2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->index: links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
23 * page->page_type: first object offset in a subpage of zspage
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 #include <linux/module.h>
42 #include <linux/kernel.h>
43 #include <linux/sched.h>
44 #include <linux/bitops.h>
45 #include <linux/errno.h>
46 #include <linux/highmem.h>
47 #include <linux/string.h>
48 #include <linux/slab.h>
49 #include <linux/pgtable.h>
50 #include <asm/tlbflush.h>
51 #include <linux/cpumask.h>
52 #include <linux/cpu.h>
53 #include <linux/vmalloc.h>
54 #include <linux/preempt.h>
55 #include <linux/spinlock.h>
56 #include <linux/shrinker.h>
57 #include <linux/types.h>
58 #include <linux/debugfs.h>
59 #include <linux/zsmalloc.h>
60 #include <linux/zpool.h>
61 #include <linux/migrate.h>
62 #include <linux/wait.h>
63 #include <linux/pagemap.h>
65 #include <linux/local_lock.h>
67 #define ZSPAGE_MAGIC 0x58
70 * This must be power of 2 and greater than or equal to sizeof(link_free).
71 * These two conditions ensure that any 'struct link_free' itself doesn't
72 * span more than 1 page which avoids complex case of mapping 2 pages simply
73 * to restore link_free pointer values.
78 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
79 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
81 #define ZS_MAX_ZSPAGE_ORDER 2
82 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
84 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
87 * Object location (<PFN>, <obj_idx>) is encoded as
88 * a single (unsigned long) handle value.
90 * Note that object index <obj_idx> starts from 0.
92 * This is made more complicated by various memory models and PAE.
95 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
96 #ifdef MAX_PHYSMEM_BITS
97 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
100 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
103 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
107 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
110 * Head in allocated object should have OBJ_ALLOCATED_TAG
111 * to identify the object was allocated or not.
112 * It's okay to add the status bit in the least bit because
113 * header keeps handle which is 4byte-aligned address so we
114 * have room for two bit at least.
116 #define OBJ_ALLOCATED_TAG 1
117 #define OBJ_TAG_BITS 1
118 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
119 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
122 #define FULLNESS_BITS 2
124 #define ISOLATED_BITS 3
125 #define MAGIC_VAL_BITS 8
127 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
128 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
129 #define ZS_MIN_ALLOC_SIZE \
130 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
131 /* each chunk includes extra space to keep handle */
132 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
135 * On systems with 4K page size, this gives 255 size classes! There is a
137 * - Large number of size classes is potentially wasteful as free page are
138 * spread across these classes
139 * - Small number of size classes causes large internal fragmentation
140 * - Probably its better to use specific size classes (empirically
141 * determined). NOTE: all those class sizes must be set as multiple of
142 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
144 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
147 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
148 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
149 ZS_SIZE_CLASS_DELTA) + 1)
151 enum fullness_group {
159 enum class_stat_type {
169 struct zs_size_stat {
170 unsigned long objs[NR_ZS_STAT_TYPE];
173 #ifdef CONFIG_ZSMALLOC_STAT
174 static struct dentry *zs_stat_root;
178 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
180 * n = number of allocated objects
181 * N = total number of objects zspage can store
182 * f = fullness_threshold_frac
184 * Similarly, we assign zspage to:
185 * ZS_ALMOST_FULL when n > N / f
186 * ZS_EMPTY when n == 0
187 * ZS_FULL when n == N
189 * (see: fix_fullness_group())
191 static const int fullness_threshold_frac = 4;
192 static size_t huge_class_size;
196 struct list_head fullness_list[NR_ZS_FULLNESS];
198 * Size of objects stored in this class. Must be multiple
203 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
204 int pages_per_zspage;
207 struct zs_size_stat stats;
211 * Placed within free objects to form a singly linked list.
212 * For every zspage, zspage->freeobj gives head of this list.
214 * This must be power of 2 and less than or equal to ZS_ALIGN
220 * It's valid for non-allocated object
224 * Handle of allocated object.
226 unsigned long handle;
233 struct size_class *size_class[ZS_SIZE_CLASSES];
234 struct kmem_cache *handle_cachep;
235 struct kmem_cache *zspage_cachep;
237 atomic_long_t pages_allocated;
239 struct zs_pool_stats stats;
241 /* Compact classes */
242 struct shrinker shrinker;
244 #ifdef CONFIG_ZSMALLOC_STAT
245 struct dentry *stat_dentry;
247 #ifdef CONFIG_COMPACTION
248 struct work_struct free_work;
250 /* protect page/zspage migration */
251 rwlock_t migrate_lock;
256 unsigned int huge:HUGE_BITS;
257 unsigned int fullness:FULLNESS_BITS;
258 unsigned int class:CLASS_BITS + 1;
259 unsigned int isolated:ISOLATED_BITS;
260 unsigned int magic:MAGIC_VAL_BITS;
263 unsigned int freeobj;
264 struct page *first_page;
265 struct list_head list; /* fullness list */
266 struct zs_pool *pool;
267 #ifdef CONFIG_COMPACTION
272 struct mapping_area {
274 char *vm_buf; /* copy buffer for objects that span pages */
275 char *vm_addr; /* address of kmap_atomic()'ed pages */
276 enum zs_mapmode vm_mm; /* mapping mode */
279 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
280 static void SetZsHugePage(struct zspage *zspage)
285 static bool ZsHugePage(struct zspage *zspage)
290 #ifdef CONFIG_COMPACTION
291 static void migrate_lock_init(struct zspage *zspage);
292 static void migrate_read_lock(struct zspage *zspage);
293 static void migrate_read_unlock(struct zspage *zspage);
294 static void migrate_write_lock(struct zspage *zspage);
295 static void migrate_write_lock_nested(struct zspage *zspage);
296 static void migrate_write_unlock(struct zspage *zspage);
297 static void kick_deferred_free(struct zs_pool *pool);
298 static void init_deferred_free(struct zs_pool *pool);
299 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
301 static void migrate_lock_init(struct zspage *zspage) {}
302 static void migrate_read_lock(struct zspage *zspage) {}
303 static void migrate_read_unlock(struct zspage *zspage) {}
304 static void migrate_write_lock(struct zspage *zspage) {}
305 static void migrate_write_lock_nested(struct zspage *zspage) {}
306 static void migrate_write_unlock(struct zspage *zspage) {}
307 static void kick_deferred_free(struct zs_pool *pool) {}
308 static void init_deferred_free(struct zs_pool *pool) {}
309 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
312 static int create_cache(struct zs_pool *pool)
314 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
316 if (!pool->handle_cachep)
319 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
321 if (!pool->zspage_cachep) {
322 kmem_cache_destroy(pool->handle_cachep);
323 pool->handle_cachep = NULL;
330 static void destroy_cache(struct zs_pool *pool)
332 kmem_cache_destroy(pool->handle_cachep);
333 kmem_cache_destroy(pool->zspage_cachep);
336 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
338 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
339 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
342 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
344 kmem_cache_free(pool->handle_cachep, (void *)handle);
