ALSA: seq: Avoid concurrent access to queue flags
[platform/kernel/linux-rpi.git] / mm / zsmalloc.c
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *      page->private: points to zspage
20  *      page->freelist(index): links together all component pages of a zspage
21  *              For the huge page, this is always 0, so we use this field
22  *              to store handle.
23  *      page->units: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *      PG_private: identifies the first component page
27  *      PG_owner_priv_1: identifies the huge component page
28  *
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/migrate.h>
56 #include <linux/wait.h>
57 #include <linux/pagemap.h>
58 #include <linux/fs.h>
59
60 #define ZSPAGE_MAGIC    0x58
61
62 /*
63  * This must be power of 2 and greater than of equal to sizeof(link_free).
64  * These two conditions ensure that any 'struct link_free' itself doesn't
65  * span more than 1 page which avoids complex case of mapping 2 pages simply
66  * to restore link_free pointer values.
67  */
68 #define ZS_ALIGN                8
69
70 /*
71  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
72  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
73  */
74 #define ZS_MAX_ZSPAGE_ORDER 2
75 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
76
77 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
78
79 /*
80  * Object location (<PFN>, <obj_idx>) is encoded as
81  * as single (unsigned long) handle value.
82  *
83  * Note that object index <obj_idx> starts from 0.
84  *
85  * This is made more complicated by various memory models and PAE.
86  */
87
88 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
89 #ifdef MAX_PHYSMEM_BITS
90 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
91 #else
92 /*
93  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
94  * be PAGE_SHIFT
95  */
96 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
97 #endif
98 #endif
99
100 #define _PFN_BITS               (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
101
102 /*
103  * Memory for allocating for handle keeps object position by
104  * encoding <page, obj_idx> and the encoded value has a room
105  * in least bit(ie, look at obj_to_location).
106  * We use the bit to synchronize between object access by
107  * user and migration.
108  */
109 #define HANDLE_PIN_BIT  0
110
111 /*
112  * Head in allocated object should have OBJ_ALLOCATED_TAG
113  * to identify the object was allocated or not.
114  * It's okay to add the status bit in the least bit because
115  * header keeps handle which is 4byte-aligned address so we
116  * have room for two bit at least.
117  */
118 #define OBJ_ALLOCATED_TAG 1
119 #define OBJ_TAG_BITS 1
120 #define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
121 #define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
122
123 #define FULLNESS_BITS   2
124 #define CLASS_BITS      8
125 #define ISOLATED_BITS   3
126 #define MAGIC_VAL_BITS  8
127
128 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
129 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
130 #define ZS_MIN_ALLOC_SIZE \
131         MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
132 /* each chunk includes extra space to keep handle */
133 #define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
134
135 /*
136  * On systems with 4K page size, this gives 255 size classes! There is a
137  * trader-off here:
138  *  - Large number of size classes is potentially wasteful as free page are
139  *    spread across these classes
140  *  - Small number of size classes causes large internal fragmentation
141  *  - Probably its better to use specific size classes (empirically
142  *    determined). NOTE: all those class sizes must be set as multiple of
143  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
144  *
145  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
146  *  (reason above)
147  */
148 #define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
149 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
150                                       ZS_SIZE_CLASS_DELTA) + 1)
151
152 enum fullness_group {
153         ZS_EMPTY,
154         ZS_ALMOST_EMPTY,
155         ZS_ALMOST_FULL,
156         ZS_FULL,
157         NR_ZS_FULLNESS,
158 };
159
160 enum zs_stat_type {
161         CLASS_EMPTY,
162         CLASS_ALMOST_EMPTY,
163         CLASS_ALMOST_FULL,
164         CLASS_FULL,
165         OBJ_ALLOCATED,
166         OBJ_USED,
167         NR_ZS_STAT_TYPE,
168 };
169
170 struct zs_size_stat {
171         unsigned long objs[NR_ZS_STAT_TYPE];
172 };
173
174 #ifdef CONFIG_ZSMALLOC_STAT
175 static struct dentry *zs_stat_root;
176 #endif
177
178 #ifdef CONFIG_COMPACTION
179 static struct vfsmount *zsmalloc_mnt;
180 #endif
181
182 /*
183  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
184  *      n <= N / f, where
185  * n = number of allocated objects
186  * N = total number of objects zspage can store
187  * f = fullness_threshold_frac
188  *
189  * Similarly, we assign zspage to:
190  *      ZS_ALMOST_FULL  when n > N / f
191  *      ZS_EMPTY        when n == 0
192  *      ZS_FULL         when n == N
193  *
194  * (see: fix_fullness_group())
195  */
196 static const int fullness_threshold_frac = 4;
197 static size_t huge_class_size;
198
199 struct size_class {
200         spinlock_t lock;
201         struct list_head fullness_list[NR_ZS_FULLNESS];
202         /*
203          * Size of objects stored in this class. Must be multiple
204          * of ZS_ALIGN.
205          */
206         int size;
207         int objs_per_zspage;
208         /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
209         int pages_per_zspage;
210
211         unsigned int index;
212         struct zs_size_stat stats;
213 };
214
215 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
216 static void SetPageHugeObject(struct page *page)
217 {
218         SetPageOwnerPriv1(page);
219 }
220
221 static void ClearPageHugeObject(struct page *page)
222 {
223         ClearPageOwnerPriv1(page);
224 }
225
226 static int PageHugeObject(struct page *page)
227 {
228         return PageOwnerPriv1(page);
229 }
230
231 /*
232  * Placed within free objects to form a singly linked list.
233  * For every zspage, zspage->freeobj gives head of this list.
234  *
235  * This must be power of 2 and less than or equal to ZS_ALIGN
236  */
237 struct link_free {
238         union {
239                 /*
240                  * Free object index;
241                  * It's valid for non-allocated object
242                  */
243                 unsigned long next;
244                 /*
245                  * Handle of allocated object.
246                  */
247                 unsigned long handle;
248         };
249 };
250
251 struct zs_pool {
252         const char *name;
253
254         struct size_class *size_class[ZS_SIZE_CLASSES];
255         struct kmem_cache *handle_cachep;
256         struct kmem_cache *zspage_cachep;
257
258         atomic_long_t pages_allocated;
259
260         struct zs_pool_stats stats;
261
262         /* Compact classes */
263         struct shrinker shrinker;
264
265 #ifdef CONFIG_ZSMALLOC_STAT
266         struct dentry *stat_dentry;
267 #endif
268 #ifdef CONFIG_COMPACTION
269         struct inode *inode;
270         struct work_struct free_work;
271         /* A wait queue for when migration races with async_free_zspage() */
272         struct wait_queue_head migration_wait;
273         atomic_long_t isolated_pages;
274         bool destroying;
275 #endif
276 };
277
278 struct zspage {
279         struct {
280                 unsigned int fullness:FULLNESS_BITS;
281                 unsigned int class:CLASS_BITS + 1;
282                 unsigned int isolated:ISOLATED_BITS;
283                 unsigned int magic:MAGIC_VAL_BITS;
284         };
285         unsigned int inuse;
286         unsigned int freeobj;
287         struct page *first_page;
288         struct list_head list; /* fullness list */
289 #ifdef CONFIG_COMPACTION
290         rwlock_t lock;
291 #endif
292 };
293
294 struct mapping_area {
295 #ifdef CONFIG_PGTABLE_MAPPING
296         struct vm_struct *vm; /* vm area for mapping object that span pages */
297 #else
298         char *vm_buf; /* copy buffer for objects that span pages */
299 #endif
300         char *vm_addr; /* address of kmap_atomic()'ed pages */
301         enum zs_mapmode vm_mm; /* mapping mode */
302 };
303
304 #ifdef CONFIG_COMPACTION
305 static int zs_register_migration(struct zs_pool *pool);
306 static void zs_unregister_migration(struct zs_pool *pool);
307 static void migrate_lock_init(struct zspage *zspage);
308 static void migrate_read_lock(struct zspage *zspage);
309 static void migrate_read_unlock(struct zspage *zspage);
310 static void kick_deferred_free(struct zs_pool *pool);
311 static void init_deferred_free(struct zs_pool *pool);
312 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
313 #else
314 static int zsmalloc_mount(void) { return 0; }
315 static void zsmalloc_unmount(void) {}
316 static int zs_register_migration(struct zs_pool *pool) { return 0; }
317 static void zs_unregister_migration(struct zs_pool *pool) {}
318 static void migrate_lock_init(struct zspage *zspage) {}
319 static void migrate_read_lock(struct zspage *zspage) {}
320 static void migrate_read_unlock(struct zspage *zspage) {}
321 static void kick_deferred_free(struct zs_pool *pool) {}
322 static void init_deferred_free(struct zs_pool *pool) {}
323 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
324 #endif
325
326 static int create_cache(struct zs_pool *pool)
327 {
328         pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
329                                         0, 0, NULL);
330         if (!pool->handle_cachep)
331                 return 1;
332
333         pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
334                                         0, 0, NULL);
335         if (!pool->zspage_cachep) {
336                 kmem_cache_destroy(pool->handle_cachep);
337                 pool->handle_cachep = NULL;
338                 return 1;
339         }
340
341         return 0;
342 }
343
344 static void destroy_cache(struct zs_pool *pool)
345 {
346         kmem_cache_destroy(pool->handle_cachep);
347         kmem_cache_destroy(pool->zspage_cachep);
348 }
349
350 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
351 {
352         return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
353                         gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
354 }
355
356 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
357 {
358         kmem_cache_free(pool->handle_cachep, (void *)handle);
359 }
360
361 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
362 {
363         return kmem_cache_alloc(pool->zspage_cachep,
364                         flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
365 }
366
367 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
368 {
369         kmem_cache_free(pool->zspage_cachep, zspage);
370 }
371
372 static void record_obj(unsigned long handle, unsigned long obj)
373 {
374         /*
375          * lsb of @obj represents handle lock while other bits
376          * represent object value the handle is pointing so
377          * updating shouldn't do store tearing.
