mm/hugetlb: fix memory offline with hugepage size > memory block size
[platform/kernel/linux-exynos.git] / mm / zsmalloc.c
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *      page->private: points to zspage
20  *      page->freelist(index): links together all component pages of a zspage
21  *              For the huge page, this is always 0, so we use this field
22  *              to store handle.
23  *      page->units: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *      PG_private: identifies the first component page
27  *      PG_private2: identifies the last component page
28  *      PG_owner_priv_1: indentifies the huge component page
29  *
30  */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/sched.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/types.h>
50 #include <linux/debugfs.h>
51 #include <linux/zsmalloc.h>
52 #include <linux/zpool.h>
53 #include <linux/mount.h>
54 #include <linux/migrate.h>
55 #include <linux/pagemap.h>
56
57 #define ZSPAGE_MAGIC    0x58
58
59 /*
60  * This must be power of 2 and greater than of equal to sizeof(link_free).
61  * These two conditions ensure that any 'struct link_free' itself doesn't
62  * span more than 1 page which avoids complex case of mapping 2 pages simply
63  * to restore link_free pointer values.
64  */
65 #define ZS_ALIGN                8
66
67 /*
68  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
69  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
70  */
71 #define ZS_MAX_ZSPAGE_ORDER 2
72 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
73
74 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
75
76 /*
77  * Object location (<PFN>, <obj_idx>) is encoded as
78  * as single (unsigned long) handle value.
79  *
80  * Note that object index <obj_idx> starts from 0.
81  *
82  * This is made more complicated by various memory models and PAE.
83  */
84
85 #ifndef MAX_PHYSMEM_BITS
86 #ifdef CONFIG_HIGHMEM64G
87 #define MAX_PHYSMEM_BITS 36
88 #else /* !CONFIG_HIGHMEM64G */
89 /*
90  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
91  * be PAGE_SHIFT
92  */
93 #define MAX_PHYSMEM_BITS BITS_PER_LONG
94 #endif
95 #endif
96 #define _PFN_BITS               (MAX_PHYSMEM_BITS - PAGE_SHIFT)
97
98 /*
99  * Memory for allocating for handle keeps object position by
100  * encoding <page, obj_idx> and the encoded value has a room
101  * in least bit(ie, look at obj_to_location).
102  * We use the bit to synchronize between object access by
103  * user and migration.
104  */
105 #define HANDLE_PIN_BIT  0
106
107 /*
108  * Head in allocated object should have OBJ_ALLOCATED_TAG
109  * to identify the object was allocated or not.
110  * It's okay to add the status bit in the least bit because
111  * header keeps handle which is 4byte-aligned address so we
112  * have room for two bit at least.
113  */
114 #define OBJ_ALLOCATED_TAG 1
115 #define OBJ_TAG_BITS 1
116 #define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
117 #define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
118
119 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
120 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
121 #define ZS_MIN_ALLOC_SIZE \
122         MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
123 /* each chunk includes extra space to keep handle */
124 #define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
125
126 /*
127  * On systems with 4K page size, this gives 255 size classes! There is a
128  * trader-off here:
129  *  - Large number of size classes is potentially wasteful as free page are
130  *    spread across these classes
131  *  - Small number of size classes causes large internal fragmentation
132  *  - Probably its better to use specific size classes (empirically
133  *    determined). NOTE: all those class sizes must be set as multiple of
134  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
135  *
136  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
137  *  (reason above)
138  */
139 #define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
140
141 enum fullness_group {
142         ZS_EMPTY,
143         ZS_ALMOST_EMPTY,
144         ZS_ALMOST_FULL,
145         ZS_FULL,
146         NR_ZS_FULLNESS,
147 };
148
149 enum zs_stat_type {
150         CLASS_EMPTY,
151         CLASS_ALMOST_EMPTY,
152         CLASS_ALMOST_FULL,
153         CLASS_FULL,
154         OBJ_ALLOCATED,
155         OBJ_USED,
156         NR_ZS_STAT_TYPE,
157 };
158
159 struct zs_size_stat {
160         unsigned long objs[NR_ZS_STAT_TYPE];
161 };
162
163 #ifdef CONFIG_ZSMALLOC_STAT
164 static struct dentry *zs_stat_root;
165 #endif
166
167 #ifdef CONFIG_COMPACTION
168 static struct vfsmount *zsmalloc_mnt;
169 #endif
170
171 /*
172  * number of size_classes
173  */
174 static int zs_size_classes;
175
176 /*
177  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
178  *      n <= N / f, where
179  * n = number of allocated objects
180  * N = total number of objects zspage can store
181  * f = fullness_threshold_frac
182  *
183  * Similarly, we assign zspage to:
184  *      ZS_ALMOST_FULL  when n > N / f
185  *      ZS_EMPTY        when n == 0
186  *      ZS_FULL         when n == N
187  *
188  * (see: fix_fullness_group())
189  */
190 static const int fullness_threshold_frac = 4;
191
192 struct size_class {
193         spinlock_t lock;
194         struct list_head fullness_list[NR_ZS_FULLNESS];
195         /*
196          * Size of objects stored in this class. Must be multiple
197          * of ZS_ALIGN.
198          */
199         int size;
200         int objs_per_zspage;
201         /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
202         int pages_per_zspage;
203
204         unsigned int index;
205         struct zs_size_stat stats;
206 };
207
208 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
209 static void SetPageHugeObject(struct page *page)
210 {
211         SetPageOwnerPriv1(page);
212 }
213
214 static void ClearPageHugeObject(struct page *page)
215 {
216         ClearPageOwnerPriv1(page);
217 }
218
219 static int PageHugeObject(struct page *page)
220 {
221         return PageOwnerPriv1(page);
222 }
223
224 /*
225  * Placed within free objects to form a singly linked list.
226  * For every zspage, zspage->freeobj gives head of this list.
227  *
228  * This must be power of 2 and less than or equal to ZS_ALIGN
229  */
230 struct link_free {
231         union {
232                 /*
233                  * Free object index;
234                  * It's valid for non-allocated object
235                  */
236                 unsigned long next;
237                 /*
238                  * Handle of allocated object.
239                  */
240                 unsigned long handle;
241         };
242 };
243
244 struct zs_pool {
245         const char *name;
246
247         struct size_class **size_class;
248         struct kmem_cache *handle_cachep;
249         struct kmem_cache *zspage_cachep;
250
251         atomic_long_t pages_allocated;
252
253         struct zs_pool_stats stats;
254
255         /* Compact classes */
256         struct shrinker shrinker;
257         /*
258          * To signify that register_shrinker() was successful
259          * and unregister_shrinker() will not Oops.
260          */
261         bool shrinker_enabled;
262 #ifdef CONFIG_ZSMALLOC_STAT
263         struct dentry *stat_dentry;
264 #endif
265 #ifdef CONFIG_COMPACTION
266         struct inode *inode;
267         struct work_struct free_work;
268 #endif
269 };
270
271 /*
272  * A zspage's class index and fullness group
273  * are encoded in its (first)page->mapping
274  */
275 #define FULLNESS_BITS   2
276 #define CLASS_BITS      8
277 #define ISOLATED_BITS   3
278 #define MAGIC_VAL_BITS  8
279
280 struct zspage {
281         struct {
282                 unsigned int fullness:FULLNESS_BITS;
283                 unsigned int class:CLASS_BITS;
284                 unsigned int isolated:ISOLATED_BITS;
285                 unsigned int magic:MAGIC_VAL_BITS;
286         };
287         unsigned int inuse;
288         unsigned int freeobj;
289         struct page *first_page;
290         struct list_head list; /* fullness list */
291 #ifdef CONFIG_COMPACTION
292         rwlock_t lock;
293 #endif
294 };
295
296 struct mapping_area {
297 #ifdef CONFIG_PGTABLE_MAPPING
298         struct vm_struct *vm; /* vm area for mapping object that span pages */
299 #else
300         char *vm_buf; /* copy buffer for objects that span pages */
301 #endif
302         char *vm_addr; /* address of kmap_atomic()'ed pages */
303         enum zs_mapmode vm_mm; /* mapping mode */
304 };
305
306 #ifdef CONFIG_COMPACTION
307 static int zs_register_migration(struct zs_pool *pool);
308 static void zs_unregister_migration(struct zs_pool *pool);
309 static void migrate_lock_init(struct zspage *zspage);
310 static void migrate_read_lock(struct zspage *zspage);
311 static void migrate_read_unlock(struct zspage *zspage);
312 static void kick_deferred_free(struct zs_pool *pool);
313 static void init_deferred_free(struct zs_pool *pool);
314 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
315 #else
316 static int zsmalloc_mount(void) { return 0; }
317 static void zsmalloc_unmount(void) {}
318 static int zs_register_migration(struct zs_pool *pool) { return 0; }
319 static void zs_unregister_migration(struct zs_pool *pool) {}
320 static void migrate_lock_init(struct zspage *zspage) {}
321 static void migrate_read_lock(struct zspage *zspage) {}
322 static void migrate_read_unlock(struct zspage *zspage) {}
323 static void kick_deferred_free(struct zs_pool *pool) {}
324 static void init_deferred_free(struct zs_pool *pool) {}
325 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
326 #endif
327
328 static int create_cache(struct zs_pool *pool)
329 {
330         pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
331                                         0, 0, NULL);
332         if (!pool->handle_cachep)
333                 return 1;
334
335         pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
336                                         0, 0, NULL);
337         if (!pool->zspage_cachep) {
338                 kmem_cache_destroy(pool->handle_cachep);
339                 pool->handle_cachep = NULL;
340                 return 1;
341         }
342
343         return 0;
344 }
345
346 static void destroy_cache(struct zs_pool *pool)
347 {
348         kmem_cache_destroy(pool->handle_cachep);
349         kmem_cache_destroy(pool->zspage_cachep);
350 }
351
352 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
353 {
354         return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
355                         gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
356 }
357
358 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
359 {
360         kmem_cache_free(pool->handle_cachep, (void *)handle);
361 }
362
363 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
364 {
365         return kmem_cache_alloc(pool->zspage_cachep,
366                         flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
367 };
368
369 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
370 {
371         kmem_cache_free(pool->zspage_cachep, zspage);
372 }
373
374 static void record_obj(unsigned long handle, unsigned long obj)
375 {
376         /*
377          * lsb of @obj represents handle lock while other bits
378          * represent object value the handle is pointing so
379          * updating shouldn't do store tearing.