347 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
349 return kmem_cache_zalloc(pool->zspage_cachep,
350 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
353 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
355 kmem_cache_free(pool->zspage_cachep, zspage);
358 /* class->lock(which owns the handle) synchronizes races */
359 static void record_obj(unsigned long handle, unsigned long obj)
361 *(unsigned long *)handle = obj;
368 static void *zs_zpool_create(const char *name, gfp_t gfp,
369 const struct zpool_ops *zpool_ops,
373 * Ignore global gfp flags: zs_malloc() may be invoked from
374 * different contexts and its caller must provide a valid
377 return zs_create_pool(name);
380 static void zs_zpool_destroy(void *pool)
382 zs_destroy_pool(pool);
385 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
386 unsigned long *handle)
388 *handle = zs_malloc(pool, size, gfp);
390 if (IS_ERR((void *)(*handle)))
391 return PTR_ERR((void *)*handle);
394 static void zs_zpool_free(void *pool, unsigned long handle)
396 zs_free(pool, handle);
399 static void *zs_zpool_map(void *pool, unsigned long handle,
400 enum zpool_mapmode mm)
402 enum zs_mapmode zs_mm;
417 return zs_map_object(pool, handle, zs_mm);
419 static void zs_zpool_unmap(void *pool, unsigned long handle)
421 zs_unmap_object(pool, handle);
424 static u64 zs_zpool_total_size(void *pool)
426 return zs_get_total_pages(pool) << PAGE_SHIFT;
429 static struct zpool_driver zs_zpool_driver = {
431 .owner = THIS_MODULE,
432 .create = zs_zpool_create,
433 .destroy = zs_zpool_destroy,
434 .malloc_support_movable = true,
435 .malloc = zs_zpool_malloc,
436 .free = zs_zpool_free,
438 .unmap = zs_zpool_unmap,
439 .total_size = zs_zpool_total_size,
442 MODULE_ALIAS("zpool-zsmalloc");
443 #endif /* CONFIG_ZPOOL */
445 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
446 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
447 .lock = INIT_LOCAL_LOCK(lock),
450 static __maybe_unused int is_first_page(struct page *page)
452 return PagePrivate(page);
455 /* Protected by class->lock */
456 static inline int get_zspage_inuse(struct zspage *zspage)
458 return zspage->inuse;
462 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
464 zspage->inuse += val;
467 static inline struct page *get_first_page(struct zspage *zspage)
469 struct page *first_page = zspage->first_page;
471 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
475 static inline int get_first_obj_offset(struct page *page)
477 return page->page_type;
480 static inline void set_first_obj_offset(struct page *page, int offset)
482 page->page_type = offset;
485 static inline unsigned int get_freeobj(struct zspage *zspage)
487 return zspage->freeobj;
490 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
492 zspage->freeobj = obj;
495 static void get_zspage_mapping(struct zspage *zspage,
496 unsigned int *class_idx,
497 enum fullness_group *fullness)
499 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
501 *fullness = zspage->fullness;
502 *class_idx = zspage->class;
505 static struct size_class *zspage_class(struct zs_pool *pool,
506 struct zspage *zspage)
508 return pool->size_class[zspage->class];
511 static void set_zspage_mapping(struct zspage *zspage,
512 unsigned int class_idx,
513 enum fullness_group fullness)
515 zspage->class = class_idx;
516 zspage->fullness = fullness;
520 * zsmalloc divides the pool into various size classes where each
521 * class maintains a list of zspages where each zspage is divided
522 * into equal sized chunks. Each allocation falls into one of these
523 * classes depending on its size. This function returns index of the
524 * size class which has chunk size big enough to hold the given size.
526 static int get_size_class_index(int size)
530 if (likely(size > ZS_MIN_ALLOC_SIZE))
531 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
532 ZS_SIZE_CLASS_DELTA);
534 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
537 /* type can be of enum type class_stat_type or fullness_group */
538 static inline void class_stat_inc(struct size_class *class,
539 int type, unsigned long cnt)
541 class->stats.objs[type] += cnt;
544 /* type can be of enum type class_stat_type or fullness_group */
545 static inline void class_stat_dec(struct size_class *class,
546 int type, unsigned long cnt)
548 class->stats.objs[type] -= cnt;
551 /* type can be of enum type class_stat_type or fullness_group */
552 static inline unsigned long zs_stat_get(struct size_class *class,
555 return class->stats.objs[type];
558 #ifdef CONFIG_ZSMALLOC_STAT
560 static void __init zs_stat_init(void)
562 if (!debugfs_initialized()) {
563 pr_warn("debugfs not available, stat dir not created\n");
567 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
570 static void __exit zs_stat_exit(void)
572 debugfs_remove_recursive(zs_stat_root);
575 static unsigned long zs_can_compact(struct size_class *class);
577 static int zs_stats_size_show(struct seq_file *s, void *v)
580 struct zs_pool *pool = s->private;
581 struct size_class *class;
583 unsigned long class_almost_full, class_almost_empty;
584 unsigned long obj_allocated, obj_used, pages_used, freeable;
585 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
586 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
587 unsigned long total_freeable = 0;
589 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
590 "class", "size", "almost_full", "almost_empty",
591 "obj_allocated", "obj_used", "pages_used",
592 "pages_per_zspage", "freeable");
594 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
595 class = pool->size_class[i];
597 if (class->index != i)
600 spin_lock(&class->lock);
601 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
602 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
603 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
604 obj_used = zs_stat_get(class, OBJ_USED);
605 freeable = zs_can_compact(class);
606 spin_unlock(&class->lock);
608 objs_per_zspage = class->objs_per_zspage;
609 pages_used = obj_allocated / objs_per_zspage *
610 class->pages_per_zspage;
612 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
613 " %10lu %10lu %16d %8lu\n",
614 i, class->size, class_almost_full, class_almost_empty,
615 obj_allocated, obj_used, pages_used,
616 class->pages_per_zspage, freeable);
618 total_class_almost_full += class_almost_full;
619 total_class_almost_empty += class_almost_empty;
620 total_objs += obj_allocated;
621 total_used_objs += obj_used;
622 total_pages += pages_used;
623 total_freeable += freeable;
627 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
628 "Total", "", total_class_almost_full,
629 total_class_almost_empty, total_objs,
630 total_used_objs, total_pages, "", total_freeable);
634 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
636 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
639 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
643 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
645 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
646 &zs_stats_size_fops);
649 static void zs_pool_stat_destroy(struct zs_pool *pool)
651 debugfs_remove_recursive(pool->stat_dentry);
654 #else /* CONFIG_ZSMALLOC_STAT */
655 static void __init zs_stat_init(void)
659 static void __exit zs_stat_exit(void)
663 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
667 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
674 * For each size class, zspages are divided into different groups
675 * depending on how "full" they are. This was done so that we could
676 * easily find empty or nearly empty zspages when we try to shrink
677 * the pool (not yet implemented). This function returns fullness
678 * status of the given page.
