of: base: add of_parse_phandle_with_optional_args()
[platform/kernel/linux-starfive.git] / mm / zsmalloc.c
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *      page->private: points to zspage
20  *      page->index: links together all component pages of a zspage
21  *              For the huge page, this is always 0, so we use this field
22  *              to store handle.
23  *      page->page_type: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *      PG_private: identifies the first component page
27  *      PG_owner_priv_1: identifies the huge component page
28  *
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 /*
34  * lock ordering:
35  *      page_lock
36  *      pool->lock
37  *      zspage->lock
38  */
39
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/sched.h>
43 #include <linux/bitops.h>
44 #include <linux/errno.h>
45 #include <linux/highmem.h>
46 #include <linux/string.h>
47 #include <linux/slab.h>
48 #include <linux/pgtable.h>
49 #include <asm/tlbflush.h>
50 #include <linux/cpumask.h>
51 #include <linux/cpu.h>
52 #include <linux/vmalloc.h>
53 #include <linux/preempt.h>
54 #include <linux/spinlock.h>
55 #include <linux/shrinker.h>
56 #include <linux/types.h>
57 #include <linux/debugfs.h>
58 #include <linux/zsmalloc.h>
59 #include <linux/zpool.h>
60 #include <linux/migrate.h>
61 #include <linux/wait.h>
62 #include <linux/pagemap.h>
63 #include <linux/fs.h>
64 #include <linux/local_lock.h>
65
66 #define ZSPAGE_MAGIC    0x58
67
68 /*
69  * This must be power of 2 and greater than or equal to sizeof(link_free).
70  * These two conditions ensure that any 'struct link_free' itself doesn't
71  * span more than 1 page which avoids complex case of mapping 2 pages simply
72  * to restore link_free pointer values.
73  */
74 #define ZS_ALIGN                8
75
76 /*
77  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
78  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
79  */
80 #define ZS_MAX_ZSPAGE_ORDER 2
81 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
82
83 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
84
85 /*
86  * Object location (<PFN>, <obj_idx>) is encoded as
87  * a single (unsigned long) handle value.
88  *
89  * Note that object index <obj_idx> starts from 0.
90  *
91  * This is made more complicated by various memory models and PAE.
92  */
93
94 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
95 #ifdef MAX_PHYSMEM_BITS
96 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
97 #else
98 /*
99  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
100  * be PAGE_SHIFT
101  */
102 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
103 #endif
104 #endif
105
106 #define _PFN_BITS               (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
107
108 /*
109  * Head in allocated object should have OBJ_ALLOCATED_TAG
110  * to identify the object was allocated or not.
111  * It's okay to add the status bit in the least bit because
112  * header keeps handle which is 4byte-aligned address so we
113  * have room for two bit at least.
114  */
115 #define OBJ_ALLOCATED_TAG 1
116
117 #ifdef CONFIG_ZPOOL
118 /*
119  * The second least-significant bit in the object's header identifies if the
120  * value stored at the header is a deferred handle from the last reclaim
121  * attempt.
122  *
123  * As noted above, this is valid because we have room for two bits.