380          */
381         WRITE_ONCE(*(unsigned long *)handle, obj);
382 }
383
384 /* zpool driver */
385
386 #ifdef CONFIG_ZPOOL
387
388 static void *zs_zpool_create(const char *name, gfp_t gfp,
389                              const struct zpool_ops *zpool_ops,
390                              struct zpool *zpool)
391 {
392         /*
393          * Ignore global gfp flags: zs_malloc() may be invoked from
394          * different contexts and its caller must provide a valid
395          * gfp mask.
396          */
397         return zs_create_pool(name);
398 }
399
400 static void zs_zpool_destroy(void *pool)
401 {
402         zs_destroy_pool(pool);
403 }
404
405 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
406                         unsigned long *handle)
407 {
408         *handle = zs_malloc(pool, size, gfp);
409         return *handle ? 0 : -1;
410 }
411 static void zs_zpool_free(void *pool, unsigned long handle)
412 {
413         zs_free(pool, handle);
414 }
415
416 static int zs_zpool_shrink(void *pool, unsigned int pages,
417                         unsigned int *reclaimed)
418 {
419         return -EINVAL;
420 }
421
422 static void *zs_zpool_map(void *pool, unsigned long handle,
423                         enum zpool_mapmode mm)
424 {
425         enum zs_mapmode zs_mm;
426
427         switch (mm) {
428         case ZPOOL_MM_RO:
429                 zs_mm = ZS_MM_RO;
430                 break;
431         case ZPOOL_MM_WO:
432                 zs_mm = ZS_MM_WO;
433                 break;
434         case ZPOOL_MM_RW: /* fallthru */
435         default:
436                 zs_mm = ZS_MM_RW;
437                 break;
438         }
439
440         return zs_map_object(pool, handle, zs_mm);
441 }
442 static void zs_zpool_unmap(void *pool, unsigned long handle)
443 {
444         zs_unmap_object(pool, handle);
445 }
446
447 static u64 zs_zpool_total_size(void *pool)
448 {
449         return zs_get_total_pages(pool) << PAGE_SHIFT;
450 }
451
452 static struct zpool_driver zs_zpool_driver = {
453         .type =         "zsmalloc",
454         .owner =        THIS_MODULE,
455         .create =       zs_zpool_create,
456         .destroy =      zs_zpool_destroy,
457         .malloc =       zs_zpool_malloc,
458         .free =         zs_zpool_free,
459         .shrink =       zs_zpool_shrink,
460         .map =          zs_zpool_map,
461         .unmap =        zs_zpool_unmap,
462         .total_size =   zs_zpool_total_size,
463 };
464
465 MODULE_ALIAS("zpool-zsmalloc");
466 #endif /* CONFIG_ZPOOL */
467
468 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
469 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
470
471 static bool is_zspage_isolated(struct zspage *zspage)
472 {
473         return zspage->isolated;
474 }
475
476 static int is_first_page(struct page *page)
477 {
478         return PagePrivate(page);
479 }
480
481 /* Protected by class->lock */
482 static inline int get_zspage_inuse(struct zspage *zspage)
483 {
484         return zspage->inuse;
485 }
486
487 static inline void set_zspage_inuse(struct zspage *zspage, int val)
488 {
489         zspage->inuse = val;
490 }
491
492 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
493 {
494         zspage->inuse += val;
495 }
496
497 static inline struct page *get_first_page(struct zspage *zspage)
498 {
499         struct page *first_page = zspage->first_page;
500
501         VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
502         return first_page;
503 }
504
505 static inline int get_first_obj_offset(struct page *page)
506 {
507         return page->units;
508 }
509
510 static inline void set_first_obj_offset(struct page *page, int offset)
511 {
512         page->units = offset;
513 }
514
515 static inline unsigned int get_freeobj(struct zspage *zspage)
516 {
517         return zspage->freeobj;
518 }
519
520 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
521 {
522         zspage->freeobj = obj;
523 }
524
525 static void get_zspage_mapping(struct zspage *zspage,
526                                 unsigned int *class_idx,
527                                 enum fullness_group *fullness)
528 {
529         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
530
531         *fullness = zspage->fullness;
532         *class_idx = zspage->class;
533 }
534
535 static void set_zspage_mapping(struct zspage *zspage,
536                                 unsigned int class_idx,
537                                 enum fullness_group fullness)
538 {
539         zspage->class = class_idx;
540         zspage->fullness = fullness;
541 }
542
543 /*
544  * zsmalloc divides the pool into various size classes where each
545  * class maintains a list of zspages where each zspage is divided
546  * into equal sized chunks. Each allocation falls into one of these
547  * classes depending on its size. This function returns index of the
548  * size class which has chunk size big enough to hold the give size.
549  */
550 static int get_size_class_index(int size)
551 {
552         int idx = 0;
553
554         if (likely(size > ZS_MIN_ALLOC_SIZE))
555                 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
556                                 ZS_SIZE_CLASS_DELTA);
557
558         return min(zs_size_classes - 1, idx);
559 }
560
561 static inline void zs_stat_inc(struct size_class *class,
562                                 enum zs_stat_type type, unsigned long cnt)
563 {
564         class->stats.objs[type] += cnt;
565 }
566
567 static inline void zs_stat_dec(struct size_class *class,
568                                 enum zs_stat_type type, unsigned long cnt)
569 {
570         class->stats.objs[type] -= cnt;
571 }
572
573 static inline unsigned long zs_stat_get(struct size_class *class,
574                                 enum zs_stat_type type)
575 {
576         return class->stats.objs[type];
577 }
578
579 #ifdef CONFIG_ZSMALLOC_STAT
580
581 static void __init zs_stat_init(void)
582 {
583         if (!debugfs_initialized()) {
584                 pr_warn("debugfs not available, stat dir not created\n");
585                 return;
586         }
587
588         zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
589         if (!zs_stat_root)
590                 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
591 }
592
593 static void __exit zs_stat_exit(void)
594 {
595         debugfs_remove_recursive(zs_stat_root);
596 }
597
598 static unsigned long zs_can_compact(struct size_class *class);
599
600 static int zs_stats_size_show(struct seq_file *s, void *v)
601 {
602         int i;
603         struct zs_pool *pool = s->private;
604         struct size_class *class;
605         int objs_per_zspage;
606         unsigned long class_almost_full, class_almost_empty;
607         unsigned long obj_allocated, obj_used, pages_used, freeable;
608         unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
609         unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
610         unsigned long total_freeable = 0;
611
612         seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
613                         "class", "size", "almost_full", "almost_empty",
614                         "obj_allocated", "obj_used", "pages_used",
615                         "pages_per_zspage", "freeable");
616
617         for (i = 0; i < zs_size_classes; i++) {
618                 class = pool->size_class[i];
619
620                 if (class->index != i)
621                         continue;
622
623                 spin_lock(&class->lock);
624                 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
625                 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
626                 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
627                 obj_used = zs_stat_get(class, OBJ_USED);
628                 freeable = zs_can_compact(class);
629                 spin_unlock(&class->lock);
630
631                 objs_per_zspage = class->objs_per_zspage;
632                 pages_used = obj_allocated / objs_per_zspage *
633                                 class->pages_per_zspage;
634
635                 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
636                                 " %10lu %10lu %16d %8lu\n",
637                         i, class->size, class_almost_full, class_almost_empty,
638                         obj_allocated, obj_used, pages_used,
639                         class->pages_per_zspage, freeable);
640
641                 total_class_almost_full += class_almost_full;
642                 total_class_almost_empty += class_almost_empty;
643                 total_objs += obj_allocated;
644                 total_used_objs += obj_used;
645                 total_pages += pages_used;
646                 total_freeable += freeable;
647         }
648
649         seq_puts(s, "\n");
650         seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
651                         "Total", "", total_class_almost_full,
652                         total_class_almost_empty, total_objs,
653                         total_used_objs, total_pages, "", total_freeable);
654
655         return 0;
656 }
657
658 static int zs_stats_size_open(struct inode *inode, struct file *file)
659 {
660         return single_open(file, zs_stats_size_show, inode->i_private);
661 }
662
663 static const struct file_operations zs_stat_size_ops = {
664         .open           = zs_stats_size_open,
665         .read           = seq_read,
666         .llseek         = seq_lseek,
667         .release        = single_release,
668 };
669
670 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
671 {
672         struct dentry *entry;
673
674         if (!zs_stat_root) {
675                 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
676                 return;
677         }
678
679         entry = debugfs_create_dir(name, zs_stat_root);
680         if (!entry) {
681                 pr_warn("debugfs dir <%s> creation failed\n", name);
682                 return;
683         }
684         pool->stat_dentry = entry;
685
686         entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
687                         pool->stat_dentry, pool, &zs_stat_size_ops);
688         if (!entry) {
689                 pr_warn("%s: debugfs file entry <%s> creation failed\n",
690                                 name, "classes");
691                 debugfs_remove_recursive(pool->stat_dentry);
692                 pool->stat_dentry = NULL;
693         }
694 }
695
696 static void zs_pool_stat_destroy(struct zs_pool *pool)
697 {
698         debugfs_remove_recursive(pool->stat_dentry);
699 }
700
701 #else /* CONFIG_ZSMALLOC_STAT */
702 static void __init zs_stat_init(void)
703 {
704 }
705
706 static void __exit zs_stat_exit(void)
707 {
708 }
709
710 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
711 {
712 }
713
714 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
715 {
716 }
717 #endif
718
719
720 /*
721  * For each size class, zspages are divided into different groups
722  * depending on how "full" they are. This was done so that we could
723  * easily find empty or nearly empty zspages when we try to shrink
724  * the pool (not yet implemented). This function returns fullness
725  * status of the given page.
