2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
23 * page->units: first object offset in a subpage of zspage
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/migrate.h>
56 #include <linux/wait.h>
57 #include <linux/pagemap.h>
60 #define ZSPAGE_MAGIC 0x58
63 * This must be power of 2 and greater than of equal to sizeof(link_free).
64 * These two conditions ensure that any 'struct link_free' itself doesn't
65 * span more than 1 page which avoids complex case of mapping 2 pages simply
66 * to restore link_free pointer values.
71 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
72 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
74 #define ZS_MAX_ZSPAGE_ORDER 2
75 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
77 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
80 * Object location (<PFN>, <obj_idx>) is encoded as
81 * as single (unsigned long) handle value.
83 * Note that object index <obj_idx> starts from 0.
85 * This is made more complicated by various memory models and PAE.
88 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
89 #ifdef MAX_PHYSMEM_BITS
90 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
93 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
96 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
100 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
103 * Memory for allocating for handle keeps object position by
104 * encoding <page, obj_idx> and the encoded value has a room
105 * in least bit(ie, look at obj_to_location).
106 * We use the bit to synchronize between object access by
107 * user and migration.
109 #define HANDLE_PIN_BIT 0
112 * Head in allocated object should have OBJ_ALLOCATED_TAG
113 * to identify the object was allocated or not.
114 * It's okay to add the status bit in the least bit because
115 * header keeps handle which is 4byte-aligned address so we
116 * have room for two bit at least.
118 #define OBJ_ALLOCATED_TAG 1
119 #define OBJ_TAG_BITS 1
120 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
121 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
123 #define FULLNESS_BITS 2
125 #define ISOLATED_BITS 3
126 #define MAGIC_VAL_BITS 8
128 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
129 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
130 #define ZS_MIN_ALLOC_SIZE \
131 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
132 /* each chunk includes extra space to keep handle */
133 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
136 * On systems with 4K page size, this gives 255 size classes! There is a
138 * - Large number of size classes is potentially wasteful as free page are
139 * spread across these classes
140 * - Small number of size classes causes large internal fragmentation
141 * - Probably its better to use specific size classes (empirically
142 * determined). NOTE: all those class sizes must be set as multiple of
143 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
145 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
148 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
149 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
150 ZS_SIZE_CLASS_DELTA) + 1)
152 enum fullness_group {
170 struct zs_size_stat {
171 unsigned long objs[NR_ZS_STAT_TYPE];
174 #ifdef CONFIG_ZSMALLOC_STAT
175 static struct dentry *zs_stat_root;
178 #ifdef CONFIG_COMPACTION
179 static struct vfsmount *zsmalloc_mnt;
183 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
185 * n = number of allocated objects
186 * N = total number of objects zspage can store
187 * f = fullness_threshold_frac
189 * Similarly, we assign zspage to:
190 * ZS_ALMOST_FULL when n > N / f
191 * ZS_EMPTY when n == 0
192 * ZS_FULL when n == N
194 * (see: fix_fullness_group())
196 static const int fullness_threshold_frac = 4;
197 static size_t huge_class_size;
201 struct list_head fullness_list[NR_ZS_FULLNESS];
203 * Size of objects stored in this class. Must be multiple
208 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
209 int pages_per_zspage;
212 struct zs_size_stat stats;
215 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
216 static void SetPageHugeObject(struct page *page)
218 SetPageOwnerPriv1(page);
221 static void ClearPageHugeObject(struct page *page)
223 ClearPageOwnerPriv1(page);
226 static int PageHugeObject(struct page *page)
228 return PageOwnerPriv1(page);
232 * Placed within free objects to form a singly linked list.
233 * For every zspage, zspage->freeobj gives head of this list.
235 * This must be power of 2 and less than or equal to ZS_ALIGN
241 * It's valid for non-allocated object
245 * Handle of allocated object.
247 unsigned long handle;
254 struct size_class *size_class[ZS_SIZE_CLASSES];
255 struct kmem_cache *handle_cachep;
256 struct kmem_cache *zspage_cachep;
258 atomic_long_t pages_allocated;
260 struct zs_pool_stats stats;
262 /* Compact classes */
263 struct shrinker shrinker;
265 #ifdef CONFIG_ZSMALLOC_STAT
266 struct dentry *stat_dentry;
268 #ifdef CONFIG_COMPACTION
270 struct work_struct free_work;
271 /* A wait queue for when migration races with async_free_zspage() */
272 struct wait_queue_head migration_wait;
273 atomic_long_t isolated_pages;
280 unsigned int fullness:FULLNESS_BITS;
281 unsigned int class:CLASS_BITS + 1;
282 unsigned int isolated:ISOLATED_BITS;
283 unsigned int magic:MAGIC_VAL_BITS;
286 unsigned int freeobj;
287 struct page *first_page;
288 struct list_head list; /* fullness list */
289 #ifdef CONFIG_COMPACTION
294 struct mapping_area {
295 #ifdef CONFIG_PGTABLE_MAPPING
296 struct vm_struct *vm; /* vm area for mapping object that span pages */
298 char *vm_buf; /* copy buffer for objects that span pages */
300 char *vm_addr; /* address of kmap_atomic()'ed pages */
301 enum zs_mapmode vm_mm; /* mapping mode */
304 #ifdef CONFIG_COMPACTION
305 static int zs_register_migration(struct zs_pool *pool);
306 static void zs_unregister_migration(struct zs_pool *pool);
307 static void migrate_lock_init(struct zspage *zspage);
308 static void migrate_read_lock(struct zspage *zspage);
309 static void migrate_read_unlock(struct zspage *zspage);
310 static void kick_deferred_free(struct zs_pool *pool);
311 static void init_deferred_free(struct zs_pool *pool);
312 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
314 static int zsmalloc_mount(void) { return 0; }
315 static void zsmalloc_unmount(void) {}
316 static int zs_register_migration(struct zs_pool *pool) { return 0; }
317 static void zs_unregister_migration(struct zs_pool *pool) {}
318 static void migrate_lock_init(struct zspage *zspage) {}
319 static void migrate_read_lock(struct zspage *zspage) {}
320 static void migrate_read_unlock(struct zspage *zspage) {}
321 static void kick_deferred_free(struct zs_pool *pool) {}
322 static void init_deferred_free(struct zs_pool *pool) {}
323 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
326 static int create_cache(struct zs_pool *pool)
328 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
330 if (!pool->handle_cachep)
333 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
335 if (!pool->zspage_cachep) {
336 kmem_cache_destroy(pool->handle_cachep);
337 pool->handle_cachep = NULL;
344 static void destroy_cache(struct zs_pool *pool)
346 kmem_cache_destroy(pool->handle_cachep);
347 kmem_cache_destroy(pool->zspage_cachep);
350 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
352 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
353 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
356 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
358 kmem_cache_free(pool->handle_cachep, (void *)handle);
361 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
363 return kmem_cache_alloc(pool->zspage_cachep,
364 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
367 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
369 kmem_cache_free(pool->zspage_cachep, zspage);
372 static void record_obj(unsigned long handle, unsigned long obj)
375 * lsb of @obj represents handle lock while other bits
376 * represent object value the handle is pointing so
377 * updating shouldn't do store tearing.