680 static enum fullness_group get_fullness_group(struct size_class *class,
681 struct zspage *zspage)
683 int inuse, objs_per_zspage;
684 enum fullness_group fg;
686 inuse = get_zspage_inuse(zspage);
687 objs_per_zspage = class->objs_per_zspage;
691 else if (inuse == objs_per_zspage)
693 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
694 fg = ZS_ALMOST_EMPTY;
702 * Each size class maintains various freelists and zspages are assigned
703 * to one of these freelists based on the number of live objects they
704 * have. This functions inserts the given zspage into the freelist
705 * identified by <class, fullness_group>.
707 static void insert_zspage(struct size_class *class,
708 struct zspage *zspage,
709 enum fullness_group fullness)
713 class_stat_inc(class, fullness, 1);
714 head = list_first_entry_or_null(&class->fullness_list[fullness],
715 struct zspage, list);
717 * We want to see more ZS_FULL pages and less almost empty/full.
718 * Put pages with higher ->inuse first.
720 if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
721 list_add(&zspage->list, &head->list);
723 list_add(&zspage->list, &class->fullness_list[fullness]);
727 * This function removes the given zspage from the freelist identified
728 * by <class, fullness_group>.
730 static void remove_zspage(struct size_class *class,
731 struct zspage *zspage,
732 enum fullness_group fullness)
734 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
736 list_del_init(&zspage->list);
737 class_stat_dec(class, fullness, 1);
741 * Each size class maintains zspages in different fullness groups depending
742 * on the number of live objects they contain. When allocating or freeing
743 * objects, the fullness status of the page can change, say, from ALMOST_FULL
744 * to ALMOST_EMPTY when freeing an object. This function checks if such
745 * a status change has occurred for the given page and accordingly moves the
746 * page from the freelist of the old fullness group to that of the new
749 static enum fullness_group fix_fullness_group(struct size_class *class,
750 struct zspage *zspage)
753 enum fullness_group currfg, newfg;
755 get_zspage_mapping(zspage, &class_idx, &currfg);
756 newfg = get_fullness_group(class, zspage);
760 remove_zspage(class, zspage, currfg);
761 insert_zspage(class, zspage, newfg);
762 set_zspage_mapping(zspage, class_idx, newfg);
768 * We have to decide on how many pages to link together
769 * to form a zspage for each size class. This is important
770 * to reduce wastage due to unusable space left at end of
771 * each zspage which is given as:
772 * wastage = Zp % class_size
773 * usage = Zp - wastage
774 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
776 * For example, for size class of 3/8 * PAGE_SIZE, we should
777 * link together 3 PAGE_SIZE sized pages to form a zspage
778 * since then we can perfectly fit in 8 such objects.
780 static int get_pages_per_zspage(int class_size)
782 int i, max_usedpc = 0;
783 /* zspage order which gives maximum used size per KB */
784 int max_usedpc_order = 1;
786 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
790 zspage_size = i * PAGE_SIZE;
791 waste = zspage_size % class_size;
792 usedpc = (zspage_size - waste) * 100 / zspage_size;
794 if (usedpc > max_usedpc) {
796 max_usedpc_order = i;
800 return max_usedpc_order;
803 static struct zspage *get_zspage(struct page *page)
805 struct zspage *zspage = (struct zspage *)page_private(page);
807 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
811 static struct page *get_next_page(struct page *page)
813 struct zspage *zspage = get_zspage(page);
815 if (unlikely(ZsHugePage(zspage)))
818 return (struct page *)page->index;
822 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
823 * @obj: the encoded object value
824 * @page: page object resides in zspage
825 * @obj_idx: object index
827 static void obj_to_location(unsigned long obj, struct page **page,
828 unsigned int *obj_idx)
830 obj >>= OBJ_TAG_BITS;
831 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
832 *obj_idx = (obj & OBJ_INDEX_MASK);
835 static void obj_to_page(unsigned long obj, struct page **page)
837 obj >>= OBJ_TAG_BITS;
838 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
842 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
843 * @page: page object resides in zspage
844 * @obj_idx: object index
846 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
850 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
851 obj |= obj_idx & OBJ_INDEX_MASK;
852 obj <<= OBJ_TAG_BITS;
857 static unsigned long handle_to_obj(unsigned long handle)
859 return *(unsigned long *)handle;
862 static bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
864 unsigned long handle;
865 struct zspage *zspage = get_zspage(page);
867 if (unlikely(ZsHugePage(zspage))) {
868 VM_BUG_ON_PAGE(!is_first_page(page), page);
869 handle = page->index;
871 handle = *(unsigned long *)obj;
873 if (!(handle & OBJ_ALLOCATED_TAG))
876 *phandle = handle & ~OBJ_ALLOCATED_TAG;
880 static void reset_page(struct page *page)
882 __ClearPageMovable(page);
883 ClearPagePrivate(page);
884 set_page_private(page, 0);
885 page_mapcount_reset(page);
889 static int trylock_zspage(struct zspage *zspage)
891 struct page *cursor, *fail;
893 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
894 get_next_page(cursor)) {
895 if (!trylock_page(cursor)) {
903 for (cursor = get_first_page(zspage); cursor != fail; cursor =
904 get_next_page(cursor))
910 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
911 struct zspage *zspage)
913 struct page *page, *next;
914 enum fullness_group fg;
915 unsigned int class_idx;
917 get_zspage_mapping(zspage, &class_idx, &fg);
919 assert_spin_locked(&class->lock);
921 VM_BUG_ON(get_zspage_inuse(zspage));
922 VM_BUG_ON(fg != ZS_EMPTY);
924 next = page = get_first_page(zspage);
926 VM_BUG_ON_PAGE(!PageLocked(page), page);
927 next = get_next_page(page);
930 dec_zone_page_state(page, NR_ZSPAGES);
933 } while (page != NULL);
935 cache_free_zspage(pool, zspage);
937 class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
938 atomic_long_sub(class->pages_per_zspage,
939 &pool->pages_allocated);
942 static void free_zspage(struct zs_pool *pool, struct size_class *class,
943 struct zspage *zspage)
945 VM_BUG_ON(get_zspage_inuse(zspage));
946 VM_BUG_ON(list_empty(&zspage->list));
949 * Since zs_free couldn't be sleepable, this function cannot call
950 * lock_page. The page locks trylock_zspage got will be released
953 if (!trylock_zspage(zspage)) {
954 kick_deferred_free(pool);
958 remove_zspage(class, zspage, ZS_EMPTY);
959 __free_zspage(pool, class, zspage);
962 /* Initialize a newly allocated zspage */
963 static void init_zspage(struct size_class *class, struct zspage *zspage)
965 unsigned int freeobj = 1;
966 unsigned long off = 0;
967 struct page *page = get_first_page(zspage);
970 struct page *next_page;
971 struct link_free *link;
974 set_first_obj_offset(page, off);
976 vaddr = kmap_atomic(page);
977 link = (struct link_free *)vaddr + off / sizeof(*link);
979 while ((off += class->size) < PAGE_SIZE) {
980 link->next = freeobj++ << OBJ_TAG_BITS;
981 link += class->size / sizeof(*link);
985 * We now come to the last (full or partial) object on this
986 * page, which must point to the first object on the next
989 next_page = get_next_page(page);
991 link->next = freeobj++ << OBJ_TAG_BITS;
994 * Reset OBJ_TAG_BITS bit to last link to tell
995 * whether it's allocated object or not.