726  */
727 static enum fullness_group get_fullness_group(struct size_class *class,
728                                                 struct zspage *zspage)
729 {
730         int inuse, objs_per_zspage;
731         enum fullness_group fg;
732
733         inuse = get_zspage_inuse(zspage);
734         objs_per_zspage = class->objs_per_zspage;
735
736         if (inuse == 0)
737                 fg = ZS_EMPTY;
738         else if (inuse == objs_per_zspage)
739                 fg = ZS_FULL;
740         else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
741                 fg = ZS_ALMOST_EMPTY;
742         else
743                 fg = ZS_ALMOST_FULL;
744
745         return fg;
746 }
747
748 /*
749  * Each size class maintains various freelists and zspages are assigned
750  * to one of these freelists based on the number of live objects they
751  * have. This functions inserts the given zspage into the freelist
752  * identified by <class, fullness_group>.
753  */
754 static void insert_zspage(struct size_class *class,
755                                 struct zspage *zspage,
756                                 enum fullness_group fullness)
757 {
758         struct zspage *head;
759
760         zs_stat_inc(class, fullness, 1);
761         head = list_first_entry_or_null(&class->fullness_list[fullness],
762                                         struct zspage, list);
763         /*
764          * We want to see more ZS_FULL pages and less almost empty/full.
765          * Put pages with higher ->inuse first.
766          */
767         if (head) {
768                 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
769                         list_add(&zspage->list, &head->list);
770                         return;
771                 }
772         }
773         list_add(&zspage->list, &class->fullness_list[fullness]);
774 }
775
776 /*
777  * This function removes the given zspage from the freelist identified
778  * by <class, fullness_group>.
779  */
780 static void remove_zspage(struct size_class *class,
781                                 struct zspage *zspage,
782                                 enum fullness_group fullness)
783 {
784         VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
785         VM_BUG_ON(is_zspage_isolated(zspage));
786
787         list_del_init(&zspage->list);
788         zs_stat_dec(class, fullness, 1);
789 }
790
791 /*
792  * Each size class maintains zspages in different fullness groups depending
793  * on the number of live objects they contain. When allocating or freeing
794  * objects, the fullness status of the page can change, say, from ALMOST_FULL
795  * to ALMOST_EMPTY when freeing an object. This function checks if such
796  * a status change has occurred for the given page and accordingly moves the
797  * page from the freelist of the old fullness group to that of the new
798  * fullness group.
799  */
800 static enum fullness_group fix_fullness_group(struct size_class *class,
801                                                 struct zspage *zspage)
802 {
803         int class_idx;
804         enum fullness_group currfg, newfg;
805
806         get_zspage_mapping(zspage, &class_idx, &currfg);
807         newfg = get_fullness_group(class, zspage);
808         if (newfg == currfg)
809                 goto out;
810
811         if (!is_zspage_isolated(zspage)) {
812                 remove_zspage(class, zspage, currfg);
813                 insert_zspage(class, zspage, newfg);
814         }
815
816         set_zspage_mapping(zspage, class_idx, newfg);
817
818 out:
819         return newfg;
820 }
821
822 /*
823  * We have to decide on how many pages to link together
824  * to form a zspage for each size class. This is important
825  * to reduce wastage due to unusable space left at end of
826  * each zspage which is given as:
827  *     wastage = Zp % class_size
828  *     usage = Zp - wastage
829  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
830  *
831  * For example, for size class of 3/8 * PAGE_SIZE, we should
832  * link together 3 PAGE_SIZE sized pages to form a zspage
833  * since then we can perfectly fit in 8 such objects.
834  */
835 static int get_pages_per_zspage(int class_size)
836 {
837         int i, max_usedpc = 0;
838         /* zspage order which gives maximum used size per KB */
839         int max_usedpc_order = 1;
840
841         for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
842                 int zspage_size;
843                 int waste, usedpc;
844
845                 zspage_size = i * PAGE_SIZE;
846                 waste = zspage_size % class_size;
847                 usedpc = (zspage_size - waste) * 100 / zspage_size;
848
849                 if (usedpc > max_usedpc) {
850                         max_usedpc = usedpc;
851                         max_usedpc_order = i;
852                 }
853         }
854
855         return max_usedpc_order;
856 }
857
858 static struct zspage *get_zspage(struct page *page)
859 {
860         struct zspage *zspage = (struct zspage *)page->private;
861
862         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
863         return zspage;
864 }
865
866 static struct page *get_next_page(struct page *page)
867 {
868         if (unlikely(PageHugeObject(page)))
869                 return NULL;
870
871         return page->freelist;
872 }
873
874 /**
875  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
876  * @page: page object resides in zspage
877  * @obj_idx: object index
878  */
879 static void obj_to_location(unsigned long obj, struct page **page,
880                                 unsigned int *obj_idx)
881 {
882         obj >>= OBJ_TAG_BITS;
883         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
884         *obj_idx = (obj & OBJ_INDEX_MASK);
885 }
886
887 /**
888  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
889  * @page: page object resides in zspage
890  * @obj_idx: object index
891  */
892 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
893 {
894         unsigned long obj;
895
896         obj = page_to_pfn(page) << OBJ_INDEX_BITS;
897         obj |= obj_idx & OBJ_INDEX_MASK;
898         obj <<= OBJ_TAG_BITS;
899
900         return obj;
901 }
902
903 static unsigned long handle_to_obj(unsigned long handle)
904 {
905         return *(unsigned long *)handle;
906 }
907
908 static unsigned long obj_to_head(struct page *page, void *obj)
909 {
910         if (unlikely(PageHugeObject(page))) {
911                 VM_BUG_ON_PAGE(!is_first_page(page), page);
912                 return page->index;
913         } else
914                 return *(unsigned long *)obj;
915 }
916
917 static inline int testpin_tag(unsigned long handle)
918 {
919         return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
920 }
921
922 static inline int trypin_tag(unsigned long handle)
923 {
924         return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
925 }
926
927 static void pin_tag(unsigned long handle)
928 {
929         bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
930 }
931
932 static void unpin_tag(unsigned long handle)
933 {
934         bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
935 }
936
937 static void reset_page(struct page *page)
938 {
939         __ClearPageMovable(page);
940         ClearPagePrivate(page);
941         ClearPagePrivate2(page);
942         set_page_private(page, 0);
943         page_mapcount_reset(page);
944         ClearPageHugeObject(page);
945         page->freelist = NULL;
946 }
947
948 /*
949  * To prevent zspage destroy during migration, zspage freeing should
950  * hold locks of all pages in the zspage.
951  */
952 void lock_zspage(struct zspage *zspage)
953 {
954         struct page *page = get_first_page(zspage);
955
956         do {
957                 lock_page(page);
958         } while ((page = get_next_page(page)) != NULL);
959 }
960
961 int trylock_zspage(struct zspage *zspage)
962 {
963         struct page *cursor, *fail;
964
965         for (cursor = get_first_page(zspage); cursor != NULL; cursor =
966                                         get_next_page(cursor)) {
967                 if (!trylock_page(cursor)) {
968                         fail = cursor;
969                         goto unlock;
970                 }
971         }
972
973         return 1;
974 unlock:
975         for (cursor = get_first_page(zspage); cursor != fail; cursor =
976                                         get_next_page(cursor))
977                 unlock_page(cursor);
978
979         return 0;
980 }
981
982 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
983                                 struct zspage *zspage)
984 {
985         struct page *page, *next;
986         enum fullness_group fg;
987         unsigned int class_idx;
988
989         get_zspage_mapping(zspage, &class_idx, &fg);
990
991         assert_spin_locked(&class->lock);
992
993         VM_BUG_ON(get_zspage_inuse(zspage));
994         VM_BUG_ON(fg != ZS_EMPTY);
995
996         next = page = get_first_page(zspage);
997         do {
998                 VM_BUG_ON_PAGE(!PageLocked(page), page);
999                 next = get_next_page(page);
1000                 reset_page(page);
1001                 unlock_page(page);
1002                 dec_zone_page_state(page, NR_ZSPAGES);
1003                 put_page(page);
1004                 page = next;
1005         } while (page != NULL);
1006
1007         cache_free_zspage(pool, zspage);
1008
1009         zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
1010         atomic_long_sub(class->pages_per_zspage,
1011                                         &pool->pages_allocated);
1012 }
1013
1014 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1015                                 struct zspage *zspage)
1016 {
1017         VM_BUG_ON(get_zspage_inuse(zspage));
1018         VM_BUG_ON(list_empty(&zspage->list));
1019
1020         if (!trylock_zspage(zspage)) {
1021                 kick_deferred_free(pool);
1022                 return;
1023         }
1024
1025         remove_zspage(class, zspage, ZS_EMPTY);
1026         __free_zspage(pool, class, zspage);
1027 }
1028
1029 /* Initialize a newly allocated zspage */
1030 static void init_zspage(struct size_class *class, struct zspage *zspage)
1031 {
1032         unsigned int freeobj = 1;
1033         unsigned long off = 0;
1034         struct page *page = get_first_page(zspage);
1035
1036         while (page) {
1037                 struct page *next_page;
1038                 struct link_free *link;
1039                 void *vaddr;
1040
1041                 set_first_obj_offset(page, off);
1042
1043                 vaddr = kmap_atomic(page);
1044                 link = (struct link_free *)vaddr + off / sizeof(*link);
1045
1046                 while ((off += class->size) < PAGE_SIZE) {
1047                         link->next = freeobj++ << OBJ_TAG_BITS;
1048                         link += class->size / sizeof(*link);
1049                 }
1050
1051                 /*
1052                  * We now come to the last (full or partial) object on this
1053                  * page, which must point to the first object on the next
1054                  * page (if present)
1055                  */
1056                 next_page = get_next_page(page);
1057                 if (next_page) {
1058                         link->next = freeobj++ << OBJ_TAG_BITS;
1059                 } else {
1060                         /*
1061                          * Reset OBJ_TAG_BITS bit to last link to tell
1062                          * whether it's allocated object or not.