378          */
379         WRITE_ONCE(*(unsigned long *)handle, obj);
380 }
381
382 /* zpool driver */
383
384 #ifdef CONFIG_ZPOOL
385
386 static void *zs_zpool_create(const char *name, gfp_t gfp,
387                              const struct zpool_ops *zpool_ops,
388                              struct zpool *zpool)
389 {
390         /*
391          * Ignore global gfp flags: zs_malloc() may be invoked from
392          * different contexts and its caller must provide a valid
393          * gfp mask.
394          */
395         return zs_create_pool(name);
396 }
397
398 static void zs_zpool_destroy(void *pool)
399 {
400         zs_destroy_pool(pool);
401 }
402
403 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
404                         unsigned long *handle)
405 {
406         *handle = zs_malloc(pool, size, gfp);
407         return *handle ? 0 : -1;
408 }
409 static void zs_zpool_free(void *pool, unsigned long handle)
410 {
411         zs_free(pool, handle);
412 }
413
414 static void *zs_zpool_map(void *pool, unsigned long handle,
415                         enum zpool_mapmode mm)
416 {
417         enum zs_mapmode zs_mm;
418
419         switch (mm) {
420         case ZPOOL_MM_RO:
421                 zs_mm = ZS_MM_RO;
422                 break;
423         case ZPOOL_MM_WO:
424                 zs_mm = ZS_MM_WO;
425                 break;
426         case ZPOOL_MM_RW: /* fallthru */
427         default:
428                 zs_mm = ZS_MM_RW;
429                 break;
430         }
431
432         return zs_map_object(pool, handle, zs_mm);
433 }
434 static void zs_zpool_unmap(void *pool, unsigned long handle)
435 {
436         zs_unmap_object(pool, handle);
437 }
438
439 static u64 zs_zpool_total_size(void *pool)
440 {
441         return zs_get_total_pages(pool) << PAGE_SHIFT;
442 }
443
444 static struct zpool_driver zs_zpool_driver = {
445         .type =         "zsmalloc",
446         .owner =        THIS_MODULE,
447         .create =       zs_zpool_create,
448         .destroy =      zs_zpool_destroy,
449         .malloc =       zs_zpool_malloc,
450         .free =         zs_zpool_free,
451         .map =          zs_zpool_map,
452         .unmap =        zs_zpool_unmap,
453         .total_size =   zs_zpool_total_size,
454 };
455
456 MODULE_ALIAS("zpool-zsmalloc");
457 #endif /* CONFIG_ZPOOL */
458
459 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
460 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
461
462 static bool is_zspage_isolated(struct zspage *zspage)
463 {
464         return zspage->isolated;
465 }
466
467 static __maybe_unused int is_first_page(struct page *page)
468 {
469         return PagePrivate(page);
470 }
471
472 /* Protected by class->lock */
473 static inline int get_zspage_inuse(struct zspage *zspage)
474 {
475         return zspage->inuse;
476 }
477
478 static inline void set_zspage_inuse(struct zspage *zspage, int val)
479 {
480         zspage->inuse = val;
481 }
482
483 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
484 {
485         zspage->inuse += val;
486 }
487
488 static inline struct page *get_first_page(struct zspage *zspage)
489 {
490         struct page *first_page = zspage->first_page;
491
492         VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
493         return first_page;
494 }
495
496 static inline int get_first_obj_offset(struct page *page)
497 {
498         return page->units;
499 }
500
501 static inline void set_first_obj_offset(struct page *page, int offset)
502 {
503         page->units = offset;
504 }
505
506 static inline unsigned int get_freeobj(struct zspage *zspage)
507 {
508         return zspage->freeobj;
509 }
510
511 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
512 {
513         zspage->freeobj = obj;
514 }
515
516 static void get_zspage_mapping(struct zspage *zspage,
517                                 unsigned int *class_idx,
518                                 enum fullness_group *fullness)
519 {
520         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
521
522         *fullness = zspage->fullness;
523         *class_idx = zspage->class;
524 }
525
526 static void set_zspage_mapping(struct zspage *zspage,
527                                 unsigned int class_idx,
528                                 enum fullness_group fullness)
529 {
530         zspage->class = class_idx;
531         zspage->fullness = fullness;
532 }
533
534 /*
535  * zsmalloc divides the pool into various size classes where each
536  * class maintains a list of zspages where each zspage is divided
537  * into equal sized chunks. Each allocation falls into one of these
538  * classes depending on its size. This function returns index of the
539  * size class which has chunk size big enough to hold the give size.
540  */
541 static int get_size_class_index(int size)
542 {
543         int idx = 0;
544
545         if (likely(size > ZS_MIN_ALLOC_SIZE))
546                 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
547                                 ZS_SIZE_CLASS_DELTA);
548
549         return min_t(int, ZS_SIZE_CLASSES - 1, idx);
550 }
551
552 /* type can be of enum type zs_stat_type or fullness_group */
553 static inline void zs_stat_inc(struct size_class *class,
554                                 int type, unsigned long cnt)
555 {
556         class->stats.objs[type] += cnt;
557 }
558
559 /* type can be of enum type zs_stat_type or fullness_group */
560 static inline void zs_stat_dec(struct size_class *class,
561                                 int type, unsigned long cnt)
562 {
563         class->stats.objs[type] -= cnt;
564 }
565
566 /* type can be of enum type zs_stat_type or fullness_group */
567 static inline unsigned long zs_stat_get(struct size_class *class,
568                                 int type)
569 {
570         return class->stats.objs[type];
571 }
572
573 #ifdef CONFIG_ZSMALLOC_STAT
574
575 static void __init zs_stat_init(void)
576 {
577         if (!debugfs_initialized()) {
578                 pr_warn("debugfs not available, stat dir not created\n");
579                 return;
580         }
581
582         zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
583         if (!zs_stat_root)
584                 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
585 }
586
587 static void __exit zs_stat_exit(void)
588 {
589         debugfs_remove_recursive(zs_stat_root);
590 }
591
592 static unsigned long zs_can_compact(struct size_class *class);
593
594 static int zs_stats_size_show(struct seq_file *s, void *v)
595 {
596         int i;
597         struct zs_pool *pool = s->private;
598         struct size_class *class;
599         int objs_per_zspage;
600         unsigned long class_almost_full, class_almost_empty;
601         unsigned long obj_allocated, obj_used, pages_used, freeable;
602         unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
603         unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
604         unsigned long total_freeable = 0;
605
606         seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
607                         "class", "size", "almost_full", "almost_empty",
608                         "obj_allocated", "obj_used", "pages_used",
609                         "pages_per_zspage", "freeable");
610
611         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
612                 class = pool->size_class[i];
613
614                 if (class->index != i)
615                         continue;
616
617                 spin_lock(&class->lock);
618                 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
619                 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
620                 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
621                 obj_used = zs_stat_get(class, OBJ_USED);
622                 freeable = zs_can_compact(class);
623                 spin_unlock(&class->lock);
624
625                 objs_per_zspage = class->objs_per_zspage;
626                 pages_used = obj_allocated / objs_per_zspage *
627                                 class->pages_per_zspage;
628
629                 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
630                                 " %10lu %10lu %16d %8lu\n",
631                         i, class->size, class_almost_full, class_almost_empty,
632                         obj_allocated, obj_used, pages_used,
633                         class->pages_per_zspage, freeable);
634
635                 total_class_almost_full += class_almost_full;
636                 total_class_almost_empty += class_almost_empty;
637                 total_objs += obj_allocated;
638                 total_used_objs += obj_used;
639                 total_pages += pages_used;
640                 total_freeable += freeable;
641         }
642
643         seq_puts(s, "\n");
644         seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
645                         "Total", "", total_class_almost_full,
646                         total_class_almost_empty, total_objs,
647                         total_used_objs, total_pages, "", total_freeable);
648
649         return 0;
650 }
651 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
652
653 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
654 {
655         struct dentry *entry;
656
657         if (!zs_stat_root) {
658                 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
659                 return;
660         }
661
662         entry = debugfs_create_dir(name, zs_stat_root);
663         if (!entry) {
664                 pr_warn("debugfs dir <%s> creation failed\n", name);
665                 return;
666         }
667         pool->stat_dentry = entry;
668
669         entry = debugfs_create_file("classes", S_IFREG | 0444,
670                                     pool->stat_dentry, pool,
671                                     &zs_stats_size_fops);
672         if (!entry) {
673                 pr_warn("%s: debugfs file entry <%s> creation failed\n",
674                                 name, "classes");
675                 debugfs_remove_recursive(pool->stat_dentry);
676                 pool->stat_dentry = NULL;
677         }
678 }
679
680 static void zs_pool_stat_destroy(struct zs_pool *pool)
681 {
682         debugfs_remove_recursive(pool->stat_dentry);
683 }
684
685 #else /* CONFIG_ZSMALLOC_STAT */
686 static void __init zs_stat_init(void)
687 {
688 }
689
690 static void __exit zs_stat_exit(void)
691 {
692 }
693
694 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
695 {
696 }
697
698 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
699 {
700 }
701 #endif
702
703
704 /*
705  * For each size class, zspages are divided into different groups
706  * depending on how "full" they are. This was done so that we could
707  * easily find empty or nearly empty zspages when we try to shrink
708  * the pool (not yet implemented). This function returns fullness
709  * status of the given page.
710  */
711 static enum fullness_group get_fullness_group(struct size_class *class,
712                                                 struct zspage *zspage)
713 {
714         int inuse, objs_per_zspage;
715         enum fullness_group fg;
716
717         inuse = get_zspage_inuse(zspage);
718         objs_per_zspage = class->objs_per_zspage;
719
720         if (inuse == 0)
721                 fg = ZS_EMPTY;
722         else if (inuse == objs_per_zspage)
723                 fg = ZS_FULL;
724         else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
725                 fg = ZS_ALMOST_EMPTY;
726         else
727                 fg = ZS_ALMOST_FULL;
728
729         return fg;
730 }
731
732 /*
733  * Each size class maintains various freelists and zspages are assigned
734  * to one of these freelists based on the number of live objects they
735  * have. This functions inserts the given zspage into the freelist
736  * identified by <class, fullness_group>.