124  */
125 #define OBJ_DEFERRED_HANDLE_TAG 2
126 #define OBJ_TAG_BITS    2
127 #define OBJ_TAG_MASK    (OBJ_ALLOCATED_TAG | OBJ_DEFERRED_HANDLE_TAG)
128 #else
129 #define OBJ_TAG_BITS    1
130 #define OBJ_TAG_MASK    OBJ_ALLOCATED_TAG
131 #endif /* CONFIG_ZPOOL */
132
133 #define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
134 #define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
135
136 #define HUGE_BITS       1
137 #define FULLNESS_BITS   2
138 #define CLASS_BITS      8
139 #define ISOLATED_BITS   3
140 #define MAGIC_VAL_BITS  8
141
142 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
143 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
144 #define ZS_MIN_ALLOC_SIZE \
145         MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
146 /* each chunk includes extra space to keep handle */
147 #define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
148
149 /*
150  * On systems with 4K page size, this gives 255 size classes! There is a
151  * trader-off here:
152  *  - Large number of size classes is potentially wasteful as free page are
153  *    spread across these classes
154  *  - Small number of size classes causes large internal fragmentation
155  *  - Probably its better to use specific size classes (empirically
156  *    determined). NOTE: all those class sizes must be set as multiple of
157  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
158  *
159  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
160  *  (reason above)
161  */
162 #define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
163 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
164                                       ZS_SIZE_CLASS_DELTA) + 1)
165
166 enum fullness_group {
167         ZS_EMPTY,
168         ZS_ALMOST_EMPTY,
169         ZS_ALMOST_FULL,
170         ZS_FULL,
171         NR_ZS_FULLNESS,
172 };
173
174 enum class_stat_type {
175         CLASS_EMPTY,
176         CLASS_ALMOST_EMPTY,
177         CLASS_ALMOST_FULL,
178         CLASS_FULL,
179         OBJ_ALLOCATED,
180         OBJ_USED,
181         NR_ZS_STAT_TYPE,
182 };
183
184 struct zs_size_stat {
185         unsigned long objs[NR_ZS_STAT_TYPE];
186 };
187
188 #ifdef CONFIG_ZSMALLOC_STAT
189 static struct dentry *zs_stat_root;
190 #endif
191
192 /*
193  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
194  *      n <= N / f, where
195  * n = number of allocated objects
196  * N = total number of objects zspage can store
197  * f = fullness_threshold_frac
198  *
199  * Similarly, we assign zspage to:
200  *      ZS_ALMOST_FULL  when n > N / f
201  *      ZS_EMPTY        when n == 0
202  *      ZS_FULL         when n == N
203  *
204  * (see: fix_fullness_group())
205  */
206 static const int fullness_threshold_frac = 4;
207 static size_t huge_class_size;
208
209 struct size_class {
210         struct list_head fullness_list[NR_ZS_FULLNESS];
211         /*
212          * Size of objects stored in this class. Must be multiple
213          * of ZS_ALIGN.
214          */
215         int size;
216         int objs_per_zspage;
217         /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
218         int pages_per_zspage;
219
220         unsigned int index;
221         struct zs_size_stat stats;
222 };
223
224 /*
225  * Placed within free objects to form a singly linked list.
226  * For every zspage, zspage->freeobj gives head of this list.
227  *
228  * This must be power of 2 and less than or equal to ZS_ALIGN
229  */
230 struct link_free {
231         union {
232                 /*
233                  * Free object index;
234                  * It's valid for non-allocated object
235                  */
236                 unsigned long next;
237                 /*
238                  * Handle of allocated object.
239                  */
240                 unsigned long handle;
241 #ifdef CONFIG_ZPOOL
242                 /*
243                  * Deferred handle of a reclaimed object.
244                  */
245                 unsigned long deferred_handle;
246 #endif
247         };
248 };
249
250 struct zs_pool {
251         const char *name;
252
253         struct size_class *size_class[ZS_SIZE_CLASSES];
254         struct kmem_cache *handle_cachep;
255         struct kmem_cache *zspage_cachep;
256
257         atomic_long_t pages_allocated;
258
259         struct zs_pool_stats stats;
260
261         /* Compact classes */
262         struct shrinker shrinker;
263
264 #ifdef CONFIG_ZPOOL
265         /* List tracking the zspages in LRU order by most recently added object */
266         struct list_head lru;
267         struct zpool *zpool;