1063                          */
1064                         link->next = -1 << OBJ_TAG_BITS;
1065                 }
1066                 kunmap_atomic(vaddr);
1067                 page = next_page;
1068                 off %= PAGE_SIZE;
1069         }
1070
1071         set_freeobj(zspage, 0);
1072 }
1073
1074 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1075                                 struct page *pages[])
1076 {
1077         int i;
1078         struct page *page;
1079         struct page *prev_page = NULL;
1080         int nr_pages = class->pages_per_zspage;
1081
1082         /*
1083          * Allocate individual pages and link them together as:
1084          * 1. all pages are linked together using page->freelist
1085          * 2. each sub-page point to zspage using page->private
1086          *
1087          * we set PG_private to identify the first page (i.e. no other sub-page
1088          * has this flag set) and PG_private_2 to identify the last page.
1089          */
1090         for (i = 0; i < nr_pages; i++) {
1091                 page = pages[i];
1092                 set_page_private(page, (unsigned long)zspage);
1093                 page->freelist = NULL;
1094                 if (i == 0) {
1095                         zspage->first_page = page;
1096                         SetPagePrivate(page);
1097                         if (unlikely(class->objs_per_zspage == 1 &&
1098                                         class->pages_per_zspage == 1))
1099                                 SetPageHugeObject(page);
1100                 } else {
1101                         prev_page->freelist = page;
1102                 }
1103                 if (i == nr_pages - 1)
1104                         SetPagePrivate2(page);
1105                 prev_page = page;
1106         }
1107 }
1108
1109 /*
1110  * Allocate a zspage for the given size class
1111  */
1112 static struct zspage *alloc_zspage(struct zs_pool *pool,
1113                                         struct size_class *class,
1114                                         gfp_t gfp)
1115 {
1116         int i;
1117         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1118         struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1119
1120         if (!zspage)
1121                 return NULL;
1122
1123         memset(zspage, 0, sizeof(struct zspage));
1124         zspage->magic = ZSPAGE_MAGIC;
1125         migrate_lock_init(zspage);
1126
1127         for (i = 0; i < class->pages_per_zspage; i++) {
1128                 struct page *page;
1129
1130                 page = alloc_page(gfp);
1131                 if (!page) {
1132                         while (--i >= 0) {
1133                                 dec_zone_page_state(pages[i], NR_ZSPAGES);
1134                                 __free_page(pages[i]);
1135                         }
1136                         cache_free_zspage(pool, zspage);
1137                         return NULL;
1138                 }
1139
1140                 inc_zone_page_state(page, NR_ZSPAGES);
1141                 pages[i] = page;
1142         }
1143
1144         create_page_chain(class, zspage, pages);
1145         init_zspage(class, zspage);
1146
1147         return zspage;
1148 }
1149
1150 static struct zspage *find_get_zspage(struct size_class *class)
1151 {
1152         int i;
1153         struct zspage *zspage;
1154
1155         for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1156                 zspage = list_first_entry_or_null(&class->fullness_list[i],
1157                                 struct zspage, list);
1158                 if (zspage)
1159                         break;
1160         }
1161
1162         return zspage;
1163 }
1164
1165 #ifdef CONFIG_PGTABLE_MAPPING
1166 static inline int __zs_cpu_up(struct mapping_area *area)
1167 {
1168         /*
1169          * Make sure we don't leak memory if a cpu UP notification
1170          * and zs_init() race and both call zs_cpu_up() on the same cpu
1171          */
1172         if (area->vm)
1173                 return 0;
1174         area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1175         if (!area->vm)
1176                 return -ENOMEM;
1177         return 0;
1178 }
1179
1180 static inline void __zs_cpu_down(struct mapping_area *area)
1181 {
1182         if (area->vm)
1183                 free_vm_area(area->vm);
1184         area->vm = NULL;
1185 }
1186
1187 static inline void *__zs_map_object(struct mapping_area *area,
1188                                 struct page *pages[2], int off, int size)
1189 {
1190         BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1191         area->vm_addr = area->vm->addr;
1192         return area->vm_addr + off;
1193 }
1194
1195 static inline void __zs_unmap_object(struct mapping_area *area,
1196                                 struct page *pages[2], int off, int size)
1197 {
1198         unsigned long addr = (unsigned long)area->vm_addr;
1199
1200         unmap_kernel_range(addr, PAGE_SIZE * 2);
1201 }
1202
1203 #else /* CONFIG_PGTABLE_MAPPING */
1204
1205 static inline int __zs_cpu_up(struct mapping_area *area)
1206 {
1207         /*
1208          * Make sure we don't leak memory if a cpu UP notification
1209          * and zs_init() race and both call zs_cpu_up() on the same cpu
1210          */
1211         if (area->vm_buf)
1212                 return 0;
1213         area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1214         if (!area->vm_buf)
1215                 return -ENOMEM;
1216         return 0;
1217 }
1218
1219 static inline void __zs_cpu_down(struct mapping_area *area)
1220 {
1221         kfree(area->vm_buf);
1222         area->vm_buf = NULL;
1223 }
1224
1225 static void *__zs_map_object(struct mapping_area *area,
1226                         struct page *pages[2], int off, int size)
1227 {
1228         int sizes[2];
1229         void *addr;
1230         char *buf = area->vm_buf;
1231
1232         /* disable page faults to match kmap_atomic() return conditions */
1233         pagefault_disable();
1234
1235         /* no read fastpath */
1236         if (area->vm_mm == ZS_MM_WO)
1237                 goto out;
1238
1239         sizes[0] = PAGE_SIZE - off;
1240         sizes[1] = size - sizes[0];
1241
1242         /* copy object to per-cpu buffer */
1243         addr = kmap_atomic(pages[0]);
1244         memcpy(buf, addr + off, sizes[0]);
1245         kunmap_atomic(addr);
1246         addr = kmap_atomic(pages[1]);
1247         memcpy(buf + sizes[0], addr, sizes[1]);
1248         kunmap_atomic(addr);
1249 out:
1250         return area->vm_buf;
1251 }
1252
1253 static void __zs_unmap_object(struct mapping_area *area,
1254                         struct page *pages[2], int off, int size)
1255 {
1256         int sizes[2];
1257         void *addr;
1258         char *buf;
1259
1260         /* no write fastpath */
1261         if (area->vm_mm == ZS_MM_RO)
1262                 goto out;
1263
1264         buf = area->vm_buf;
1265         buf = buf + ZS_HANDLE_SIZE;
1266         size -= ZS_HANDLE_SIZE;
1267         off += ZS_HANDLE_SIZE;
1268
1269         sizes[0] = PAGE_SIZE - off;
1270         sizes[1] = size - sizes[0];
1271
1272         /* copy per-cpu buffer to object */
1273         addr = kmap_atomic(pages[0]);
1274         memcpy(addr + off, buf, sizes[0]);
1275         kunmap_atomic(addr);
1276         addr = kmap_atomic(pages[1]);
1277         memcpy(addr, buf + sizes[0], sizes[1]);
1278         kunmap_atomic(addr);
1279
1280 out:
1281         /* enable page faults to match kunmap_atomic() return conditions */
1282         pagefault_enable();
1283 }
1284
1285 #endif /* CONFIG_PGTABLE_MAPPING */
1286
1287 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1288                                 void *pcpu)
1289 {
1290         int ret, cpu = (long)pcpu;
1291         struct mapping_area *area;
1292
1293         switch (action) {
1294         case CPU_UP_PREPARE:
1295                 area = &per_cpu(zs_map_area, cpu);
1296                 ret = __zs_cpu_up(area);
1297                 if (ret)
1298                         return notifier_from_errno(ret);
1299                 break;
1300         case CPU_DEAD:
1301         case CPU_UP_CANCELED:
1302                 area = &per_cpu(zs_map_area, cpu);
1303                 __zs_cpu_down(area);
1304                 break;
1305         }
1306
1307         return NOTIFY_OK;
1308 }
1309
1310 static struct notifier_block zs_cpu_nb = {
1311         .notifier_call = zs_cpu_notifier
1312 };
1313
1314 static int zs_register_cpu_notifier(void)
1315 {
1316         int cpu, uninitialized_var(ret);
1317
1318         cpu_notifier_register_begin();
1319
1320         __register_cpu_notifier(&zs_cpu_nb);
1321         for_each_online_cpu(cpu) {
1322                 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1323                 if (notifier_to_errno(ret))
1324                         break;
1325         }
1326
1327         cpu_notifier_register_done();
1328         return notifier_to_errno(ret);
1329 }
1330
1331 static void zs_unregister_cpu_notifier(void)
1332 {
1333         int cpu;
1334
1335         cpu_notifier_register_begin();
1336
1337         for_each_online_cpu(cpu)
1338                 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1339         __unregister_cpu_notifier(&zs_cpu_nb);
1340
1341         cpu_notifier_register_done();
1342 }
1343
1344 static void __init init_zs_size_classes(void)
1345 {
1346         int nr;
1347
1348         nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1349         if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1350                 nr += 1;
1351
1352         zs_size_classes = nr;
1353 }
1354
1355 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1356                                         int objs_per_zspage)
1357 {
1358         if (prev->pages_per_zspage == pages_per_zspage &&
1359                 prev->objs_per_zspage == objs_per_zspage)
1360                 return true;
1361
1362         return false;
1363 }
1364
1365 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1366 {
1367         return get_zspage_inuse(zspage) == class->objs_per_zspage;
1368 }
1369
1370 unsigned long zs_get_total_pages(struct zs_pool *pool)
1371 {
1372         return atomic_long_read(&pool->pages_allocated);
1373 }
1374 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1375
1376 /**
1377  * zs_map_object - get address of allocated object from handle.