379 WRITE_ONCE(*(unsigned long *)handle, obj);
386 static void *zs_zpool_create(const char *name, gfp_t gfp,
387 const struct zpool_ops *zpool_ops,
391 * Ignore global gfp flags: zs_malloc() may be invoked from
392 * different contexts and its caller must provide a valid
395 return zs_create_pool(name);
398 static void zs_zpool_destroy(void *pool)
400 zs_destroy_pool(pool);
403 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
404 unsigned long *handle)
406 *handle = zs_malloc(pool, size, gfp);
407 return *handle ? 0 : -1;
409 static void zs_zpool_free(void *pool, unsigned long handle)
411 zs_free(pool, handle);
414 static void *zs_zpool_map(void *pool, unsigned long handle,
415 enum zpool_mapmode mm)
417 enum zs_mapmode zs_mm;
426 case ZPOOL_MM_RW: /* fallthru */
432 return zs_map_object(pool, handle, zs_mm);
434 static void zs_zpool_unmap(void *pool, unsigned long handle)
436 zs_unmap_object(pool, handle);
439 static u64 zs_zpool_total_size(void *pool)
441 return zs_get_total_pages(pool) << PAGE_SHIFT;
444 static struct zpool_driver zs_zpool_driver = {
446 .owner = THIS_MODULE,
447 .create = zs_zpool_create,
448 .destroy = zs_zpool_destroy,
449 .malloc = zs_zpool_malloc,
450 .free = zs_zpool_free,
452 .unmap = zs_zpool_unmap,
453 .total_size = zs_zpool_total_size,
456 MODULE_ALIAS("zpool-zsmalloc");
457 #endif /* CONFIG_ZPOOL */
459 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
460 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
462 static bool is_zspage_isolated(struct zspage *zspage)
464 return zspage->isolated;
467 static __maybe_unused int is_first_page(struct page *page)
469 return PagePrivate(page);
472 /* Protected by class->lock */
473 static inline int get_zspage_inuse(struct zspage *zspage)
475 return zspage->inuse;
478 static inline void set_zspage_inuse(struct zspage *zspage, int val)
483 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
485 zspage->inuse += val;
488 static inline struct page *get_first_page(struct zspage *zspage)
490 struct page *first_page = zspage->first_page;
492 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
496 static inline int get_first_obj_offset(struct page *page)
501 static inline void set_first_obj_offset(struct page *page, int offset)
503 page->units = offset;
506 static inline unsigned int get_freeobj(struct zspage *zspage)
508 return zspage->freeobj;
511 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
513 zspage->freeobj = obj;
516 static void get_zspage_mapping(struct zspage *zspage,
517 unsigned int *class_idx,
518 enum fullness_group *fullness)
520 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
522 *fullness = zspage->fullness;
523 *class_idx = zspage->class;
526 static void set_zspage_mapping(struct zspage *zspage,
527 unsigned int class_idx,
528 enum fullness_group fullness)
530 zspage->class = class_idx;
531 zspage->fullness = fullness;
535 * zsmalloc divides the pool into various size classes where each
536 * class maintains a list of zspages where each zspage is divided
537 * into equal sized chunks. Each allocation falls into one of these
538 * classes depending on its size. This function returns index of the
539 * size class which has chunk size big enough to hold the give size.
541 static int get_size_class_index(int size)
545 if (likely(size > ZS_MIN_ALLOC_SIZE))
546 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
547 ZS_SIZE_CLASS_DELTA);
549 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
552 /* type can be of enum type zs_stat_type or fullness_group */
553 static inline void zs_stat_inc(struct size_class *class,
554 int type, unsigned long cnt)
556 class->stats.objs[type] += cnt;
559 /* type can be of enum type zs_stat_type or fullness_group */
560 static inline void zs_stat_dec(struct size_class *class,
561 int type, unsigned long cnt)
563 class->stats.objs[type] -= cnt;
566 /* type can be of enum type zs_stat_type or fullness_group */
567 static inline unsigned long zs_stat_get(struct size_class *class,
570 return class->stats.objs[type];
573 #ifdef CONFIG_ZSMALLOC_STAT
575 static void __init zs_stat_init(void)
577 if (!debugfs_initialized()) {
578 pr_warn("debugfs not available, stat dir not created\n");
582 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
584 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
587 static void __exit zs_stat_exit(void)
589 debugfs_remove_recursive(zs_stat_root);
592 static unsigned long zs_can_compact(struct size_class *class);
594 static int zs_stats_size_show(struct seq_file *s, void *v)
597 struct zs_pool *pool = s->private;
598 struct size_class *class;
600 unsigned long class_almost_full, class_almost_empty;
601 unsigned long obj_allocated, obj_used, pages_used, freeable;
602 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
603 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
604 unsigned long total_freeable = 0;
606 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
607 "class", "size", "almost_full", "almost_empty",
608 "obj_allocated", "obj_used", "pages_used",
609 "pages_per_zspage", "freeable");
611 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
612 class = pool->size_class[i];
614 if (class->index != i)
617 spin_lock(&class->lock);
618 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
619 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
620 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
621 obj_used = zs_stat_get(class, OBJ_USED);
622 freeable = zs_can_compact(class);
623 spin_unlock(&class->lock);
625 objs_per_zspage = class->objs_per_zspage;
626 pages_used = obj_allocated / objs_per_zspage *
627 class->pages_per_zspage;
629 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
630 " %10lu %10lu %16d %8lu\n",
631 i, class->size, class_almost_full, class_almost_empty,
632 obj_allocated, obj_used, pages_used,
633 class->pages_per_zspage, freeable);
635 total_class_almost_full += class_almost_full;
636 total_class_almost_empty += class_almost_empty;
637 total_objs += obj_allocated;
638 total_used_objs += obj_used;
639 total_pages += pages_used;
640 total_freeable += freeable;
644 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
645 "Total", "", total_class_almost_full,
646 total_class_almost_empty, total_objs,
647 total_used_objs, total_pages, "", total_freeable);
651 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
653 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
655 struct dentry *entry;
658 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
662 entry = debugfs_create_dir(name, zs_stat_root);
664 pr_warn("debugfs dir <%s> creation failed\n", name);
667 pool->stat_dentry = entry;
669 entry = debugfs_create_file("classes", S_IFREG | 0444,
670 pool->stat_dentry, pool,
671 &zs_stats_size_fops);
673 pr_warn("%s: debugfs file entry <%s> creation failed\n",
675 debugfs_remove_recursive(pool->stat_dentry);
676 pool->stat_dentry = NULL;
680 static void zs_pool_stat_destroy(struct zs_pool *pool)
682 debugfs_remove_recursive(pool->stat_dentry);
685 #else /* CONFIG_ZSMALLOC_STAT */
686 static void __init zs_stat_init(void)
690 static void __exit zs_stat_exit(void)
694 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
698 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
705 * For each size class, zspages are divided into different groups
706 * depending on how "full" they are. This was done so that we could
707 * easily find empty or nearly empty zspages when we try to shrink
708 * the pool (not yet implemented). This function returns fullness
709 * status of the given page.
711 static enum fullness_group get_fullness_group(struct size_class *class,
712 struct zspage *zspage)
714 int inuse, objs_per_zspage;
715 enum fullness_group fg;
717 inuse = get_zspage_inuse(zspage);
718 objs_per_zspage = class->objs_per_zspage;
722 else if (inuse == objs_per_zspage)
724 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
725 fg = ZS_ALMOST_EMPTY;
733 * Each size class maintains various freelists and zspages are assigned
734 * to one of these freelists based on the number of live objects they
735 * have. This functions inserts the given zspage into the freelist
736 * identified by <class, fullness_group>.