268         const struct zpool_ops *zpool_ops;
269 #endif
270
271 #ifdef CONFIG_ZSMALLOC_STAT
272         struct dentry *stat_dentry;
273 #endif
274 #ifdef CONFIG_COMPACTION
275         struct work_struct free_work;
276 #endif
277         spinlock_t lock;
278 };
279
280 struct zspage {
281         struct {
282                 unsigned int huge:HUGE_BITS;
283                 unsigned int fullness:FULLNESS_BITS;
284                 unsigned int class:CLASS_BITS + 1;
285                 unsigned int isolated:ISOLATED_BITS;
286                 unsigned int magic:MAGIC_VAL_BITS;
287         };
288         unsigned int inuse;
289         unsigned int freeobj;
290         struct page *first_page;
291         struct list_head list; /* fullness list */
292
293 #ifdef CONFIG_ZPOOL
294         /* links the zspage to the lru list in the pool */
295         struct list_head lru;
296         bool under_reclaim;
297 #endif
298
299         struct zs_pool *pool;
300         rwlock_t lock;
301 };
302
303 struct mapping_area {
304         local_lock_t lock;
305         char *vm_buf; /* copy buffer for objects that span pages */
306         char *vm_addr; /* address of kmap_atomic()'ed pages */
307         enum zs_mapmode vm_mm; /* mapping mode */
308 };
309
310 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
311 static void SetZsHugePage(struct zspage *zspage)
312 {
313         zspage->huge = 1;
314 }
315
316 static bool ZsHugePage(struct zspage *zspage)
317 {
318         return zspage->huge;
319 }
320
321 static void migrate_lock_init(struct zspage *zspage);
322 static void migrate_read_lock(struct zspage *zspage);
323 static void migrate_read_unlock(struct zspage *zspage);
324
325 #ifdef CONFIG_COMPACTION
326 static void migrate_write_lock(struct zspage *zspage);
327 static void migrate_write_lock_nested(struct zspage *zspage);
328 static void migrate_write_unlock(struct zspage *zspage);
329 static void kick_deferred_free(struct zs_pool *pool);
330 static void init_deferred_free(struct zs_pool *pool);
331 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
332 #else
333 static void migrate_write_lock(struct zspage *zspage) {}
334 static void migrate_write_lock_nested(struct zspage *zspage) {}
335 static void migrate_write_unlock(struct zspage *zspage) {}
336 static void kick_deferred_free(struct zs_pool *pool) {}
337 static void init_deferred_free(struct zs_pool *pool) {}
338 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
339 #endif
340
341 static int create_cache(struct zs_pool *pool)
342 {
343         pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
344                                         0, 0, NULL);
345         if (!pool->handle_cachep)
346                 return 1;
347
348         pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
349                                         0, 0, NULL);
350         if (!pool->zspage_cachep) {
351                 kmem_cache_destroy(pool->handle_cachep);
352                 pool->handle_cachep = NULL;
353                 return 1;
354         }
355
356         return 0;
357 }
358
359 static void destroy_cache(struct zs_pool *pool)
360 {
361         kmem_cache_destroy(pool->handle_cachep);
362         kmem_cache_destroy(pool->zspage_cachep);
363 }
364
365 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
366 {
367         return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
368                         gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
369 }
370
371 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
372 {
373         kmem_cache_free(pool->handle_cachep, (void *)handle);
374 }
375
376 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
377 {
378         return kmem_cache_zalloc(pool->zspage_cachep,
379                         flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
380 }
381
382 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
383 {
384         kmem_cache_free(pool->zspage_cachep, zspage);
385 }
386
387 /* pool->lock(which owns the handle) synchronizes races */
388 static void record_obj(unsigned long handle, unsigned long obj)
389 {
390         *(unsigned long *)handle = obj;
391 }
392
393 /* zpool driver */
394
395 #ifdef CONFIG_ZPOOL
396
397 static void *zs_zpool_create(const char *name, gfp_t gfp,
398                              const struct zpool_ops *zpool_ops,
399                              struct zpool *zpool)
400 {
401         /*
402          * Ignore global gfp flags: zs_malloc() may be invoked from
403          * different contexts and its caller must provide a valid
404          * gfp mask.