1378  * @pool: pool from which the object was allocated
1379  * @handle: handle returned from zs_malloc
1380  *
1381  * Before using an object allocated from zs_malloc, it must be mapped using
1382  * this function. When done with the object, it must be unmapped using
1383  * zs_unmap_object.
1384  *
1385  * Only one object can be mapped per cpu at a time. There is no protection
1386  * against nested mappings.
1387  *
1388  * This function returns with preemption and page faults disabled.
1389  */
1390 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1391                         enum zs_mapmode mm)
1392 {
1393         struct zspage *zspage;
1394         struct page *page;
1395         unsigned long obj, off;
1396         unsigned int obj_idx;
1397
1398         unsigned int class_idx;
1399         enum fullness_group fg;
1400         struct size_class *class;
1401         struct mapping_area *area;
1402         struct page *pages[2];
1403         void *ret;
1404
1405         /*
1406          * Because we use per-cpu mapping areas shared among the
1407          * pools/users, we can't allow mapping in interrupt context
1408          * because it can corrupt another users mappings.
1409          */
1410         WARN_ON_ONCE(in_interrupt());
1411
1412         /* From now on, migration cannot move the object */
1413         pin_tag(handle);
1414
1415         obj = handle_to_obj(handle);
1416         obj_to_location(obj, &page, &obj_idx);
1417         zspage = get_zspage(page);
1418
1419         /* migration cannot move any subpage in this zspage */
1420         migrate_read_lock(zspage);
1421
1422         get_zspage_mapping(zspage, &class_idx, &fg);
1423         class = pool->size_class[class_idx];
1424         off = (class->size * obj_idx) & ~PAGE_MASK;
1425
1426         area = &get_cpu_var(zs_map_area);
1427         area->vm_mm = mm;
1428         if (off + class->size <= PAGE_SIZE) {
1429                 /* this object is contained entirely within a page */
1430                 area->vm_addr = kmap_atomic(page);
1431                 ret = area->vm_addr + off;
1432                 goto out;
1433         }
1434
1435         /* this object spans two pages */
1436         pages[0] = page;
1437         pages[1] = get_next_page(page);
1438         BUG_ON(!pages[1]);
1439
1440         ret = __zs_map_object(area, pages, off, class->size);
1441 out:
1442         if (likely(!PageHugeObject(page)))
1443                 ret += ZS_HANDLE_SIZE;
1444
1445         return ret;
1446 }
1447 EXPORT_SYMBOL_GPL(zs_map_object);
1448
1449 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1450 {
1451         struct zspage *zspage;
1452         struct page *page;
1453         unsigned long obj, off;
1454         unsigned int obj_idx;
1455
1456         unsigned int class_idx;
1457         enum fullness_group fg;
1458         struct size_class *class;
1459         struct mapping_area *area;
1460
1461         obj = handle_to_obj(handle);
1462         obj_to_location(obj, &page, &obj_idx);
1463         zspage = get_zspage(page);
1464         get_zspage_mapping(zspage, &class_idx, &fg);
1465         class = pool->size_class[class_idx];
1466         off = (class->size * obj_idx) & ~PAGE_MASK;
1467
1468         area = this_cpu_ptr(&zs_map_area);
1469         if (off + class->size <= PAGE_SIZE)
1470                 kunmap_atomic(area->vm_addr);
1471         else {
1472                 struct page *pages[2];
1473
1474                 pages[0] = page;
1475                 pages[1] = get_next_page(page);
1476                 BUG_ON(!pages[1]);
1477
1478                 __zs_unmap_object(area, pages, off, class->size);
1479         }
1480         put_cpu_var(zs_map_area);
1481
1482         migrate_read_unlock(zspage);
1483         unpin_tag(handle);
1484 }
1485 EXPORT_SYMBOL_GPL(zs_unmap_object);
1486
1487 static unsigned long obj_malloc(struct size_class *class,
1488                                 struct zspage *zspage, unsigned long handle)
1489 {
1490         int i, nr_page, offset;
1491         unsigned long obj;
1492         struct link_free *link;
1493
1494         struct page *m_page;
1495         unsigned long m_offset;
1496         void *vaddr;
1497
1498         handle |= OBJ_ALLOCATED_TAG;
1499         obj = get_freeobj(zspage);
1500
1501         offset = obj * class->size;
1502         nr_page = offset >> PAGE_SHIFT;
1503         m_offset = offset & ~PAGE_MASK;
1504         m_page = get_first_page(zspage);
1505
1506         for (i = 0; i < nr_page; i++)
1507                 m_page = get_next_page(m_page);
1508
1509         vaddr = kmap_atomic(m_page);
1510         link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1511         set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1512         if (likely(!PageHugeObject(m_page)))
1513                 /* record handle in the header of allocated chunk */
1514                 link->handle = handle;
1515         else
1516                 /* record handle to page->index */
1517                 zspage->first_page->index = handle;
1518
1519         kunmap_atomic(vaddr);
1520         mod_zspage_inuse(zspage, 1);
1521         zs_stat_inc(class, OBJ_USED, 1);
1522
1523         obj = location_to_obj(m_page, obj);
1524
1525         return obj;
1526 }
1527
1528
1529 /**
1530  * zs_malloc - Allocate block of given size from pool.
1531  * @pool: pool to allocate from
1532  * @size: size of block to allocate
1533  * @gfp: gfp flags when allocating object
1534  *
1535  * On success, handle to the allocated object is returned,
1536  * otherwise 0.
1537  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1538  */
1539 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1540 {
1541         unsigned long handle, obj;
1542         struct size_class *class;
1543         enum fullness_group newfg;
1544         struct zspage *zspage;
1545
1546         if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1547                 return 0;
1548
1549         handle = cache_alloc_handle(pool, gfp);
1550         if (!handle)
1551                 return 0;
1552
1553         /* extra space in chunk to keep the handle */
1554         size += ZS_HANDLE_SIZE;
1555         class = pool->size_class[get_size_class_index(size)];
1556
1557         spin_lock(&class->lock);
1558         zspage = find_get_zspage(class);
1559         if (likely(zspage)) {
1560                 obj = obj_malloc(class, zspage, handle);
1561                 /* Now move the zspage to another fullness group, if required */
1562                 fix_fullness_group(class, zspage);
1563                 record_obj(handle, obj);
1564                 spin_unlock(&class->lock);
1565
1566                 return handle;
1567         }
1568
1569         spin_unlock(&class->lock);
1570
1571         zspage = alloc_zspage(pool, class, gfp);
1572         if (!zspage) {
1573                 cache_free_handle(pool, handle);
1574                 return 0;
1575         }
1576
1577         spin_lock(&class->lock);
1578         obj = obj_malloc(class, zspage, handle);
1579         newfg = get_fullness_group(class, zspage);
1580         insert_zspage(class, zspage, newfg);
1581         set_zspage_mapping(zspage, class->index, newfg);
1582         record_obj(handle, obj);
1583         atomic_long_add(class->pages_per_zspage,
1584                                 &pool->pages_allocated);
1585         zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1586
1587         /* We completely set up zspage so mark them as movable */
1588         SetZsPageMovable(pool, zspage);
1589         spin_unlock(&class->lock);
1590
1591         return handle;
1592 }
1593 EXPORT_SYMBOL_GPL(zs_malloc);
1594
1595 static void obj_free(struct size_class *class, unsigned long obj)
1596 {
1597         struct link_free *link;
1598         struct zspage *zspage;
1599         struct page *f_page;
1600         unsigned long f_offset;
1601         unsigned int f_objidx;
1602         void *vaddr;
1603
1604         obj &= ~OBJ_ALLOCATED_TAG;
1605         obj_to_location(obj, &f_page, &f_objidx);
1606         f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1607         zspage = get_zspage(f_page);
1608
1609         vaddr = kmap_atomic(f_page);
1610
1611         /* Insert this object in containing zspage's freelist */
1612         link = (struct link_free *)(vaddr + f_offset);
1613         link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1614         kunmap_atomic(vaddr);
1615         set_freeobj(zspage, f_objidx);
1616         mod_zspage_inuse(zspage, -1);
1617         zs_stat_dec(class, OBJ_USED, 1);
1618 }
1619
1620 void zs_free(struct zs_pool *pool, unsigned long handle)
1621 {
1622         struct zspage *zspage;
1623         struct page *f_page;
1624         unsigned long obj;
1625         unsigned int f_objidx;
1626         int class_idx;
1627         struct size_class *class;
1628         enum fullness_group fullness;
1629         bool isolated;
1630
1631         if (unlikely(!handle))
1632                 return;
1633
1634         pin_tag(handle);
1635         obj = handle_to_obj(handle);
1636         obj_to_location(obj, &f_page, &f_objidx);
1637         zspage = get_zspage(f_page);
1638
1639         migrate_read_lock(zspage);
1640
1641         get_zspage_mapping(zspage, &class_idx, &fullness);
1642         class = pool->size_class[class_idx];
1643
1644         spin_lock(&class->lock);
1645         obj_free(class, obj);
1646         fullness = fix_fullness_group(class, zspage);
1647         if (fullness != ZS_EMPTY) {
1648                 migrate_read_unlock(zspage);
1649                 goto out;
1650         }
1651
1652         isolated = is_zspage_isolated(zspage);
1653         migrate_read_unlock(zspage);
1654         /* If zspage is isolated, zs_page_putback will free the zspage */
1655         if (likely(!isolated))
1656                 free_zspage(pool, class, zspage);
1657 out:
1658
1659         spin_unlock(&class->lock);
1660         unpin_tag(handle);
1661         cache_free_handle(pool, handle);
1662 }
1663 EXPORT_SYMBOL_GPL(zs_free);
1664
1665 static void zs_object_copy(struct size_class *class, unsigned long dst,
1666                                 unsigned long src)
1667 {
1668         struct page *s_page, *d_page;
1669         unsigned int s_objidx, d_objidx;