738 static void insert_zspage(struct size_class *class,
739 struct zspage *zspage,
740 enum fullness_group fullness)
744 zs_stat_inc(class, fullness, 1);
745 head = list_first_entry_or_null(&class->fullness_list[fullness],
746 struct zspage, list);
748 * We want to see more ZS_FULL pages and less almost empty/full.
749 * Put pages with higher ->inuse first.
752 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
753 list_add(&zspage->list, &head->list);
757 list_add(&zspage->list, &class->fullness_list[fullness]);
761 * This function removes the given zspage from the freelist identified
762 * by <class, fullness_group>.
764 static void remove_zspage(struct size_class *class,
765 struct zspage *zspage,
766 enum fullness_group fullness)
768 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
769 VM_BUG_ON(is_zspage_isolated(zspage));
771 list_del_init(&zspage->list);
772 zs_stat_dec(class, fullness, 1);
776 * Each size class maintains zspages in different fullness groups depending
777 * on the number of live objects they contain. When allocating or freeing
778 * objects, the fullness status of the page can change, say, from ALMOST_FULL
779 * to ALMOST_EMPTY when freeing an object. This function checks if such
780 * a status change has occurred for the given page and accordingly moves the
781 * page from the freelist of the old fullness group to that of the new
784 static enum fullness_group fix_fullness_group(struct size_class *class,
785 struct zspage *zspage)
788 enum fullness_group currfg, newfg;
790 get_zspage_mapping(zspage, &class_idx, &currfg);
791 newfg = get_fullness_group(class, zspage);
795 if (!is_zspage_isolated(zspage)) {
796 remove_zspage(class, zspage, currfg);
797 insert_zspage(class, zspage, newfg);
800 set_zspage_mapping(zspage, class_idx, newfg);
807 * We have to decide on how many pages to link together
808 * to form a zspage for each size class. This is important
809 * to reduce wastage due to unusable space left at end of
810 * each zspage which is given as:
811 * wastage = Zp % class_size
812 * usage = Zp - wastage
813 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
815 * For example, for size class of 3/8 * PAGE_SIZE, we should
816 * link together 3 PAGE_SIZE sized pages to form a zspage
817 * since then we can perfectly fit in 8 such objects.
819 static int get_pages_per_zspage(int class_size)
821 int i, max_usedpc = 0;
822 /* zspage order which gives maximum used size per KB */
823 int max_usedpc_order = 1;
825 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
829 zspage_size = i * PAGE_SIZE;
830 waste = zspage_size % class_size;
831 usedpc = (zspage_size - waste) * 100 / zspage_size;
833 if (usedpc > max_usedpc) {
835 max_usedpc_order = i;
839 return max_usedpc_order;
842 static struct zspage *get_zspage(struct page *page)
844 struct zspage *zspage = (struct zspage *)page->private;
846 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
850 static struct page *get_next_page(struct page *page)
852 if (unlikely(PageHugeObject(page)))
855 return page->freelist;
859 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
860 * @obj: the encoded object value
861 * @page: page object resides in zspage
862 * @obj_idx: object index
864 static void obj_to_location(unsigned long obj, struct page **page,
865 unsigned int *obj_idx)
867 obj >>= OBJ_TAG_BITS;
868 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
869 *obj_idx = (obj & OBJ_INDEX_MASK);
873 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
874 * @page: page object resides in zspage
875 * @obj_idx: object index
877 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
881 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
882 obj |= obj_idx & OBJ_INDEX_MASK;
883 obj <<= OBJ_TAG_BITS;
888 static unsigned long handle_to_obj(unsigned long handle)
890 return *(unsigned long *)handle;
893 static unsigned long obj_to_head(struct page *page, void *obj)
895 if (unlikely(PageHugeObject(page))) {
896 VM_BUG_ON_PAGE(!is_first_page(page), page);
899 return *(unsigned long *)obj;
902 static inline int testpin_tag(unsigned long handle)
904 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
907 static inline int trypin_tag(unsigned long handle)
909 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
912 static void pin_tag(unsigned long handle)
914 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
917 static void unpin_tag(unsigned long handle)
919 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
922 static void reset_page(struct page *page)
924 __ClearPageMovable(page);
925 ClearPagePrivate(page);
926 set_page_private(page, 0);
927 page_mapcount_reset(page);
928 ClearPageHugeObject(page);
929 page->freelist = NULL;
932 static int trylock_zspage(struct zspage *zspage)
934 struct page *cursor, *fail;
936 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
937 get_next_page(cursor)) {
938 if (!trylock_page(cursor)) {
946 for (cursor = get_first_page(zspage); cursor != fail; cursor =
947 get_next_page(cursor))
953 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
954 struct zspage *zspage)
956 struct page *page, *next;
957 enum fullness_group fg;
958 unsigned int class_idx;
960 get_zspage_mapping(zspage, &class_idx, &fg);
962 assert_spin_locked(&class->lock);
964 VM_BUG_ON(get_zspage_inuse(zspage));
965 VM_BUG_ON(fg != ZS_EMPTY);
967 next = page = get_first_page(zspage);
969 VM_BUG_ON_PAGE(!PageLocked(page), page);
970 next = get_next_page(page);
973 dec_zone_page_state(page, NR_ZSPAGES);
976 } while (page != NULL);
978 cache_free_zspage(pool, zspage);
980 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
981 atomic_long_sub(class->pages_per_zspage,
982 &pool->pages_allocated);
985 static void free_zspage(struct zs_pool *pool, struct size_class *class,
986 struct zspage *zspage)
988 VM_BUG_ON(get_zspage_inuse(zspage));
989 VM_BUG_ON(list_empty(&zspage->list));
991 if (!trylock_zspage(zspage)) {
992 kick_deferred_free(pool);
996 remove_zspage(class, zspage, ZS_EMPTY);
997 __free_zspage(pool, class, zspage);
1000 /* Initialize a newly allocated zspage */
1001 static void init_zspage(struct size_class *class, struct zspage *zspage)
1003 unsigned int freeobj = 1;
1004 unsigned long off = 0;
1005 struct page *page = get_first_page(zspage);
1008 struct page *next_page;
1009 struct link_free *link;
1012 set_first_obj_offset(page, off);
1014 vaddr = kmap_atomic(page);
1015 link = (struct link_free *)vaddr + off / sizeof(*link);
1017 while ((off += class->size) < PAGE_SIZE) {
1018 link->next = freeobj++ << OBJ_TAG_BITS;
1019 link += class->size / sizeof(*link);
1023 * We now come to the last (full or partial) object on this
1024 * page, which must point to the first object on the next
1027 next_page = get_next_page(page);
1029 link->next = freeobj++ << OBJ_TAG_BITS;
1032 * Reset OBJ_TAG_BITS bit to last link to tell
1033 * whether it's allocated object or not.
1035 link->next = -1UL << OBJ_TAG_BITS;
1037 kunmap_atomic(vaddr);
1042 set_freeobj(zspage, 0);
1045 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1046 struct page *pages[])
1050 struct page *prev_page = NULL;
1051 int nr_pages = class->pages_per_zspage;
1054 * Allocate individual pages and link them together as:
1055 * 1. all pages are linked together using page->freelist
1056 * 2. each sub-page point to zspage using page->private
1058 * we set PG_private to identify the first page (i.e. no other sub-page
1059 * has this flag set).