737  */
738 static void insert_zspage(struct size_class *class,
739                                 struct zspage *zspage,
740                                 enum fullness_group fullness)
741 {
742         struct zspage *head;
743
744         zs_stat_inc(class, fullness, 1);
745         head = list_first_entry_or_null(&class->fullness_list[fullness],
746                                         struct zspage, list);
747         /*
748          * We want to see more ZS_FULL pages and less almost empty/full.
749          * Put pages with higher ->inuse first.
750          */
751         if (head) {
752                 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
753                         list_add(&zspage->list, &head->list);
754                         return;
755                 }
756         }
757         list_add(&zspage->list, &class->fullness_list[fullness]);
758 }
759
760 /*
761  * This function removes the given zspage from the freelist identified
762  * by <class, fullness_group>.
763  */
764 static void remove_zspage(struct size_class *class,
765                                 struct zspage *zspage,
766                                 enum fullness_group fullness)
767 {
768         VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
769         VM_BUG_ON(is_zspage_isolated(zspage));
770
771         list_del_init(&zspage->list);
772         zs_stat_dec(class, fullness, 1);
773 }
774
775 /*
776  * Each size class maintains zspages in different fullness groups depending
777  * on the number of live objects they contain. When allocating or freeing
778  * objects, the fullness status of the page can change, say, from ALMOST_FULL
779  * to ALMOST_EMPTY when freeing an object. This function checks if such
780  * a status change has occurred for the given page and accordingly moves the
781  * page from the freelist of the old fullness group to that of the new
782  * fullness group.
783  */
784 static enum fullness_group fix_fullness_group(struct size_class *class,
785                                                 struct zspage *zspage)
786 {
787         int class_idx;
788         enum fullness_group currfg, newfg;
789
790         get_zspage_mapping(zspage, &class_idx, &currfg);
791         newfg = get_fullness_group(class, zspage);
792         if (newfg == currfg)
793                 goto out;
794
795         if (!is_zspage_isolated(zspage)) {
796                 remove_zspage(class, zspage, currfg);
797                 insert_zspage(class, zspage, newfg);
798         }
799
800         set_zspage_mapping(zspage, class_idx, newfg);
801
802 out:
803         return newfg;
804 }
805
806 /*
807  * We have to decide on how many pages to link together
808  * to form a zspage for each size class. This is important
809  * to reduce wastage due to unusable space left at end of
810  * each zspage which is given as:
811  *     wastage = Zp % class_size
812  *     usage = Zp - wastage
813  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
814  *
815  * For example, for size class of 3/8 * PAGE_SIZE, we should
816  * link together 3 PAGE_SIZE sized pages to form a zspage
817  * since then we can perfectly fit in 8 such objects.
818  */
819 static int get_pages_per_zspage(int class_size)
820 {
821         int i, max_usedpc = 0;
822         /* zspage order which gives maximum used size per KB */
823         int max_usedpc_order = 1;
824
825         for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
826                 int zspage_size;
827                 int waste, usedpc;
828
829                 zspage_size = i * PAGE_SIZE;
830                 waste = zspage_size % class_size;
831                 usedpc = (zspage_size - waste) * 100 / zspage_size;
832
833                 if (usedpc > max_usedpc) {
834                         max_usedpc = usedpc;
835                         max_usedpc_order = i;
836                 }
837         }
838
839         return max_usedpc_order;
840 }
841
842 static struct zspage *get_zspage(struct page *page)
843 {
844         struct zspage *zspage = (struct zspage *)page->private;
845
846         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
847         return zspage;
848 }
849
850 static struct page *get_next_page(struct page *page)
851 {
852         if (unlikely(PageHugeObject(page)))
853                 return NULL;
854
855         return page->freelist;
856 }
857
858 /**
859  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
860  * @obj: the encoded object value
861  * @page: page object resides in zspage
862  * @obj_idx: object index
863  */
864 static void obj_to_location(unsigned long obj, struct page **page,
865                                 unsigned int *obj_idx)
866 {
867         obj >>= OBJ_TAG_BITS;
868         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
869         *obj_idx = (obj & OBJ_INDEX_MASK);
870 }
871
872 /**
873  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
874  * @page: page object resides in zspage
875  * @obj_idx: object index
876  */
877 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
878 {
879         unsigned long obj;
880
881         obj = page_to_pfn(page) << OBJ_INDEX_BITS;
882         obj |= obj_idx & OBJ_INDEX_MASK;
883         obj <<= OBJ_TAG_BITS;
884
885         return obj;
886 }
887
888 static unsigned long handle_to_obj(unsigned long handle)
889 {
890         return *(unsigned long *)handle;
891 }
892
893 static unsigned long obj_to_head(struct page *page, void *obj)
894 {
895         if (unlikely(PageHugeObject(page))) {
896                 VM_BUG_ON_PAGE(!is_first_page(page), page);
897                 return page->index;
898         } else
899                 return *(unsigned long *)obj;
900 }
901
902 static inline int testpin_tag(unsigned long handle)
903 {
904         return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
905 }
906
907 static inline int trypin_tag(unsigned long handle)
908 {
909         return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
910 }
911
912 static void pin_tag(unsigned long handle)
913 {
914         bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
915 }
916
917 static void unpin_tag(unsigned long handle)
918 {
919         bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
920 }
921
922 static void reset_page(struct page *page)
923 {
924         __ClearPageMovable(page);
925         ClearPagePrivate(page);
926         set_page_private(page, 0);
927         page_mapcount_reset(page);
928         ClearPageHugeObject(page);
929         page->freelist = NULL;
930 }
931
932 static int trylock_zspage(struct zspage *zspage)
933 {
934         struct page *cursor, *fail;
935
936         for (cursor = get_first_page(zspage); cursor != NULL; cursor =
937                                         get_next_page(cursor)) {
938                 if (!trylock_page(cursor)) {
939                         fail = cursor;
940                         goto unlock;
941                 }
942         }
943
944         return 1;
945 unlock:
946         for (cursor = get_first_page(zspage); cursor != fail; cursor =
947                                         get_next_page(cursor))
948                 unlock_page(cursor);
949
950         return 0;
951 }
952
953 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
954                                 struct zspage *zspage)
955 {
956         struct page *page, *next;
957         enum fullness_group fg;
958         unsigned int class_idx;
959
960         get_zspage_mapping(zspage, &class_idx, &fg);
961
962         assert_spin_locked(&class->lock);
963
964         VM_BUG_ON(get_zspage_inuse(zspage));
965         VM_BUG_ON(fg != ZS_EMPTY);
966
967         next = page = get_first_page(zspage);
968         do {
969                 VM_BUG_ON_PAGE(!PageLocked(page), page);
970                 next = get_next_page(page);
971                 reset_page(page);
972                 unlock_page(page);
973                 dec_zone_page_state(page, NR_ZSPAGES);
974                 put_page(page);
975                 page = next;
976         } while (page != NULL);
977
978         cache_free_zspage(pool, zspage);
979
980         zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
981         atomic_long_sub(class->pages_per_zspage,
982                                         &pool->pages_allocated);
983 }
984
985 static void free_zspage(struct zs_pool *pool, struct size_class *class,
986                                 struct zspage *zspage)
987 {
988         VM_BUG_ON(get_zspage_inuse(zspage));
989         VM_BUG_ON(list_empty(&zspage->list));
990
991         if (!trylock_zspage(zspage)) {
992                 kick_deferred_free(pool);
993                 return;
994         }
995
996         remove_zspage(class, zspage, ZS_EMPTY);
997         __free_zspage(pool, class, zspage);
998 }
999
1000 /* Initialize a newly allocated zspage */
1001 static void init_zspage(struct size_class *class, struct zspage *zspage)
1002 {
1003         unsigned int freeobj = 1;
1004         unsigned long off = 0;
1005         struct page *page = get_first_page(zspage);
1006
1007         while (page) {
1008                 struct page *next_page;
1009                 struct link_free *link;
1010                 void *vaddr;
1011
1012                 set_first_obj_offset(page, off);
1013
1014                 vaddr = kmap_atomic(page);
1015                 link = (struct link_free *)vaddr + off / sizeof(*link);
1016
1017                 while ((off += class->size) < PAGE_SIZE) {
1018                         link->next = freeobj++ << OBJ_TAG_BITS;
1019                         link += class->size / sizeof(*link);
1020                 }
1021
1022                 /*
1023                  * We now come to the last (full or partial) object on this
1024                  * page, which must point to the first object on the next
1025                  * page (if present)
1026                  */
1027                 next_page = get_next_page(page);
1028                 if (next_page) {
1029                         link->next = freeobj++ << OBJ_TAG_BITS;
1030                 } else {
1031                         /*
1032                          * Reset OBJ_TAG_BITS bit to last link to tell
1033                          * whether it's allocated object or not.
1034                          */
1035                         link->next = -1UL << OBJ_TAG_BITS;
1036                 }
1037                 kunmap_atomic(vaddr);
1038                 page = next_page;
1039                 off %= PAGE_SIZE;
1040         }
1041
1042         set_freeobj(zspage, 0);
1043 }
1044
1045 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1046                                 struct page *pages[])
1047 {
1048         int i;
1049         struct page *page;
1050         struct page *prev_page = NULL;
1051         int nr_pages = class->pages_per_zspage;
1052
1053         /*
1054          * Allocate individual pages and link them together as:
1055          * 1. all pages are linked together using page->freelist
1056          * 2. each sub-page point to zspage using page->private
1057          *
1058          * we set PG_private to identify the first page (i.e. no other sub-page
1059          * has this flag set).
