Merge tag 'zstd-linus-v6.2' of https://github.com/terrelln/linux
[platform/kernel/linux-starfive.git] / mm / zsmalloc.c
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *      page->private: points to zspage
20  *      page->index: links together all component pages of a zspage
21  *              For the huge page, this is always 0, so we use this field
22  *              to store handle.
23  *      page->page_type: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *      PG_private: identifies the first component page
27  *      PG_owner_priv_1: identifies the huge component page
28  *
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 /*
34  * lock ordering:
35  *      page_lock
36  *      pool->lock
37  *      zspage->lock
38  */
39
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/sched.h>
43 #include <linux/bitops.h>
44 #include <linux/errno.h>
45 #include <linux/highmem.h>
46 #include <linux/string.h>
47 #include <linux/slab.h>
48 #include <linux/pgtable.h>
49 #include <asm/tlbflush.h>
50 #include <linux/cpumask.h>
51 #include <linux/cpu.h>
52 #include <linux/vmalloc.h>
53 #include <linux/preempt.h>
54 #include <linux/spinlock.h>
55 #include <linux/shrinker.h>
56 #include <linux/types.h>
57 #include <linux/debugfs.h>
58 #include <linux/zsmalloc.h>
59 #include <linux/zpool.h>
60 #include <linux/migrate.h>
61 #include <linux/wait.h>
62 #include <linux/pagemap.h>
63 #include <linux/fs.h>
64 #include <linux/local_lock.h>
65
66 #define ZSPAGE_MAGIC    0x58
67
68 /*
69  * This must be power of 2 and greater than or equal to sizeof(link_free).
70  * These two conditions ensure that any 'struct link_free' itself doesn't
71  * span more than 1 page which avoids complex case of mapping 2 pages simply
72  * to restore link_free pointer values.
73  */
74 #define ZS_ALIGN                8
75
76 /*
77  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
78  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
79  */
80 #define ZS_MAX_ZSPAGE_ORDER 2
81 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
82
83 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
84
85 /*
86  * Object location (<PFN>, <obj_idx>) is encoded as
87  * a single (unsigned long) handle value.
88  *
89  * Note that object index <obj_idx> starts from 0.
90  *
91  * This is made more complicated by various memory models and PAE.
92  */
93
94 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
95 #ifdef MAX_PHYSMEM_BITS
96 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
97 #else
98 /*
99  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
100  * be PAGE_SHIFT
101  */
102 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
103 #endif
104 #endif
105
106 #define _PFN_BITS               (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
107
108 /*
109  * Head in allocated object should have OBJ_ALLOCATED_TAG
110  * to identify the object was allocated or not.
111  * It's okay to add the status bit in the least bit because
112  * header keeps handle which is 4byte-aligned address so we
113  * have room for two bit at least.
114  */
115 #define OBJ_ALLOCATED_TAG 1
116 #define OBJ_TAG_BITS 1
117 #define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
118 #define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
119
120 #define HUGE_BITS       1
121 #define FULLNESS_BITS   2
122 #define CLASS_BITS      8
123 #define ISOLATED_BITS   3
124 #define MAGIC_VAL_BITS  8
125
126 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
127 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
128 #define ZS_MIN_ALLOC_SIZE \
129         MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
130 /* each chunk includes extra space to keep handle */
131 #define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
132
133 /*
134  * On systems with 4K page size, this gives 255 size classes! There is a
135  * trader-off here:
136  *  - Large number of size classes is potentially wasteful as free page are
137  *    spread across these classes
138  *  - Small number of size classes causes large internal fragmentation
139  *  - Probably its better to use specific size classes (empirically
140  *    determined). NOTE: all those class sizes must be set as multiple of
141  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
142  *
143  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
144  *  (reason above)
145  */
146 #define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
147 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
148                                       ZS_SIZE_CLASS_DELTA) + 1)
149
150 enum fullness_group {
151         ZS_EMPTY,
152         ZS_ALMOST_EMPTY,
153         ZS_ALMOST_FULL,
154         ZS_FULL,
155         NR_ZS_FULLNESS,
156 };
157
158 enum class_stat_type {
159         CLASS_EMPTY,
160         CLASS_ALMOST_EMPTY,
161         CLASS_ALMOST_FULL,
162         CLASS_FULL,
163         OBJ_ALLOCATED,
164         OBJ_USED,
165         NR_ZS_STAT_TYPE,
166 };
167
168 struct zs_size_stat {
169         unsigned long objs[NR_ZS_STAT_TYPE];
170 };
171
172 #ifdef CONFIG_ZSMALLOC_STAT
173 static struct dentry *zs_stat_root;
174 #endif
175
176 /*
177  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
178  *      n <= N / f, where
179  * n = number of allocated objects
180  * N = total number of objects zspage can store
181  * f = fullness_threshold_frac
182  *
183  * Similarly, we assign zspage to:
184  *      ZS_ALMOST_FULL  when n > N / f
185  *      ZS_EMPTY        when n == 0
186  *      ZS_FULL         when n == N
187  *
188  * (see: fix_fullness_group())
189  */
190 static const int fullness_threshold_frac = 4;
191 static size_t huge_class_size;
192
193 struct size_class {
194         struct list_head fullness_list[NR_ZS_FULLNESS];
195         /*
196          * Size of objects stored in this class. Must be multiple
197          * of ZS_ALIGN.
198          */
199         int size;
200         int objs_per_zspage;
201         /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
202         int pages_per_zspage;
203
204         unsigned int index;
205         struct zs_size_stat stats;
206 };
207
208 /*
209  * Placed within free objects to form a singly linked list.
210  * For every zspage, zspage->freeobj gives head of this list.
211  *
212  * This must be power of 2 and less than or equal to ZS_ALIGN
213  */
214 struct link_free {
215         union {
216                 /*
217                  * Free object index;
218                  * It's valid for non-allocated object
219                  */
220                 unsigned long next;
221                 /*
222                  * Handle of allocated object.
223                  */
224                 unsigned long handle;
225         };
226 };
227
228 struct zs_pool {
229         const char *name;
230
231         struct size_class *size_class[ZS_SIZE_CLASSES];
232         struct kmem_cache *handle_cachep;
233         struct kmem_cache *zspage_cachep;
234
235         atomic_long_t pages_allocated;
236
237         struct zs_pool_stats stats;
238
239         /* Compact classes */
240         struct shrinker shrinker;
241
242 #ifdef CONFIG_ZPOOL
243         /* List tracking the zspages in LRU order by most recently added object */
244         struct list_head lru;
245         struct zpool *zpool;
246         const struct zpool_ops *zpool_ops;
247 #endif
248
249 #ifdef CONFIG_ZSMALLOC_STAT
250         struct dentry *stat_dentry;
251 #endif
252 #ifdef CONFIG_COMPACTION
253         struct work_struct free_work;
254 #endif
255         spinlock_t lock;
256 };
257
258 struct zspage {
259         struct {
260                 unsigned int huge:HUGE_BITS;
261                 unsigned int fullness:FULLNESS_BITS;
262                 unsigned int class:CLASS_BITS + 1;
263                 unsigned int isolated:ISOLATED_BITS;
264                 unsigned int magic:MAGIC_VAL_BITS;
265         };
266         unsigned int inuse;
267         unsigned int freeobj;
268         struct page *first_page;
269         struct list_head list; /* fullness list */
270
271 #ifdef CONFIG_ZPOOL
272         /* links the zspage to the lru list in the pool */
273         struct list_head lru;
274         bool under_reclaim;
275         /* list of unfreed handles whose objects have been reclaimed */
276         unsigned long *deferred_handles;
277 #endif
278
279         struct zs_pool *pool;
280         rwlock_t lock;
281 };
282
283 struct mapping_area {
284         local_lock_t lock;
285         char *vm_buf; /* copy buffer for objects that span pages */
286         char *vm_addr; /* address of kmap_atomic()'ed pages */
287         enum zs_mapmode vm_mm; /* mapping mode */
288 };
289
290 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
291 static void SetZsHugePage(struct zspage *zspage)
292 {
293         zspage->huge = 1;
294 }
295
296 static bool ZsHugePage(struct zspage *zspage)
297 {
298         return zspage->huge;
299 }
300
301 static void migrate_lock_init(struct zspage *zspage);
302 static void migrate_read_lock(struct zspage *zspage);
303 static void migrate_read_unlock(struct zspage *zspage);
304
305 #ifdef CONFIG_COMPACTION
306 static void migrate_write_lock(struct zspage *zspage);
307 static void migrate_write_lock_nested(struct zspage *zspage);
308 static void migrate_write_unlock(struct zspage *zspage);
309 static void kick_deferred_free(struct zs_pool *pool);
310 static void init_deferred_free(struct zs_pool *pool);
311 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
312 #else
313 static void migrate_write_lock(struct zspage *zspage) {}
314 static void migrate_write_lock_nested(struct zspage *zspage) {}
315 static void migrate_write_unlock(struct zspage *zspage) {}
316 static void kick_deferred_free(struct zs_pool *pool) {}
317 static void init_deferred_free(struct zs_pool *pool) {}
318 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
319 #endif
320
321 static int create_cache(struct zs_pool *pool)
322 {
323         pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
324                                         0, 0, NULL);
325         if (!pool->handle_cachep)
326                 return 1;
327
328         pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
329                                         0, 0, NULL);
330         if (!pool->zspage_cachep) {
331                 kmem_cache_destroy(pool->handle_cachep);
332                 pool->handle_cachep = NULL;
333                 return 1;
334         }
335
336         return 0;
337 }
338
339 static void destroy_cache(struct zs_pool *pool)
340 {
341         kmem_cache_destroy(pool->handle_cachep);
342         kmem_cache_destroy(pool->zspage_cachep);
343 }
344
345 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
346 {
347         return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
348                         gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
349 }
350
351 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
352 {
353         kmem_cache_free(pool->handle_cachep, (void *)handle);
354 }
355
356 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
357 {
358         return kmem_cache_zalloc(pool->zspage_cachep,
359                         flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
360 }
361
362 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
363 {
364         kmem_cache_free(pool->zspage_cachep, zspage);
365 }
366
367 /* pool->lock(which owns the handle) synchronizes races */
368 static void record_obj(unsigned long handle, unsigned long obj)
369 {
370         *(unsigned long *)handle = obj;
371 }
372
373 /* zpool driver */
374
375 #ifdef CONFIG_ZPOOL
376
377 static void *zs_zpool_create(const char *name, gfp_t gfp,
378                              const struct zpool_ops *zpool_ops,
379                              struct zpool *zpool)
380 {
381         /*
382          * Ignore global gfp flags: zs_malloc() may be invoked from
383          * different contexts and its caller must provide a valid
384          * gfp mask.