997 link->next = -1UL << OBJ_TAG_BITS;
999 kunmap_atomic(vaddr);
1004 set_freeobj(zspage, 0);
1007 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1008 struct page *pages[])
1012 struct page *prev_page = NULL;
1013 int nr_pages = class->pages_per_zspage;
1016 * Allocate individual pages and link them together as:
1017 * 1. all pages are linked together using page->index
1018 * 2. each sub-page point to zspage using page->private
1020 * we set PG_private to identify the first page (i.e. no other sub-page
1021 * has this flag set).
1023 for (i = 0; i < nr_pages; i++) {
1025 set_page_private(page, (unsigned long)zspage);
1028 zspage->first_page = page;
1029 SetPagePrivate(page);
1030 if (unlikely(class->objs_per_zspage == 1 &&
1031 class->pages_per_zspage == 1))
1032 SetZsHugePage(zspage);
1034 prev_page->index = (unsigned long)page;
1041 * Allocate a zspage for the given size class
1043 static struct zspage *alloc_zspage(struct zs_pool *pool,
1044 struct size_class *class,
1048 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1049 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1054 zspage->magic = ZSPAGE_MAGIC;
1055 migrate_lock_init(zspage);
1057 for (i = 0; i < class->pages_per_zspage; i++) {
1060 page = alloc_page(gfp);
1063 dec_zone_page_state(pages[i], NR_ZSPAGES);
1064 __free_page(pages[i]);
1066 cache_free_zspage(pool, zspage);
1070 inc_zone_page_state(page, NR_ZSPAGES);
1074 create_page_chain(class, zspage, pages);
1075 init_zspage(class, zspage);
1076 zspage->pool = pool;
1081 static struct zspage *find_get_zspage(struct size_class *class)
1084 struct zspage *zspage;
1086 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1087 zspage = list_first_entry_or_null(&class->fullness_list[i],
1088 struct zspage, list);
1096 static inline int __zs_cpu_up(struct mapping_area *area)
1099 * Make sure we don't leak memory if a cpu UP notification
1100 * and zs_init() race and both call zs_cpu_up() on the same cpu
1104 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1110 static inline void __zs_cpu_down(struct mapping_area *area)
1112 kfree(area->vm_buf);
1113 area->vm_buf = NULL;
1116 static void *__zs_map_object(struct mapping_area *area,
1117 struct page *pages[2], int off, int size)
1121 char *buf = area->vm_buf;
1123 /* disable page faults to match kmap_atomic() return conditions */
1124 pagefault_disable();
1126 /* no read fastpath */
1127 if (area->vm_mm == ZS_MM_WO)
1130 sizes[0] = PAGE_SIZE - off;
1131 sizes[1] = size - sizes[0];
1133 /* copy object to per-cpu buffer */
1134 addr = kmap_atomic(pages[0]);
1135 memcpy(buf, addr + off, sizes[0]);
1136 kunmap_atomic(addr);
1137 addr = kmap_atomic(pages[1]);
1138 memcpy(buf + sizes[0], addr, sizes[1]);
1139 kunmap_atomic(addr);
1141 return area->vm_buf;
1144 static void __zs_unmap_object(struct mapping_area *area,
1145 struct page *pages[2], int off, int size)
1151 /* no write fastpath */
1152 if (area->vm_mm == ZS_MM_RO)
1156 buf = buf + ZS_HANDLE_SIZE;
1157 size -= ZS_HANDLE_SIZE;
1158 off += ZS_HANDLE_SIZE;
1160 sizes[0] = PAGE_SIZE - off;
1161 sizes[1] = size - sizes[0];
1163 /* copy per-cpu buffer to object */
1164 addr = kmap_atomic(pages[0]);
1165 memcpy(addr + off, buf, sizes[0]);
1166 kunmap_atomic(addr);
1167 addr = kmap_atomic(pages[1]);
1168 memcpy(addr, buf + sizes[0], sizes[1]);
1169 kunmap_atomic(addr);
1172 /* enable page faults to match kunmap_atomic() return conditions */
1176 static int zs_cpu_prepare(unsigned int cpu)
1178 struct mapping_area *area;
1180 area = &per_cpu(zs_map_area, cpu);
1181 return __zs_cpu_up(area);
1184 static int zs_cpu_dead(unsigned int cpu)
1186 struct mapping_area *area;
1188 area = &per_cpu(zs_map_area, cpu);
1189 __zs_cpu_down(area);
1193 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1194 int objs_per_zspage)
1196 if (prev->pages_per_zspage == pages_per_zspage &&
1197 prev->objs_per_zspage == objs_per_zspage)
1203 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1205 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1208 unsigned long zs_get_total_pages(struct zs_pool *pool)
1210 return atomic_long_read(&pool->pages_allocated);
1212 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1215 * zs_map_object - get address of allocated object from handle.
1216 * @pool: pool from which the object was allocated
1217 * @handle: handle returned from zs_malloc
1218 * @mm: mapping mode to use
1220 * Before using an object allocated from zs_malloc, it must be mapped using
1221 * this function. When done with the object, it must be unmapped using
1224 * Only one object can be mapped per cpu at a time. There is no protection
1225 * against nested mappings.
1227 * This function returns with preemption and page faults disabled.
1229 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1232 struct zspage *zspage;
1234 unsigned long obj, off;
1235 unsigned int obj_idx;
1237 struct size_class *class;
1238 struct mapping_area *area;
1239 struct page *pages[2];
1243 * Because we use per-cpu mapping areas shared among the
1244 * pools/users, we can't allow mapping in interrupt context
1245 * because it can corrupt another users mappings.