1060          */
1061         for (i = 0; i < nr_pages; i++) {
1062                 page = pages[i];
1063                 set_page_private(page, (unsigned long)zspage);
1064                 page->freelist = NULL;
1065                 if (i == 0) {
1066                         zspage->first_page = page;
1067                         SetPagePrivate(page);
1068                         if (unlikely(class->objs_per_zspage == 1 &&
1069                                         class->pages_per_zspage == 1))
1070                                 SetPageHugeObject(page);
1071                 } else {
1072                         prev_page->freelist = page;
1073                 }
1074                 prev_page = page;
1075         }
1076 }
1077
1078 /*
1079  * Allocate a zspage for the given size class
1080  */
1081 static struct zspage *alloc_zspage(struct zs_pool *pool,
1082                                         struct size_class *class,
1083                                         gfp_t gfp)
1084 {
1085         int i;
1086         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1087         struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1088
1089         if (!zspage)
1090                 return NULL;
1091
1092         memset(zspage, 0, sizeof(struct zspage));
1093         zspage->magic = ZSPAGE_MAGIC;
1094         migrate_lock_init(zspage);
1095
1096         for (i = 0; i < class->pages_per_zspage; i++) {
1097                 struct page *page;
1098
1099                 page = alloc_page(gfp);
1100                 if (!page) {
1101                         while (--i >= 0) {
1102                                 dec_zone_page_state(pages[i], NR_ZSPAGES);
1103                                 __free_page(pages[i]);
1104                         }
1105                         cache_free_zspage(pool, zspage);
1106                         return NULL;
1107                 }
1108
1109                 inc_zone_page_state(page, NR_ZSPAGES);
1110                 pages[i] = page;
1111         }
1112
1113         create_page_chain(class, zspage, pages);
1114         init_zspage(class, zspage);
1115
1116         return zspage;
1117 }
1118
1119 static struct zspage *find_get_zspage(struct size_class *class)
1120 {
1121         int i;
1122         struct zspage *zspage;
1123
1124         for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1125                 zspage = list_first_entry_or_null(&class->fullness_list[i],
1126                                 struct zspage, list);
1127                 if (zspage)
1128                         break;
1129         }
1130
1131         return zspage;
1132 }
1133
1134 #ifdef CONFIG_PGTABLE_MAPPING
1135 static inline int __zs_cpu_up(struct mapping_area *area)
1136 {
1137         /*
1138          * Make sure we don't leak memory if a cpu UP notification
1139          * and zs_init() race and both call zs_cpu_up() on the same cpu
1140          */
1141         if (area->vm)
1142                 return 0;
1143         area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1144         if (!area->vm)
1145                 return -ENOMEM;
1146         return 0;
1147 }
1148
1149 static inline void __zs_cpu_down(struct mapping_area *area)
1150 {
1151         if (area->vm)
1152                 free_vm_area(area->vm);
1153         area->vm = NULL;
1154 }
1155
1156 static inline void *__zs_map_object(struct mapping_area *area,
1157                                 struct page *pages[2], int off, int size)
1158 {
1159         BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1160         area->vm_addr = area->vm->addr;
1161         return area->vm_addr + off;
1162 }
1163
1164 static inline void __zs_unmap_object(struct mapping_area *area,
1165                                 struct page *pages[2], int off, int size)
1166 {
1167         unsigned long addr = (unsigned long)area->vm_addr;
1168
1169         unmap_kernel_range(addr, PAGE_SIZE * 2);
1170 }
1171
1172 #else /* CONFIG_PGTABLE_MAPPING */
1173
1174 static inline int __zs_cpu_up(struct mapping_area *area)
1175 {
1176         /*
1177          * Make sure we don't leak memory if a cpu UP notification
1178          * and zs_init() race and both call zs_cpu_up() on the same cpu
1179          */
1180         if (area->vm_buf)
1181                 return 0;
1182         area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1183         if (!area->vm_buf)
1184                 return -ENOMEM;
1185         return 0;
1186 }
1187
1188 static inline void __zs_cpu_down(struct mapping_area *area)
1189 {
1190         kfree(area->vm_buf);
1191         area->vm_buf = NULL;
1192 }
1193
1194 static void *__zs_map_object(struct mapping_area *area,
1195                         struct page *pages[2], int off, int size)
1196 {
1197         int sizes[2];
1198         void *addr;
1199         char *buf = area->vm_buf;
1200
1201         /* disable page faults to match kmap_atomic() return conditions */
1202         pagefault_disable();
1203
1204         /* no read fastpath */
1205         if (area->vm_mm == ZS_MM_WO)
1206                 goto out;
1207
1208         sizes[0] = PAGE_SIZE - off;
1209         sizes[1] = size - sizes[0];
1210
1211         /* copy object to per-cpu buffer */
1212         addr = kmap_atomic(pages[0]);
1213         memcpy(buf, addr + off, sizes[0]);
1214         kunmap_atomic(addr);
1215         addr = kmap_atomic(pages[1]);
1216         memcpy(buf + sizes[0], addr, sizes[1]);
1217         kunmap_atomic(addr);
1218 out:
1219         return area->vm_buf;
1220 }
1221
1222 static void __zs_unmap_object(struct mapping_area *area,
1223                         struct page *pages[2], int off, int size)
1224 {
1225         int sizes[2];
1226         void *addr;
1227         char *buf;
1228
1229         /* no write fastpath */
1230         if (area->vm_mm == ZS_MM_RO)
1231                 goto out;
1232
1233         buf = area->vm_buf;
1234         buf = buf + ZS_HANDLE_SIZE;
1235         size -= ZS_HANDLE_SIZE;
1236         off += ZS_HANDLE_SIZE;
1237
1238         sizes[0] = PAGE_SIZE - off;
1239         sizes[1] = size - sizes[0];
1240
1241         /* copy per-cpu buffer to object */
1242         addr = kmap_atomic(pages[0]);
1243         memcpy(addr + off, buf, sizes[0]);
1244         kunmap_atomic(addr);
1245         addr = kmap_atomic(pages[1]);
1246         memcpy(addr, buf + sizes[0], sizes[1]);
1247         kunmap_atomic(addr);
1248
1249 out:
1250         /* enable page faults to match kunmap_atomic() return conditions */
1251         pagefault_enable();
1252 }
1253
1254 #endif /* CONFIG_PGTABLE_MAPPING */
1255
1256 static int zs_cpu_prepare(unsigned int cpu)
1257 {
1258         struct mapping_area *area;
1259
1260         area = &per_cpu(zs_map_area, cpu);
1261         return __zs_cpu_up(area);
1262 }
1263
1264 static int zs_cpu_dead(unsigned int cpu)
1265 {
1266         struct mapping_area *area;
1267
1268         area = &per_cpu(zs_map_area, cpu);
1269         __zs_cpu_down(area);
1270         return 0;
1271 }
1272
1273 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1274                                         int objs_per_zspage)
1275 {
1276         if (prev->pages_per_zspage == pages_per_zspage &&
1277                 prev->objs_per_zspage == objs_per_zspage)
1278                 return true;
1279
1280         return false;
1281 }
1282
1283 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1284 {
1285         return get_zspage_inuse(zspage) == class->objs_per_zspage;
1286 }
1287
1288 unsigned long zs_get_total_pages(struct zs_pool *pool)
1289 {
1290         return atomic_long_read(&pool->pages_allocated);
1291 }
1292 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1293
1294 /**
1295  * zs_map_object - get address of allocated object from handle.
1296  * @pool: pool from which the object was allocated
1297  * @handle: handle returned from zs_malloc
1298  * @mm: maping mode to use
1299  *
1300  * Before using an object allocated from zs_malloc, it must be mapped using
1301  * this function. When done with the object, it must be unmapped using
1302  * zs_unmap_object.
1303  *
1304  * Only one object can be mapped per cpu at a time. There is no protection
1305  * against nested mappings.
1306  *
1307  * This function returns with preemption and page faults disabled.
1308  */
1309 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1310                         enum zs_mapmode mm)
1311 {
1312         struct zspage *zspage;
1313         struct page *page;
1314         unsigned long obj, off;
1315         unsigned int obj_idx;
1316
1317         unsigned int class_idx;
1318         enum fullness_group fg;
1319         struct size_class *class;
1320         struct mapping_area *area;
1321         struct page *pages[2];
1322         void *ret;
1323
1324         /*
1325          * Because we use per-cpu mapping areas shared among the
1326          * pools/users, we can't allow mapping in interrupt context
1327          * because it can corrupt another users mappings.