405          */
406         struct zs_pool *pool = zs_create_pool(name);
407
408         if (pool) {
409                 pool->zpool = zpool;
410                 pool->zpool_ops = zpool_ops;
411         }
412
413         return pool;
414 }
415
416 static void zs_zpool_destroy(void *pool)
417 {
418         zs_destroy_pool(pool);
419 }
420
421 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
422                         unsigned long *handle)
423 {
424         *handle = zs_malloc(pool, size, gfp);
425
426         if (IS_ERR_VALUE(*handle))
427                 return PTR_ERR((void *)*handle);
428         return 0;
429 }
430 static void zs_zpool_free(void *pool, unsigned long handle)
431 {
432         zs_free(pool, handle);
433 }
434
435 static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries);
436
437 static int zs_zpool_shrink(void *pool, unsigned int pages,
438                         unsigned int *reclaimed)
439 {
440         unsigned int total = 0;
441         int ret = -EINVAL;
442
443         while (total < pages) {
444                 ret = zs_reclaim_page(pool, 8);
445                 if (ret < 0)
446                         break;
447                 total++;
448         }
449
450         if (reclaimed)
451                 *reclaimed = total;
452
453         return ret;
454 }
455
456 static void *zs_zpool_map(void *pool, unsigned long handle,
457                         enum zpool_mapmode mm)
458 {
459         enum zs_mapmode zs_mm;
460
461         switch (mm) {
462         case ZPOOL_MM_RO:
463                 zs_mm = ZS_MM_RO;
464                 break;
465         case ZPOOL_MM_WO:
466                 zs_mm = ZS_MM_WO;
467                 break;
468         case ZPOOL_MM_RW:
469         default:
470                 zs_mm = ZS_MM_RW;
471                 break;
472         }
473
474         return zs_map_object(pool, handle, zs_mm);
475 }
476 static void zs_zpool_unmap(void *pool, unsigned long handle)
477 {
478         zs_unmap_object(pool, handle);
479 }
480
481 static u64 zs_zpool_total_size(void *pool)
482 {
483         return zs_get_total_pages(pool) << PAGE_SHIFT;
484 }
485
486 static struct zpool_driver zs_zpool_driver = {
487         .type =                   "zsmalloc",
488         .owner =                  THIS_MODULE,
489         .create =                 zs_zpool_create,
490         .destroy =                zs_zpool_destroy,
491         .malloc_support_movable = true,
492         .malloc =                 zs_zpool_malloc,
493         .free =                   zs_zpool_free,
494         .shrink =                 zs_zpool_shrink,
495         .map =                    zs_zpool_map,
496         .unmap =                  zs_zpool_unmap,
497         .total_size =             zs_zpool_total_size,
498 };
499
500 MODULE_ALIAS("zpool-zsmalloc");
501 #endif /* CONFIG_ZPOOL */
502
503 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
504 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
505         .lock   = INIT_LOCAL_LOCK(lock),
506 };
507
508 static __maybe_unused int is_first_page(struct page *page)
509 {
510         return PagePrivate(page);
511 }
512
513 /* Protected by pool->lock */
514 static inline int get_zspage_inuse(struct zspage *zspage)
515 {
516         return zspage->inuse;
517 }
518
519
520 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
521 {
522         zspage->inuse += val;
523 }
524
525 static inline struct page *get_first_page(struct zspage *zspage)
526 {
527         struct page *first_page = zspage->first_page;
528
529         VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
530         return first_page;
531 }
532
533 static inline unsigned int get_first_obj_offset(struct page *page)
534 {
535         return page->page_type;
536 }
537
538 static inline void set_first_obj_offset(struct page *page, unsigned int offset)
539 {
540         page->page_type = offset;
541 }
542
543 static inline unsigned int get_freeobj(struct zspage *zspage)
544 {
545         return zspage->freeobj;
546 }
547
548 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
549 {
550         zspage->freeobj = obj;
551 }
552
553 static void get_zspage_mapping(struct zspage *zspage,
554                                 unsigned int *class_idx,
555                                 enum fullness_group *fullness)
556 {
557         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
558
559         *fullness = zspage->fullness;
560         *class_idx = zspage->class;
561 }
562
563 static struct size_class *zspage_class(struct zs_pool *pool,
564                                              struct zspage *zspage)
565 {
566         return pool->size_class[zspage->class];
567 }
568
569 static void set_zspage_mapping(struct zspage *zspage,
570                                 unsigned int class_idx,
571                                 enum fullness_group fullness)
572 {
573         zspage->class = class_idx;
574         zspage->fullness = fullness;
575 }
576
577 /*
578  * zsmalloc divides the pool into various size classes where each
579  * class maintains a list of zspages where each zspage is divided
580  * into equal sized chunks. Each allocation falls into one of these
581  * classes depending on its size. This function returns index of the
582  * size class which has chunk size big enough to hold the given size.