1247 BUG_ON(in_interrupt());
1249 /* It guarantees it can get zspage from handle safely */
1250 read_lock(&pool->migrate_lock);
1251 obj = handle_to_obj(handle);
1252 obj_to_location(obj, &page, &obj_idx);
1253 zspage = get_zspage(page);
1256 * migration cannot move any zpages in this zspage. Here, class->lock
1257 * is too heavy since callers would take some time until they calls
1258 * zs_unmap_object API so delegate the locking from class to zspage
1259 * which is smaller granularity.
1261 migrate_read_lock(zspage);
1262 read_unlock(&pool->migrate_lock);
1264 class = zspage_class(pool, zspage);
1265 off = (class->size * obj_idx) & ~PAGE_MASK;
1267 local_lock(&zs_map_area.lock);
1268 area = this_cpu_ptr(&zs_map_area);
1270 if (off + class->size <= PAGE_SIZE) {
1271 /* this object is contained entirely within a page */
1272 area->vm_addr = kmap_atomic(page);
1273 ret = area->vm_addr + off;
1277 /* this object spans two pages */
1279 pages[1] = get_next_page(page);
1282 ret = __zs_map_object(area, pages, off, class->size);
1284 if (likely(!ZsHugePage(zspage)))
1285 ret += ZS_HANDLE_SIZE;
1289 EXPORT_SYMBOL_GPL(zs_map_object);
1291 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1293 struct zspage *zspage;
1295 unsigned long obj, off;
1296 unsigned int obj_idx;
1298 struct size_class *class;
1299 struct mapping_area *area;
1301 obj = handle_to_obj(handle);
1302 obj_to_location(obj, &page, &obj_idx);
1303 zspage = get_zspage(page);
1304 class = zspage_class(pool, zspage);
1305 off = (class->size * obj_idx) & ~PAGE_MASK;
1307 area = this_cpu_ptr(&zs_map_area);
1308 if (off + class->size <= PAGE_SIZE)
1309 kunmap_atomic(area->vm_addr);
1311 struct page *pages[2];
1314 pages[1] = get_next_page(page);
1317 __zs_unmap_object(area, pages, off, class->size);
1319 local_unlock(&zs_map_area.lock);
1321 migrate_read_unlock(zspage);
1323 EXPORT_SYMBOL_GPL(zs_unmap_object);
1326 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1327 * zsmalloc &size_class.
1328 * @pool: zsmalloc pool to use
1330 * The function returns the size of the first huge class - any object of equal
1331 * or bigger size will be stored in zspage consisting of a single physical
1334 * Context: Any context.
1336 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1338 size_t zs_huge_class_size(struct zs_pool *pool)
1340 return huge_class_size;
1342 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1344 static unsigned long obj_malloc(struct zs_pool *pool,
1345 struct zspage *zspage, unsigned long handle)
1347 int i, nr_page, offset;
1349 struct link_free *link;
1350 struct size_class *class;
1352 struct page *m_page;
1353 unsigned long m_offset;
1356 class = pool->size_class[zspage->class];
1357 handle |= OBJ_ALLOCATED_TAG;
1358 obj = get_freeobj(zspage);
1360 offset = obj * class->size;
1361 nr_page = offset >> PAGE_SHIFT;
1362 m_offset = offset & ~PAGE_MASK;
1363 m_page = get_first_page(zspage);
1365 for (i = 0; i < nr_page; i++)
1366 m_page = get_next_page(m_page);
1368 vaddr = kmap_atomic(m_page);
1369 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1370 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1371 if (likely(!ZsHugePage(zspage)))
1372 /* record handle in the header of allocated chunk */
1373 link->handle = handle;
1375 /* record handle to page->index */
1376 zspage->first_page->index = handle;
1378 kunmap_atomic(vaddr);
1379 mod_zspage_inuse(zspage, 1);
1381 obj = location_to_obj(m_page, obj);
1388 * zs_malloc - Allocate block of given size from pool.
1389 * @pool: pool to allocate from
1390 * @size: size of block to allocate
1391 * @gfp: gfp flags when allocating object
1393 * On success, handle to the allocated object is returned,
1394 * otherwise an ERR_PTR().
1395 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1397 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1399 unsigned long handle, obj;
1400 struct size_class *class;
1401 enum fullness_group newfg;
1402 struct zspage *zspage;
1404 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1405 return (unsigned long)ERR_PTR(-EINVAL);
1407 handle = cache_alloc_handle(pool, gfp);
1409 return (unsigned long)ERR_PTR(-ENOMEM);
1411 /* extra space in chunk to keep the handle */
1412 size += ZS_HANDLE_SIZE;
1413 class = pool->size_class[get_size_class_index(size)];
1415 /* class->lock effectively protects the zpage migration */
1416 spin_lock(&class->lock);
1417 zspage = find_get_zspage(class);
1418 if (likely(zspage)) {
1419 obj = obj_malloc(pool, zspage, handle);
1420 /* Now move the zspage to another fullness group, if required */
1421 fix_fullness_group(class, zspage);
1422 record_obj(handle, obj);
1423 class_stat_inc(class, OBJ_USED, 1);
1424 spin_unlock(&class->lock);
1429 spin_unlock(&class->lock);
1431 zspage = alloc_zspage(pool, class, gfp);
1433 cache_free_handle(pool, handle);
1434 return (unsigned long)ERR_PTR(-ENOMEM);
1437 spin_lock(&class->lock);
1438 obj = obj_malloc(pool, zspage, handle);
1439 newfg = get_fullness_group(class, zspage);
1440 insert_zspage(class, zspage, newfg);
1441 set_zspage_mapping(zspage, class->index, newfg);
1442 record_obj(handle, obj);
1443 atomic_long_add(class->pages_per_zspage,
1444 &pool->pages_allocated);
1445 class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1446 class_stat_inc(class, OBJ_USED, 1);
1448 /* We completely set up zspage so mark them as movable */
1449 SetZsPageMovable(pool, zspage);
1450 spin_unlock(&class->lock);
1454 EXPORT_SYMBOL_GPL(zs_malloc);
1456 static void obj_free(int class_size, unsigned long obj)
1458 struct link_free *link;
1459 struct zspage *zspage;
1460 struct page *f_page;
1461 unsigned long f_offset;
1462 unsigned int f_objidx;
1465 obj_to_location(obj, &f_page, &f_objidx);
1466 f_offset = (class_size * f_objidx) & ~PAGE_MASK;
1467 zspage = get_zspage(f_page);
1469 vaddr = kmap_atomic(f_page);
1471 /* Insert this object in containing zspage's freelist */
1472 link = (struct link_free *)(vaddr + f_offset);
1473 if (likely(!ZsHugePage(zspage)))
1474 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1477 kunmap_atomic(vaddr);
1478 set_freeobj(zspage, f_objidx);
1479 mod_zspage_inuse(zspage, -1);
1482 void zs_free(struct zs_pool *pool, unsigned long handle)
1484 struct zspage *zspage;
1485 struct page *f_page;
1487 struct size_class *class;
1488 enum fullness_group fullness;
1490 if (IS_ERR_OR_NULL((void *)handle))
1494 * The pool->migrate_lock protects the race with zpage's migration
1495 * so it's safe to get the page from handle.