1328          */
1329         BUG_ON(in_interrupt());
1330
1331         /* From now on, migration cannot move the object */
1332         pin_tag(handle);
1333
1334         obj = handle_to_obj(handle);
1335         obj_to_location(obj, &page, &obj_idx);
1336         zspage = get_zspage(page);
1337
1338         /* migration cannot move any subpage in this zspage */
1339         migrate_read_lock(zspage);
1340
1341         get_zspage_mapping(zspage, &class_idx, &fg);
1342         class = pool->size_class[class_idx];
1343         off = (class->size * obj_idx) & ~PAGE_MASK;
1344
1345         area = &get_cpu_var(zs_map_area);
1346         area->vm_mm = mm;
1347         if (off + class->size <= PAGE_SIZE) {
1348                 /* this object is contained entirely within a page */
1349                 area->vm_addr = kmap_atomic(page);
1350                 ret = area->vm_addr + off;
1351                 goto out;
1352         }
1353
1354         /* this object spans two pages */
1355         pages[0] = page;
1356         pages[1] = get_next_page(page);
1357         BUG_ON(!pages[1]);
1358
1359         ret = __zs_map_object(area, pages, off, class->size);
1360 out:
1361         if (likely(!PageHugeObject(page)))
1362                 ret += ZS_HANDLE_SIZE;
1363
1364         return ret;
1365 }
1366 EXPORT_SYMBOL_GPL(zs_map_object);
1367
1368 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1369 {
1370         struct zspage *zspage;
1371         struct page *page;
1372         unsigned long obj, off;
1373         unsigned int obj_idx;
1374
1375         unsigned int class_idx;
1376         enum fullness_group fg;
1377         struct size_class *class;
1378         struct mapping_area *area;
1379
1380         obj = handle_to_obj(handle);
1381         obj_to_location(obj, &page, &obj_idx);
1382         zspage = get_zspage(page);
1383         get_zspage_mapping(zspage, &class_idx, &fg);
1384         class = pool->size_class[class_idx];
1385         off = (class->size * obj_idx) & ~PAGE_MASK;
1386
1387         area = this_cpu_ptr(&zs_map_area);
1388         if (off + class->size <= PAGE_SIZE)
1389                 kunmap_atomic(area->vm_addr);
1390         else {
1391                 struct page *pages[2];
1392
1393                 pages[0] = page;
1394                 pages[1] = get_next_page(page);
1395                 BUG_ON(!pages[1]);
1396
1397                 __zs_unmap_object(area, pages, off, class->size);
1398         }
1399         put_cpu_var(zs_map_area);
1400
1401         migrate_read_unlock(zspage);
1402         unpin_tag(handle);
1403 }
1404 EXPORT_SYMBOL_GPL(zs_unmap_object);
1405
1406 /**
1407  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1408  *                        zsmalloc &size_class.
1409  * @pool: zsmalloc pool to use
1410  *
1411  * The function returns the size of the first huge class - any object of equal
1412  * or bigger size will be stored in zspage consisting of a single physical
1413  * page.
1414  *
1415  * Context: Any context.
1416  *
1417  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1418  */
1419 size_t zs_huge_class_size(struct zs_pool *pool)
1420 {
1421         return huge_class_size;
1422 }
1423 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1424
1425 static unsigned long obj_malloc(struct size_class *class,
1426                                 struct zspage *zspage, unsigned long handle)
1427 {
1428         int i, nr_page, offset;
1429         unsigned long obj;
1430         struct link_free *link;
1431
1432         struct page *m_page;
1433         unsigned long m_offset;
1434         void *vaddr;
1435
1436         handle |= OBJ_ALLOCATED_TAG;
1437         obj = get_freeobj(zspage);
1438
1439         offset = obj * class->size;
1440         nr_page = offset >> PAGE_SHIFT;
1441         m_offset = offset & ~PAGE_MASK;
1442         m_page = get_first_page(zspage);
1443
1444         for (i = 0; i < nr_page; i++)
1445                 m_page = get_next_page(m_page);
1446
1447         vaddr = kmap_atomic(m_page);
1448         link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1449         set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1450         if (likely(!PageHugeObject(m_page)))
1451                 /* record handle in the header of allocated chunk */
1452                 link->handle = handle;
1453         else
1454                 /* record handle to page->index */
1455                 zspage->first_page->index = handle;
1456
1457         kunmap_atomic(vaddr);
1458         mod_zspage_inuse(zspage, 1);
1459         zs_stat_inc(class, OBJ_USED, 1);
1460
1461         obj = location_to_obj(m_page, obj);
1462
1463         return obj;
1464 }
1465
1466
1467 /**
1468  * zs_malloc - Allocate block of given size from pool.
1469  * @pool: pool to allocate from
1470  * @size: size of block to allocate
1471  * @gfp: gfp flags when allocating object
1472  *
1473  * On success, handle to the allocated object is returned,
1474  * otherwise 0.
1475  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1476  */
1477 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1478 {
1479         unsigned long handle, obj;
1480         struct size_class *class;
1481         enum fullness_group newfg;
1482         struct zspage *zspage;
1483
1484         if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1485                 return 0;
1486
1487         handle = cache_alloc_handle(pool, gfp);
1488         if (!handle)
1489                 return 0;
1490
1491         /* extra space in chunk to keep the handle */
1492         size += ZS_HANDLE_SIZE;
1493         class = pool->size_class[get_size_class_index(size)];
1494
1495         spin_lock(&class->lock);
1496         zspage = find_get_zspage(class);
1497         if (likely(zspage)) {
1498                 obj = obj_malloc(class, zspage, handle);
1499                 /* Now move the zspage to another fullness group, if required */
1500                 fix_fullness_group(class, zspage);
1501                 record_obj(handle, obj);
1502                 spin_unlock(&class->lock);
1503
1504                 return handle;
1505         }
1506
1507         spin_unlock(&class->lock);
1508
1509         zspage = alloc_zspage(pool, class, gfp);
1510         if (!zspage) {
1511                 cache_free_handle(pool, handle);
1512                 return 0;
1513         }
1514
1515         spin_lock(&class->lock);
1516         obj = obj_malloc(class, zspage, handle);
1517         newfg = get_fullness_group(class, zspage);
1518         insert_zspage(class, zspage, newfg);
1519         set_zspage_mapping(zspage, class->index, newfg);
1520         record_obj(handle, obj);
1521         atomic_long_add(class->pages_per_zspage,
1522                                 &pool->pages_allocated);
1523         zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1524
1525         /* We completely set up zspage so mark them as movable */
1526         SetZsPageMovable(pool, zspage);
1527         spin_unlock(&class->lock);
1528
1529         return handle;
1530 }
1531 EXPORT_SYMBOL_GPL(zs_malloc);
1532
1533 static void obj_free(struct size_class *class, unsigned long obj)
1534 {
1535         struct link_free *link;
1536         struct zspage *zspage;
1537         struct page *f_page;
1538         unsigned long f_offset;
1539         unsigned int f_objidx;
1540         void *vaddr;
1541
1542         obj &= ~OBJ_ALLOCATED_TAG;
1543         obj_to_location(obj, &f_page, &f_objidx);
1544         f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1545         zspage = get_zspage(f_page);
1546
1547         vaddr = kmap_atomic(f_page);
1548
1549         /* Insert this object in containing zspage's freelist */
1550         link = (struct link_free *)(vaddr + f_offset);
1551         link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1552         kunmap_atomic(vaddr);
1553         set_freeobj(zspage, f_objidx);
1554         mod_zspage_inuse(zspage, -1);
1555         zs_stat_dec(class, OBJ_USED, 1);
1556 }
1557
1558 void zs_free(struct zs_pool *pool, unsigned long handle)
1559 {
1560         struct zspage *zspage;
1561         struct page *f_page;
1562         unsigned long obj;
1563         unsigned int f_objidx;
1564         int class_idx;
1565         struct size_class *class;
1566         enum fullness_group fullness;
1567         bool isolated;
1568
1569         if (unlikely(!handle))
1570                 return;
1571
1572         pin_tag(handle);
1573         obj = handle_to_obj(handle);
1574         obj_to_location(obj, &f_page, &f_objidx);
1575         zspage = get_zspage(f_page);
1576
1577         migrate_read_lock(zspage);
1578
1579         get_zspage_mapping(zspage, &class_idx, &fullness);
1580         class = pool->size_class[class_idx];
1581
1582         spin_lock(&class->lock);
1583         obj_free(class, obj);
1584         fullness = fix_fullness_group(class, zspage);
1585         if (fullness != ZS_EMPTY) {
1586                 migrate_read_unlock(zspage);
1587                 goto out;
1588         }
1589
1590         isolated = is_zspage_isolated(zspage);
1591         migrate_read_unlock(zspage);
1592         /* If zspage is isolated, zs_page_putback will free the zspage */
1593         if (likely(!isolated))
1594                 free_zspage(pool, class, zspage);
1595 out:
1596
1597         spin_unlock(&class->lock);
1598         unpin_tag(handle);
1599         cache_free_handle(pool, handle);
1600 }
1601 EXPORT_SYMBOL_GPL(zs_free);
1602
1603 static void zs_object_copy(struct size_class *class, unsigned long dst,
1604                                 unsigned long src)
1605 {
1606         struct page *s_page, *d_page;
1607         unsigned int s_objidx, d_objidx;
1608         unsigned long s_off, d_off;
1609         void *s_addr, *d_addr;
1610         int s_size, d_size, size;
1611         int written = 0;
1612
1613         s_size = d_size = class->size;
1614
1615         obj_to_location(src, &s_page, &s_objidx);
1616         obj_to_location(dst, &d_page, &d_objidx);
1617
1618         s_off = (class->size * s_objidx) & ~PAGE_MASK;
1619         d_off = (class->size * d_objidx) & ~PAGE_MASK;
1620
1621         if (s_off + class->size > PAGE_SIZE)
1622                 s_size = PAGE_SIZE - s_off;
1623
1624         if (d_off + class->size > PAGE_SIZE)
1625                 d_size = PAGE_SIZE - d_off;
1626
1627         s_addr = kmap_atomic(s_page);
1628         d_addr = kmap_atomic(d_page);
1629
1630         while (1) {
1631                 size = min(s_size, d_size);
1632                 memcpy(d_addr + d_off, s_addr + s_off, size);
1633                 written += size;
1634
1635                 if (written == class->size)
1636                         break;
1637
1638                 s_off += size;
1639                 s_size -= size;
1640                 d_off += size;
1641                 d_size -= size;
1642
1643                 if (s_off >= PAGE_SIZE) {
1644                         kunmap_atomic(d_addr);
1645                         kunmap_atomic(s_addr);
1646                         s_page = get_next_page(s_page);
1647                         s_addr = kmap_atomic(s_page);
1648                         d_addr = kmap_atomic(d_page);
1649                         s_size = class->size - written;
1650                         s_off = 0;
1651                 }
1652
1653                 if (d_off >= PAGE_SIZE) {
1654                         kunmap_atomic(d_addr);
1655                         d_page = get_next_page(d_page);
1656                         d_addr = kmap_atomic(d_page);
1657                         d_size = class->size - written;
1658                         d_off = 0;
1659                 }
1660         }
1661
1662         kunmap_atomic(d_addr);
1663         kunmap_atomic(s_addr);
1664 }
1665
1666 /*
1667  * Find alloced object in zspage from index object and
1668  * return handle.
