103 };
2104
2105 static int zs_register_migration(struct zs_pool *pool)
2106 {
2107         pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2108         if (IS_ERR(pool->inode)) {
2109                 pool->inode = NULL;
2110                 return 1;
2111         }
2112
2113         pool->inode->i_mapping->private_data = pool;
2114         pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2115         return 0;
2116 }
2117
2118 static void zs_unregister_migration(struct zs_pool *pool)
2119 {
2120         flush_work(&pool->free_work);
2121         iput(pool->inode);
2122 }
2123
2124 /*
2125  * Caller should hold page_lock of all pages in the zspage
2126  * In here, we cannot use zspage meta data.
2127  */
2128 static void async_free_zspage(struct work_struct *work)
2129 {
2130         int i;
2131         struct size_class *class;
2132         unsigned int class_idx;
2133         enum fullness_group fullness;
2134         struct zspage *zspage, *tmp;
2135         LIST_HEAD(free_pages);
2136         struct zs_pool *pool = container_of(work, struct zs_pool,
2137                                         free_work);
2138
2139         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2140                 class = pool->size_class[i];
2141                 if (class->index != i)
2142                         continue;
2143
2144                 spin_lock(&class->lock);
2145                 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2146                 spin_unlock(&class->lock);
2147         }
2148
2149
2150         list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2151                 list_del(&zspage->list);
2152                 lock_zspage(zspage);
2153
2154                 get_zspage_mapping(zspage, &class_idx, &fullness);
2155                 VM_BUG_ON(fullness != ZS_EMPTY);
2156                 class = pool->size_class[class_idx];
2157                 spin_lock(&class->lock);
2158                 __free_zspage(pool, pool->size_class[class_idx], zspage);
2159                 spin_unlock(&class->lock);
2160         }
2161 };
2162
2163 static void kick_deferred_free(struct zs_pool *pool)
2164 {
2165         schedule_work(&pool->free_work);
2166 }
2167
2168 static void init_deferred_free(struct zs_pool *pool)
2169 {
2170         INIT_WORK(&pool->free_work, async_free_zspage);
2171 }
2172
2173 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2174 {
2175         struct page *page = get_first_page(zspage);
2176
2177         do {
2178                 WARN_ON(!trylock_page(page));
2179                 __SetPageMovable(page, pool->inode->i_mapping);
2180                 unlock_page(page);
2181         } while ((page = get_next_page(page)) != NULL);
2182 }
2183 #endif
2184
2185 /*
2186  *
2187  * Based on the number of unused allocated objects calculate
2188  * and return the number of pages that we can free.
2189  */
2190 static unsigned long zs_can_compact(struct size_class *class)
2191 {
2192         unsigned long obj_wasted;
2193         unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2194         unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2195
2196         if (obj_allocated <= obj_used)
2197                 return 0;
2198
2199         obj_wasted = obj_allocated - obj_used;
2200         obj_wasted /= class->objs_per_zspage;
2201
2202         return obj_wasted * class->pages_per_zspage;
2203 }
2204
2205 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2206 {
2207         struct zs_compact_control cc;
2208         struct zspage *src_zspage;
2209         struct zspage *dst_zspage = NULL;
2210
2211         spin_lock(&class->lock);
2212         while ((src_zspage = isolate_zspage(class, true))) {
2213
2214                 if (!zs_can_compact(class))
2215                         break;
2216
2217                 cc.obj_idx = 0;
2218                 cc.s_page = get_first_page(src_zspage);
2219
2220                 while ((dst_zspage = isolate_zspage(class, false))) {
2221                         cc.d_page = get_first_page(dst_zspage);
2222                         /*
2223                          * If there is no more space in dst_page, resched
2224                          * and see if anyone had allocated another zspage.