1670         unsigned long s_off, d_off;
1671         void *s_addr, *d_addr;
1672         int s_size, d_size, size;
1673         int written = 0;
1674
1675         s_size = d_size = class->size;
1676
1677         obj_to_location(src, &s_page, &s_objidx);
1678         obj_to_location(dst, &d_page, &d_objidx);
1679
1680         s_off = (class->size * s_objidx) & ~PAGE_MASK;
1681         d_off = (class->size * d_objidx) & ~PAGE_MASK;
1682
1683         if (s_off + class->size > PAGE_SIZE)
1684                 s_size = PAGE_SIZE - s_off;
1685
1686         if (d_off + class->size > PAGE_SIZE)
1687                 d_size = PAGE_SIZE - d_off;
1688
1689         s_addr = kmap_atomic(s_page);
1690         d_addr = kmap_atomic(d_page);
1691
1692         while (1) {
1693                 size = min(s_size, d_size);
1694                 memcpy(d_addr + d_off, s_addr + s_off, size);
1695                 written += size;
1696
1697                 if (written == class->size)
1698                         break;
1699
1700                 s_off += size;
1701                 s_size -= size;
1702                 d_off += size;
1703                 d_size -= size;
1704
1705                 if (s_off >= PAGE_SIZE) {
1706                         kunmap_atomic(d_addr);
1707                         kunmap_atomic(s_addr);
1708                         s_page = get_next_page(s_page);
1709                         s_addr = kmap_atomic(s_page);
1710                         d_addr = kmap_atomic(d_page);
1711                         s_size = class->size - written;
1712                         s_off = 0;
1713                 }
1714
1715                 if (d_off >= PAGE_SIZE) {
1716                         kunmap_atomic(d_addr);
1717                         d_page = get_next_page(d_page);
1718                         d_addr = kmap_atomic(d_page);
1719                         d_size = class->size - written;
1720                         d_off = 0;
1721                 }
1722         }
1723
1724         kunmap_atomic(d_addr);
1725         kunmap_atomic(s_addr);
1726 }
1727
1728 /*
1729  * Find alloced object in zspage from index object and
1730  * return handle.
1731  */
1732 static unsigned long find_alloced_obj(struct size_class *class,
1733                                         struct page *page, int *obj_idx)
1734 {
1735         unsigned long head;
1736         int offset = 0;
1737         int index = *obj_idx;
1738         unsigned long handle = 0;
1739         void *addr = kmap_atomic(page);
1740
1741         offset = get_first_obj_offset(page);
1742         offset += class->size * index;
1743
1744         while (offset < PAGE_SIZE) {
1745                 head = obj_to_head(page, addr + offset);
1746                 if (head & OBJ_ALLOCATED_TAG) {
1747                         handle = head & ~OBJ_ALLOCATED_TAG;
1748                         if (trypin_tag(handle))
1749                                 break;
1750                         handle = 0;
1751                 }
1752
1753                 offset += class->size;
1754                 index++;
1755         }
1756
1757         kunmap_atomic(addr);
1758
1759         *obj_idx = index;
1760
1761         return handle;
1762 }
1763
1764 struct zs_compact_control {
1765         /* Source spage for migration which could be a subpage of zspage */
1766         struct page *s_page;
1767         /* Destination page for migration which should be a first page
1768          * of zspage. */
1769         struct page *d_page;
1770          /* Starting object index within @s_page which used for live object
1771           * in the subpage. */
1772         int obj_idx;
1773 };
1774
1775 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1776                                 struct zs_compact_control *cc)
1777 {
1778         unsigned long used_obj, free_obj;
1779         unsigned long handle;
1780         struct page *s_page = cc->s_page;
1781         struct page *d_page = cc->d_page;
1782         int obj_idx = cc->obj_idx;
1783         int ret = 0;
1784
1785         while (1) {
1786                 handle = find_alloced_obj(class, s_page, &obj_idx);
1787                 if (!handle) {
1788                         s_page = get_next_page(s_page);
1789                         if (!s_page)
1790                                 break;
1791                         obj_idx = 0;
1792                         continue;
1793                 }
1794
1795                 /* Stop if there is no more space */
1796                 if (zspage_full(class, get_zspage(d_page))) {
1797                         unpin_tag(handle);
1798                         ret = -ENOMEM;
1799                         break;
1800                 }
1801
1802                 used_obj = handle_to_obj(handle);
1803                 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1804                 zs_object_copy(class, free_obj, used_obj);
1805                 obj_idx++;
1806                 /*
1807                  * record_obj updates handle's value to free_obj and it will
1808                  * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1809                  * breaks synchronization using pin_tag(e,g, zs_free) so
1810                  * let's keep the lock bit.
1811                  */
1812                 free_obj |= BIT(HANDLE_PIN_BIT);
1813                 record_obj(handle, free_obj);
1814                 unpin_tag(handle);
1815                 obj_free(class, used_obj);
1816         }
1817
1818         /* Remember last position in this iteration */
1819         cc->s_page = s_page;
1820         cc->obj_idx = obj_idx;
1821
1822         return ret;
1823 }
1824
1825 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1826 {
1827         int i;
1828         struct zspage *zspage;
1829         enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1830
1831         if (!source) {
1832                 fg[0] = ZS_ALMOST_FULL;
1833                 fg[1] = ZS_ALMOST_EMPTY;
1834         }
1835
1836         for (i = 0; i < 2; i++) {
1837                 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1838                                                         struct zspage, list);
1839                 if (zspage) {
1840                         VM_BUG_ON(is_zspage_isolated(zspage));
1841                         remove_zspage(class, zspage, fg[i]);
1842                         return zspage;
1843                 }
1844         }
1845
1846         return zspage;
1847 }
1848
1849 /*
1850  * putback_zspage - add @zspage into right class's fullness list
1851  * @class: destination class
1852  * @zspage: target page
1853  *
1854  * Return @zspage's fullness_group
1855  */
1856 static enum fullness_group putback_zspage(struct size_class *class,
1857                         struct zspage *zspage)
1858 {
1859         enum fullness_group fullness;
1860
1861         VM_BUG_ON(is_zspage_isolated(zspage));
1862
1863         fullness = get_fullness_group(class, zspage);
1864         insert_zspage(class, zspage, fullness);
1865         set_zspage_mapping(zspage, class->index, fullness);
1866
1867         return fullness;
1868 }
1869
1870 #ifdef CONFIG_COMPACTION
1871 static struct dentry *zs_mount(struct file_system_type *fs_type,
1872                                 int flags, const char *dev_name, void *data)
1873 {
1874         static const struct dentry_operations ops = {
1875                 .d_dname = simple_dname,
1876         };
1877
1878         return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1879 }
1880
1881 static struct file_system_type zsmalloc_fs = {
1882         .name           = "zsmalloc",
1883         .mount          = zs_mount,
1884         .kill_sb        = kill_anon_super,
1885 };
1886
1887 static int zsmalloc_mount(void)
1888 {
1889         int ret = 0;
1890
1891         zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1892         if (IS_ERR(zsmalloc_mnt))
1893                 ret = PTR_ERR(zsmalloc_mnt);
1894
1895         return ret;
1896 }
1897
1898 static void zsmalloc_unmount(void)
1899 {
1900         kern_unmount(zsmalloc_mnt);
1901 }
1902
1903 static void migrate_lock_init(struct zspage *zspage)
1904 {
1905         rwlock_init(&zspage->lock);
1906 }
1907
1908 static void migrate_read_lock(struct zspage *zspage)
1909 {
1910         read_lock(&zspage->lock);
1911 }
1912
1913 static void migrate_read_unlock(struct zspage *zspage)
1914 {
1915         read_unlock(&zspage->lock);
1916 }
1917
1918 static void migrate_write_lock(struct zspage *zspage)
1919 {
1920         write_lock(&zspage->lock);
1921 }
1922
1923 static void migrate_write_unlock(struct zspage *zspage)
1924 {
1925         write_unlock(&zspage->lock);
1926 }
1927
1928 /* Number of isolated subpage for *page migration* in this zspage */
1929 static void inc_zspage_isolation(struct zspage *zspage)
1930 {
1931         zspage->isolated++;
1932 }
1933
1934 static void dec_zspage_isolation(struct zspage *zspage)
1935 {
1936         zspage->isolated--;
1937 }
1938
1939 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1940                                 struct page *newpage, struct page *oldpage)
1941 {
1942         struct page *page;
1943         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1944         int idx = 0;
1945
1946         page = get_first_page(zspage);
1947         do {
1948                 if (page == oldpage)
1949                         pages[idx] = newpage;
1950                 else
1951                         pages[idx] = page;
1952                 idx++;
1953         } while ((page = get_next_page(page)) != NULL);
1954
1955         create_page_chain(class, zspage, pages);
1956         set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1957         if (unlikely(PageHugeObject(oldpage)))
1958                 newpage->index = oldpage->index;
1959         __SetPageMovable(newpage, page_mapping(oldpage));
1960 }
1961
1962 bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1963 {
1964         struct zs_pool *pool;
1965         struct size_class *class;
1966         int class_idx;
1967         enum fullness_group fullness;
1968         struct zspage *zspage;
1969         struct address_space *mapping;
1970
1971         /*
1972          * Page is locked so zspage couldn't be destroyed. For detail, look at
1973          * lock_zspage in free_zspage.