1061 for (i = 0; i < nr_pages; i++) {
1063 set_page_private(page, (unsigned long)zspage);
1064 page->freelist = NULL;
1066 zspage->first_page = page;
1067 SetPagePrivate(page);
1068 if (unlikely(class->objs_per_zspage == 1 &&
1069 class->pages_per_zspage == 1))
1070 SetPageHugeObject(page);
1072 prev_page->freelist = page;
1079 * Allocate a zspage for the given size class
1081 static struct zspage *alloc_zspage(struct zs_pool *pool,
1082 struct size_class *class,
1086 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1087 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1092 memset(zspage, 0, sizeof(struct zspage));
1093 zspage->magic = ZSPAGE_MAGIC;
1094 migrate_lock_init(zspage);
1096 for (i = 0; i < class->pages_per_zspage; i++) {
1099 page = alloc_page(gfp);
1102 dec_zone_page_state(pages[i], NR_ZSPAGES);
1103 __free_page(pages[i]);
1105 cache_free_zspage(pool, zspage);
1109 inc_zone_page_state(page, NR_ZSPAGES);
1113 create_page_chain(class, zspage, pages);
1114 init_zspage(class, zspage);
1119 static struct zspage *find_get_zspage(struct size_class *class)
1122 struct zspage *zspage;
1124 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1125 zspage = list_first_entry_or_null(&class->fullness_list[i],
1126 struct zspage, list);
1134 #ifdef CONFIG_PGTABLE_MAPPING
1135 static inline int __zs_cpu_up(struct mapping_area *area)
1138 * Make sure we don't leak memory if a cpu UP notification
1139 * and zs_init() race and both call zs_cpu_up() on the same cpu
1143 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1149 static inline void __zs_cpu_down(struct mapping_area *area)
1152 free_vm_area(area->vm);
1156 static inline void *__zs_map_object(struct mapping_area *area,
1157 struct page *pages[2], int off, int size)
1159 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1160 area->vm_addr = area->vm->addr;
1161 return area->vm_addr + off;
1164 static inline void __zs_unmap_object(struct mapping_area *area,
1165 struct page *pages[2], int off, int size)
1167 unsigned long addr = (unsigned long)area->vm_addr;
1169 unmap_kernel_range(addr, PAGE_SIZE * 2);
1172 #else /* CONFIG_PGTABLE_MAPPING */
1174 static inline int __zs_cpu_up(struct mapping_area *area)
1177 * Make sure we don't leak memory if a cpu UP notification
1178 * and zs_init() race and both call zs_cpu_up() on the same cpu
1182 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1188 static inline void __zs_cpu_down(struct mapping_area *area)
1190 kfree(area->vm_buf);
1191 area->vm_buf = NULL;
1194 static void *__zs_map_object(struct mapping_area *area,
1195 struct page *pages[2], int off, int size)
1199 char *buf = area->vm_buf;
1201 /* disable page faults to match kmap_atomic() return conditions */
1202 pagefault_disable();
1204 /* no read fastpath */
1205 if (area->vm_mm == ZS_MM_WO)
1208 sizes[0] = PAGE_SIZE - off;
1209 sizes[1] = size - sizes[0];
1211 /* copy object to per-cpu buffer */
1212 addr = kmap_atomic(pages[0]);
1213 memcpy(buf, addr + off, sizes[0]);
1214 kunmap_atomic(addr);
1215 addr = kmap_atomic(pages[1]);
1216 memcpy(buf + sizes[0], addr, sizes[1]);
1217 kunmap_atomic(addr);
1219 return area->vm_buf;
1222 static void __zs_unmap_object(struct mapping_area *area,
1223 struct page *pages[2], int off, int size)
1229 /* no write fastpath */
1230 if (area->vm_mm == ZS_MM_RO)
1234 buf = buf + ZS_HANDLE_SIZE;
1235 size -= ZS_HANDLE_SIZE;
1236 off += ZS_HANDLE_SIZE;
1238 sizes[0] = PAGE_SIZE - off;
1239 sizes[1] = size - sizes[0];
1241 /* copy per-cpu buffer to object */
1242 addr = kmap_atomic(pages[0]);
1243 memcpy(addr + off, buf, sizes[0]);
1244 kunmap_atomic(addr);
1245 addr = kmap_atomic(pages[1]);
1246 memcpy(addr, buf + sizes[0], sizes[1]);
1247 kunmap_atomic(addr);
1250 /* enable page faults to match kunmap_atomic() return conditions */
1254 #endif /* CONFIG_PGTABLE_MAPPING */
1256 static int zs_cpu_prepare(unsigned int cpu)
1258 struct mapping_area *area;
1260 area = &per_cpu(zs_map_area, cpu);
1261 return __zs_cpu_up(area);
1264 static int zs_cpu_dead(unsigned int cpu)
1266 struct mapping_area *area;
1268 area = &per_cpu(zs_map_area, cpu);
1269 __zs_cpu_down(area);
1273 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1274 int objs_per_zspage)
1276 if (prev->pages_per_zspage == pages_per_zspage &&
1277 prev->objs_per_zspage == objs_per_zspage)
1283 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1285 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1288 unsigned long zs_get_total_pages(struct zs_pool *pool)
1290 return atomic_long_read(&pool->pages_allocated);
1292 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1295 * zs_map_object - get address of allocated object from handle.
1296 * @pool: pool from which the object was allocated
1297 * @handle: handle returned from zs_malloc
1298 * @mm: maping mode to use
1300 * Before using an object allocated from zs_malloc, it must be mapped using
1301 * this function. When done with the object, it must be unmapped using
1304 * Only one object can be mapped per cpu at a time. There is no protection
1305 * against nested mappings.
1307 * This function returns with preemption and page faults disabled.
1309 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1312 struct zspage *zspage;
1314 unsigned long obj, off;
1315 unsigned int obj_idx;
1317 unsigned int class_idx;
1318 enum fullness_group fg;
1319 struct size_class *class;
1320 struct mapping_area *area;
1321 struct page *pages[2];
1325 * Because we use per-cpu mapping areas shared among the
1326 * pools/users, we can't allow mapping in interrupt context
1327 * because it can corrupt another users mappings.
1329 BUG_ON(in_interrupt());
1331 /* From now on, migration cannot move the object */
1334 obj = handle_to_obj(handle);
1335 obj_to_location(obj, &page, &obj_idx);
1336 zspage = get_zspage(page);
1338 /* migration cannot move any subpage in this zspage */
1339 migrate_read_lock(zspage);
1341 get_zspage_mapping(zspage, &class_idx, &fg);
1342 class = pool->size_class[class_idx];
1343 off = (class->size * obj_idx) & ~PAGE_MASK;
1345 area = &get_cpu_var(zs_map_area);
1347 if (off + class->size <= PAGE_SIZE) {
1348 /* this object is contained entirely within a page */
1349 area->vm_addr = kmap_atomic(page);
1350 ret = area->vm_addr + off;
1354 /* this object spans two pages */
1356 pages[1] = get_next_page(page);
1359 ret = __zs_map_object(area, pages, off, class->size);
1361 if (likely(!PageHugeObject(page)))
1362 ret += ZS_HANDLE_SIZE;
1366 EXPORT_SYMBOL_GPL(zs_map_object);
1368 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1370 struct zspage *zspage;
1372 unsigned long obj, off;
1373 unsigned int obj_idx;
1375 unsigned int class_idx;
1376 enum fullness_group fg;
1377 struct size_class *class;
1378 struct mapping_area *area;
1380 obj = handle_to_obj(handle);
1381 obj_to_location(obj, &page, &obj_idx);
1382 zspage = get_zspage(page);
1383 get_zspage_mapping(zspage, &class_idx, &fg);
1384 class = pool->size_class[class_idx];
1385 off = (class->size * obj_idx) & ~PAGE_MASK;
1387 area = this_cpu_ptr(&zs_map_area);
1388 if (off + class->size <= PAGE_SIZE)
1389 kunmap_atomic(area->vm_addr);
1391 struct page *pages[2];
1394 pages[1] = get_next_page(page);
1397 __zs_unmap_object(area, pages, off, class->size);
1399 put_cpu_var(zs_map_area);
1401 migrate_read_unlock(zspage);
1404 EXPORT_SYMBOL_GPL(zs_unmap_object);
1407 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1408 * zsmalloc &size_class.