1497 read_lock(&pool->migrate_lock);
1498 obj = handle_to_obj(handle);
1499 obj_to_page(obj, &f_page);
1500 zspage = get_zspage(f_page);
1501 class = zspage_class(pool, zspage);
1502 spin_lock(&class->lock);
1503 read_unlock(&pool->migrate_lock);
1505 obj_free(class->size, obj);
1506 class_stat_dec(class, OBJ_USED, 1);
1507 fullness = fix_fullness_group(class, zspage);
1508 if (fullness != ZS_EMPTY)
1511 free_zspage(pool, class, zspage);
1513 spin_unlock(&class->lock);
1514 cache_free_handle(pool, handle);
1516 EXPORT_SYMBOL_GPL(zs_free);
1518 static void zs_object_copy(struct size_class *class, unsigned long dst,
1521 struct page *s_page, *d_page;
1522 unsigned int s_objidx, d_objidx;
1523 unsigned long s_off, d_off;
1524 void *s_addr, *d_addr;
1525 int s_size, d_size, size;
1528 s_size = d_size = class->size;
1530 obj_to_location(src, &s_page, &s_objidx);
1531 obj_to_location(dst, &d_page, &d_objidx);
1533 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1534 d_off = (class->size * d_objidx) & ~PAGE_MASK;
1536 if (s_off + class->size > PAGE_SIZE)
1537 s_size = PAGE_SIZE - s_off;
1539 if (d_off + class->size > PAGE_SIZE)
1540 d_size = PAGE_SIZE - d_off;
1542 s_addr = kmap_atomic(s_page);
1543 d_addr = kmap_atomic(d_page);
1546 size = min(s_size, d_size);
1547 memcpy(d_addr + d_off, s_addr + s_off, size);
1550 if (written == class->size)
1558 if (s_off >= PAGE_SIZE) {
1559 kunmap_atomic(d_addr);
1560 kunmap_atomic(s_addr);
1561 s_page = get_next_page(s_page);
1562 s_addr = kmap_atomic(s_page);
1563 d_addr = kmap_atomic(d_page);
1564 s_size = class->size - written;
1568 if (d_off >= PAGE_SIZE) {
1569 kunmap_atomic(d_addr);
1570 d_page = get_next_page(d_page);
1571 d_addr = kmap_atomic(d_page);
1572 d_size = class->size - written;
1577 kunmap_atomic(d_addr);
1578 kunmap_atomic(s_addr);
1582 * Find alloced object in zspage from index object and
1585 static unsigned long find_alloced_obj(struct size_class *class,
1586 struct page *page, int *obj_idx)
1589 int index = *obj_idx;
1590 unsigned long handle = 0;
1591 void *addr = kmap_atomic(page);
1593 offset = get_first_obj_offset(page);
1594 offset += class->size * index;
1596 while (offset < PAGE_SIZE) {
1597 if (obj_allocated(page, addr + offset, &handle))
1600 offset += class->size;
1604 kunmap_atomic(addr);
1611 struct zs_compact_control {
1612 /* Source spage for migration which could be a subpage of zspage */
1613 struct page *s_page;
1614 /* Destination page for migration which should be a first page
1616 struct page *d_page;
1617 /* Starting object index within @s_page which used for live object
1618 * in the subpage. */
1622 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1623 struct zs_compact_control *cc)
1625 unsigned long used_obj, free_obj;
1626 unsigned long handle;
1627 struct page *s_page = cc->s_page;
1628 struct page *d_page = cc->d_page;
1629 int obj_idx = cc->obj_idx;
1633 handle = find_alloced_obj(class, s_page, &obj_idx);
1635 s_page = get_next_page(s_page);
1642 /* Stop if there is no more space */
1643 if (zspage_full(class, get_zspage(d_page))) {
1648 used_obj = handle_to_obj(handle);
1649 free_obj = obj_malloc(pool, get_zspage(d_page), handle);
1650 zs_object_copy(class, free_obj, used_obj);
1652 record_obj(handle, free_obj);
1653 obj_free(class->size, used_obj);
1656 /* Remember last position in this iteration */
1657 cc->s_page = s_page;
1658 cc->obj_idx = obj_idx;
1663 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1666 struct zspage *zspage;
1667 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1670 fg[0] = ZS_ALMOST_FULL;
1671 fg[1] = ZS_ALMOST_EMPTY;
1674 for (i = 0; i < 2; i++) {
1675 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1676 struct zspage, list);
1678 remove_zspage(class, zspage, fg[i]);
1687 * putback_zspage - add @zspage into right class's fullness list
1688 * @class: destination class
1689 * @zspage: target page
1691 * Return @zspage's fullness_group
1693 static enum fullness_group putback_zspage(struct size_class *class,
1694 struct zspage *zspage)
1696 enum fullness_group fullness;
1698 fullness = get_fullness_group(class, zspage);
1699 insert_zspage(class, zspage, fullness);
1700 set_zspage_mapping(zspage, class->index, fullness);
1705 #ifdef CONFIG_COMPACTION
1707 * To prevent zspage destroy during migration, zspage freeing should
1708 * hold locks of all pages in the zspage.
1710 static void lock_zspage(struct zspage *zspage)
1712 struct page *curr_page, *page;
1715 * Pages we haven't locked yet can be migrated off the list while we're
1716 * trying to lock them, so we need to be careful and only attempt to
1717 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1718 * may no longer belong to the zspage. This means that we may wait for
1719 * the wrong page to unlock, so we must take a reference to the page
1720 * prior to waiting for it to unlock outside migrate_read_lock().
1723 migrate_read_lock(zspage);
1724 page = get_first_page(zspage);
1725 if (trylock_page(page))
1728 migrate_read_unlock(zspage);
1729 wait_on_page_locked(page);
1734 while ((page = get_next_page(curr_page))) {
1735 if (trylock_page(page)) {
1739 migrate_read_unlock(zspage);
1740 wait_on_page_locked(page);
1742 migrate_read_lock(zspage);
1745 migrate_read_unlock(zspage);
1748 static void migrate_lock_init(struct zspage *zspage)
1750 rwlock_init(&zspage->lock);
1753 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1755 read_lock(&zspage->lock);
1758 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1760 read_unlock(&zspage->lock);
1763 static void migrate_write_lock(struct zspage *zspage)
1765 write_lock(&zspage->lock);
1768 static void migrate_write_lock_nested(struct zspage *zspage)
1770 write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
1773 static void migrate_write_unlock(struct zspage *zspage)
1775 write_unlock(&zspage->lock);
1778 /* Number of isolated subpage for *page migration* in this zspage */
1779 static void inc_zspage_isolation(struct zspage *zspage)
1784 static void dec_zspage_isolation(struct zspage *zspage)
1786 VM_BUG_ON(zspage->isolated == 0);
1790 static const struct movable_operations zsmalloc_mops;
1792 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1793 struct page *newpage, struct page *oldpage)
1796 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1799 page = get_first_page(zspage);
1801 if (page == oldpage)
1802 pages[idx] = newpage;
1806 } while ((page = get_next_page(page)) != NULL);
1808 create_page_chain(class, zspage, pages);
1809 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1810 if (unlikely(ZsHugePage(zspage)))
1811 newpage->index = oldpage->index;
1812 __SetPageMovable(newpage, &zsmalloc_mops);
1815 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1817 struct zspage *zspage;
1820 * Page is locked so zspage couldn't be destroyed. For detail, look at
1821 * lock_zspage in free_zspage.