583  */
584 static int get_size_class_index(int size)
585 {
586         int idx = 0;
587
588         if (likely(size > ZS_MIN_ALLOC_SIZE))
589                 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
590                                 ZS_SIZE_CLASS_DELTA);
591
592         return min_t(int, ZS_SIZE_CLASSES - 1, idx);
593 }
594
595 /* type can be of enum type class_stat_type or fullness_group */
596 static inline void class_stat_inc(struct size_class *class,
597                                 int type, unsigned long cnt)
598 {
599         class->stats.objs[type] += cnt;
600 }
601
602 /* type can be of enum type class_stat_type or fullness_group */
603 static inline void class_stat_dec(struct size_class *class,
604                                 int type, unsigned long cnt)
605 {
606         class->stats.objs[type] -= cnt;
607 }
608
609 /* type can be of enum type class_stat_type or fullness_group */
610 static inline unsigned long zs_stat_get(struct size_class *class,
611                                 int type)
612 {
613         return class->stats.objs[type];
614 }
615
616 #ifdef CONFIG_ZSMALLOC_STAT
617
618 static void __init zs_stat_init(void)
619 {
620         if (!debugfs_initialized()) {
621                 pr_warn("debugfs not available, stat dir not created\n");
622                 return;
623         }
624
625         zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
626 }
627
628 static void __exit zs_stat_exit(void)
629 {
630         debugfs_remove_recursive(zs_stat_root);
631 }
632
633 static unsigned long zs_can_compact(struct size_class *class);
634
635 static int zs_stats_size_show(struct seq_file *s, void *v)
636 {
637         int i;
638         struct zs_pool *pool = s->private;
639         struct size_class *class;
640         int objs_per_zspage;
641         unsigned long class_almost_full, class_almost_empty;
642         unsigned long obj_allocated, obj_used, pages_used, freeable;
643         unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
644         unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
645         unsigned long total_freeable = 0;
646
647         seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
648                         "class", "size", "almost_full", "almost_empty",
649                         "obj_allocated", "obj_used", "pages_used",
650                         "pages_per_zspage", "freeable");
651
652         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
653                 class = pool->size_class[i];
654
655                 if (class->index != i)
656                         continue;
657
658                 spin_lock(&pool->lock);
659                 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
660                 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
661                 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
662                 obj_used = zs_stat_get(class, OBJ_USED);
663                 freeable = zs_can_compact(class);
664                 spin_unlock(&pool->lock);
665
666                 objs_per_zspage = class->objs_per_zspage;
667                 pages_used = obj_allocated / objs_per_zspage *
668                                 class->pages_per_zspage;
669
670                 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
671                                 " %10lu %10lu %16d %8lu\n",
672                         i, class->size, class_almost_full, class_almost_empty,
673                         obj_allocated, obj_used, pages_used,
674                         class->pages_per_zspage, freeable);
675
676                 total_class_almost_full += class_almost_full;
677                 total_class_almost_empty += class_almost_empty;
678                 total_objs += obj_allocated;
679                 total_used_objs += obj_used;
680                 total_pages += pages_used;
681                 total_freeable += freeable;
682         }
683
684         seq_puts(s, "\n");
685         seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
686                         "Total", "", total_class_almost_full,
687                         total_class_almost_empty, total_objs,
688                         total_used_objs, total_pages, "", total_freeable);
689
690         return 0;
691 }
692 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
693
694 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
695 {
696         if (!zs_stat_root) {
697                 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
698                 return;
699         }
700
701         pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
702
703         debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
704                             &zs_stats_size_fops);
705 }
706
707 static void zs_pool_stat_destroy(struct zs_pool *pool)
708 {
709         debugfs_remove_recursive(pool->stat_dentry);
710 }
711
712 #else /* CONFIG_ZSMALLOC_STAT */
713 static void __init zs_stat_init(void)
714 {
715 }
716
717 static void __exit zs_stat_exit(void)
718 {
719 }
720
721 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
722 {
723 }
724
725 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
726 {
727 }
728 #endif
729
730
731 /*
732  * For each size class, zspages are divided into different groups
733  * depending on how "full" they are. This was done so that we could
734  * easily find empty or nearly empty zspages when we try to shrink
735  * the pool (not yet implemented). This function returns fullness
736  * status of the given page.