1409 * @pool: zsmalloc pool to use
1411 * The function returns the size of the first huge class - any object of equal
1412 * or bigger size will be stored in zspage consisting of a single physical
1415 * Context: Any context.
1417 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1419 size_t zs_huge_class_size(struct zs_pool *pool)
1421 return huge_class_size;
1423 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1425 static unsigned long obj_malloc(struct size_class *class,
1426 struct zspage *zspage, unsigned long handle)
1428 int i, nr_page, offset;
1430 struct link_free *link;
1432 struct page *m_page;
1433 unsigned long m_offset;
1436 handle |= OBJ_ALLOCATED_TAG;
1437 obj = get_freeobj(zspage);
1439 offset = obj * class->size;
1440 nr_page = offset >> PAGE_SHIFT;
1441 m_offset = offset & ~PAGE_MASK;
1442 m_page = get_first_page(zspage);
1444 for (i = 0; i < nr_page; i++)
1445 m_page = get_next_page(m_page);
1447 vaddr = kmap_atomic(m_page);
1448 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1449 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1450 if (likely(!PageHugeObject(m_page)))
1451 /* record handle in the header of allocated chunk */
1452 link->handle = handle;
1454 /* record handle to page->index */
1455 zspage->first_page->index = handle;
1457 kunmap_atomic(vaddr);
1458 mod_zspage_inuse(zspage, 1);
1459 zs_stat_inc(class, OBJ_USED, 1);
1461 obj = location_to_obj(m_page, obj);
1468 * zs_malloc - Allocate block of given size from pool.
1469 * @pool: pool to allocate from
1470 * @size: size of block to allocate
1471 * @gfp: gfp flags when allocating object
1473 * On success, handle to the allocated object is returned,
1475 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1477 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1479 unsigned long handle, obj;
1480 struct size_class *class;
1481 enum fullness_group newfg;
1482 struct zspage *zspage;
1484 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1487 handle = cache_alloc_handle(pool, gfp);
1491 /* extra space in chunk to keep the handle */
1492 size += ZS_HANDLE_SIZE;
1493 class = pool->size_class[get_size_class_index(size)];
1495 spin_lock(&class->lock);
1496 zspage = find_get_zspage(class);
1497 if (likely(zspage)) {
1498 obj = obj_malloc(class, zspage, handle);
1499 /* Now move the zspage to another fullness group, if required */
1500 fix_fullness_group(class, zspage);
1501 record_obj(handle, obj);
1502 spin_unlock(&class->lock);
1507 spin_unlock(&class->lock);
1509 zspage = alloc_zspage(pool, class, gfp);
1511 cache_free_handle(pool, handle);
1515 spin_lock(&class->lock);
1516 obj = obj_malloc(class, zspage, handle);
1517 newfg = get_fullness_group(class, zspage);
1518 insert_zspage(class, zspage, newfg);
1519 set_zspage_mapping(zspage, class->index, newfg);
1520 record_obj(handle, obj);
1521 atomic_long_add(class->pages_per_zspage,
1522 &pool->pages_allocated);
1523 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1525 /* We completely set up zspage so mark them as movable */
1526 SetZsPageMovable(pool, zspage);
1527 spin_unlock(&class->lock);
1531 EXPORT_SYMBOL_GPL(zs_malloc);
1533 static void obj_free(struct size_class *class, unsigned long obj)
1535 struct link_free *link;
1536 struct zspage *zspage;
1537 struct page *f_page;
1538 unsigned long f_offset;
1539 unsigned int f_objidx;
1542 obj &= ~OBJ_ALLOCATED_TAG;
1543 obj_to_location(obj, &f_page, &f_objidx);
1544 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1545 zspage = get_zspage(f_page);
1547 vaddr = kmap_atomic(f_page);
1549 /* Insert this object in containing zspage's freelist */
1550 link = (struct link_free *)(vaddr + f_offset);
1551 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1552 kunmap_atomic(vaddr);
1553 set_freeobj(zspage, f_objidx);
1554 mod_zspage_inuse(zspage, -1);
1555 zs_stat_dec(class, OBJ_USED, 1);
1558 void zs_free(struct zs_pool *pool, unsigned long handle)
1560 struct zspage *zspage;
1561 struct page *f_page;
1563 unsigned int f_objidx;
1565 struct size_class *class;
1566 enum fullness_group fullness;
1569 if (unlikely(!handle))
1573 obj = handle_to_obj(handle);
1574 obj_to_location(obj, &f_page, &f_objidx);
1575 zspage = get_zspage(f_page);
1577 migrate_read_lock(zspage);
1579 get_zspage_mapping(zspage, &class_idx, &fullness);
1580 class = pool->size_class[class_idx];
1582 spin_lock(&class->lock);
1583 obj_free(class, obj);
1584 fullness = fix_fullness_group(class, zspage);
1585 if (fullness != ZS_EMPTY) {
1586 migrate_read_unlock(zspage);
1590 isolated = is_zspage_isolated(zspage);
1591 migrate_read_unlock(zspage);
1592 /* If zspage is isolated, zs_page_putback will free the zspage */
1593 if (likely(!isolated))
1594 free_zspage(pool, class, zspage);
1597 spin_unlock(&class->lock);
1599 cache_free_handle(pool, handle);
1601 EXPORT_SYMBOL_GPL(zs_free);
1603 static void zs_object_copy(struct size_class *class, unsigned long dst,
1606 struct page *s_page, *d_page;
1607 unsigned int s_objidx, d_objidx;
1608 unsigned long s_off, d_off;
1609 void *s_addr, *d_addr;
1610 int s_size, d_size, size;
1613 s_size = d_size = class->size;
1615 obj_to_location(src, &s_page, &s_objidx);
1616 obj_to_location(dst, &d_page, &d_objidx);
1618 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1619 d_off = (class->size * d_objidx) & ~PAGE_MASK;
1621 if (s_off + class->size > PAGE_SIZE)
1622 s_size = PAGE_SIZE - s_off;
1624 if (d_off + class->size > PAGE_SIZE)
1625 d_size = PAGE_SIZE - d_off;
1627 s_addr = kmap_atomic(s_page);
1628 d_addr = kmap_atomic(d_page);
1631 size = min(s_size, d_size);
1632 memcpy(d_addr + d_off, s_addr + s_off, size);
1635 if (written == class->size)
1643 if (s_off >= PAGE_SIZE) {
1644 kunmap_atomic(d_addr);
1645 kunmap_atomic(s_addr);
1646 s_page = get_next_page(s_page);
1647 s_addr = kmap_atomic(s_page);
1648 d_addr = kmap_atomic(d_page);
1649 s_size = class->size - written;
1653 if (d_off >= PAGE_SIZE) {
1654 kunmap_atomic(d_addr);
1655 d_page = get_next_page(d_page);
1656 d_addr = kmap_atomic(d_page);
1657 d_size = class->size - written;
1662 kunmap_atomic(d_addr);
1663 kunmap_atomic(s_addr);
1667 * Find alloced object in zspage from index object and
1670 static unsigned long find_alloced_obj(struct size_class *class,
1671 struct page *page, int *obj_idx)
1675 int index = *obj_idx;
1676 unsigned long handle = 0;
1677 void *addr = kmap_atomic(page);
1679 offset = get_first_obj_offset(page);
1680 offset += class->size * index;
1682 while (offset < PAGE_SIZE) {
1683 head = obj_to_head(page, addr + offset);
1684 if (head & OBJ_ALLOCATED_TAG) {
1685 handle = head & ~OBJ_ALLOCATED_TAG;
1686 if (trypin_tag(handle))
1691 offset += class->size;
1695 kunmap_atomic(addr);
1702 struct zs_compact_control {
1703 /* Source spage for migration which could be a subpage of zspage */
1704 struct page *s_page;
1705 /* Destination page for migration which should be a first page
1707 struct page *d_page;
1708 /* Starting object index within @s_page which used for live object
1709 * in the subpage. */
1713 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1714 struct zs_compact_control *cc)
1716 unsigned long used_obj, free_obj;
1717 unsigned long handle;
1718 struct page *s_page = cc->s_page;
1719 struct page *d_page = cc->d_page;
1720 int obj_idx = cc->obj_idx;
1724 handle = find_alloced_obj(class, s_page, &obj_idx);
1726 s_page = get_next_page(s_page);
1733 /* Stop if there is no more space */
1734 if (zspage_full(class, get_zspage(d_page))) {
1740 used_obj = handle_to_obj(handle);
1741 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1742 zs_object_copy(class, free_obj, used_obj);
1745 * record_obj updates handle's value to free_obj and it will
1746 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1747 * breaks synchronization using pin_tag(e,g, zs_free) so
1748 * let's keep the lock bit.