1974          */
1975         VM_BUG_ON_PAGE(!PageMovable(page), page);
1976         VM_BUG_ON_PAGE(PageIsolated(page), page);
1977
1978         zspage = get_zspage(page);
1979
1980         /*
1981          * Without class lock, fullness could be stale while class_idx is okay
1982          * because class_idx is constant unless page is freed so we should get
1983          * fullness again under class lock.
1984          */
1985         get_zspage_mapping(zspage, &class_idx, &fullness);
1986         mapping = page_mapping(page);
1987         pool = mapping->private_data;
1988         class = pool->size_class[class_idx];
1989
1990         spin_lock(&class->lock);
1991         if (get_zspage_inuse(zspage) == 0) {
1992                 spin_unlock(&class->lock);
1993                 return false;
1994         }
1995
1996         /* zspage is isolated for object migration */
1997         if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1998                 spin_unlock(&class->lock);
1999                 return false;
2000         }
2001
2002         /*
2003          * If this is first time isolation for the zspage, isolate zspage from
2004          * size_class to prevent further object allocation from the zspage.
2005          */
2006         if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
2007                 get_zspage_mapping(zspage, &class_idx, &fullness);
2008                 remove_zspage(class, zspage, fullness);
2009         }
2010
2011         inc_zspage_isolation(zspage);
2012         spin_unlock(&class->lock);
2013
2014         return true;
2015 }
2016
2017 int zs_page_migrate(struct address_space *mapping, struct page *newpage,
2018                 struct page *page, enum migrate_mode mode)
2019 {
2020         struct zs_pool *pool;
2021         struct size_class *class;
2022         int class_idx;
2023         enum fullness_group fullness;
2024         struct zspage *zspage;
2025         struct page *dummy;
2026         void *s_addr, *d_addr, *addr;
2027         int offset, pos;
2028         unsigned long handle, head;
2029         unsigned long old_obj, new_obj;
2030         unsigned int obj_idx;
2031         int ret = -EAGAIN;
2032
2033         VM_BUG_ON_PAGE(!PageMovable(page), page);
2034         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2035
2036         zspage = get_zspage(page);
2037
2038         /* Concurrent compactor cannot migrate any subpage in zspage */
2039         migrate_write_lock(zspage);
2040         get_zspage_mapping(zspage, &class_idx, &fullness);
2041         pool = mapping->private_data;
2042         class = pool->size_class[class_idx];
2043         offset = get_first_obj_offset(page);
2044
2045         spin_lock(&class->lock);
2046         if (!get_zspage_inuse(zspage)) {
2047                 ret = -EBUSY;
2048                 goto unlock_class;
2049         }
2050
2051         pos = offset;
2052         s_addr = kmap_atomic(page);
2053         while (pos < PAGE_SIZE) {
2054                 head = obj_to_head(page, s_addr + pos);
2055                 if (head & OBJ_ALLOCATED_TAG) {
2056                         handle = head & ~OBJ_ALLOCATED_TAG;
2057                         if (!trypin_tag(handle))
2058                                 goto unpin_objects;
2059                 }
2060                 pos += class->size;
2061         }
2062
2063         /*
2064          * Here, any user cannot access all objects in the zspage so let's move.
2065          */
2066         d_addr = kmap_atomic(newpage);
2067         memcpy(d_addr, s_addr, PAGE_SIZE);
2068         kunmap_atomic(d_addr);
2069
2070         for (addr = s_addr + offset; addr < s_addr + pos;
2071                                         addr += class->size) {
2072                 head = obj_to_head(page, addr);
2073                 if (head & OBJ_ALLOCATED_TAG) {
2074                         handle = head & ~OBJ_ALLOCATED_TAG;
2075                         if (!testpin_tag(handle))
2076                                 BUG();
2077
2078                         old_obj = handle_to_obj(handle);
2079                         obj_to_location(old_obj, &dummy, &obj_idx);
2080                         new_obj = (unsigned long)location_to_obj(newpage,
2081                                                                 obj_idx);
2082                         new_obj |= BIT(HANDLE_PIN_BIT);
2083                         record_obj(handle, new_obj);
2084                 }
2085         }
2086
2087         replace_sub_page(class, zspage, newpage, page);
2088         get_page(newpage);
2089
2090         dec_zspage_isolation(zspage);
2091
2092         /*
2093          * Page migration is done so let's putback isolated zspage to
2094          * the list if @page is final isolated subpage in the zspage.
2095          */
2096         if (!is_zspage_isolated(zspage))
2097                 putback_zspage(class, zspage);
2098
2099         reset_page(page);
2100         put_page(page);
2101         page = newpage;
2102
2103         ret = MIGRATEPAGE_SUCCESS;
2104 unpin_objects:
2105         for (addr = s_addr + offset; addr < s_addr + pos;
2106                                                 addr += class->size) {
2107                 head = obj_to_head(page, addr);
2108                 if (head & OBJ_ALLOCATED_TAG) {
2109                         handle = head & ~OBJ_ALLOCATED_TAG;
2110                         if (!testpin_tag(handle))
2111                                 BUG();
2112                         unpin_tag(handle);
2113                 }
2114         }
2115         kunmap_atomic(s_addr);
2116 unlock_class:
2117         spin_unlock(&class->lock);
2118         migrate_write_unlock(zspage);
2119
2120         return ret;
2121 }
2122
2123 void zs_page_putback(struct page *page)
2124 {
2125         struct zs_pool *pool;
2126         struct size_class *class;
2127         int class_idx;
2128         enum fullness_group fg;
2129         struct address_space *mapping;
2130         struct zspage *zspage;
2131
2132         VM_BUG_ON_PAGE(!PageMovable(page), page);
2133         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2134
2135         zspage = get_zspage(page);
2136         get_zspage_mapping(zspage, &class_idx, &fg);
2137         mapping = page_mapping(page);
2138         pool = mapping->private_data;
2139         class = pool->size_class[class_idx];
2140
2141         spin_lock(&class->lock);
2142         dec_zspage_isolation(zspage);
2143         if (!is_zspage_isolated(zspage)) {
2144                 fg = putback_zspage(class, zspage);
2145                 /*
2146                  * Due to page_lock, we cannot free zspage immediately
2147                  * so let's defer.
2148                  */
2149                 if (fg == ZS_EMPTY)
2150                         schedule_work(&pool->free_work);
2151         }
2152         spin_unlock(&class->lock);
2153 }
2154
2155 const struct address_space_operations zsmalloc_aops = {
2156         .isolate_page = zs_page_isolate,
2157         .migratepage = zs_page_migrate,
2158         .putback_page = zs_page_putback,
2159 };
2160
2161 static int zs_register_migration(struct zs_pool *pool)
2162 {
2163         pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2164         if (IS_ERR(pool->inode)) {
2165                 pool->inode = NULL;
2166                 return 1;
2167         }
2168
2169         pool->inode->i_mapping->private_data = pool;
2170         pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2171         return 0;
2172 }
2173
2174 static void zs_unregister_migration(struct zs_pool *pool)
2175 {
2176         flush_work(&pool->free_work);
2177         iput(pool->inode);
2178 }
2179
2180 /*
2181  * Caller should hold page_lock of all pages in the zspage
2182  * In here, we cannot use zspage meta data.
2183  */
2184 static void async_free_zspage(struct work_struct *work)
2185 {
2186         int i;
2187         struct size_class *class;
2188         unsigned int class_idx;
2189         enum fullness_group fullness;
2190         struct zspage *zspage, *tmp;
2191         LIST_HEAD(free_pages);
2192         struct zs_pool *pool = container_of(work, struct zs_pool,
2193                                         free_work);
2194
2195         for (i = 0; i < zs_size_classes; i++) {
2196                 class = pool->size_class[i];
2197                 if (class->index != i)
2198                         continue;
2199
2200                 spin_lock(&class->lock);
2201                 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2202                 spin_unlock(&class->lock);
2203         }
2204
2205
2206         list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2207                 list_del(&zspage->list);
2208                 lock_zspage(zspage);
2209
2210                 get_zspage_mapping(zspage, &class_idx, &fullness);
2211                 VM_BUG_ON(fullness != ZS_EMPTY);
2212                 class = pool->size_class[class_idx];
2213                 spin_lock(&class->lock);
2214                 __free_zspage(pool, pool->size_class[class_idx], zspage);
2215                 spin_unlock(&class->lock);
2216         }
2217 };
2218
2219 static void kick_deferred_free(struct zs_pool *pool)
2220 {
2221         schedule_work(&pool->free_work);
2222 }
2223
2224 static void init_deferred_free(struct zs_pool *pool)
2225 {
2226         INIT_WORK(&pool->free_work, async_free_zspage);
2227 }
2228
2229 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2230 {
2231         struct page *page = get_first_page(zspage);
2232
2233         do {
2234                 WARN_ON(!trylock_page(page));
2235                 __SetPageMovable(page, pool->inode->i_mapping);
2236                 unlock_page(page);
2237         } while ((page = get_next_page(page)) != NULL);
2238 }
2239 #endif
2240
2241 /*
2242  *
2243  * Based on the number of unused allocated objects calculate
2244  * and return the number of pages that we can free.