1823 VM_BUG_ON_PAGE(!PageMovable(page), page);
1824 VM_BUG_ON_PAGE(PageIsolated(page), page);
1826 zspage = get_zspage(page);
1827 migrate_write_lock(zspage);
1828 inc_zspage_isolation(zspage);
1829 migrate_write_unlock(zspage);
1834 static int zs_page_migrate(struct page *newpage, struct page *page,
1835 enum migrate_mode mode)
1837 struct zs_pool *pool;
1838 struct size_class *class;
1839 struct zspage *zspage;
1841 void *s_addr, *d_addr, *addr;
1843 unsigned long handle;
1844 unsigned long old_obj, new_obj;
1845 unsigned int obj_idx;
1848 * We cannot support the _NO_COPY case here, because copy needs to
1849 * happen under the zs lock, which does not work with
1850 * MIGRATE_SYNC_NO_COPY workflow.
1852 if (mode == MIGRATE_SYNC_NO_COPY)
1855 VM_BUG_ON_PAGE(!PageMovable(page), page);
1856 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1858 /* The page is locked, so this pointer must remain valid */
1859 zspage = get_zspage(page);
1860 pool = zspage->pool;
1863 * The pool migrate_lock protects the race between zpage migration
1866 write_lock(&pool->migrate_lock);
1867 class = zspage_class(pool, zspage);
1870 * the class lock protects zpage alloc/free in the zspage.
1872 spin_lock(&class->lock);
1873 /* the migrate_write_lock protects zpage access via zs_map_object */
1874 migrate_write_lock(zspage);
1876 offset = get_first_obj_offset(page);
1877 s_addr = kmap_atomic(page);
1880 * Here, any user cannot access all objects in the zspage so let's move.
1882 d_addr = kmap_atomic(newpage);
1883 memcpy(d_addr, s_addr, PAGE_SIZE);
1884 kunmap_atomic(d_addr);
1886 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1887 addr += class->size) {
1888 if (obj_allocated(page, addr, &handle)) {
1890 old_obj = handle_to_obj(handle);
1891 obj_to_location(old_obj, &dummy, &obj_idx);
1892 new_obj = (unsigned long)location_to_obj(newpage,
1894 record_obj(handle, new_obj);
1897 kunmap_atomic(s_addr);
1899 replace_sub_page(class, zspage, newpage, page);
1901 * Since we complete the data copy and set up new zspage structure,
1902 * it's okay to release migration_lock.
1904 write_unlock(&pool->migrate_lock);
1905 spin_unlock(&class->lock);
1906 dec_zspage_isolation(zspage);
1907 migrate_write_unlock(zspage);
1910 if (page_zone(newpage) != page_zone(page)) {
1911 dec_zone_page_state(page, NR_ZSPAGES);
1912 inc_zone_page_state(newpage, NR_ZSPAGES);
1918 return MIGRATEPAGE_SUCCESS;
1921 static void zs_page_putback(struct page *page)
1923 struct zspage *zspage;
1925 VM_BUG_ON_PAGE(!PageMovable(page), page);
1926 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1928 zspage = get_zspage(page);
1929 migrate_write_lock(zspage);
1930 dec_zspage_isolation(zspage);
1931 migrate_write_unlock(zspage);
1934 static const struct movable_operations zsmalloc_mops = {
1935 .isolate_page = zs_page_isolate,
1936 .migrate_page = zs_page_migrate,
1937 .putback_page = zs_page_putback,
1941 * Caller should hold page_lock of all pages in the zspage
1942 * In here, we cannot use zspage meta data.
1944 static void async_free_zspage(struct work_struct *work)
1947 struct size_class *class;
1948 unsigned int class_idx;
1949 enum fullness_group fullness;
1950 struct zspage *zspage, *tmp;
1951 LIST_HEAD(free_pages);
1952 struct zs_pool *pool = container_of(work, struct zs_pool,
1955 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1956 class = pool->size_class[i];
1957 if (class->index != i)
1960 spin_lock(&class->lock);
1961 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
1962 spin_unlock(&class->lock);
1965 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1966 list_del(&zspage->list);
1967 lock_zspage(zspage);
1969 get_zspage_mapping(zspage, &class_idx, &fullness);
1970 VM_BUG_ON(fullness != ZS_EMPTY);
1971 class = pool->size_class[class_idx];
1972 spin_lock(&class->lock);
1973 __free_zspage(pool, class, zspage);
1974 spin_unlock(&class->lock);
1978 static void kick_deferred_free(struct zs_pool *pool)
1980 schedule_work(&pool->free_work);
1983 static void zs_flush_migration(struct zs_pool *pool)
1985 flush_work(&pool->free_work);
1988 static void init_deferred_free(struct zs_pool *pool)
1990 INIT_WORK(&pool->free_work, async_free_zspage);
1993 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
1995 struct page *page = get_first_page(zspage);
1998 WARN_ON(!trylock_page(page));
1999 __SetPageMovable(page, &zsmalloc_mops);
2001 } while ((page = get_next_page(page)) != NULL);
2004 static inline void zs_flush_migration(struct zs_pool *pool) { }
2009 * Based on the number of unused allocated objects calculate
2010 * and return the number of pages that we can free.
2012 static unsigned long zs_can_compact(struct size_class *class)
2014 unsigned long obj_wasted;
2015 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2016 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2018 if (obj_allocated <= obj_used)
2021 obj_wasted = obj_allocated - obj_used;
2022 obj_wasted /= class->objs_per_zspage;
2024 return obj_wasted * class->pages_per_zspage;
2027 static unsigned long __zs_compact(struct zs_pool *pool,
2028 struct size_class *class)
2030 struct zs_compact_control cc;
2031 struct zspage *src_zspage;
2032 struct zspage *dst_zspage = NULL;
2033 unsigned long pages_freed = 0;
2035 /* protect the race between zpage migration and zs_free */
2036 write_lock(&pool->migrate_lock);
2037 /* protect zpage allocation/free */
2038 spin_lock(&class->lock);
2039 while ((src_zspage = isolate_zspage(class, true))) {
2040 /* protect someone accessing the zspage(i.e., zs_map_object) */
2041 migrate_write_lock(src_zspage);
2043 if (!zs_can_compact(class))
2047 cc.s_page = get_first_page(src_zspage);
2049 while ((dst_zspage = isolate_zspage(class, false))) {
2050 migrate_write_lock_nested(dst_zspage);
2052 cc.d_page = get_first_page(dst_zspage);
2054 * If there is no more space in dst_page, resched
2055 * and see if anyone had allocated another zspage.