1669  */
1670 static unsigned long find_alloced_obj(struct size_class *class,
1671                                         struct page *page, int *obj_idx)
1672 {
1673         unsigned long head;
1674         int offset = 0;
1675         int index = *obj_idx;
1676         unsigned long handle = 0;
1677         void *addr = kmap_atomic(page);
1678
1679         offset = get_first_obj_offset(page);
1680         offset += class->size * index;
1681
1682         while (offset < PAGE_SIZE) {
1683                 head = obj_to_head(page, addr + offset);
1684                 if (head & OBJ_ALLOCATED_TAG) {
1685                         handle = head & ~OBJ_ALLOCATED_TAG;
1686                         if (trypin_tag(handle))
1687                                 break;
1688                         handle = 0;
1689                 }
1690
1691                 offset += class->size;
1692                 index++;
1693         }
1694
1695         kunmap_atomic(addr);
1696
1697         *obj_idx = index;
1698
1699         return handle;
1700 }
1701
1702 struct zs_compact_control {
1703         /* Source spage for migration which could be a subpage of zspage */
1704         struct page *s_page;
1705         /* Destination page for migration which should be a first page
1706          * of zspage. */
1707         struct page *d_page;
1708          /* Starting object index within @s_page which used for live object
1709           * in the subpage. */
1710         int obj_idx;
1711 };
1712
1713 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1714                                 struct zs_compact_control *cc)
1715 {
1716         unsigned long used_obj, free_obj;
1717         unsigned long handle;
1718         struct page *s_page = cc->s_page;
1719         struct page *d_page = cc->d_page;
1720         int obj_idx = cc->obj_idx;
1721         int ret = 0;
1722
1723         while (1) {
1724                 handle = find_alloced_obj(class, s_page, &obj_idx);
1725                 if (!handle) {
1726                         s_page = get_next_page(s_page);
1727                         if (!s_page)
1728                                 break;
1729                         obj_idx = 0;
1730                         continue;
1731                 }
1732
1733                 /* Stop if there is no more space */
1734                 if (zspage_full(class, get_zspage(d_page))) {
1735                         unpin_tag(handle);
1736                         ret = -ENOMEM;
1737                         break;
1738                 }
1739
1740                 used_obj = handle_to_obj(handle);
1741                 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1742                 zs_object_copy(class, free_obj, used_obj);
1743                 obj_idx++;
1744                 /*
1745                  * record_obj updates handle's value to free_obj and it will
1746                  * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1747                  * breaks synchronization using pin_tag(e,g, zs_free) so
1748                  * let's keep the lock bit.
1749                  */
1750                 free_obj |= BIT(HANDLE_PIN_BIT);
1751                 record_obj(handle, free_obj);
1752                 unpin_tag(handle);
1753                 obj_free(class, used_obj);
1754         }
1755
1756         /* Remember last position in this iteration */
1757         cc->s_page = s_page;
1758         cc->obj_idx = obj_idx;
1759
1760         return ret;
1761 }
1762
1763 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1764 {
1765         int i;
1766         struct zspage *zspage;
1767         enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1768
1769         if (!source) {
1770                 fg[0] = ZS_ALMOST_FULL;
1771                 fg[1] = ZS_ALMOST_EMPTY;
1772         }
1773
1774         for (i = 0; i < 2; i++) {
1775                 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1776                                                         struct zspage, list);
1777                 if (zspage) {
1778                         VM_BUG_ON(is_zspage_isolated(zspage));
1779                         remove_zspage(class, zspage, fg[i]);
1780                         return zspage;
1781                 }
1782         }
1783
1784         return zspage;
1785 }
1786
1787 /*
1788  * putback_zspage - add @zspage into right class's fullness list
1789  * @class: destination class
1790  * @zspage: target page
1791  *
1792  * Return @zspage's fullness_group
1793  */
1794 static enum fullness_group putback_zspage(struct size_class *class,
1795                         struct zspage *zspage)
1796 {
1797         enum fullness_group fullness;
1798
1799         VM_BUG_ON(is_zspage_isolated(zspage));
1800
1801         fullness = get_fullness_group(class, zspage);
1802         insert_zspage(class, zspage, fullness);
1803         set_zspage_mapping(zspage, class->index, fullness);
1804
1805         return fullness;
1806 }
1807
1808 #ifdef CONFIG_COMPACTION
1809 /*
1810  * To prevent zspage destroy during migration, zspage freeing should
1811  * hold locks of all pages in the zspage.
1812  */
1813 static void lock_zspage(struct zspage *zspage)
1814 {
1815         struct page *page = get_first_page(zspage);
1816
1817         do {
1818                 lock_page(page);
1819         } while ((page = get_next_page(page)) != NULL);
1820 }
1821
1822 static struct dentry *zs_mount(struct file_system_type *fs_type,
1823                                 int flags, const char *dev_name, void *data)
1824 {
1825         static const struct dentry_operations ops = {
1826                 .d_dname = simple_dname,
1827         };
1828
1829         return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1830 }
1831
1832 static struct file_system_type zsmalloc_fs = {
1833         .name           = "zsmalloc",
1834         .mount          = zs_mount,
1835         .kill_sb        = kill_anon_super,
1836 };
1837
1838 static int zsmalloc_mount(void)
1839 {
1840         int ret = 0;
1841
1842         zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1843         if (IS_ERR(zsmalloc_mnt))
1844                 ret = PTR_ERR(zsmalloc_mnt);
1845
1846         return ret;
1847 }
1848
1849 static void zsmalloc_unmount(void)
1850 {
1851         kern_unmount(zsmalloc_mnt);
1852 }
1853
1854 static void migrate_lock_init(struct zspage *zspage)
1855 {
1856         rwlock_init(&zspage->lock);
1857 }
1858
1859 static void migrate_read_lock(struct zspage *zspage)
1860 {
1861         read_lock(&zspage->lock);
1862 }
1863
1864 static void migrate_read_unlock(struct zspage *zspage)
1865 {
1866         read_unlock(&zspage->lock);
1867 }
1868
1869 static void migrate_write_lock(struct zspage *zspage)
1870 {
1871         write_lock(&zspage->lock);
1872 }
1873
1874 static void migrate_write_unlock(struct zspage *zspage)
1875 {
1876         write_unlock(&zspage->lock);
1877 }
1878
1879 /* Number of isolated subpage for *page migration* in this zspage */
1880 static void inc_zspage_isolation(struct zspage *zspage)
1881 {
1882         zspage->isolated++;
1883 }
1884
1885 static void dec_zspage_isolation(struct zspage *zspage)
1886 {
1887         zspage->isolated--;
1888 }
1889
1890 static void putback_zspage_deferred(struct zs_pool *pool,
1891                                     struct size_class *class,
1892                                     struct zspage *zspage)
1893 {
1894         enum fullness_group fg;
1895
1896         fg = putback_zspage(class, zspage);
1897         if (fg == ZS_EMPTY)
1898                 schedule_work(&pool->free_work);
1899
1900 }
1901
1902 static inline void zs_pool_dec_isolated(struct zs_pool *pool)
1903 {
1904         VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0);
1905         atomic_long_dec(&pool->isolated_pages);
1906         /*
1907          * There's no possibility of racing, since wait_for_isolated_drain()
1908          * checks the isolated count under &class->lock after enqueuing
1909          * on migration_wait.
1910          */
1911         if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying)
1912                 wake_up_all(&pool->migration_wait);
1913 }
1914
1915 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1916                                 struct page *newpage, struct page *oldpage)
1917 {
1918         struct page *page;
1919         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1920         int idx = 0;
1921
1922         page = get_first_page(zspage);
1923         do {
1924                 if (page == oldpage)
1925                         pages[idx] = newpage;
1926                 else
1927                         pages[idx] = page;
1928                 idx++;
1929         } while ((page = get_next_page(page)) != NULL);
1930
1931         create_page_chain(class, zspage, pages);
1932         set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1933         if (unlikely(PageHugeObject(oldpage)))
1934                 newpage->index = oldpage->index;
1935         __SetPageMovable(newpage, page_mapping(oldpage));
1936 }
1937
1938 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1939 {
1940         struct zs_pool *pool;
1941         struct size_class *class;
1942         int class_idx;
1943         enum fullness_group fullness;
1944         struct zspage *zspage;
1945         struct address_space *mapping;
1946
1947         /*
1948          * Page is locked so zspage couldn't be destroyed. For detail, look at
1949          * lock_zspage in free_zspage.
1950          */
1951         VM_BUG_ON_PAGE(!PageMovable(page), page);
1952         VM_BUG_ON_PAGE(PageIsolated(page), page);
1953
1954         zspage = get_zspage(page);
1955
1956         /*
1957          * Without class lock, fullness could be stale while class_idx is okay
1958          * because class_idx is constant unless page is freed so we should get
1959          * fullness again under class lock.
1960          */
1961         get_zspage_mapping(zspage, &class_idx, &fullness);
1962         mapping = page_mapping(page);
1963         pool = mapping->private_data;
1964         class = pool->size_class[class_idx];
1965
1966         spin_lock(&class->lock);
1967         if (get_zspage_inuse(zspage) == 0) {
1968                 spin_unlock(&class->lock);
1969                 return false;
1970         }
1971
1972         /* zspage is isolated for object migration */
1973         if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1974                 spin_unlock(&class->lock);
1975                 return false;
1976         }
1977
1978         /*
1979          * If this is first time isolation for the zspage, isolate zspage from
1980          * size_class to prevent further object allocation from the zspage.