2225                          */
2226                         if (!migrate_zspage(pool, class, &cc))
2227                                 break;
2228
2229                         putback_zspage(class, dst_zspage);
2230                 }
2231
2232                 /* Stop if we couldn't find slot */
2233                 if (dst_zspage == NULL)
2234                         break;
2235
2236                 putback_zspage(class, dst_zspage);
2237                 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2238                         free_zspage(pool, class, src_zspage);
2239                         pool->stats.pages_compacted += class->pages_per_zspage;
2240                 }
2241                 spin_unlock(&class->lock);
2242                 cond_resched();
2243                 spin_lock(&class->lock);
2244         }
2245
2246         if (src_zspage)
2247                 putback_zspage(class, src_zspage);
2248
2249         spin_unlock(&class->lock);
2250 }
2251
2252 unsigned long zs_compact(struct zs_pool *pool)
2253 {
2254         int i;
2255         struct size_class *class;
2256
2257         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2258                 class = pool->size_class[i];
2259                 if (!class)
2260                         continue;
2261                 if (class->index != i)
2262                         continue;
2263                 __zs_compact(pool, class);
2264         }
2265
2266         return pool->stats.pages_compacted;
2267 }
2268 EXPORT_SYMBOL_GPL(zs_compact);
2269
2270 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2271 {
2272         memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2273 }
2274 EXPORT_SYMBOL_GPL(zs_pool_stats);
2275
2276 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2277                 struct shrink_control *sc)
2278 {
2279         unsigned long pages_freed;
2280         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2281                         shrinker);
2282
2283         pages_freed = pool->stats.pages_compacted;
2284         /*
2285          * Compact classes and calculate compaction delta.
2286          * Can run concurrently with a manually triggered
2287          * (by user) compaction.
2288          */
2289         pages_freed = zs_compact(pool) - pages_freed;
2290
2291         return pages_freed ? pages_freed : SHRINK_STOP;
2292 }
2293
2294 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2295                 struct shrink_control *sc)
2296 {
2297         int i;
2298         struct size_class *class;
2299         unsigned long pages_to_free = 0;
2300         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2301                         shrinker);
2302
2303         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2304                 class = pool->size_class[i];
2305                 if (!class)
2306                         continue;
2307                 if (class->index != i)
2308                         continue;
2309
2310                 pages_to_free += zs_can_compact(class);
2311         }
2312
2313         return pages_to_free;
2314 }
2315
2316 static void zs_unregister_shrinker(struct zs_pool *pool)
2317 {
2318         unregister_shrinker(&pool->shrinker);
2319 }
2320
2321 static int zs_register_shrinker(struct zs_pool *pool)
2322 {
2323         pool->shrinker.scan_objects = zs_shrinker_scan;
2324         pool->shrinker.count_objects = zs_shrinker_count;
2325         pool->shrinker.batch = 0;
2326         pool->shrinker.seeks = DEFAULT_SEEKS;
2327
2328         return register_shrinker(&pool->shrinker);
2329 }
2330
2331 /**
2332  * zs_create_pool - Creates an allocation pool to work from.
2333  * @name: pool name to be created
2334  *
2335  * This function must be called before anything when using
2336  * the zsmalloc allocator.
2337  *
2338  * On success, a pointer to the newly created pool is returned,
2339  * otherwise NULL.
2340  */
2341 struct zs_pool *zs_create_pool(const char *name)
2342 {
2343         int i;
2344         struct zs_pool *pool;
2345         struct size_class *prev_class = NULL;
2346
2347         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2348         if (!pool)
2349                 return NULL;
2350
2351         init_deferred_free(pool);
2352
2353         pool->name = kstrdup(name, GFP_KERNEL);
2354         if (!pool->name)
2355                 goto err;
2356
2357         if (create_cache(pool))
2358                 goto err;
2359
2360         /*
2361          * Iterate reversely, because, size of size_class that we want to use
2362          * for merging should be larger or equal to current size.