385          */
386         struct zs_pool *pool = zs_create_pool(name);
387
388         if (pool) {
389                 pool->zpool = zpool;
390                 pool->zpool_ops = zpool_ops;
391         }
392
393         return pool;
394 }
395
396 static void zs_zpool_destroy(void *pool)
397 {
398         zs_destroy_pool(pool);
399 }
400
401 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
402                         unsigned long *handle)
403 {
404         *handle = zs_malloc(pool, size, gfp);
405
406         if (IS_ERR_VALUE(*handle))
407                 return PTR_ERR((void *)*handle);
408         return 0;
409 }
410 static void zs_zpool_free(void *pool, unsigned long handle)
411 {
412         zs_free(pool, handle);
413 }
414
415 static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries);
416
417 static int zs_zpool_shrink(void *pool, unsigned int pages,
418                         unsigned int *reclaimed)
419 {
420         unsigned int total = 0;
421         int ret = -EINVAL;
422
423         while (total < pages) {
424                 ret = zs_reclaim_page(pool, 8);
425                 if (ret < 0)
426                         break;
427                 total++;
428         }
429
430         if (reclaimed)
431                 *reclaimed = total;
432
433         return ret;
434 }
435
436 static void *zs_zpool_map(void *pool, unsigned long handle,
437                         enum zpool_mapmode mm)
438 {
439         enum zs_mapmode zs_mm;
440
441         switch (mm) {
442         case ZPOOL_MM_RO:
443                 zs_mm = ZS_MM_RO;
444                 break;
445         case ZPOOL_MM_WO:
446                 zs_mm = ZS_MM_WO;
447                 break;
448         case ZPOOL_MM_RW:
449         default:
450                 zs_mm = ZS_MM_RW;
451                 break;
452         }
453
454         return zs_map_object(pool, handle, zs_mm);
455 }
456 static void zs_zpool_unmap(void *pool, unsigned long handle)
457 {
458         zs_unmap_object(pool, handle);
459 }
460
461 static u64 zs_zpool_total_size(void *pool)
462 {
463         return zs_get_total_pages(pool) << PAGE_SHIFT;
464 }
465
466 static struct zpool_driver zs_zpool_driver = {
467         .type =                   "zsmalloc",
468         .owner =                  THIS_MODULE,
469         .create =                 zs_zpool_create,
470         .destroy =                zs_zpool_destroy,
471         .malloc_support_movable = true,
472         .malloc =                 zs_zpool_malloc,
473         .free =                   zs_zpool_free,
474         .shrink =                 zs_zpool_shrink,
475         .map =                    zs_zpool_map,
476         .unmap =                  zs_zpool_unmap,
477         .total_size =             zs_zpool_total_size,
478 };
479
480 MODULE_ALIAS("zpool-zsmalloc");
481 #endif /* CONFIG_ZPOOL */
482
483 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
484 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
485         .lock   = INIT_LOCAL_LOCK(lock),
486 };
487
488 static __maybe_unused int is_first_page(struct page *page)
489 {
490         return PagePrivate(page);
491 }
492
493 /* Protected by pool->lock */
494 static inline int get_zspage_inuse(struct zspage *zspage)
495 {
496         return zspage->inuse;
497 }
498
499
500 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
501 {
502         zspage->inuse += val;
503 }
504
505 static inline struct page *get_first_page(struct zspage *zspage)
506 {
507         struct page *first_page = zspage->first_page;
508
509         VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
510         return first_page;
511 }
512
513 static inline unsigned int get_first_obj_offset(struct page *page)
514 {
515         return page->page_type;
516 }
517
518 static inline void set_first_obj_offset(struct page *page, unsigned int offset)
519 {
520         page->page_type = offset;
521 }
522
523 static inline unsigned int get_freeobj(struct zspage *zspage)
524 {
525         return zspage->freeobj;
526 }
527
528 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
529 {
530         zspage->freeobj = obj;
531 }
532
533 static void get_zspage_mapping(struct zspage *zspage,
534                                 unsigned int *class_idx,
535                                 enum fullness_group *fullness)
536 {
537         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
538
539         *fullness = zspage->fullness;
540         *class_idx = zspage->class;
541 }
542
543 static struct size_class *zspage_class(struct zs_pool *pool,
544                                              struct zspage *zspage)
545 {
546         return pool->size_class[zspage->class];
547 }
548
549 static void set_zspage_mapping(struct zspage *zspage,
550                                 unsigned int class_idx,
551                                 enum fullness_group fullness)
552 {
553         zspage->class = class_idx;
554         zspage->fullness = fullness;
555 }
556
557 /*
558  * zsmalloc divides the pool into various size classes where each
559  * class maintains a list of zspages where each zspage is divided
560  * into equal sized chunks. Each allocation falls into one of these
561  * classes depending on its size. This function returns index of the
562  * size class which has chunk size big enough to hold the given size.
563  */
564 static int get_size_class_index(int size)
565 {
566         int idx = 0;
567
568         if (likely(size > ZS_MIN_ALLOC_SIZE))
569                 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
570                                 ZS_SIZE_CLASS_DELTA);
571
572         return min_t(int, ZS_SIZE_CLASSES - 1, idx);
573 }
574
575 /* type can be of enum type class_stat_type or fullness_group */
576 static inline void class_stat_inc(struct size_class *class,
577                                 int type, unsigned long cnt)
578 {
579         class->stats.objs[type] += cnt;
580 }
581
582 /* type can be of enum type class_stat_type or fullness_group */
583 static inline void class_stat_dec(struct size_class *class,
584                                 int type, unsigned long cnt)
585 {
586         class->stats.objs[type] -= cnt;
587 }
588
589 /* type can be of enum type class_stat_type or fullness_group */
590 static inline unsigned long zs_stat_get(struct size_class *class,
591                                 int type)
592 {
593         return class->stats.objs[type];
594 }
595
596 #ifdef CONFIG_ZSMALLOC_STAT
597
598 static void __init zs_stat_init(void)
599 {
600         if (!debugfs_initialized()) {
601                 pr_warn("debugfs not available, stat dir not created\n");
602                 return;
603         }
604
605         zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
606 }
607
608 static void __exit zs_stat_exit(void)
609 {
610         debugfs_remove_recursive(zs_stat_root);
611 }
612
613 static unsigned long zs_can_compact(struct size_class *class);
614
615 static int zs_stats_size_show(struct seq_file *s, void *v)
616 {
617         int i;
618         struct zs_pool *pool = s->private;
619         struct size_class *class;
620         int objs_per_zspage;
621         unsigned long class_almost_full, class_almost_empty;
622         unsigned long obj_allocated, obj_used, pages_used, freeable;
623         unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
624         unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
625         unsigned long total_freeable = 0;
626
627         seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
628                         "class", "size", "almost_full", "almost_empty",
629                         "obj_allocated", "obj_used", "pages_used",
630                         "pages_per_zspage", "freeable");
631
632         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
633                 class = pool->size_class[i];
634
635                 if (class->index != i)
636                         continue;
637
638                 spin_lock(&pool->lock);
639                 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
640                 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
641                 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
642                 obj_used = zs_stat_get(class, OBJ_USED);
643                 freeable = zs_can_compact(class);
644                 spin_unlock(&pool->lock);
645
646                 objs_per_zspage = class->objs_per_zspage;
647                 pages_used = obj_allocated / objs_per_zspage *
648                                 class->pages_per_zspage;
649
650                 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
651                                 " %10lu %10lu %16d %8lu\n",
652                         i, class->size, class_almost_full, class_almost_empty,
653                         obj_allocated, obj_used, pages_used,
654                         class->pages_per_zspage, freeable);
655
656                 total_class_almost_full += class_almost_full;
657                 total_class_almost_empty += class_almost_empty;
658                 total_objs += obj_allocated;
659                 total_used_objs += obj_used;
660                 total_pages += pages_used;
661                 total_freeable += freeable;
662         }
663
664         seq_puts(s, "\n");
665         seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
666                         "Total", "", total_class_almost_full,
667                         total_class_almost_empty, total_objs,
668                         total_used_objs, total_pages, "", total_freeable);
669
670         return 0;
671 }
672 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
673
674 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
675 {
676         if (!zs_stat_root) {
677                 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
678                 return;
679         }
680
681         pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
682
683         debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
684                             &zs_stats_size_fops);
685 }
686
687 static void zs_pool_stat_destroy(struct zs_pool *pool)
688 {
689         debugfs_remove_recursive(pool->stat_dentry);
690 }
691
692 #else /* CONFIG_ZSMALLOC_STAT */
693 static void __init zs_stat_init(void)
694 {
695 }
696
697 static void __exit zs_stat_exit(void)
698 {
699 }
700
701 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
702 {
703 }
704
705 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
706 {
707 }
708 #endif
709
710
711 /*
712  * For each size class, zspages are divided into different groups
713  * depending on how "full" they are. This was done so that we could
714  * easily find empty or nearly empty zspages when we try to shrink
715  * the pool (not yet implemented). This function returns fullness
716  * status of the given page.