737  */
738 static enum fullness_group get_fullness_group(struct size_class *class,
739                                                 struct zspage *zspage)
740 {
741         int inuse, objs_per_zspage;
742         enum fullness_group fg;
743
744         inuse = get_zspage_inuse(zspage);
745         objs_per_zspage = class->objs_per_zspage;
746
747         if (inuse == 0)
748                 fg = ZS_EMPTY;
749         else if (inuse == objs_per_zspage)
750                 fg = ZS_FULL;
751         else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
752                 fg = ZS_ALMOST_EMPTY;
753         else
754                 fg = ZS_ALMOST_FULL;
755
756         return fg;
757 }
758
759 /*
760  * Each size class maintains various freelists and zspages are assigned
761  * to one of these freelists based on the number of live objects they
762  * have. This functions inserts the given zspage into the freelist
763  * identified by <class, fullness_group>.
764  */
765 static void insert_zspage(struct size_class *class,
766                                 struct zspage *zspage,
767                                 enum fullness_group fullness)
768 {
769         struct zspage *head;
770
771         class_stat_inc(class, fullness, 1);
772         head = list_first_entry_or_null(&class->fullness_list[fullness],
773                                         struct zspage, list);
774         /*
775          * We want to see more ZS_FULL pages and less almost empty/full.
776          * Put pages with higher ->inuse first.
777          */
778         if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
779                 list_add(&zspage->list, &head->list);
780         else
781                 list_add(&zspage->list, &class->fullness_list[fullness]);
782 }
783
784 /*
785  * This function removes the given zspage from the freelist identified
786  * by <class, fullness_group>.
787  */
788 static void remove_zspage(struct size_class *class,
789                                 struct zspage *zspage,
790                                 enum fullness_group fullness)
791 {
792         VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
793
794         list_del_init(&zspage->list);
795         class_stat_dec(class, fullness, 1);
796 }
797
798 /*
799  * Each size class maintains zspages in different fullness groups depending
800  * on the number of live objects they contain. When allocating or freeing
801  * objects, the fullness status of the page can change, say, from ALMOST_FULL
802  * to ALMOST_EMPTY when freeing an object. This function checks if such
803  * a status change has occurred for the given page and accordingly moves the
804  * page from the freelist of the old fullness group to that of the new
805  * fullness group.
806  */
807 static enum fullness_group fix_fullness_group(struct size_class *class,
808                                                 struct zspage *zspage)
809 {
810         int class_idx;
811         enum fullness_group currfg, newfg;
812
813         get_zspage_mapping(zspage, &class_idx, &currfg);
814         newfg = get_fullness_group(class, zspage);
815         if (newfg == currfg)
816                 goto out;
817
818         remove_zspage(class, zspage, currfg);
819         insert_zspage(class, zspage, newfg);
820         set_zspage_mapping(zspage, class_idx, newfg);
821 out:
822         return newfg;
823 }
824
825 /*
826  * We have to decide on how many pages to link together
827  * to form a zspage for each size class. This is important
828  * to reduce wastage due to unusable space left at end of
829  * each zspage which is given as:
830  *     wastage = Zp % class_size
831  *     usage = Zp - wastage
832  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
833  *
834  * For example, for size class of 3/8 * PAGE_SIZE, we should
835  * link together 3 PAGE_SIZE sized pages to form a zspage
836  * since then we can perfectly fit in 8 such objects.