1981          */
1982         if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1983                 get_zspage_mapping(zspage, &class_idx, &fullness);
1984                 atomic_long_inc(&pool->isolated_pages);
1985                 remove_zspage(class, zspage, fullness);
1986         }
1987
1988         inc_zspage_isolation(zspage);
1989         spin_unlock(&class->lock);
1990
1991         return true;
1992 }
1993
1994 static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1995                 struct page *page, enum migrate_mode mode)
1996 {
1997         struct zs_pool *pool;
1998         struct size_class *class;
1999         int class_idx;
2000         enum fullness_group fullness;
2001         struct zspage *zspage;
2002         struct page *dummy;
2003         void *s_addr, *d_addr, *addr;
2004         int offset, pos;
2005         unsigned long handle, head;
2006         unsigned long old_obj, new_obj;
2007         unsigned int obj_idx;
2008         int ret = -EAGAIN;
2009
2010         /*
2011          * We cannot support the _NO_COPY case here, because copy needs to
2012          * happen under the zs lock, which does not work with
2013          * MIGRATE_SYNC_NO_COPY workflow.
2014          */
2015         if (mode == MIGRATE_SYNC_NO_COPY)
2016                 return -EINVAL;
2017
2018         VM_BUG_ON_PAGE(!PageMovable(page), page);
2019         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2020
2021         zspage = get_zspage(page);
2022
2023         /* Concurrent compactor cannot migrate any subpage in zspage */
2024         migrate_write_lock(zspage);
2025         get_zspage_mapping(zspage, &class_idx, &fullness);
2026         pool = mapping->private_data;
2027         class = pool->size_class[class_idx];
2028         offset = get_first_obj_offset(page);
2029
2030         spin_lock(&class->lock);
2031         if (!get_zspage_inuse(zspage)) {
2032                 /*
2033                  * Set "offset" to end of the page so that every loops
2034                  * skips unnecessary object scanning.
2035                  */
2036                 offset = PAGE_SIZE;
2037         }
2038
2039         pos = offset;
2040         s_addr = kmap_atomic(page);
2041         while (pos < PAGE_SIZE) {
2042                 head = obj_to_head(page, s_addr + pos);
2043                 if (head & OBJ_ALLOCATED_TAG) {
2044                         handle = head & ~OBJ_ALLOCATED_TAG;
2045                         if (!trypin_tag(handle))
2046                                 goto unpin_objects;
2047                 }
2048                 pos += class->size;
2049         }
2050
2051         /*
2052          * Here, any user cannot access all objects in the zspage so let's move.
2053          */
2054         d_addr = kmap_atomic(newpage);
2055         memcpy(d_addr, s_addr, PAGE_SIZE);
2056         kunmap_atomic(d_addr);
2057
2058         for (addr = s_addr + offset; addr < s_addr + pos;
2059                                         addr += class->size) {
2060                 head = obj_to_head(page, addr);
2061                 if (head & OBJ_ALLOCATED_TAG) {
2062                         handle = head & ~OBJ_ALLOCATED_TAG;
2063                         if (!testpin_tag(handle))
2064                                 BUG();
2065
2066                         old_obj = handle_to_obj(handle);
2067                         obj_to_location(old_obj, &dummy, &obj_idx);
2068                         new_obj = (unsigned long)location_to_obj(newpage,
2069                                                                 obj_idx);
2070                         new_obj |= BIT(HANDLE_PIN_BIT);
2071                         record_obj(handle, new_obj);
2072                 }
2073         }
2074
2075         replace_sub_page(class, zspage, newpage, page);
2076         get_page(newpage);
2077
2078         dec_zspage_isolation(zspage);
2079
2080         /*
2081          * Page migration is done so let's putback isolated zspage to
2082          * the list if @page is final isolated subpage in the zspage.
2083          */
2084         if (!is_zspage_isolated(zspage)) {
2085                 /*
2086                  * We cannot race with zs_destroy_pool() here because we wait
2087                  * for isolation to hit zero before we start destroying.
2088                  * Also, we ensure that everyone can see pool->destroying before
2089                  * we start waiting.
2090                  */
2091                 putback_zspage_deferred(pool, class, zspage);
2092                 zs_pool_dec_isolated(pool);
2093         }
2094
2095         if (page_zone(newpage) != page_zone(page)) {
2096                 dec_zone_page_state(page, NR_ZSPAGES);
2097                 inc_zone_page_state(newpage, NR_ZSPAGES);
2098         }
2099
2100         reset_page(page);
2101         put_page(page);
2102         page = newpage;
2103
2104         ret = MIGRATEPAGE_SUCCESS;
2105 unpin_objects:
2106         for (addr = s_addr + offset; addr < s_addr + pos;
2107                                                 addr += class->size) {
2108                 head = obj_to_head(page, addr);
2109                 if (head & OBJ_ALLOCATED_TAG) {
2110                         handle = head & ~OBJ_ALLOCATED_TAG;
2111                         if (!testpin_tag(handle))
2112                                 BUG();
2113                         unpin_tag(handle);
2114                 }
2115         }
2116         kunmap_atomic(s_addr);
2117         spin_unlock(&class->lock);
2118         migrate_write_unlock(zspage);
2119
2120         return ret;
2121 }
2122
2123 static void zs_page_putback(struct page *page)
2124 {
2125         struct zs_pool *pool;
2126         struct size_class *class;
2127         int class_idx;
2128         enum fullness_group fg;
2129         struct address_space *mapping;
2130         struct zspage *zspage;
2131
2132         VM_BUG_ON_PAGE(!PageMovable(page), page);
2133         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2134
2135         zspage = get_zspage(page);
2136         get_zspage_mapping(zspage, &class_idx, &fg);
2137         mapping = page_mapping(page);
2138         pool = mapping->private_data;
2139         class = pool->size_class[class_idx];
2140
2141         spin_lock(&class->lock);
2142         dec_zspage_isolation(zspage);
2143         if (!is_zspage_isolated(zspage)) {
2144                 /*
2145                  * Due to page_lock, we cannot free zspage immediately
2146                  * so let's defer.
2147                  */
2148                 putback_zspage_deferred(pool, class, zspage);
2149                 zs_pool_dec_isolated(pool);
2150         }
2151         spin_unlock(&class->lock);
2152 }
2153
2154 static const struct address_space_operations zsmalloc_aops = {
2155         .isolate_page = zs_page_isolate,
2156         .migratepage = zs_page_migrate,
2157         .putback_page = zs_page_putback,
2158 };
2159
2160 static int zs_register_migration(struct zs_pool *pool)
2161 {
2162         pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2163         if (IS_ERR(pool->inode)) {
2164                 pool->inode = NULL;
2165                 return 1;
2166         }
2167
2168         pool->inode->i_mapping->private_data = pool;
2169         pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2170         return 0;
2171 }
2172
2173 static bool pool_isolated_are_drained(struct zs_pool *pool)
2174 {
2175         return atomic_long_read(&pool->isolated_pages) == 0;
2176 }
2177
2178 /* Function for resolving migration */
2179 static void wait_for_isolated_drain(struct zs_pool *pool)
2180 {
2181
2182         /*
2183          * We're in the process of destroying the pool, so there are no
2184          * active allocations. zs_page_isolate() fails for completely free
2185          * zspages, so we need only wait for the zs_pool's isolated
2186          * count to hit zero.
2187          */
2188         wait_event(pool->migration_wait,
2189                    pool_isolated_are_drained(pool));
2190 }
2191
2192 static void zs_unregister_migration(struct zs_pool *pool)
2193 {
2194         pool->destroying = true;
2195         /*
2196          * We need a memory barrier here to ensure global visibility of
2197          * pool->destroying. Thus pool->isolated pages will either be 0 in which
2198          * case we don't care, or it will be > 0 and pool->destroying will
2199          * ensure that we wake up once isolation hits 0.
2200          */
2201         smp_mb();
2202         wait_for_isolated_drain(pool); /* This can block */
2203         flush_work(&pool->free_work);
2204         iput(pool->inode);
2205 }
2206
2207 /*
2208  * Caller should hold page_lock of all pages in the zspage
2209  * In here, we cannot use zspage meta data.
2210  */
2211 static void async_free_zspage(struct work_struct *work)
2212 {
2213         int i;
2214         struct size_class *class;
2215         unsigned int class_idx;
2216         enum fullness_group fullness;
2217         struct zspage *zspage, *tmp;
2218         LIST_HEAD(free_pages);
2219         struct zs_pool *pool = container_of(work, struct zs_pool,
2220                                         free_work);
2221
2222         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2223                 class = pool->size_class[i];
2224                 if (class->index != i)
2225                         continue;
2226
2227                 spin_lock(&class->lock);
2228                 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2229                 spin_unlock(&class->lock);
2230         }
2231
2232
2233         list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2234                 list_del(&zspage->list);
2235                 lock_zspage(zspage);
2236
2237                 get_zspage_mapping(zspage, &class_idx, &fullness);
2238                 VM_BUG_ON(fullness != ZS_EMPTY);
2239                 class = pool->size_class[class_idx];
2240                 spin_lock(&class->lock);
2241                 __free_zspage(pool, pool->size_class[class_idx], zspage);
2242                 spin_unlock(&class->lock);
2243         }
2244 };
2245
2246 static void kick_deferred_free(struct zs_pool *pool)
2247 {
2248         schedule_work(&pool->free_work);
2249 }
2250
2251 static void init_deferred_free(struct zs_pool *pool)
2252 {
2253         INIT_WORK(&pool->free_work, async_free_zspage);
2254 }
2255
2256 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2257 {
2258         struct page *page = get_first_page(zspage);
2259
2260         do {
2261                 WARN_ON(!trylock_page(page));
2262                 __SetPageMovable(page, pool->inode->i_mapping);
2263                 unlock_page(page);
2264         } while ((page = get_next_page(page)) != NULL);
2265 }
2266 #endif
2267
2268 /*
2269  *
2270  * Based on the number of unused allocated objects calculate
2271  * and return the number of pages that we can free.