717  */
718 static enum fullness_group get_fullness_group(struct size_class *class,
719                                                 struct zspage *zspage)
720 {
721         int inuse, objs_per_zspage;
722         enum fullness_group fg;
723
724         inuse = get_zspage_inuse(zspage);
725         objs_per_zspage = class->objs_per_zspage;
726
727         if (inuse == 0)
728                 fg = ZS_EMPTY;
729         else if (inuse == objs_per_zspage)
730                 fg = ZS_FULL;
731         else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
732                 fg = ZS_ALMOST_EMPTY;
733         else
734                 fg = ZS_ALMOST_FULL;
735
736         return fg;
737 }
738
739 /*
740  * Each size class maintains various freelists and zspages are assigned
741  * to one of these freelists based on the number of live objects they
742  * have. This functions inserts the given zspage into the freelist
743  * identified by <class, fullness_group>.
744  */
745 static void insert_zspage(struct size_class *class,
746                                 struct zspage *zspage,
747                                 enum fullness_group fullness)
748 {
749         struct zspage *head;
750
751         class_stat_inc(class, fullness, 1);
752         head = list_first_entry_or_null(&class->fullness_list[fullness],
753                                         struct zspage, list);
754         /*
755          * We want to see more ZS_FULL pages and less almost empty/full.
756          * Put pages with higher ->inuse first.
757          */
758         if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
759                 list_add(&zspage->list, &head->list);
760         else
761                 list_add(&zspage->list, &class->fullness_list[fullness]);
762 }
763
764 /*
765  * This function removes the given zspage from the freelist identified
766  * by <class, fullness_group>.
767  */
768 static void remove_zspage(struct size_class *class,
769                                 struct zspage *zspage,
770                                 enum fullness_group fullness)
771 {
772         VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
773
774         list_del_init(&zspage->list);
775         class_stat_dec(class, fullness, 1);
776 }
777
778 /*
779  * Each size class maintains zspages in different fullness groups depending
780  * on the number of live objects they contain. When allocating or freeing
781  * objects, the fullness status of the page can change, say, from ALMOST_FULL
782  * to ALMOST_EMPTY when freeing an object. This function checks if such
783  * a status change has occurred for the given page and accordingly moves the
784  * page from the freelist of the old fullness group to that of the new
785  * fullness group.
786  */
787 static enum fullness_group fix_fullness_group(struct size_class *class,
788                                                 struct zspage *zspage)
789 {
790         int class_idx;
791         enum fullness_group currfg, newfg;
792
793         get_zspage_mapping(zspage, &class_idx, &currfg);
794         newfg = get_fullness_group(class, zspage);
795         if (newfg == currfg)
796                 goto out;
797
798         remove_zspage(class, zspage, currfg);
799         insert_zspage(class, zspage, newfg);
800         set_zspage_mapping(zspage, class_idx, newfg);
801 out:
802         return newfg;
803 }
804
805 /*
806  * We have to decide on how many pages to link together
807  * to form a zspage for each size class. This is important
808  * to reduce wastage due to unusable space left at end of
809  * each zspage which is given as:
810  *     wastage = Zp % class_size
811  *     usage = Zp - wastage
812  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
813  *
814  * For example, for size class of 3/8 * PAGE_SIZE, we should
815  * link together 3 PAGE_SIZE sized pages to form a zspage
816  * since then we can perfectly fit in 8 such objects.
817  */
818 static int get_pages_per_zspage(int class_size)
819 {
820         int i, max_usedpc = 0;
821         /* zspage order which gives maximum used size per KB */
822         int max_usedpc_order = 1;
823
824         for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
825                 int zspage_size;
826                 int waste, usedpc;
827
828                 zspage_size = i * PAGE_SIZE;
829                 waste = zspage_size % class_size;
830                 usedpc = (zspage_size - waste) * 100 / zspage_size;
831
832                 if (usedpc > max_usedpc) {
833                         max_usedpc = usedpc;
834                         max_usedpc_order = i;
835                 }
836         }
837
838         return max_usedpc_order;
839 }
840
841 static struct zspage *get_zspage(struct page *page)
842 {
843         struct zspage *zspage = (struct zspage *)page_private(page);
844
845         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
846         return zspage;
847 }
848
849 static struct page *get_next_page(struct page *page)
850 {
851         struct zspage *zspage = get_zspage(page);
852
853         if (unlikely(ZsHugePage(zspage)))
854                 return NULL;
855
856         return (struct page *)page->index;
857 }
858
859 /**
860  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
861  * @obj: the encoded object value
862  * @page: page object resides in zspage
863  * @obj_idx: object index
864  */
865 static void obj_to_location(unsigned long obj, struct page **page,
866                                 unsigned int *obj_idx)
867 {
868         obj >>= OBJ_TAG_BITS;
869         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
870         *obj_idx = (obj & OBJ_INDEX_MASK);
871 }
872
873 static void obj_to_page(unsigned long obj, struct page **page)
874 {
875         obj >>= OBJ_TAG_BITS;
876         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
877 }
878
879 /**
880  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
881  * @page: page object resides in zspage
882  * @obj_idx: object index
883  */
884 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
885 {
886         unsigned long obj;
887
888         obj = page_to_pfn(page) << OBJ_INDEX_BITS;
889         obj |= obj_idx & OBJ_INDEX_MASK;
890         obj <<= OBJ_TAG_BITS;
891
892         return obj;
893 }
894
895 static unsigned long handle_to_obj(unsigned long handle)
896 {
897         return *(unsigned long *)handle;
898 }
899
900 static bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
901 {
902         unsigned long handle;
903         struct zspage *zspage = get_zspage(page);
904
905         if (unlikely(ZsHugePage(zspage))) {
906                 VM_BUG_ON_PAGE(!is_first_page(page), page);
907                 handle = page->index;
908         } else
909                 handle = *(unsigned long *)obj;
910
911         if (!(handle & OBJ_ALLOCATED_TAG))
912                 return false;
913
914         *phandle = handle & ~OBJ_ALLOCATED_TAG;
915         return true;
916 }
917
918 static void reset_page(struct page *page)
919 {
920         __ClearPageMovable(page);
921         ClearPagePrivate(page);
922         set_page_private(page, 0);
923         page_mapcount_reset(page);
924         page->index = 0;
925 }
926
927 static int trylock_zspage(struct zspage *zspage)
928 {
929         struct page *cursor, *fail;
930
931         for (cursor = get_first_page(zspage); cursor != NULL; cursor =
932                                         get_next_page(cursor)) {
933                 if (!trylock_page(cursor)) {
934                         fail = cursor;
935                         goto unlock;
936                 }
937         }
938
939         return 1;
940 unlock:
941         for (cursor = get_first_page(zspage); cursor != fail; cursor =
942                                         get_next_page(cursor))
943                 unlock_page(cursor);
944
945         return 0;
946 }
947
948 #ifdef CONFIG_ZPOOL
949 /*
950  * Free all the deferred handles whose objects are freed in zs_free.
951  */
952 static void free_handles(struct zs_pool *pool, struct zspage *zspage)
953 {
954         unsigned long handle = (unsigned long)zspage->deferred_handles;
955
956         while (handle) {
957                 unsigned long nxt_handle = handle_to_obj(handle);
958
959                 cache_free_handle(pool, handle);
960                 handle = nxt_handle;
961         }
962 }
963 #else
964 static inline void free_handles(struct zs_pool *pool, struct zspage *zspage) {}
965 #endif
966
967 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
968                                 struct zspage *zspage)
969 {
970         struct page *page, *next;
971         enum fullness_group fg;
972         unsigned int class_idx;
973
974         get_zspage_mapping(zspage, &class_idx, &fg);
975
976         assert_spin_locked(&pool->lock);
977
978         VM_BUG_ON(get_zspage_inuse(zspage));
979         VM_BUG_ON(fg != ZS_EMPTY);
980
981         /* Free all deferred handles from zs_free */
982         free_handles(pool, zspage);
983
984         next = page = get_first_page(zspage);
985         do {
986                 VM_BUG_ON_PAGE(!PageLocked(page), page);
987                 next = get_next_page(page);
988                 reset_page(page);
989                 unlock_page(page);
990                 dec_zone_page_state(page, NR_ZSPAGES);
991                 put_page(page);
992                 page = next;
993         } while (page != NULL);
994
995         cache_free_zspage(pool, zspage);
996
997         class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
998         atomic_long_sub(class->pages_per_zspage,
999                                         &pool->pages_allocated);
1000 }
1001
1002 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1003                                 struct zspage *zspage)
1004 {
1005         VM_BUG_ON(get_zspage_inuse(zspage));
1006         VM_BUG_ON(list_empty(&zspage->list));
1007
1008         /*
1009          * Since zs_free couldn't be sleepable, this function cannot call
1010          * lock_page. The page locks trylock_zspage got will be released
1011          * by __free_zspage.
1012          */
1013         if (!trylock_zspage(zspage)) {
1014                 kick_deferred_free(pool);
1015                 return;
1016         }
1017
1018         remove_zspage(class, zspage, ZS_EMPTY);
1019 #ifdef CONFIG_ZPOOL
1020         list_del(&zspage->lru);
1021 #endif
1022         __free_zspage(pool, class, zspage);
1023 }
1024
1025 /* Initialize a newly allocated zspage */
1026 static void init_zspage(struct size_class *class, struct zspage *zspage)
1027 {
1028         unsigned int freeobj = 1;
1029         unsigned long off = 0;
1030         struct page *page = get_first_page(zspage);
1031
1032         while (page) {
1033                 struct page *next_page;
1034                 struct link_free *link;
1035                 void *vaddr;
1036
1037                 set_first_obj_offset(page, off);
1038
1039                 vaddr = kmap_atomic(page);
1040                 link = (struct link_free *)vaddr + off / sizeof(*link);
1041
1042                 while ((off += class->size) < PAGE_SIZE) {
1043                         link->next = freeobj++ << OBJ_TAG_BITS;
1044                         link += class->size / sizeof(*link);
1045                 }
1046
1047                 /*
1048                  * We now come to the last (full or partial) object on this
1049                  * page, which must point to the first object on the next
1050                  * page (if present)
1051                  */
1052                 next_page = get_next_page(page);
1053                 if (next_page) {
1054                         link->next = freeobj++ << OBJ_TAG_BITS;
1055                 } else {
1056                         /*
1057                          * Reset OBJ_TAG_BITS bit to last link to tell
1058                          * whether it's allocated object or not.