837  */
838 static int get_pages_per_zspage(int class_size)
839 {
840         int i, max_usedpc = 0;
841         /* zspage order which gives maximum used size per KB */
842         int max_usedpc_order = 1;
843
844         for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
845                 int zspage_size;
846                 int waste, usedpc;
847
848                 zspage_size = i * PAGE_SIZE;
849                 waste = zspage_size % class_size;
850                 usedpc = (zspage_size - waste) * 100 / zspage_size;
851
852                 if (usedpc > max_usedpc) {
853                         max_usedpc = usedpc;
854                         max_usedpc_order = i;
855                 }
856         }
857
858         return max_usedpc_order;
859 }
860
861 static struct zspage *get_zspage(struct page *page)
862 {
863         struct zspage *zspage = (struct zspage *)page_private(page);
864
865         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
866         return zspage;
867 }
868
869 static struct page *get_next_page(struct page *page)
870 {
871         struct zspage *zspage = get_zspage(page);
872
873         if (unlikely(ZsHugePage(zspage)))
874                 return NULL;
875
876         return (struct page *)page->index;
877 }
878
879 /**
880  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
881  * @obj: the encoded object value
882  * @page: page object resides in zspage
883  * @obj_idx: object index
884  */
885 static void obj_to_location(unsigned long obj, struct page **page,
886                                 unsigned int *obj_idx)
887 {
888         obj >>= OBJ_TAG_BITS;
889         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
890         *obj_idx = (obj & OBJ_INDEX_MASK);
891 }
892
893 static void obj_to_page(unsigned long obj, struct page **page)
894 {
895         obj >>= OBJ_TAG_BITS;
896         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
897 }
898
899 /**
900  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
901  * @page: page object resides in zspage
902  * @obj_idx: object index
903  */
904 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
905 {
906         unsigned long obj;
907
908         obj = page_to_pfn(page) << OBJ_INDEX_BITS;
909         obj |= obj_idx & OBJ_INDEX_MASK;
910         obj <<= OBJ_TAG_BITS;
911
912         return obj;
913 }
914
915 static unsigned long handle_to_obj(unsigned long handle)
916 {
917         return *(unsigned long *)handle;
918 }
919
920 static bool obj_tagged(struct page *page, void *obj, unsigned long *phandle,
921                 int tag)
922 {
923         unsigned long handle;
924         struct zspage *zspage = get_zspage(page);
925
926         if (unlikely(ZsHugePage(zspage))) {
927                 VM_BUG_ON_PAGE(!is_first_page(page), page);
928                 handle = page->index;
929         } else
930                 handle = *(unsigned long *)obj;
931
932         if (!(handle & tag))
933                 return false;
934
935         /* Clear all tags before returning the handle */
936         *phandle = handle & ~OBJ_TAG_MASK;
937         return true;
938 }
939
940 static inline bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
941 {
942         return obj_tagged(page, obj, phandle, OBJ_ALLOCATED_TAG);
943 }
944
945 #ifdef CONFIG_ZPOOL
946 static bool obj_stores_deferred_handle(struct page *page, void *obj,
947                 unsigned long *phandle)
948 {
949         return obj_tagged(page, obj, phandle, OBJ_DEFERRED_HANDLE_TAG);
950 }
951 #endif
952
953 static void reset_page(struct page *page)
954 {
955         __ClearPageMovable(page);
956         ClearPagePrivate(page);
957         set_page_private(page, 0);
958         page_mapcount_reset(page);
959         page->index = 0;
960 }
961
962 static int trylock_zspage(struct zspage *zspage)
963 {
964         struct page *cursor, *fail;
965
966         for (cursor = get_first_page(zspage); cursor != NULL; cursor =
967                                         get_next_page(cursor)) {
968                 if (!trylock_page(cursor)) {
969                         fail = cursor;
970                         goto unlock;
971                 }
972         }
973
974         return 1;
975 unlock:
976         for (cursor = get_first_page(zspage); cursor != fail; cursor =
977                                         get_next_page(cursor))
978                 unlock_page(cursor);
979
980         return 0;
981 }
982
983 #ifdef CONFIG_ZPOOL
984 static unsigned long find_deferred_handle_obj(struct size_class *class,
985                 struct page *page, int *obj_idx);
986
987 /*
988  * Free all the deferred handles whose objects are freed in zs_free.