1750 free_obj |= BIT(HANDLE_PIN_BIT);
1751 record_obj(handle, free_obj);
1753 obj_free(class, used_obj);
1756 /* Remember last position in this iteration */
1757 cc->s_page = s_page;
1758 cc->obj_idx = obj_idx;
1763 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1766 struct zspage *zspage;
1767 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1770 fg[0] = ZS_ALMOST_FULL;
1771 fg[1] = ZS_ALMOST_EMPTY;
1774 for (i = 0; i < 2; i++) {
1775 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1776 struct zspage, list);
1778 VM_BUG_ON(is_zspage_isolated(zspage));
1779 remove_zspage(class, zspage, fg[i]);
1788 * putback_zspage - add @zspage into right class's fullness list
1789 * @class: destination class
1790 * @zspage: target page
1792 * Return @zspage's fullness_group
1794 static enum fullness_group putback_zspage(struct size_class *class,
1795 struct zspage *zspage)
1797 enum fullness_group fullness;
1799 VM_BUG_ON(is_zspage_isolated(zspage));
1801 fullness = get_fullness_group(class, zspage);
1802 insert_zspage(class, zspage, fullness);
1803 set_zspage_mapping(zspage, class->index, fullness);
1808 #ifdef CONFIG_COMPACTION
1810 * To prevent zspage destroy during migration, zspage freeing should
1811 * hold locks of all pages in the zspage.
1813 static void lock_zspage(struct zspage *zspage)
1815 struct page *page = get_first_page(zspage);
1819 } while ((page = get_next_page(page)) != NULL);
1822 static struct dentry *zs_mount(struct file_system_type *fs_type,
1823 int flags, const char *dev_name, void *data)
1825 static const struct dentry_operations ops = {
1826 .d_dname = simple_dname,
1829 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1832 static struct file_system_type zsmalloc_fs = {
1835 .kill_sb = kill_anon_super,
1838 static int zsmalloc_mount(void)
1842 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1843 if (IS_ERR(zsmalloc_mnt))
1844 ret = PTR_ERR(zsmalloc_mnt);
1849 static void zsmalloc_unmount(void)
1851 kern_unmount(zsmalloc_mnt);
1854 static void migrate_lock_init(struct zspage *zspage)
1856 rwlock_init(&zspage->lock);
1859 static void migrate_read_lock(struct zspage *zspage)
1861 read_lock(&zspage->lock);
1864 static void migrate_read_unlock(struct zspage *zspage)
1866 read_unlock(&zspage->lock);
1869 static void migrate_write_lock(struct zspage *zspage)
1871 write_lock(&zspage->lock);
1874 static void migrate_write_unlock(struct zspage *zspage)
1876 write_unlock(&zspage->lock);
1879 /* Number of isolated subpage for *page migration* in this zspage */
1880 static void inc_zspage_isolation(struct zspage *zspage)
1885 static void dec_zspage_isolation(struct zspage *zspage)
1890 static void putback_zspage_deferred(struct zs_pool *pool,
1891 struct size_class *class,
1892 struct zspage *zspage)
1894 enum fullness_group fg;
1896 fg = putback_zspage(class, zspage);
1898 schedule_work(&pool->free_work);
1902 static inline void zs_pool_dec_isolated(struct zs_pool *pool)
1904 VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0);
1905 atomic_long_dec(&pool->isolated_pages);
1907 * There's no possibility of racing, since wait_for_isolated_drain()
1908 * checks the isolated count under &class->lock after enqueuing
1909 * on migration_wait.
1911 if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying)
1912 wake_up_all(&pool->migration_wait);
1915 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1916 struct page *newpage, struct page *oldpage)
1919 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1922 page = get_first_page(zspage);
1924 if (page == oldpage)
1925 pages[idx] = newpage;
1929 } while ((page = get_next_page(page)) != NULL);
1931 create_page_chain(class, zspage, pages);
1932 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1933 if (unlikely(PageHugeObject(oldpage)))
1934 newpage->index = oldpage->index;
1935 __SetPageMovable(newpage, page_mapping(oldpage));
1938 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1940 struct zs_pool *pool;
1941 struct size_class *class;
1943 enum fullness_group fullness;
1944 struct zspage *zspage;
1945 struct address_space *mapping;
1948 * Page is locked so zspage couldn't be destroyed. For detail, look at
1949 * lock_zspage in free_zspage.
1951 VM_BUG_ON_PAGE(!PageMovable(page), page);
1952 VM_BUG_ON_PAGE(PageIsolated(page), page);
1954 zspage = get_zspage(page);
1957 * Without class lock, fullness could be stale while class_idx is okay
1958 * because class_idx is constant unless page is freed so we should get
1959 * fullness again under class lock.
1961 get_zspage_mapping(zspage, &class_idx, &fullness);
1962 mapping = page_mapping(page);
1963 pool = mapping->private_data;
1964 class = pool->size_class[class_idx];
1966 spin_lock(&class->lock);
1967 if (get_zspage_inuse(zspage) == 0) {
1968 spin_unlock(&class->lock);
1972 /* zspage is isolated for object migration */
1973 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1974 spin_unlock(&class->lock);
1979 * If this is first time isolation for the zspage, isolate zspage from
1980 * size_class to prevent further object allocation from the zspage.