1059                          */
1060                         link->next = -1UL << OBJ_TAG_BITS;
1061                 }
1062                 kunmap_atomic(vaddr);
1063                 page = next_page;
1064                 off %= PAGE_SIZE;
1065         }
1066
1067 #ifdef CONFIG_ZPOOL
1068         INIT_LIST_HEAD(&zspage->lru);
1069         zspage->under_reclaim = false;
1070         zspage->deferred_handles = NULL;
1071 #endif
1072
1073         set_freeobj(zspage, 0);
1074 }
1075
1076 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1077                                 struct page *pages[])
1078 {
1079         int i;
1080         struct page *page;
1081         struct page *prev_page = NULL;
1082         int nr_pages = class->pages_per_zspage;
1083
1084         /*
1085          * Allocate individual pages and link them together as:
1086          * 1. all pages are linked together using page->index
1087          * 2. each sub-page point to zspage using page->private
1088          *
1089          * we set PG_private to identify the first page (i.e. no other sub-page
1090          * has this flag set).
1091          */
1092         for (i = 0; i < nr_pages; i++) {
1093                 page = pages[i];
1094                 set_page_private(page, (unsigned long)zspage);
1095                 page->index = 0;
1096                 if (i == 0) {
1097                         zspage->first_page = page;
1098                         SetPagePrivate(page);
1099                         if (unlikely(class->objs_per_zspage == 1 &&
1100                                         class->pages_per_zspage == 1))
1101                                 SetZsHugePage(zspage);
1102                 } else {
1103                         prev_page->index = (unsigned long)page;
1104                 }
1105                 prev_page = page;
1106         }
1107 }
1108
1109 /*
1110  * Allocate a zspage for the given size class
1111  */
1112 static struct zspage *alloc_zspage(struct zs_pool *pool,
1113                                         struct size_class *class,
1114                                         gfp_t gfp)
1115 {
1116         int i;
1117         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1118         struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1119
1120         if (!zspage)
1121                 return NULL;
1122
1123         zspage->magic = ZSPAGE_MAGIC;
1124         migrate_lock_init(zspage);
1125
1126         for (i = 0; i < class->pages_per_zspage; i++) {
1127                 struct page *page;
1128
1129                 page = alloc_page(gfp);
1130                 if (!page) {
1131                         while (--i >= 0) {
1132                                 dec_zone_page_state(pages[i], NR_ZSPAGES);
1133                                 __free_page(pages[i]);
1134                         }
1135                         cache_free_zspage(pool, zspage);
1136                         return NULL;
1137                 }
1138
1139                 inc_zone_page_state(page, NR_ZSPAGES);
1140                 pages[i] = page;
1141         }
1142
1143         create_page_chain(class, zspage, pages);
1144         init_zspage(class, zspage);
1145         zspage->pool = pool;
1146
1147         return zspage;
1148 }
1149
1150 static struct zspage *find_get_zspage(struct size_class *class)
1151 {
1152         int i;
1153         struct zspage *zspage;
1154
1155         for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1156                 zspage = list_first_entry_or_null(&class->fullness_list[i],
1157                                 struct zspage, list);
1158                 if (zspage)
1159                         break;
1160         }
1161
1162         return zspage;
1163 }
1164
1165 static inline int __zs_cpu_up(struct mapping_area *area)
1166 {
1167         /*
1168          * Make sure we don't leak memory if a cpu UP notification
1169          * and zs_init() race and both call zs_cpu_up() on the same cpu
1170          */
1171         if (area->vm_buf)
1172                 return 0;
1173         area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1174         if (!area->vm_buf)
1175                 return -ENOMEM;
1176         return 0;
1177 }
1178
1179 static inline void __zs_cpu_down(struct mapping_area *area)
1180 {
1181         kfree(area->vm_buf);
1182         area->vm_buf = NULL;
1183 }
1184
1185 static void *__zs_map_object(struct mapping_area *area,
1186                         struct page *pages[2], int off, int size)
1187 {
1188         int sizes[2];
1189         void *addr;
1190         char *buf = area->vm_buf;
1191
1192         /* disable page faults to match kmap_atomic() return conditions */
1193         pagefault_disable();
1194
1195         /* no read fastpath */
1196         if (area->vm_mm == ZS_MM_WO)
1197                 goto out;
1198
1199         sizes[0] = PAGE_SIZE - off;
1200         sizes[1] = size - sizes[0];
1201
1202         /* copy object to per-cpu buffer */
1203         addr = kmap_atomic(pages[0]);
1204         memcpy(buf, addr + off, sizes[0]);
1205         kunmap_atomic(addr);
1206         addr = kmap_atomic(pages[1]);
1207         memcpy(buf + sizes[0], addr, sizes[1]);
1208         kunmap_atomic(addr);
1209 out:
1210         return area->vm_buf;
1211 }
1212
1213 static void __zs_unmap_object(struct mapping_area *area,
1214                         struct page *pages[2], int off, int size)
1215 {
1216         int sizes[2];
1217         void *addr;
1218         char *buf;
1219
1220         /* no write fastpath */
1221         if (area->vm_mm == ZS_MM_RO)
1222                 goto out;
1223
1224         buf = area->vm_buf;
1225         buf = buf + ZS_HANDLE_SIZE;
1226         size -= ZS_HANDLE_SIZE;
1227         off += ZS_HANDLE_SIZE;
1228
1229         sizes[0] = PAGE_SIZE - off;
1230         sizes[1] = size - sizes[0];
1231
1232         /* copy per-cpu buffer to object */
1233         addr = kmap_atomic(pages[0]);
1234         memcpy(addr + off, buf, sizes[0]);
1235         kunmap_atomic(addr);
1236         addr = kmap_atomic(pages[1]);
1237         memcpy(addr, buf + sizes[0], sizes[1]);
1238         kunmap_atomic(addr);
1239
1240 out:
1241         /* enable page faults to match kunmap_atomic() return conditions */
1242         pagefault_enable();
1243 }
1244
1245 static int zs_cpu_prepare(unsigned int cpu)
1246 {
1247         struct mapping_area *area;
1248
1249         area = &per_cpu(zs_map_area, cpu);
1250         return __zs_cpu_up(area);
1251 }
1252
1253 static int zs_cpu_dead(unsigned int cpu)
1254 {
1255         struct mapping_area *area;
1256
1257         area = &per_cpu(zs_map_area, cpu);
1258         __zs_cpu_down(area);
1259         return 0;
1260 }
1261
1262 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1263                                         int objs_per_zspage)
1264 {
1265         if (prev->pages_per_zspage == pages_per_zspage &&
1266                 prev->objs_per_zspage == objs_per_zspage)
1267                 return true;
1268
1269         return false;
1270 }
1271
1272 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1273 {
1274         return get_zspage_inuse(zspage) == class->objs_per_zspage;
1275 }
1276
1277 /**
1278  * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1279  * that hold objects of the provided size.
1280  * @pool: zsmalloc pool to use
1281  * @size: object size
1282  *
1283  * Context: Any context.
1284  *
1285  * Return: the index of the zsmalloc &size_class that hold objects of the
1286  * provided size.
1287  */
1288 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1289 {
1290         struct size_class *class;
1291
1292         class = pool->size_class[get_size_class_index(size)];
1293
1294         return class->index;
1295 }
1296 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1297
1298 unsigned long zs_get_total_pages(struct zs_pool *pool)
1299 {
1300         return atomic_long_read(&pool->pages_allocated);
1301 }
1302 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1303
1304 /**
1305  * zs_map_object - get address of allocated object from handle.
1306  * @pool: pool from which the object was allocated
1307  * @handle: handle returned from zs_malloc
1308  * @mm: mapping mode to use
1309  *
1310  * Before using an object allocated from zs_malloc, it must be mapped using
1311  * this function. When done with the object, it must be unmapped using
1312  * zs_unmap_object.
1313  *
1314  * Only one object can be mapped per cpu at a time. There is no protection
1315  * against nested mappings.
1316  *
1317  * This function returns with preemption and page faults disabled.
1318  */
1319 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1320                         enum zs_mapmode mm)
1321 {
1322         struct zspage *zspage;
1323         struct page *page;
1324         unsigned long obj, off;
1325         unsigned int obj_idx;
1326
1327         struct size_class *class;
1328         struct mapping_area *area;
1329         struct page *pages[2];
1330         void *ret;
1331
1332         /*
1333          * Because we use per-cpu mapping areas shared among the
1334          * pools/users, we can't allow mapping in interrupt context
1335          * because it can corrupt another users mappings.
1336          */
1337         BUG_ON(in_interrupt());
1338
1339         /* It guarantees it can get zspage from handle safely */
1340         spin_lock(&pool->lock);
1341         obj = handle_to_obj(handle);
1342         obj_to_location(obj, &page, &obj_idx);
1343         zspage = get_zspage(page);
1344
1345 #ifdef CONFIG_ZPOOL
1346         /*
1347          * Move the zspage to front of pool's LRU.
1348          *
1349          * Note that this is swap-specific, so by definition there are no ongoing
1350          * accesses to the memory while the page is swapped out that would make
1351          * it "hot". A new entry is hot, then ages to the tail until it gets either
1352          * written back or swaps back in.
1353          *
1354          * Furthermore, map is also called during writeback. We must not put an
1355          * isolated page on the LRU mid-reclaim.
1356          *
1357          * As a result, only update the LRU when the page is mapped for write
1358          * when it's first instantiated.
1359          *
1360          * This is a deviation from the other backends, which perform this update
1361          * in the allocation function (zbud_alloc, z3fold_alloc).