2057 if (!migrate_zspage(pool, class, &cc))
2060 putback_zspage(class, dst_zspage);
2061 migrate_write_unlock(dst_zspage);
2063 if (rwlock_is_contended(&pool->migrate_lock))
2067 /* Stop if we couldn't find slot */
2068 if (dst_zspage == NULL)
2071 putback_zspage(class, dst_zspage);
2072 migrate_write_unlock(dst_zspage);
2074 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2075 migrate_write_unlock(src_zspage);
2076 free_zspage(pool, class, src_zspage);
2077 pages_freed += class->pages_per_zspage;
2079 migrate_write_unlock(src_zspage);
2080 spin_unlock(&class->lock);
2081 write_unlock(&pool->migrate_lock);
2083 write_lock(&pool->migrate_lock);
2084 spin_lock(&class->lock);
2088 putback_zspage(class, src_zspage);
2089 migrate_write_unlock(src_zspage);
2092 spin_unlock(&class->lock);
2093 write_unlock(&pool->migrate_lock);
2098 unsigned long zs_compact(struct zs_pool *pool)
2101 struct size_class *class;
2102 unsigned long pages_freed = 0;
2104 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2105 class = pool->size_class[i];
2108 if (class->index != i)
2110 pages_freed += __zs_compact(pool, class);
2112 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2116 EXPORT_SYMBOL_GPL(zs_compact);
2118 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2120 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2122 EXPORT_SYMBOL_GPL(zs_pool_stats);
2124 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2125 struct shrink_control *sc)
2127 unsigned long pages_freed;
2128 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2132 * Compact classes and calculate compaction delta.
2133 * Can run concurrently with a manually triggered
2134 * (by user) compaction.
2136 pages_freed = zs_compact(pool);
2138 return pages_freed ? pages_freed : SHRINK_STOP;
2141 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2142 struct shrink_control *sc)
2145 struct size_class *class;
2146 unsigned long pages_to_free = 0;
2147 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2150 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2151 class = pool->size_class[i];
2154 if (class->index != i)
2157 pages_to_free += zs_can_compact(class);
2160 return pages_to_free;
2163 static void zs_unregister_shrinker(struct zs_pool *pool)
2165 unregister_shrinker(&pool->shrinker);
2168 static int zs_register_shrinker(struct zs_pool *pool)
2170 pool->shrinker.scan_objects = zs_shrinker_scan;
2171 pool->shrinker.count_objects = zs_shrinker_count;
2172 pool->shrinker.batch = 0;
2173 pool->shrinker.seeks = DEFAULT_SEEKS;
2175 return register_shrinker(&pool->shrinker, "mm-zspool:%s",
2180 * zs_create_pool - Creates an allocation pool to work from.
2181 * @name: pool name to be created
2183 * This function must be called before anything when using
2184 * the zsmalloc allocator.
2186 * On success, a pointer to the newly created pool is returned,
2189 struct zs_pool *zs_create_pool(const char *name)
2192 struct zs_pool *pool;
2193 struct size_class *prev_class = NULL;
2195 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2199 init_deferred_free(pool);
2200 rwlock_init(&pool->migrate_lock);
2202 pool->name = kstrdup(name, GFP_KERNEL);
2206 if (create_cache(pool))
2210 * Iterate reversely, because, size of size_class that we want to use
2211 * for merging should be larger or equal to current size.
2213 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2215 int pages_per_zspage;
2216 int objs_per_zspage;
2217 struct size_class *class;
2220 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2221 if (size > ZS_MAX_ALLOC_SIZE)
2222 size = ZS_MAX_ALLOC_SIZE;
2223 pages_per_zspage = get_pages_per_zspage(size);
2224 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2227 * We iterate from biggest down to smallest classes,
2228 * so huge_class_size holds the size of the first huge
2229 * class. Any object bigger than or equal to that will
2230 * endup in the huge class.
2232 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2234 huge_class_size = size;
2236 * The object uses ZS_HANDLE_SIZE bytes to store the
2237 * handle. We need to subtract it, because zs_malloc()
2238 * unconditionally adds handle size before it performs
2239 * size class search - so object may be smaller than
2240 * huge class size, yet it still can end up in the huge
2241 * class because it grows by ZS_HANDLE_SIZE extra bytes
2242 * right before class lookup.
2244 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2248 * size_class is used for normal zsmalloc operation such
2249 * as alloc/free for that size. Although it is natural that we
2250 * have one size_class for each size, there is a chance that we
2251 * can get more memory utilization if we use one size_class for
2252 * many different sizes whose size_class have same
2253 * characteristics. So, we makes size_class point to
2254 * previous size_class if possible.
2257 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2258 pool->size_class[i] = prev_class;
2263 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2269 class->pages_per_zspage = pages_per_zspage;
2270 class->objs_per_zspage = objs_per_zspage;
2271 spin_lock_init(&class->lock);
2272 pool->size_class[i] = class;
2273 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2275 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2280 /* debug only, don't abort if it fails */
2281 zs_pool_stat_create(pool, name);
2284 * Not critical since shrinker is only used to trigger internal
2285 * defragmentation of the pool which is pretty optional thing. If
2286 * registration fails we still can use the pool normally and user can
2287 * trigger compaction manually. Thus, ignore return code.
2289 zs_register_shrinker(pool);
2294 zs_destroy_pool(pool);
2297 EXPORT_SYMBOL_GPL(zs_create_pool);
2299 void zs_destroy_pool(struct zs_pool *pool)
2303 zs_unregister_shrinker(pool);
2304 zs_flush_migration(pool);
2305 zs_pool_stat_destroy(pool);
2307 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2309 struct size_class *class = pool->size_class[i];
2314 if (class->index != i)
2317 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2318 if (!list_empty(&class->fullness_list[fg])) {
2319 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2326 destroy_cache(pool);
2330 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2332 static int __init zs_init(void)
2336 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2337 zs_cpu_prepare, zs_cpu_dead);
2342 zpool_register_driver(&zs_zpool_driver);
2353 static void __exit zs_exit(void)
2356 zpool_unregister_driver(&zs_zpool_driver);
2358 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2363 module_init(zs_init);
2364 module_exit(zs_exit);
2366 MODULE_LICENSE("Dual BSD/GPL");
2367 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");