1982 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1983 get_zspage_mapping(zspage, &class_idx, &fullness);
1984 atomic_long_inc(&pool->isolated_pages);
1985 remove_zspage(class, zspage, fullness);
1988 inc_zspage_isolation(zspage);
1989 spin_unlock(&class->lock);
1994 static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1995 struct page *page, enum migrate_mode mode)
1997 struct zs_pool *pool;
1998 struct size_class *class;
2000 enum fullness_group fullness;
2001 struct zspage *zspage;
2003 void *s_addr, *d_addr, *addr;
2005 unsigned long handle, head;
2006 unsigned long old_obj, new_obj;
2007 unsigned int obj_idx;
2011 * We cannot support the _NO_COPY case here, because copy needs to
2012 * happen under the zs lock, which does not work with
2013 * MIGRATE_SYNC_NO_COPY workflow.
2015 if (mode == MIGRATE_SYNC_NO_COPY)
2018 VM_BUG_ON_PAGE(!PageMovable(page), page);
2019 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2021 zspage = get_zspage(page);
2023 /* Concurrent compactor cannot migrate any subpage in zspage */
2024 migrate_write_lock(zspage);
2025 get_zspage_mapping(zspage, &class_idx, &fullness);
2026 pool = mapping->private_data;
2027 class = pool->size_class[class_idx];
2028 offset = get_first_obj_offset(page);
2030 spin_lock(&class->lock);
2031 if (!get_zspage_inuse(zspage)) {
2033 * Set "offset" to end of the page so that every loops
2034 * skips unnecessary object scanning.
2040 s_addr = kmap_atomic(page);
2041 while (pos < PAGE_SIZE) {
2042 head = obj_to_head(page, s_addr + pos);
2043 if (head & OBJ_ALLOCATED_TAG) {
2044 handle = head & ~OBJ_ALLOCATED_TAG;
2045 if (!trypin_tag(handle))
2052 * Here, any user cannot access all objects in the zspage so let's move.
2054 d_addr = kmap_atomic(newpage);
2055 memcpy(d_addr, s_addr, PAGE_SIZE);
2056 kunmap_atomic(d_addr);
2058 for (addr = s_addr + offset; addr < s_addr + pos;
2059 addr += class->size) {
2060 head = obj_to_head(page, addr);
2061 if (head & OBJ_ALLOCATED_TAG) {
2062 handle = head & ~OBJ_ALLOCATED_TAG;
2063 if (!testpin_tag(handle))
2066 old_obj = handle_to_obj(handle);
2067 obj_to_location(old_obj, &dummy, &obj_idx);
2068 new_obj = (unsigned long)location_to_obj(newpage,
2070 new_obj |= BIT(HANDLE_PIN_BIT);
2071 record_obj(handle, new_obj);
2075 replace_sub_page(class, zspage, newpage, page);
2078 dec_zspage_isolation(zspage);
2081 * Page migration is done so let's putback isolated zspage to
2082 * the list if @page is final isolated subpage in the zspage.
2084 if (!is_zspage_isolated(zspage)) {
2086 * We cannot race with zs_destroy_pool() here because we wait
2087 * for isolation to hit zero before we start destroying.
2088 * Also, we ensure that everyone can see pool->destroying before
2091 putback_zspage_deferred(pool, class, zspage);
2092 zs_pool_dec_isolated(pool);
2095 if (page_zone(newpage) != page_zone(page)) {
2096 dec_zone_page_state(page, NR_ZSPAGES);
2097 inc_zone_page_state(newpage, NR_ZSPAGES);
2104 ret = MIGRATEPAGE_SUCCESS;
2106 for (addr = s_addr + offset; addr < s_addr + pos;
2107 addr += class->size) {
2108 head = obj_to_head(page, addr);
2109 if (head & OBJ_ALLOCATED_TAG) {
2110 handle = head & ~OBJ_ALLOCATED_TAG;
2111 if (!testpin_tag(handle))
2116 kunmap_atomic(s_addr);
2117 spin_unlock(&class->lock);
2118 migrate_write_unlock(zspage);
2123 static void zs_page_putback(struct page *page)
2125 struct zs_pool *pool;
2126 struct size_class *class;
2128 enum fullness_group fg;
2129 struct address_space *mapping;
2130 struct zspage *zspage;
2132 VM_BUG_ON_PAGE(!PageMovable(page), page);
2133 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2135 zspage = get_zspage(page);
2136 get_zspage_mapping(zspage, &class_idx, &fg);
2137 mapping = page_mapping(page);
2138 pool = mapping->private_data;
2139 class = pool->size_class[class_idx];
2141 spin_lock(&class->lock);
2142 dec_zspage_isolation(zspage);
2143 if (!is_zspage_isolated(zspage)) {
2145 * Due to page_lock, we cannot free zspage immediately
2148 putback_zspage_deferred(pool, class, zspage);
2149 zs_pool_dec_isolated(pool);
2151 spin_unlock(&class->lock);
2154 static const struct address_space_operations zsmalloc_aops = {
2155 .isolate_page = zs_page_isolate,
2156 .migratepage = zs_page_migrate,
2157 .putback_page = zs_page_putback,
2160 static int zs_register_migration(struct zs_pool *pool)
2162 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2163 if (IS_ERR(pool->inode)) {
2168 pool->inode->i_mapping->private_data = pool;
2169 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2173 static bool pool_isolated_are_drained(struct zs_pool *pool)
2175 return atomic_long_read(&pool->isolated_pages) == 0;
2178 /* Function for resolving migration */
2179 static void wait_for_isolated_drain(struct zs_pool *pool)
2183 * We're in the process of destroying the pool, so there are no
2184 * active allocations. zs_page_isolate() fails for completely free
2185 * zspages, so we need only wait for the zs_pool's isolated
2186 * count to hit zero.
2188 wait_event(pool->migration_wait,
2189 pool_isolated_are_drained(pool));
2192 static void zs_unregister_migration(struct zs_pool *pool)
2194 pool->destroying = true;
2196 * We need a memory barrier here to ensure global visibility of
2197 * pool->destroying. Thus pool->isolated pages will either be 0 in which
2198 * case we don't care, or it will be > 0 and pool->destroying will
2199 * ensure that we wake up once isolation hits 0.
2202 wait_for_isolated_drain(pool); /* This can block */
2203 flush_work(&pool->free_work);
2208 * Caller should hold page_lock of all pages in the zspage
2209 * In here, we cannot use zspage meta data.
2211 static void async_free_zspage(struct work_struct *work)
2214 struct size_class *class;
2215 unsigned int class_idx;
2216 enum fullness_group fullness;
2217 struct zspage *zspage, *tmp;
2218 LIST_HEAD(free_pages);
2219 struct zs_pool *pool = container_of(work, struct zs_pool,
2222 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2223 class = pool->size_class[i];
2224 if (class->index != i)
2227 spin_lock(&class->lock);
2228 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2229 spin_unlock(&class->lock);
2233 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2234 list_del(&zspage->list);
2235 lock_zspage(zspage);
2237 get_zspage_mapping(zspage, &class_idx, &fullness);
2238 VM_BUG_ON(fullness != ZS_EMPTY);
2239 class = pool->size_class[class_idx];
2240 spin_lock(&class->lock);
2241 __free_zspage(pool, pool->size_class[class_idx], zspage);
2242 spin_unlock(&class->lock);
2246 static void kick_deferred_free(struct zs_pool *pool)
2248 schedule_work(&pool->free_work);
2251 static void init_deferred_free(struct zs_pool *pool)
2253 INIT_WORK(&pool->free_work, async_free_zspage);
2256 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2258 struct page *page = get_first_page(zspage);
2261 WARN_ON(!trylock_page(page));
2262 __SetPageMovable(page, pool->inode->i_mapping);
2264 } while ((page = get_next_page(page)) != NULL);
2270 * Based on the number of unused allocated objects calculate
2271 * and return the number of pages that we can free.