1362          */
1363         if (mm == ZS_MM_WO) {
1364                 if (!list_empty(&zspage->lru))
1365                         list_del(&zspage->lru);
1366                 list_add(&zspage->lru, &pool->lru);
1367         }
1368 #endif
1369
1370         /*
1371          * migration cannot move any zpages in this zspage. Here, pool->lock
1372          * is too heavy since callers would take some time until they calls
1373          * zs_unmap_object API so delegate the locking from class to zspage
1374          * which is smaller granularity.
1375          */
1376         migrate_read_lock(zspage);
1377         spin_unlock(&pool->lock);
1378
1379         class = zspage_class(pool, zspage);
1380         off = (class->size * obj_idx) & ~PAGE_MASK;
1381
1382         local_lock(&zs_map_area.lock);
1383         area = this_cpu_ptr(&zs_map_area);
1384         area->vm_mm = mm;
1385         if (off + class->size <= PAGE_SIZE) {
1386                 /* this object is contained entirely within a page */
1387                 area->vm_addr = kmap_atomic(page);
1388                 ret = area->vm_addr + off;
1389                 goto out;
1390         }
1391
1392         /* this object spans two pages */
1393         pages[0] = page;
1394         pages[1] = get_next_page(page);
1395         BUG_ON(!pages[1]);
1396
1397         ret = __zs_map_object(area, pages, off, class->size);
1398 out:
1399         if (likely(!ZsHugePage(zspage)))
1400                 ret += ZS_HANDLE_SIZE;
1401
1402         return ret;
1403 }
1404 EXPORT_SYMBOL_GPL(zs_map_object);
1405
1406 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1407 {
1408         struct zspage *zspage;
1409         struct page *page;
1410         unsigned long obj, off;
1411         unsigned int obj_idx;
1412
1413         struct size_class *class;
1414         struct mapping_area *area;
1415
1416         obj = handle_to_obj(handle);
1417         obj_to_location(obj, &page, &obj_idx);
1418         zspage = get_zspage(page);
1419         class = zspage_class(pool, zspage);
1420         off = (class->size * obj_idx) & ~PAGE_MASK;
1421
1422         area = this_cpu_ptr(&zs_map_area);
1423         if (off + class->size <= PAGE_SIZE)
1424                 kunmap_atomic(area->vm_addr);
1425         else {
1426                 struct page *pages[2];
1427
1428                 pages[0] = page;
1429                 pages[1] = get_next_page(page);
1430                 BUG_ON(!pages[1]);
1431
1432                 __zs_unmap_object(area, pages, off, class->size);
1433         }
1434         local_unlock(&zs_map_area.lock);
1435
1436         migrate_read_unlock(zspage);
1437 }
1438 EXPORT_SYMBOL_GPL(zs_unmap_object);
1439
1440 /**
1441  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1442  *                        zsmalloc &size_class.
1443  * @pool: zsmalloc pool to use
1444  *
1445  * The function returns the size of the first huge class - any object of equal
1446  * or bigger size will be stored in zspage consisting of a single physical
1447  * page.
1448  *
1449  * Context: Any context.
1450  *
1451  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1452  */
1453 size_t zs_huge_class_size(struct zs_pool *pool)
1454 {
1455         return huge_class_size;
1456 }
1457 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1458
1459 static unsigned long obj_malloc(struct zs_pool *pool,
1460                                 struct zspage *zspage, unsigned long handle)
1461 {
1462         int i, nr_page, offset;
1463         unsigned long obj;
1464         struct link_free *link;
1465         struct size_class *class;
1466
1467         struct page *m_page;
1468         unsigned long m_offset;
1469         void *vaddr;
1470
1471         class = pool->size_class[zspage->class];
1472         handle |= OBJ_ALLOCATED_TAG;
1473         obj = get_freeobj(zspage);
1474
1475         offset = obj * class->size;
1476         nr_page = offset >> PAGE_SHIFT;
1477         m_offset = offset & ~PAGE_MASK;
1478         m_page = get_first_page(zspage);
1479
1480         for (i = 0; i < nr_page; i++)
1481                 m_page = get_next_page(m_page);
1482
1483         vaddr = kmap_atomic(m_page);
1484         link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1485         set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1486         if (likely(!ZsHugePage(zspage)))
1487                 /* record handle in the header of allocated chunk */
1488                 link->handle = handle;
1489         else
1490                 /* record handle to page->index */
1491                 zspage->first_page->index = handle;
1492
1493         kunmap_atomic(vaddr);
1494         mod_zspage_inuse(zspage, 1);
1495
1496         obj = location_to_obj(m_page, obj);
1497
1498         return obj;
1499 }
1500
1501
1502 /**
1503  * zs_malloc - Allocate block of given size from pool.
1504  * @pool: pool to allocate from
1505  * @size: size of block to allocate
1506  * @gfp: gfp flags when allocating object
1507  *
1508  * On success, handle to the allocated object is returned,
1509  * otherwise an ERR_PTR().
1510  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1511  */
1512 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1513 {
1514         unsigned long handle, obj;
1515         struct size_class *class;
1516         enum fullness_group newfg;
1517         struct zspage *zspage;
1518
1519         if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1520                 return (unsigned long)ERR_PTR(-EINVAL);
1521
1522         handle = cache_alloc_handle(pool, gfp);
1523         if (!handle)
1524                 return (unsigned long)ERR_PTR(-ENOMEM);
1525
1526         /* extra space in chunk to keep the handle */
1527         size += ZS_HANDLE_SIZE;
1528         class = pool->size_class[get_size_class_index(size)];
1529
1530         /* pool->lock effectively protects the zpage migration */
1531         spin_lock(&pool->lock);
1532         zspage = find_get_zspage(class);
1533         if (likely(zspage)) {
1534                 obj = obj_malloc(pool, zspage, handle);
1535                 /* Now move the zspage to another fullness group, if required */
1536                 fix_fullness_group(class, zspage);
1537                 record_obj(handle, obj);
1538                 class_stat_inc(class, OBJ_USED, 1);
1539                 spin_unlock(&pool->lock);
1540
1541                 return handle;
1542         }
1543
1544         spin_unlock(&pool->lock);
1545
1546         zspage = alloc_zspage(pool, class, gfp);
1547         if (!zspage) {
1548                 cache_free_handle(pool, handle);
1549                 return (unsigned long)ERR_PTR(-ENOMEM);
1550         }
1551
1552         spin_lock(&pool->lock);
1553         obj = obj_malloc(pool, zspage, handle);
1554         newfg = get_fullness_group(class, zspage);
1555         insert_zspage(class, zspage, newfg);
1556         set_zspage_mapping(zspage, class->index, newfg);
1557         record_obj(handle, obj);
1558         atomic_long_add(class->pages_per_zspage,
1559                                 &pool->pages_allocated);
1560         class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1561         class_stat_inc(class, OBJ_USED, 1);
1562
1563         /* We completely set up zspage so mark them as movable */
1564         SetZsPageMovable(pool, zspage);
1565         spin_unlock(&pool->lock);
1566
1567         return handle;
1568 }
1569 EXPORT_SYMBOL_GPL(zs_malloc);
1570
1571 static void obj_free(int class_size, unsigned long obj)
1572 {
1573         struct link_free *link;
1574         struct zspage *zspage;
1575         struct page *f_page;
1576         unsigned long f_offset;
1577         unsigned int f_objidx;
1578         void *vaddr;
1579
1580         obj_to_location(obj, &f_page, &f_objidx);
1581         f_offset = (class_size * f_objidx) & ~PAGE_MASK;
1582         zspage = get_zspage(f_page);
1583
1584         vaddr = kmap_atomic(f_page);
1585
1586         /* Insert this object in containing zspage's freelist */
1587         link = (struct link_free *)(vaddr + f_offset);
1588         if (likely(!ZsHugePage(zspage)))
1589                 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1590         else
1591                 f_page->index = 0;
1592         kunmap_atomic(vaddr);
1593         set_freeobj(zspage, f_objidx);
1594         mod_zspage_inuse(zspage, -1);
1595 }
1596
1597 void zs_free(struct zs_pool *pool, unsigned long handle)
1598 {
1599         struct zspage *zspage;
1600         struct page *f_page;
1601         unsigned long obj;
1602         struct size_class *class;
1603         enum fullness_group fullness;
1604
1605         if (IS_ERR_OR_NULL((void *)handle))
1606                 return;
1607
1608         /*
1609          * The pool->lock protects the race with zpage's migration
1610          * so it's safe to get the page from handle.
1611          */
1612         spin_lock(&pool->lock);
1613         obj = handle_to_obj(handle);
1614         obj_to_page(obj, &f_page);
1615         zspage = get_zspage(f_page);
1616         class = zspage_class(pool, zspage);
1617
1618         obj_free(class->size, obj);
1619         class_stat_dec(class, OBJ_USED, 1);
1620
1621 #ifdef CONFIG_ZPOOL
1622         if (zspage->under_reclaim) {
1623                 /*
1624                  * Reclaim needs the handles during writeback. It'll free
1625                  * them along with the zspage when it's done with them.
1626                  *
1627                  * Record current deferred handle at the memory location
1628                  * whose address is given by handle.