2245  */
2246 static unsigned long zs_can_compact(struct size_class *class)
2247 {
2248         unsigned long obj_wasted;
2249         unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2250         unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2251
2252         if (obj_allocated <= obj_used)
2253                 return 0;
2254
2255         obj_wasted = obj_allocated - obj_used;
2256         obj_wasted /= class->objs_per_zspage;
2257
2258         return obj_wasted * class->pages_per_zspage;
2259 }
2260
2261 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2262 {
2263         struct zs_compact_control cc;
2264         struct zspage *src_zspage;
2265         struct zspage *dst_zspage = NULL;
2266
2267         spin_lock(&class->lock);
2268         while ((src_zspage = isolate_zspage(class, true))) {
2269
2270                 if (!zs_can_compact(class))
2271                         break;
2272
2273                 cc.obj_idx = 0;
2274                 cc.s_page = get_first_page(src_zspage);
2275
2276                 while ((dst_zspage = isolate_zspage(class, false))) {
2277                         cc.d_page = get_first_page(dst_zspage);
2278                         /*
2279                          * If there is no more space in dst_page, resched
2280                          * and see if anyone had allocated another zspage.
2281                          */
2282                         if (!migrate_zspage(pool, class, &cc))
2283                                 break;
2284
2285                         putback_zspage(class, dst_zspage);
2286                 }
2287
2288                 /* Stop if we couldn't find slot */
2289                 if (dst_zspage == NULL)
2290                         break;
2291
2292                 putback_zspage(class, dst_zspage);
2293                 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2294                         free_zspage(pool, class, src_zspage);
2295                         pool->stats.pages_compacted += class->pages_per_zspage;
2296                 }
2297                 spin_unlock(&class->lock);
2298                 cond_resched();
2299                 spin_lock(&class->lock);
2300         }
2301
2302         if (src_zspage)
2303                 putback_zspage(class, src_zspage);
2304
2305         spin_unlock(&class->lock);
2306 }
2307
2308 unsigned long zs_compact(struct zs_pool *pool)
2309 {
2310         int i;
2311         struct size_class *class;
2312
2313         for (i = zs_size_classes - 1; i >= 0; i--) {
2314                 class = pool->size_class[i];
2315                 if (!class)
2316                         continue;
2317                 if (class->index != i)
2318                         continue;
2319                 __zs_compact(pool, class);
2320         }
2321
2322         return pool->stats.pages_compacted;
2323 }
2324 EXPORT_SYMBOL_GPL(zs_compact);
2325
2326 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2327 {
2328         memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2329 }
2330 EXPORT_SYMBOL_GPL(zs_pool_stats);
2331
2332 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2333                 struct shrink_control *sc)
2334 {
2335         unsigned long pages_freed;
2336         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2337                         shrinker);
2338
2339         pages_freed = pool->stats.pages_compacted;
2340         /*
2341          * Compact classes and calculate compaction delta.
2342          * Can run concurrently with a manually triggered
2343          * (by user) compaction.
2344          */
2345         pages_freed = zs_compact(pool) - pages_freed;
2346
2347         return pages_freed ? pages_freed : SHRINK_STOP;
2348 }
2349
2350 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2351                 struct shrink_control *sc)
2352 {
2353         int i;
2354         struct size_class *class;
2355         unsigned long pages_to_free = 0;
2356         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2357                         shrinker);
2358
2359         for (i = zs_size_classes - 1; i >= 0; i--) {
2360                 class = pool->size_class[i];
2361                 if (!class)
2362                         continue;
2363                 if (class->index != i)
2364                         continue;
2365
2366                 pages_to_free += zs_can_compact(class);
2367         }
2368
2369         return pages_to_free;
2370 }
2371
2372 static void zs_unregister_shrinker(struct zs_pool *pool)
2373 {
2374         if (pool->shrinker_enabled) {
2375                 unregister_shrinker(&pool->shrinker);
2376                 pool->shrinker_enabled = false;
2377         }
2378 }
2379
2380 static int zs_register_shrinker(struct zs_pool *pool)
2381 {
2382         pool->shrinker.scan_objects = zs_shrinker_scan;
2383         pool->shrinker.count_objects = zs_shrinker_count;
2384         pool->shrinker.batch = 0;
2385         pool->shrinker.seeks = DEFAULT_SEEKS;
2386
2387         return register_shrinker(&pool->shrinker);
2388 }
2389
2390 /**
2391  * zs_create_pool - Creates an allocation pool to work from.
2392  * @name: pool name to be created
2393  *
2394  * This function must be called before anything when using
2395  * the zsmalloc allocator.
2396  *
2397  * On success, a pointer to the newly created pool is returned,
2398  * otherwise NULL.
2399  */
2400 struct zs_pool *zs_create_pool(const char *name)
2401 {
2402         int i;
2403         struct zs_pool *pool;
2404         struct size_class *prev_class = NULL;
2405
2406         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2407         if (!pool)
2408                 return NULL;
2409
2410         init_deferred_free(pool);
2411         pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
2412                         GFP_KERNEL);
2413         if (!pool->size_class) {
2414                 kfree(pool);
2415                 return NULL;
2416         }
2417
2418         pool->name = kstrdup(name, GFP_KERNEL);
2419         if (!pool->name)
2420                 goto err;
2421
2422         if (create_cache(pool))
2423                 goto err;
2424
2425         /*
2426          * Iterate reversly, because, size of size_class that we want to use
2427          * for merging should be larger or equal to current size.
2428          */
2429         for (i = zs_size_classes - 1; i >= 0; i--) {
2430                 int size;
2431                 int pages_per_zspage;
2432                 int objs_per_zspage;
2433                 struct size_class *class;
2434                 int fullness = 0;
2435
2436                 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2437                 if (size > ZS_MAX_ALLOC_SIZE)
2438                         size = ZS_MAX_ALLOC_SIZE;
2439                 pages_per_zspage = get_pages_per_zspage(size);
2440                 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2441
2442                 /*
2443                  * size_class is used for normal zsmalloc operation such
2444                  * as alloc/free for that size. Although it is natural that we
2445                  * have one size_class for each size, there is a chance that we
2446                  * can get more memory utilization if we use one size_class for
2447                  * many different sizes whose size_class have same
2448                  * characteristics. So, we makes size_class point to
2449                  * previous size_class if possible.
2450                  */
2451                 if (prev_class) {
2452                         if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2453                                 pool->size_class[i] = prev_class;
2454                                 continue;
2455                         }
2456                 }
2457
2458                 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2459                 if (!class)
2460                         goto err;
2461
2462                 class->size = size;
2463                 class->index = i;
2464                 class->pages_per_zspage = pages_per_zspage;
2465                 class->objs_per_zspage = objs_per_zspage;
2466                 spin_lock_init(&class->lock);
2467                 pool->size_class[i] = class;
2468                 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2469                                                         fullness++)
2470                         INIT_LIST_HEAD(&class->fullness_list[fullness]);
2471
2472                 prev_class = class;
2473         }
2474
2475         /* debug only, don't abort if it fails */
2476         zs_pool_stat_create(pool, name);
2477
2478         if (zs_register_migration(pool))
2479                 goto err;
2480
2481         /*
2482          * Not critical, we still can use the pool
2483          * and user can trigger compaction manually.
2484          */
2485         if (zs_register_shrinker(pool) == 0)
2486                 pool->shrinker_enabled = true;
2487         return pool;
2488
2489 err:
2490         zs_destroy_pool(pool);
2491         return NULL;
2492 }
2493 EXPORT_SYMBOL_GPL(zs_create_pool);
2494
2495 void zs_destroy_pool(struct zs_pool *pool)
2496 {
2497         int i;
2498
2499         zs_unregister_shrinker(pool);
2500         zs_unregister_migration(pool);
2501         zs_pool_stat_destroy(pool);
2502
2503         for (i = 0; i < zs_size_classes; i++) {
2504                 int fg;
2505                 struct size_class *class = pool->size_class[i];
2506
2507                 if (!class)
2508                         continue;
2509
2510                 if (class->index != i)
2511                         continue;
2512
2513                 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2514                         if (!list_empty(&class->fullness_list[fg])) {
2515                                 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2516                                         class->size, fg);
2517                         }
2518                 }
2519                 kfree(class);
2520         }
2521
2522         destroy_cache(pool);
2523         kfree(pool->size_class);
2524         kfree(pool->name);
2525         kfree(pool);
2526 }
2527 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2528
2529 static int __init zs_init(void)
2530 {
2531         int ret;
2532
2533         ret = zsmalloc_mount();
2534         if (ret)
2535                 goto out;
2536
2537         ret = zs_register_cpu_notifier();
2538
2539         if (ret)
2540                 goto notifier_fail;
2541
2542         init_zs_size_classes();
2543
2544 #ifdef CONFIG_ZPOOL
2545         zpool_register_driver(&zs_zpool_driver);
2546 #endif
2547
2548         zs_stat_init();
2549
2550         return 0;
2551
2552 notifier_fail:
2553         zs_unregister_cpu_notifier();
2554         zsmalloc_unmount();
2555 out:
2556         return ret;
2557 }
2558
2559 static void __exit zs_exit(void)
2560 {
2561 #ifdef CONFIG_ZPOOL
2562         zpool_unregister_driver(&zs_zpool_driver);
2563 #endif
2564         zsmalloc_unmount();
2565         zs_unregister_cpu_notifier();
2566
2567         zs_stat_exit();
2568 }
2569
2570 module_init(zs_init);
2571 module_exit(zs_exit);
2572
2573 MODULE_LICENSE("Dual BSD/GPL");
2574 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");