2363          */
2364         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2365                 int size;
2366                 int pages_per_zspage;
2367                 int objs_per_zspage;
2368                 struct size_class *class;
2369                 int fullness = 0;
2370
2371                 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2372                 if (size > ZS_MAX_ALLOC_SIZE)
2373                         size = ZS_MAX_ALLOC_SIZE;
2374                 pages_per_zspage = get_pages_per_zspage(size);
2375                 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2376
2377                 /*
2378                  * size_class is used for normal zsmalloc operation such
2379                  * as alloc/free for that size. Although it is natural that we
2380                  * have one size_class for each size, there is a chance that we
2381                  * can get more memory utilization if we use one size_class for
2382                  * many different sizes whose size_class have same
2383                  * characteristics. So, we makes size_class point to
2384                  * previous size_class if possible.
2385                  */
2386                 if (prev_class) {
2387                         if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2388                                 pool->size_class[i] = prev_class;
2389                                 continue;
2390                         }
2391                 }
2392
2393                 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2394                 if (!class)
2395                         goto err;
2396
2397                 class->size = size;
2398                 class->index = i;
2399                 class->pages_per_zspage = pages_per_zspage;
2400                 class->objs_per_zspage = objs_per_zspage;
2401                 spin_lock_init(&class->lock);
2402                 pool->size_class[i] = class;
2403                 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2404                                                         fullness++)
2405                         INIT_LIST_HEAD(&class->fullness_list[fullness]);
2406
2407                 prev_class = class;
2408         }
2409
2410         /* debug only, don't abort if it fails */
2411         zs_pool_stat_create(pool, name);
2412
2413         if (zs_register_migration(pool))
2414                 goto err;
2415
2416         /*
2417          * Not critical since shrinker is only used to trigger internal
2418          * defragmentation of the pool which is pretty optional thing.  If
2419          * registration fails we still can use the pool normally and user can
2420          * trigger compaction manually. Thus, ignore return code.
2421          */
2422         zs_register_shrinker(pool);
2423
2424         return pool;
2425
2426 err:
2427         zs_destroy_pool(pool);
2428         return NULL;
2429 }
2430 EXPORT_SYMBOL_GPL(zs_create_pool);
2431
2432 void zs_destroy_pool(struct zs_pool *pool)
2433 {
2434         int i;
2435
2436         zs_unregister_shrinker(pool);
2437         zs_unregister_migration(pool);
2438         zs_pool_stat_destroy(pool);
2439
2440         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2441                 int fg;
2442                 struct size_class *class = pool->size_class[i];
2443
2444                 if (!class)
2445                         continue;
2446
2447                 if (class->index != i)
2448                         continue;
2449
2450                 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2451                         if (!list_empty(&class->fullness_list[fg])) {
2452                                 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2453                                         class->size, fg);
2454                         }
2455                 }
2456                 kfree(class);
2457         }
2458
2459         destroy_cache(pool);
2460         kfree(pool->name);
2461         kfree(pool);
2462 }
2463 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2464
2465 static int __init zs_init(void)
2466 {
2467         int ret;
2468
2469         ret = zsmalloc_mount();
2470         if (ret)
2471                 goto out;
2472
2473         ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2474                                 zs_cpu_prepare, zs_cpu_dead);
2475         if (ret)
2476                 goto hp_setup_fail;
2477
2478 #ifdef CONFIG_ZPOOL
2479         zpool_register_driver(&zs_zpool_driver);
2480 #endif
2481
2482         zs_stat_init();
2483
2484         return 0;
2485
2486 hp_setup_fail:
2487         zsmalloc_unmount();
2488 out:
2489         return ret;
2490 }
2491
2492 static void __exit zs_exit(void)
2493 {
2494 #ifdef CONFIG_ZPOOL
2495         zpool_unregister_driver(&zs_zpool_driver);
2496 #endif
2497         zsmalloc_unmount();
2498         cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2499
2500         zs_stat_exit();
2501 }
2502
2503 module_init(zs_init);
2504 module_exit(zs_exit);
2505
2506 MODULE_LICENSE("Dual BSD/GPL");
2507 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");