1629                  */
1630                 record_obj(handle, (unsigned long)zspage->deferred_handles);
1631                 zspage->deferred_handles = (unsigned long *)handle;
1632                 spin_unlock(&pool->lock);
1633                 return;
1634         }
1635 #endif
1636         fullness = fix_fullness_group(class, zspage);
1637         if (fullness == ZS_EMPTY)
1638                 free_zspage(pool, class, zspage);
1639
1640         spin_unlock(&pool->lock);
1641         cache_free_handle(pool, handle);
1642 }
1643 EXPORT_SYMBOL_GPL(zs_free);
1644
1645 static void zs_object_copy(struct size_class *class, unsigned long dst,
1646                                 unsigned long src)
1647 {
1648         struct page *s_page, *d_page;
1649         unsigned int s_objidx, d_objidx;
1650         unsigned long s_off, d_off;
1651         void *s_addr, *d_addr;
1652         int s_size, d_size, size;
1653         int written = 0;
1654
1655         s_size = d_size = class->size;
1656
1657         obj_to_location(src, &s_page, &s_objidx);
1658         obj_to_location(dst, &d_page, &d_objidx);
1659
1660         s_off = (class->size * s_objidx) & ~PAGE_MASK;
1661         d_off = (class->size * d_objidx) & ~PAGE_MASK;
1662
1663         if (s_off + class->size > PAGE_SIZE)
1664                 s_size = PAGE_SIZE - s_off;
1665
1666         if (d_off + class->size > PAGE_SIZE)
1667                 d_size = PAGE_SIZE - d_off;
1668
1669         s_addr = kmap_atomic(s_page);
1670         d_addr = kmap_atomic(d_page);
1671
1672         while (1) {
1673                 size = min(s_size, d_size);
1674                 memcpy(d_addr + d_off, s_addr + s_off, size);
1675                 written += size;
1676
1677                 if (written == class->size)
1678                         break;
1679
1680                 s_off += size;
1681                 s_size -= size;
1682                 d_off += size;
1683                 d_size -= size;
1684
1685                 /*
1686                  * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1687                  * calls must occurs in reverse order of calls to kmap_atomic().
1688                  * So, to call kunmap_atomic(s_addr) we should first call
1689                  * kunmap_atomic(d_addr). For more details see
1690                  * Documentation/mm/highmem.rst.
1691                  */
1692                 if (s_off >= PAGE_SIZE) {
1693                         kunmap_atomic(d_addr);
1694                         kunmap_atomic(s_addr);
1695                         s_page = get_next_page(s_page);
1696                         s_addr = kmap_atomic(s_page);
1697                         d_addr = kmap_atomic(d_page);
1698                         s_size = class->size - written;
1699                         s_off = 0;
1700                 }
1701
1702                 if (d_off >= PAGE_SIZE) {
1703                         kunmap_atomic(d_addr);
1704                         d_page = get_next_page(d_page);
1705                         d_addr = kmap_atomic(d_page);
1706                         d_size = class->size - written;
1707                         d_off = 0;
1708                 }
1709         }
1710
1711         kunmap_atomic(d_addr);
1712         kunmap_atomic(s_addr);
1713 }
1714
1715 /*
1716  * Find alloced object in zspage from index object and
1717  * return handle.
1718  */
1719 static unsigned long find_alloced_obj(struct size_class *class,
1720                                         struct page *page, int *obj_idx)
1721 {
1722         unsigned int offset;
1723         int index = *obj_idx;
1724         unsigned long handle = 0;
1725         void *addr = kmap_atomic(page);
1726
1727         offset = get_first_obj_offset(page);
1728         offset += class->size * index;
1729
1730         while (offset < PAGE_SIZE) {
1731                 if (obj_allocated(page, addr + offset, &handle))
1732                         break;
1733
1734                 offset += class->size;
1735                 index++;
1736         }
1737
1738         kunmap_atomic(addr);
1739
1740         *obj_idx = index;
1741
1742         return handle;
1743 }
1744
1745 struct zs_compact_control {
1746         /* Source spage for migration which could be a subpage of zspage */
1747         struct page *s_page;
1748         /* Destination page for migration which should be a first page
1749          * of zspage. */
1750         struct page *d_page;
1751          /* Starting object index within @s_page which used for live object
1752           * in the subpage. */
1753         int obj_idx;
1754 };
1755
1756 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1757                                 struct zs_compact_control *cc)
1758 {
1759         unsigned long used_obj, free_obj;
1760         unsigned long handle;
1761         struct page *s_page = cc->s_page;
1762         struct page *d_page = cc->d_page;
1763         int obj_idx = cc->obj_idx;
1764         int ret = 0;
1765
1766         while (1) {
1767                 handle = find_alloced_obj(class, s_page, &obj_idx);
1768                 if (!handle) {
1769                         s_page = get_next_page(s_page);
1770                         if (!s_page)
1771                                 break;
1772                         obj_idx = 0;
1773                         continue;
1774                 }
1775
1776                 /* Stop if there is no more space */
1777                 if (zspage_full(class, get_zspage(d_page))) {
1778                         ret = -ENOMEM;
1779                         break;
1780                 }
1781
1782                 used_obj = handle_to_obj(handle);
1783                 free_obj = obj_malloc(pool, get_zspage(d_page), handle);
1784                 zs_object_copy(class, free_obj, used_obj);
1785                 obj_idx++;
1786                 record_obj(handle, free_obj);
1787                 obj_free(class->size, used_obj);
1788         }
1789
1790         /* Remember last position in this iteration */
1791         cc->s_page = s_page;
1792         cc->obj_idx = obj_idx;
1793
1794         return ret;
1795 }
1796
1797 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1798 {
1799         int i;
1800         struct zspage *zspage;
1801         enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1802
1803         if (!source) {
1804                 fg[0] = ZS_ALMOST_FULL;
1805                 fg[1] = ZS_ALMOST_EMPTY;
1806         }
1807
1808         for (i = 0; i < 2; i++) {
1809                 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1810                                                         struct zspage, list);
1811                 if (zspage) {
1812                         remove_zspage(class, zspage, fg[i]);
1813                         return zspage;
1814                 }
1815         }
1816
1817         return zspage;
1818 }
1819
1820 /*
1821  * putback_zspage - add @zspage into right class's fullness list
1822  * @class: destination class
1823  * @zspage: target page
1824  *
1825  * Return @zspage's fullness_group
1826  */
1827 static enum fullness_group putback_zspage(struct size_class *class,
1828                         struct zspage *zspage)
1829 {
1830         enum fullness_group fullness;
1831
1832         fullness = get_fullness_group(class, zspage);
1833         insert_zspage(class, zspage, fullness);
1834         set_zspage_mapping(zspage, class->index, fullness);
1835
1836         return fullness;
1837 }
1838
1839 #if defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION)
1840 /*
1841  * To prevent zspage destroy during migration, zspage freeing should
1842  * hold locks of all pages in the zspage.
1843  */
1844 static void lock_zspage(struct zspage *zspage)
1845 {
1846         struct page *curr_page, *page;
1847
1848         /*
1849          * Pages we haven't locked yet can be migrated off the list while we're
1850          * trying to lock them, so we need to be careful and only attempt to
1851          * lock each page under migrate_read_lock(). Otherwise, the page we lock
1852          * may no longer belong to the zspage. This means that we may wait for
1853          * the wrong page to unlock, so we must take a reference to the page
1854          * prior to waiting for it to unlock outside migrate_read_lock().
1855          */
1856         while (1) {
1857                 migrate_read_lock(zspage);
1858                 page = get_first_page(zspage);
1859                 if (trylock_page(page))
1860                         break;
1861                 get_page(page);
1862                 migrate_read_unlock(zspage);
1863                 wait_on_page_locked(page);
1864                 put_page(page);
1865         }
1866
1867         curr_page = page;
1868         while ((page = get_next_page(curr_page))) {
1869                 if (trylock_page(page)) {
1870                         curr_page = page;
1871                 } else {
1872                         get_page(page);
1873                         migrate_read_unlock(zspage);
1874                         wait_on_page_locked(page);
1875                         put_page(page);
1876                         migrate_read_lock(zspage);
1877                 }
1878         }
1879         migrate_read_unlock(zspage);
1880 }
1881 #endif /* defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION) */
1882
1883 #ifdef CONFIG_ZPOOL
1884 /*
1885  * Unlocks all the pages of the zspage.
1886  *
1887  * pool->lock must be held before this function is called
1888  * to prevent the underlying pages from migrating.
1889  */
1890 static void unlock_zspage(struct zspage *zspage)
1891 {
1892         struct page *page = get_first_page(zspage);
1893
1894         do {
1895                 unlock_page(page);
1896         } while ((page = get_next_page(page)) != NULL);
1897 }
1898 #endif /* CONFIG_ZPOOL */
1899
1900 static void migrate_lock_init(struct zspage *zspage)
1901 {
1902         rwlock_init(&zspage->lock);
1903 }
1904
1905 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1906 {
1907         read_lock(&zspage->lock);
1908 }
1909
1910 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1911 {
1912         read_unlock(&zspage->lock);
1913 }
1914
1915 #ifdef CONFIG_COMPACTION
1916 static void migrate_write_lock(struct zspage *zspage)
1917 {
1918         write_lock(&zspage->lock);
1919 }
1920
1921 static void migrate_write_lock_nested(struct zspage *zspage)
1922 {
1923         write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
1924 }
1925
1926 static void migrate_write_unlock(struct zspage *zspage)
1927 {
1928         write_unlock(&zspage->lock);
1929 }
1930
1931 /* Number of isolated subpage for *page migration* in this zspage */
1932 static void inc_zspage_isolation(struct zspage *zspage)
1933 {
1934         zspage->isolated++;
1935 }
1936
1937 static void dec_zspage_isolation(struct zspage *zspage)
1938 {
1939         VM_BUG_ON(zspage->isolated == 0);
1940         zspage->isolated--;
1941 }
1942
1943 static const struct movable_operations zsmalloc_mops;
1944
1945 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1946                                 struct page *newpage, struct page *oldpage)
1947 {
1948         struct page *page;
1949         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1950         int idx = 0;
1951
1952         page = get_first_page(zspage);
1953         do {
1954                 if (page == oldpage)
1955                         pages[idx] = newpage;
1956                 else
1957                         pages[idx] = page;
1958                 idx++;
1959         } while ((page = get_next_page(page)) != NULL);
1960
1961         create_page_chain(class, zspage, pages);
1962         set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1963         if (unlikely(ZsHugePage(zspage)))
1964                 newpage->index = oldpage->index;
1965         __SetPageMovable(newpage, &zsmalloc_mops);
1966 }
1967
1968 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1969 {
1970         struct zspage *zspage;
1971
1972         /*
1973          * Page is locked so zspage couldn't be destroyed. For detail, look at
1974          * lock_zspage in free_zspage.