2272  */
2273 static unsigned long zs_can_compact(struct size_class *class)
2274 {
2275         unsigned long obj_wasted;
2276         unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2277         unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2278
2279         if (obj_allocated <= obj_used)
2280                 return 0;
2281
2282         obj_wasted = obj_allocated - obj_used;
2283         obj_wasted /= class->objs_per_zspage;
2284
2285         return obj_wasted * class->pages_per_zspage;
2286 }
2287
2288 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2289 {
2290         struct zs_compact_control cc;
2291         struct zspage *src_zspage;
2292         struct zspage *dst_zspage = NULL;
2293
2294         spin_lock(&class->lock);
2295         while ((src_zspage = isolate_zspage(class, true))) {
2296
2297                 if (!zs_can_compact(class))
2298                         break;
2299
2300                 cc.obj_idx = 0;
2301                 cc.s_page = get_first_page(src_zspage);
2302
2303                 while ((dst_zspage = isolate_zspage(class, false))) {
2304                         cc.d_page = get_first_page(dst_zspage);
2305                         /*
2306                          * If there is no more space in dst_page, resched
2307                          * and see if anyone had allocated another zspage.
2308                          */
2309                         if (!migrate_zspage(pool, class, &cc))
2310                                 break;
2311
2312                         putback_zspage(class, dst_zspage);
2313                 }
2314
2315                 /* Stop if we couldn't find slot */
2316                 if (dst_zspage == NULL)
2317                         break;
2318
2319                 putback_zspage(class, dst_zspage);
2320                 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2321                         free_zspage(pool, class, src_zspage);
2322                         pool->stats.pages_compacted += class->pages_per_zspage;
2323                 }
2324                 spin_unlock(&class->lock);
2325                 cond_resched();
2326                 spin_lock(&class->lock);
2327         }
2328
2329         if (src_zspage)
2330                 putback_zspage(class, src_zspage);
2331
2332         spin_unlock(&class->lock);
2333 }
2334
2335 unsigned long zs_compact(struct zs_pool *pool)
2336 {
2337         int i;
2338         struct size_class *class;
2339
2340         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2341                 class = pool->size_class[i];
2342                 if (!class)
2343                         continue;
2344                 if (class->index != i)
2345                         continue;
2346                 __zs_compact(pool, class);
2347         }
2348
2349         return pool->stats.pages_compacted;
2350 }
2351 EXPORT_SYMBOL_GPL(zs_compact);
2352
2353 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2354 {
2355         memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2356 }
2357 EXPORT_SYMBOL_GPL(zs_pool_stats);
2358
2359 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2360                 struct shrink_control *sc)
2361 {
2362         unsigned long pages_freed;
2363         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2364                         shrinker);
2365
2366         pages_freed = pool->stats.pages_compacted;
2367         /*
2368          * Compact classes and calculate compaction delta.
2369          * Can run concurrently with a manually triggered
2370          * (by user) compaction.
2371          */
2372         pages_freed = zs_compact(pool) - pages_freed;
2373
2374         return pages_freed ? pages_freed : SHRINK_STOP;
2375 }
2376
2377 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2378                 struct shrink_control *sc)
2379 {
2380         int i;
2381         struct size_class *class;
2382         unsigned long pages_to_free = 0;
2383         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2384                         shrinker);
2385
2386         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2387                 class = pool->size_class[i];
2388                 if (!class)
2389                         continue;
2390                 if (class->index != i)
2391                         continue;
2392
2393                 pages_to_free += zs_can_compact(class);
2394         }
2395
2396         return pages_to_free;
2397 }
2398
2399 static void zs_unregister_shrinker(struct zs_pool *pool)
2400 {
2401         unregister_shrinker(&pool->shrinker);
2402 }
2403
2404 static int zs_register_shrinker(struct zs_pool *pool)
2405 {
2406         pool->shrinker.scan_objects = zs_shrinker_scan;
2407         pool->shrinker.count_objects = zs_shrinker_count;
2408         pool->shrinker.batch = 0;
2409         pool->shrinker.seeks = DEFAULT_SEEKS;
2410
2411         return register_shrinker(&pool->shrinker);
2412 }
2413
2414 /**
2415  * zs_create_pool - Creates an allocation pool to work from.
2416  * @name: pool name to be created
2417  *
2418  * This function must be called before anything when using
2419  * the zsmalloc allocator.
2420  *
2421  * On success, a pointer to the newly created pool is returned,
2422  * otherwise NULL.
2423  */
2424 struct zs_pool *zs_create_pool(const char *name)
2425 {
2426         int i;
2427         struct zs_pool *pool;
2428         struct size_class *prev_class = NULL;
2429
2430         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2431         if (!pool)
2432                 return NULL;
2433
2434         init_deferred_free(pool);
2435
2436         pool->name = kstrdup(name, GFP_KERNEL);
2437         if (!pool->name)
2438                 goto err;
2439
2440 #ifdef CONFIG_COMPACTION
2441         init_waitqueue_head(&pool->migration_wait);
2442 #endif
2443
2444         if (create_cache(pool))
2445                 goto err;
2446
2447         /*
2448          * Iterate reversely, because, size of size_class that we want to use
2449          * for merging should be larger or equal to current size.
2450          */
2451         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2452                 int size;
2453                 int pages_per_zspage;
2454                 int objs_per_zspage;
2455                 struct size_class *class;
2456                 int fullness = 0;
2457
2458                 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2459                 if (size > ZS_MAX_ALLOC_SIZE)
2460                         size = ZS_MAX_ALLOC_SIZE;
2461                 pages_per_zspage = get_pages_per_zspage(size);
2462                 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2463
2464                 /*
2465                  * We iterate from biggest down to smallest classes,
2466                  * so huge_class_size holds the size of the first huge
2467                  * class. Any object bigger than or equal to that will
2468                  * endup in the huge class.
2469                  */
2470                 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2471                                 !huge_class_size) {
2472                         huge_class_size = size;
2473                         /*
2474                          * The object uses ZS_HANDLE_SIZE bytes to store the
2475                          * handle. We need to subtract it, because zs_malloc()
2476                          * unconditionally adds handle size before it performs
2477                          * size class search - so object may be smaller than
2478                          * huge class size, yet it still can end up in the huge
2479                          * class because it grows by ZS_HANDLE_SIZE extra bytes
2480                          * right before class lookup.
2481                          */
2482                         huge_class_size -= (ZS_HANDLE_SIZE - 1);
2483                 }
2484
2485                 /*
2486                  * size_class is used for normal zsmalloc operation such
2487                  * as alloc/free for that size. Although it is natural that we
2488                  * have one size_class for each size, there is a chance that we
2489                  * can get more memory utilization if we use one size_class for
2490                  * many different sizes whose size_class have same
2491                  * characteristics. So, we makes size_class point to
2492                  * previous size_class if possible.
2493                  */
2494                 if (prev_class) {
2495                         if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2496                                 pool->size_class[i] = prev_class;
2497                                 continue;
2498                         }
2499                 }
2500
2501                 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2502                 if (!class)
2503                         goto err;
2504
2505                 class->size = size;
2506                 class->index = i;
2507                 class->pages_per_zspage = pages_per_zspage;
2508                 class->objs_per_zspage = objs_per_zspage;
2509                 spin_lock_init(&class->lock);
2510                 pool->size_class[i] = class;
2511                 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2512                                                         fullness++)
2513                         INIT_LIST_HEAD(&class->fullness_list[fullness]);
2514
2515                 prev_class = class;
2516         }
2517
2518         /* debug only, don't abort if it fails */
2519         zs_pool_stat_create(pool, name);
2520
2521         if (zs_register_migration(pool))
2522                 goto err;
2523
2524         /*
2525          * Not critical since shrinker is only used to trigger internal
2526          * defragmentation of the pool which is pretty optional thing.  If
2527          * registration fails we still can use the pool normally and user can
2528          * trigger compaction manually. Thus, ignore return code.
2529          */
2530         zs_register_shrinker(pool);
2531
2532         return pool;
2533
2534 err:
2535         zs_destroy_pool(pool);
2536         return NULL;
2537 }
2538 EXPORT_SYMBOL_GPL(zs_create_pool);
2539
2540 void zs_destroy_pool(struct zs_pool *pool)
2541 {
2542         int i;
2543
2544         zs_unregister_shrinker(pool);
2545         zs_unregister_migration(pool);
2546         zs_pool_stat_destroy(pool);
2547
2548         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2549                 int fg;
2550                 struct size_class *class = pool->size_class[i];
2551
2552                 if (!class)
2553                         continue;
2554
2555                 if (class->index != i)
2556                         continue;
2557
2558                 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2559                         if (!list_empty(&class->fullness_list[fg])) {
2560                                 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2561                                         class->size, fg);
2562                         }
2563                 }
2564                 kfree(class);
2565         }
2566
2567         destroy_cache(pool);
2568         kfree(pool->name);
2569         kfree(pool);
2570 }
2571 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2572
2573 static int __init zs_init(void)
2574 {
2575         int ret;
2576
2577         ret = zsmalloc_mount();
2578         if (ret)
2579                 goto out;
2580
2581         ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2582                                 zs_cpu_prepare, zs_cpu_dead);
2583         if (ret)
2584                 goto hp_setup_fail;
2585
2586 #ifdef CONFIG_ZPOOL
2587         zpool_register_driver(&zs_zpool_driver);
2588 #endif
2589
2590         zs_stat_init();
2591
2592         return 0;
2593
2594 hp_setup_fail:
2595         zsmalloc_unmount();
2596 out:
2597         return ret;
2598 }
2599
2600 static void __exit zs_exit(void)
2601 {
2602 #ifdef CONFIG_ZPOOL
2603         zpool_unregister_driver(&zs_zpool_driver);
2604 #endif
2605         zsmalloc_unmount();
2606         cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2607
2608         zs_stat_exit();
2609 }
2610
2611 module_init(zs_init);
2612 module_exit(zs_exit);
2613
2614 MODULE_LICENSE("Dual BSD/GPL");
2615 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");