2273 static unsigned long zs_can_compact(struct size_class *class)
2275 unsigned long obj_wasted;
2276 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2277 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2279 if (obj_allocated <= obj_used)
2282 obj_wasted = obj_allocated - obj_used;
2283 obj_wasted /= class->objs_per_zspage;
2285 return obj_wasted * class->pages_per_zspage;
2288 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2290 struct zs_compact_control cc;
2291 struct zspage *src_zspage;
2292 struct zspage *dst_zspage = NULL;
2294 spin_lock(&class->lock);
2295 while ((src_zspage = isolate_zspage(class, true))) {
2297 if (!zs_can_compact(class))
2301 cc.s_page = get_first_page(src_zspage);
2303 while ((dst_zspage = isolate_zspage(class, false))) {
2304 cc.d_page = get_first_page(dst_zspage);
2306 * If there is no more space in dst_page, resched
2307 * and see if anyone had allocated another zspage.
2309 if (!migrate_zspage(pool, class, &cc))
2312 putback_zspage(class, dst_zspage);
2315 /* Stop if we couldn't find slot */
2316 if (dst_zspage == NULL)
2319 putback_zspage(class, dst_zspage);
2320 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2321 free_zspage(pool, class, src_zspage);
2322 pool->stats.pages_compacted += class->pages_per_zspage;
2324 spin_unlock(&class->lock);
2326 spin_lock(&class->lock);
2330 putback_zspage(class, src_zspage);
2332 spin_unlock(&class->lock);
2335 unsigned long zs_compact(struct zs_pool *pool)
2338 struct size_class *class;
2340 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2341 class = pool->size_class[i];
2344 if (class->index != i)
2346 __zs_compact(pool, class);
2349 return pool->stats.pages_compacted;
2351 EXPORT_SYMBOL_GPL(zs_compact);
2353 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2355 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2357 EXPORT_SYMBOL_GPL(zs_pool_stats);
2359 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2360 struct shrink_control *sc)
2362 unsigned long pages_freed;
2363 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2366 pages_freed = pool->stats.pages_compacted;
2368 * Compact classes and calculate compaction delta.
2369 * Can run concurrently with a manually triggered
2370 * (by user) compaction.
2372 pages_freed = zs_compact(pool) - pages_freed;
2374 return pages_freed ? pages_freed : SHRINK_STOP;
2377 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2378 struct shrink_control *sc)
2381 struct size_class *class;
2382 unsigned long pages_to_free = 0;
2383 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2386 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2387 class = pool->size_class[i];
2390 if (class->index != i)
2393 pages_to_free += zs_can_compact(class);
2396 return pages_to_free;
2399 static void zs_unregister_shrinker(struct zs_pool *pool)
2401 unregister_shrinker(&pool->shrinker);
2404 static int zs_register_shrinker(struct zs_pool *pool)
2406 pool->shrinker.scan_objects = zs_shrinker_scan;
2407 pool->shrinker.count_objects = zs_shrinker_count;
2408 pool->shrinker.batch = 0;
2409 pool->shrinker.seeks = DEFAULT_SEEKS;
2411 return register_shrinker(&pool->shrinker);
2415 * zs_create_pool - Creates an allocation pool to work from.
2416 * @name: pool name to be created
2418 * This function must be called before anything when using
2419 * the zsmalloc allocator.
2421 * On success, a pointer to the newly created pool is returned,
2424 struct zs_pool *zs_create_pool(const char *name)
2427 struct zs_pool *pool;
2428 struct size_class *prev_class = NULL;
2430 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2434 init_deferred_free(pool);
2436 pool->name = kstrdup(name, GFP_KERNEL);
2440 #ifdef CONFIG_COMPACTION
2441 init_waitqueue_head(&pool->migration_wait);
2444 if (create_cache(pool))
2448 * Iterate reversely, because, size of size_class that we want to use
2449 * for merging should be larger or equal to current size.
2451 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2453 int pages_per_zspage;
2454 int objs_per_zspage;
2455 struct size_class *class;
2458 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2459 if (size > ZS_MAX_ALLOC_SIZE)
2460 size = ZS_MAX_ALLOC_SIZE;
2461 pages_per_zspage = get_pages_per_zspage(size);
2462 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2465 * We iterate from biggest down to smallest classes,
2466 * so huge_class_size holds the size of the first huge
2467 * class. Any object bigger than or equal to that will
2468 * endup in the huge class.
2470 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2472 huge_class_size = size;
2474 * The object uses ZS_HANDLE_SIZE bytes to store the
2475 * handle. We need to subtract it, because zs_malloc()
2476 * unconditionally adds handle size before it performs
2477 * size class search - so object may be smaller than
2478 * huge class size, yet it still can end up in the huge
2479 * class because it grows by ZS_HANDLE_SIZE extra bytes
2480 * right before class lookup.
2482 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2486 * size_class is used for normal zsmalloc operation such
2487 * as alloc/free for that size. Although it is natural that we
2488 * have one size_class for each size, there is a chance that we
2489 * can get more memory utilization if we use one size_class for
2490 * many different sizes whose size_class have same
2491 * characteristics. So, we makes size_class point to
2492 * previous size_class if possible.
2495 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2496 pool->size_class[i] = prev_class;
2501 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2507 class->pages_per_zspage = pages_per_zspage;
2508 class->objs_per_zspage = objs_per_zspage;
2509 spin_lock_init(&class->lock);
2510 pool->size_class[i] = class;
2511 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2513 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2518 /* debug only, don't abort if it fails */
2519 zs_pool_stat_create(pool, name);
2521 if (zs_register_migration(pool))
2525 * Not critical since shrinker is only used to trigger internal
2526 * defragmentation of the pool which is pretty optional thing. If
2527 * registration fails we still can use the pool normally and user can
2528 * trigger compaction manually. Thus, ignore return code.
2530 zs_register_shrinker(pool);
2535 zs_destroy_pool(pool);
2538 EXPORT_SYMBOL_GPL(zs_create_pool);
2540 void zs_destroy_pool(struct zs_pool *pool)
2544 zs_unregister_shrinker(pool);
2545 zs_unregister_migration(pool);
2546 zs_pool_stat_destroy(pool);
2548 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2550 struct size_class *class = pool->size_class[i];
2555 if (class->index != i)
2558 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2559 if (!list_empty(&class->fullness_list[fg])) {
2560 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2567 destroy_cache(pool);
2571 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2573 static int __init zs_init(void)
2577 ret = zsmalloc_mount();
2581 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2582 zs_cpu_prepare, zs_cpu_dead);
2587 zpool_register_driver(&zs_zpool_driver);
2600 static void __exit zs_exit(void)
2603 zpool_unregister_driver(&zs_zpool_driver);
2606 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2611 module_init(zs_init);
2612 module_exit(zs_exit);
2614 MODULE_LICENSE("Dual BSD/GPL");
2615 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");