1975          */
1976         VM_BUG_ON_PAGE(!PageMovable(page), page);
1977         VM_BUG_ON_PAGE(PageIsolated(page), page);
1978
1979         zspage = get_zspage(page);
1980         migrate_write_lock(zspage);
1981         inc_zspage_isolation(zspage);
1982         migrate_write_unlock(zspage);
1983
1984         return true;
1985 }
1986
1987 static int zs_page_migrate(struct page *newpage, struct page *page,
1988                 enum migrate_mode mode)
1989 {
1990         struct zs_pool *pool;
1991         struct size_class *class;
1992         struct zspage *zspage;
1993         struct page *dummy;
1994         void *s_addr, *d_addr, *addr;
1995         unsigned int offset;
1996         unsigned long handle;
1997         unsigned long old_obj, new_obj;
1998         unsigned int obj_idx;
1999
2000         /*
2001          * We cannot support the _NO_COPY case here, because copy needs to
2002          * happen under the zs lock, which does not work with
2003          * MIGRATE_SYNC_NO_COPY workflow.
2004          */
2005         if (mode == MIGRATE_SYNC_NO_COPY)
2006                 return -EINVAL;
2007
2008         VM_BUG_ON_PAGE(!PageMovable(page), page);
2009         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2010
2011         /* The page is locked, so this pointer must remain valid */
2012         zspage = get_zspage(page);
2013         pool = zspage->pool;
2014
2015         /*
2016          * The pool's lock protects the race between zpage migration
2017          * and zs_free.
2018          */
2019         spin_lock(&pool->lock);
2020         class = zspage_class(pool, zspage);
2021
2022         /* the migrate_write_lock protects zpage access via zs_map_object */
2023         migrate_write_lock(zspage);
2024
2025         offset = get_first_obj_offset(page);
2026         s_addr = kmap_atomic(page);
2027
2028         /*
2029          * Here, any user cannot access all objects in the zspage so let's move.
2030          */
2031         d_addr = kmap_atomic(newpage);
2032         memcpy(d_addr, s_addr, PAGE_SIZE);
2033         kunmap_atomic(d_addr);
2034
2035         for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
2036                                         addr += class->size) {
2037                 if (obj_allocated(page, addr, &handle)) {
2038
2039                         old_obj = handle_to_obj(handle);
2040                         obj_to_location(old_obj, &dummy, &obj_idx);
2041                         new_obj = (unsigned long)location_to_obj(newpage,
2042                                                                 obj_idx);
2043                         record_obj(handle, new_obj);
2044                 }
2045         }
2046         kunmap_atomic(s_addr);
2047
2048         replace_sub_page(class, zspage, newpage, page);
2049         /*
2050          * Since we complete the data copy and set up new zspage structure,
2051          * it's okay to release the pool's lock.
2052          */
2053         spin_unlock(&pool->lock);
2054         dec_zspage_isolation(zspage);
2055         migrate_write_unlock(zspage);
2056
2057         get_page(newpage);
2058         if (page_zone(newpage) != page_zone(page)) {
2059                 dec_zone_page_state(page, NR_ZSPAGES);
2060                 inc_zone_page_state(newpage, NR_ZSPAGES);
2061         }
2062
2063         reset_page(page);
2064         put_page(page);
2065
2066         return MIGRATEPAGE_SUCCESS;
2067 }
2068
2069 static void zs_page_putback(struct page *page)
2070 {
2071         struct zspage *zspage;
2072
2073         VM_BUG_ON_PAGE(!PageMovable(page), page);
2074         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2075
2076         zspage = get_zspage(page);
2077         migrate_write_lock(zspage);
2078         dec_zspage_isolation(zspage);
2079         migrate_write_unlock(zspage);
2080 }
2081
2082 static const struct movable_operations zsmalloc_mops = {
2083         .isolate_page = zs_page_isolate,
2084         .migrate_page = zs_page_migrate,
2085         .putback_page = zs_page_putback,
2086 };
2087
2088 /*
2089  * Caller should hold page_lock of all pages in the zspage
2090  * In here, we cannot use zspage meta data.
2091  */
2092 static void async_free_zspage(struct work_struct *work)
2093 {
2094         int i;
2095         struct size_class *class;
2096         unsigned int class_idx;
2097         enum fullness_group fullness;
2098         struct zspage *zspage, *tmp;
2099         LIST_HEAD(free_pages);
2100         struct zs_pool *pool = container_of(work, struct zs_pool,
2101                                         free_work);
2102
2103         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2104                 class = pool->size_class[i];
2105                 if (class->index != i)
2106                         continue;
2107
2108                 spin_lock(&pool->lock);
2109                 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2110                 spin_unlock(&pool->lock);
2111         }
2112
2113         list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2114                 list_del(&zspage->list);
2115                 lock_zspage(zspage);
2116
2117                 get_zspage_mapping(zspage, &class_idx, &fullness);
2118                 VM_BUG_ON(fullness != ZS_EMPTY);
2119                 class = pool->size_class[class_idx];
2120                 spin_lock(&pool->lock);
2121 #ifdef CONFIG_ZPOOL
2122                 list_del(&zspage->lru);
2123 #endif
2124                 __free_zspage(pool, class, zspage);
2125                 spin_unlock(&pool->lock);
2126         }
2127 };
2128
2129 static void kick_deferred_free(struct zs_pool *pool)
2130 {
2131         schedule_work(&pool->free_work);
2132 }
2133
2134 static void zs_flush_migration(struct zs_pool *pool)
2135 {
2136         flush_work(&pool->free_work);
2137 }
2138
2139 static void init_deferred_free(struct zs_pool *pool)
2140 {
2141         INIT_WORK(&pool->free_work, async_free_zspage);
2142 }
2143
2144 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2145 {
2146         struct page *page = get_first_page(zspage);
2147
2148         do {
2149                 WARN_ON(!trylock_page(page));
2150                 __SetPageMovable(page, &zsmalloc_mops);
2151                 unlock_page(page);
2152         } while ((page = get_next_page(page)) != NULL);
2153 }
2154 #else
2155 static inline void zs_flush_migration(struct zs_pool *pool) { }
2156 #endif
2157
2158 /*
2159  *
2160  * Based on the number of unused allocated objects calculate
2161  * and return the number of pages that we can free.
2162  */
2163 static unsigned long zs_can_compact(struct size_class *class)
2164 {
2165         unsigned long obj_wasted;
2166         unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2167         unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2168
2169         if (obj_allocated <= obj_used)
2170                 return 0;
2171
2172         obj_wasted = obj_allocated - obj_used;
2173         obj_wasted /= class->objs_per_zspage;
2174
2175         return obj_wasted * class->pages_per_zspage;
2176 }
2177
2178 static unsigned long __zs_compact(struct zs_pool *pool,
2179                                   struct size_class *class)
2180 {
2181         struct zs_compact_control cc;
2182         struct zspage *src_zspage;
2183         struct zspage *dst_zspage = NULL;
2184         unsigned long pages_freed = 0;
2185
2186         /*
2187          * protect the race between zpage migration and zs_free
2188          * as well as zpage allocation/free
2189          */
2190         spin_lock(&pool->lock);
2191         while ((src_zspage = isolate_zspage(class, true))) {
2192                 /* protect someone accessing the zspage(i.e., zs_map_object) */
2193                 migrate_write_lock(src_zspage);
2194
2195                 if (!zs_can_compact(class))
2196                         break;
2197
2198                 cc.obj_idx = 0;
2199                 cc.s_page = get_first_page(src_zspage);
2200
2201                 while ((dst_zspage = isolate_zspage(class, false))) {
2202                         migrate_write_lock_nested(dst_zspage);
2203
2204                         cc.d_page = get_first_page(dst_zspage);
2205                         /*
2206                          * If there is no more space in dst_page, resched
2207                          * and see if anyone had allocated another zspage.
2208                          */
2209                         if (!migrate_zspage(pool, class, &cc))
2210                                 break;
2211
2212                         putback_zspage(class, dst_zspage);
2213                         migrate_write_unlock(dst_zspage);
2214                         dst_zspage = NULL;
2215                         if (spin_is_contended(&pool->lock))
2216                                 break;
2217                 }
2218
2219                 /* Stop if we couldn't find slot */
2220                 if (dst_zspage == NULL)
2221                         break;
2222
2223                 putback_zspage(class, dst_zspage);
2224                 migrate_write_unlock(dst_zspage);
2225
2226                 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2227                         migrate_write_unlock(src_zspage);
2228                         free_zspage(pool, class, src_zspage);
2229                         pages_freed += class->pages_per_zspage;
2230                 } else
2231                         migrate_write_unlock(src_zspage);
2232                 spin_unlock(&pool->lock);
2233                 cond_resched();
2234                 spin_lock(&pool->lock);
2235         }
2236
2237         if (src_zspage) {
2238                 putback_zspage(class, src_zspage);
2239                 migrate_write_unlock(src_zspage);
2240         }
2241
2242         spin_unlock(&pool->lock);
2243
2244         return pages_freed;
2245 }
2246
2247 unsigned long zs_compact(struct zs_pool *pool)
2248 {
2249         int i;
2250         struct size_class *class;
2251         unsigned long pages_freed = 0;
2252
2253         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2254                 class = pool->size_class[i];
2255                 if (class->index != i)
2256                         continue;
2257                 pages_freed += __zs_compact(pool, class);
2258         }
2259         atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2260
2261         return pages_freed;
2262 }
2263 EXPORT_SYMBOL_GPL(zs_compact);
2264
2265 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2266 {
2267         memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2268 }
2269 EXPORT_SYMBOL_GPL(zs_pool_stats);
2270
2271 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2272                 struct shrink_control *sc)
2273 {
2274         unsigned long pages_freed;
2275         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2276                         shrinker);
2277
2278         /*
2279          * Compact classes and calculate compaction delta.
2280          * Can run concurrently with a manually triggered
2281          * (by user) compaction.
2282          */
2283         pages_freed = zs_compact(pool);
2284
2285         return pages_freed ? pages_freed : SHRINK_STOP;
2286 }
2287
2288 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2289                 struct shrink_control *sc)
2290 {
2291         int i;
2292         struct size_class *class;
2293         unsigned long pages_to_free = 0;
2294         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2295                         shrinker);
2296
2297         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2298                 class = pool->size_class[i];
2299                 if (class->index != i)
2300                         continue;
2301
2302                 pages_to_free += zs_can_compact(class);
2303         }
2304
2305         return pages_to_free;
2306 }
2307
2308 static void zs_unregister_shrinker(struct zs_pool *pool)
2309 {
2310         unregister_shrinker(&pool->shrinker);
2311 }
2312
2313 static int zs_register_shrinker(struct zs_pool *pool)
2314 {
2315         pool->shrinker.scan_objects = zs_shrinker_scan;
2316         pool->shrinker.count_objects = zs_shrinker_count;
2317         pool->shrinker.batch = 0;
2318         pool->shrinker.seeks = DEFAULT_SEEKS;
2319
2320         return register_shrinker(&pool->shrinker, "mm-zspool:%s",
2321                                  pool->name);
2322 }
2323
2324 /**
2325  * zs_create_pool - Creates an allocation pool to work from.
2326  * @name: pool name to be created
2327  *
2328  * This function must be called before anything when using
2329  * the zsmalloc allocator.
2330  *
2331  * On success, a pointer to the newly created pool is returned,
2332  * otherwise NULL.
2333  */
2334 struct zs_pool *zs_create_pool(const char *name)
2335 {
2336         int i;
2337         struct zs_pool *pool;
2338         struct size_class *prev_class = NULL;
2339
2340         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2341         if (!pool)
2342                 return NULL;
2343
2344         init_deferred_free(pool);
2345         spin_lock_init(&pool->lock);
2346
2347         pool->name = kstrdup(name, GFP_KERNEL);
2348         if (!pool->name)
2349                 goto err;
2350
2351         if (create_cache(pool))
2352                 goto err;
2353
2354         /*
2355          * Iterate reversely, because, size of size_class that we want to use
2356          * for merging should be larger or equal to current size.
2357          */
2358         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2359                 int size;
2360                 int pages_per_zspage;
2361                 int objs_per_zspage;
2362                 struct size_class *class;
2363                 int fullness = 0;
2364
2365                 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2366                 if (size > ZS_MAX_ALLOC_SIZE)
2367                         size = ZS_MAX_ALLOC_SIZE;
2368                 pages_per_zspage = get_pages_per_zspage(size);
2369                 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2370
2371                 /*
2372                  * We iterate from biggest down to smallest classes,
2373                  * so huge_class_size holds the size of the first huge
2374                  * class. Any object bigger than or equal to that will
2375                  * endup in the huge class.
2376                  */
2377                 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2378                                 !huge_class_size) {
2379                         huge_class_size = size;
2380                         /*
2381                          * The object uses ZS_HANDLE_SIZE bytes to store the
2382                          * handle. We need to subtract it, because zs_malloc()
2383                          * unconditionally adds handle size before it performs
2384                          * size class search - so object may be smaller than
2385                          * huge class size, yet it still can end up in the huge
2386                          * class because it grows by ZS_HANDLE_SIZE extra bytes
2387                          * right before class lookup.
2388                          */
2389                         huge_class_size -= (ZS_HANDLE_SIZE - 1);
2390                 }
2391
2392                 /*
2393                  * size_class is used for normal zsmalloc operation such
2394                  * as alloc/free for that size. Although it is natural that we
2395                  * have one size_class for each size, there is a chance that we
2396                  * can get more memory utilization if we use one size_class for
2397                  * many different sizes whose size_class have same
2398                  * characteristics. So, we makes size_class point to
2399                  * previous size_class if possible.
2400                  */
2401                 if (prev_class) {
2402                         if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2403                                 pool->size_class[i] = prev_class;
2404                                 continue;
2405                         }
2406                 }
2407
2408                 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2409                 if (!class)
2410                         goto err;
2411
2412                 class->size = size;
2413                 class->index = i;
2414                 class->pages_per_zspage = pages_per_zspage;
2415                 class->objs_per_zspage = objs_per_zspage;
2416                 pool->size_class[i] = class;
2417                 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2418                                                         fullness++)
2419                         INIT_LIST_HEAD(&class->fullness_list[fullness]);
2420
2421                 prev_class = class;
2422         }
2423
2424         /* debug only, don't abort if it fails */
2425         zs_pool_stat_create(pool, name);
2426
2427         /*
2428          * Not critical since shrinker is only used to trigger internal
2429          * defragmentation of the pool which is pretty optional thing.  If
2430          * registration fails we still can use the pool normally and user can
2431          * trigger compaction manually. Thus, ignore return code.
2432          */
2433         zs_register_shrinker(pool);
2434
2435 #ifdef CONFIG_ZPOOL
2436         INIT_LIST_HEAD(&pool->lru);
2437 #endif
2438
2439         return pool;
2440
2441 err:
2442         zs_destroy_pool(pool);
2443         return NULL;
2444 }
2445 EXPORT_SYMBOL_GPL(zs_create_pool);
2446
2447 void zs_destroy_pool(struct zs_pool *pool)
2448 {
2449         int i;
2450
2451         zs_unregister_shrinker(pool);
2452         zs_flush_migration(pool);
2453         zs_pool_stat_destroy(pool);
2454
2455         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2456                 int fg;
2457                 struct size_class *class = pool->size_class[i];
2458
2459                 if (!class)
2460                         continue;
2461
2462                 if (class->index != i)
2463                         continue;
2464
2465                 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2466                         if (!list_empty(&class->fullness_list[fg])) {
2467                                 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2468                                         class->size, fg);
2469                         }
2470                 }
2471                 kfree(class);
2472         }
2473
2474         destroy_cache(pool);
2475         kfree(pool->name);
2476         kfree(pool);
2477 }
2478 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2479
2480 #ifdef CONFIG_ZPOOL
2481 static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries)
2482 {
2483         int i, obj_idx, ret = 0;
2484         unsigned long handle;
2485         struct zspage *zspage;
2486         struct page *page;
2487         enum fullness_group fullness;
2488
2489         /* Lock LRU and fullness list */
2490         spin_lock(&pool->lock);
2491         if (list_empty(&pool->lru)) {
2492                 spin_unlock(&pool->lock);
2493                 return -EINVAL;
2494         }
2495
2496         for (i = 0; i < retries; i++) {
2497                 struct size_class *class;
2498
2499                 zspage = list_last_entry(&pool->lru, struct zspage, lru);
2500                 list_del(&zspage->lru);
2501
2502                 /* zs_free may free objects, but not the zspage and handles */
2503                 zspage->under_reclaim = true;
2504
2505                 class = zspage_class(pool, zspage);
2506                 fullness = get_fullness_group(class, zspage);
2507
2508                 /* Lock out object allocations and object compaction */
2509                 remove_zspage(class, zspage, fullness);
2510
2511                 spin_unlock(&pool->lock);
2512                 cond_resched();
2513
2514                 /* Lock backing pages into place */
2515                 lock_zspage(zspage);
2516
2517                 obj_idx = 0;
2518                 page = get_first_page(zspage);
2519                 while (1) {
2520                         handle = find_alloced_obj(class, page, &obj_idx);
2521                         if (!handle) {
2522                                 page = get_next_page(page);
2523                                 if (!page)
2524                                         break;
2525                                 obj_idx = 0;
2526                                 continue;
2527                         }
2528
2529                         /*
2530                          * This will write the object and call zs_free.
2531                          *
2532                          * zs_free will free the object, but the
2533                          * under_reclaim flag prevents it from freeing
2534                          * the zspage altogether. This is necessary so
2535                          * that we can continue working with the
2536                          * zspage potentially after the last object
2537                          * has been freed.
2538                          */
2539                         ret = pool->zpool_ops->evict(pool->zpool, handle);
2540                         if (ret)
2541                                 goto next;
2542
2543                         obj_idx++;
2544                 }
2545
2546 next:
2547                 /* For freeing the zspage, or putting it back in the pool and LRU list. */
2548                 spin_lock(&pool->lock);
2549                 zspage->under_reclaim = false;
2550
2551                 if (!get_zspage_inuse(zspage)) {
2552                         /*
2553                          * Fullness went stale as zs_free() won't touch it
2554                          * while the page is removed from the pool. Fix it
2555                          * up for the check in __free_zspage().
2556                          */
2557                         zspage->fullness = ZS_EMPTY;
2558
2559                         __free_zspage(pool, class, zspage);
2560                         spin_unlock(&pool->lock);
2561                         return 0;
2562                 }
2563
2564                 putback_zspage(class, zspage);
2565                 list_add(&zspage->lru, &pool->lru);
2566                 unlock_zspage(zspage);
2567         }
2568
2569         spin_unlock(&pool->lock);
2570         return -EAGAIN;
2571 }
2572 #endif /* CONFIG_ZPOOL */
2573
2574 static int __init zs_init(void)
2575 {
2576         int ret;
2577
2578         ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2579                                 zs_cpu_prepare, zs_cpu_dead);
2580         if (ret)
2581                 goto out;
2582
2583 #ifdef CONFIG_ZPOOL
2584         zpool_register_driver(&zs_zpool_driver);
2585 #endif
2586
2587         zs_stat_init();
2588
2589         return 0;
2590
2591 out:
2592         return ret;
2593 }
2594
2595 static void __exit zs_exit(void)
2596 {
2597 #ifdef CONFIG_ZPOOL
2598         zpool_unregister_driver(&zs_zpool_driver);
2599 #endif
2600         cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2601
2602         zs_stat_exit();
2603 }
2604
2605 module_init(zs_init);
2606 module_exit(zs_exit);
2607
2608 MODULE_LICENSE("Dual BSD/GPL");
2609 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");