989  */
990 static void free_handles(struct zs_pool *pool, struct size_class *class,
991                 struct zspage *zspage)
992 {
993         int obj_idx = 0;
994         struct page *page = get_first_page(zspage);
995         unsigned long handle;
996
997         while (1) {
998                 handle = find_deferred_handle_obj(class, page, &obj_idx);
999                 if (!handle) {
1000                         page = get_next_page(page);
1001                         if (!page)
1002                                 break;
1003                         obj_idx = 0;
1004                         continue;
1005                 }
1006
1007                 cache_free_handle(pool, handle);
1008                 obj_idx++;
1009         }
1010 }
1011 #else
1012 static inline void free_handles(struct zs_pool *pool, struct size_class *class,
1013                 struct zspage *zspage) {}
1014 #endif
1015
1016 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
1017                                 struct zspage *zspage)
1018 {
1019         struct page *page, *next;
1020         enum fullness_group fg;
1021         unsigned int class_idx;
1022
1023         get_zspage_mapping(zspage, &class_idx, &fg);
1024
1025         assert_spin_locked(&pool->lock);
1026
1027         VM_BUG_ON(get_zspage_inuse(zspage));
1028         VM_BUG_ON(fg != ZS_EMPTY);
1029
1030         /* Free all deferred handles from zs_free */
1031         free_handles(pool, class, zspage);
1032
1033         next = page = get_first_page(zspage);
1034         do {
1035                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1036                 next = get_next_page(page);
1037                 reset_page(page);
1038                 unlock_page(page);
1039                 dec_zone_page_state(page, NR_ZSPAGES);
1040                 put_page(page);
1041                 page = next;
1042         } while (page != NULL);
1043
1044         cache_free_zspage(pool, zspage);
1045
1046         class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
1047         atomic_long_sub(class->pages_per_zspage,
1048                                         &pool->pages_allocated);
1049 }
1050
1051 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1052                                 struct zspage *zspage)
1053 {
1054         VM_BUG_ON(get_zspage_inuse(zspage));
1055         VM_BUG_ON(list_empty(&zspage->list));
1056
1057         /*
1058          * Since zs_free couldn't be sleepable, this function cannot call
1059          * lock_page. The page locks trylock_zspage got will be released
1060          * by __free_zspage.
1061          */
1062         if (!trylock_zspage(zspage)) {
1063                 kick_deferred_free(pool);
1064                 return;
1065         }
1066
1067         remove_zspage(class, zspage, ZS_EMPTY);
1068 #ifdef CONFIG_ZPOOL
1069         list_del(&zspage->lru);
1070 #endif
1071         __free_zspage(pool, class, zspage);
1072 }
1073
1074 /* Initialize a newly allocated zspage */
1075 static void init_zspage(struct size_class *class, struct zspage *zspage)
1076 {
1077         unsigned int freeobj = 1;
1078         unsigned long off = 0;
1079         struct page *page = get_first_page(zspage);
1080
1081         while (page) {
1082                 struct page *next_page;
1083                 struct link_free *link;
1084                 void *vaddr;
1085
1086                 set_first_obj_offset(page, off);
1087
1088                 vaddr = kmap_atomic(page);
1089                 link = (struct link_free *)vaddr + off / sizeof(*link);
1090
1091                 while ((off += class->size) < PAGE_SIZE) {
1092                         link->next = freeobj++ << OBJ_TAG_BITS;
1093                         link += class->size / sizeof(*link);
1094                 }
1095
1096                 /*
1097                  * We now come to the last (full or partial) object on this
1098                  * page, which must point to the first object on the next
1099                  * page (if present)
1100                  */
1101                 next_page = get_next_page(page);
1102                 if (next_page) {
1103                         link->next = freeobj++ << OBJ_TAG_BITS;
1104                 } else {
1105                         /*
1106                          * Reset OBJ_TAG_BITS bit to last link to tell
1107                          * whether it's allocated object or not.
1108                          */
1109                         link->next = -1UL << OBJ_TAG_BITS;
1110                 }
1111                 kunmap_atomic(vaddr);
1112                 page = next_page;
1113                 off %= PAGE_SIZE;
1114         }
1115
1116 #ifdef CONFIG_ZPOOL
1117         INIT_LIST_HEAD(&zspage->lru);
1118         zspage->under_reclaim = false;
1119 #endif
1120
1121         set_freeobj(zspage, 0);
1122 }
1123
1124 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1125                                 struct page *pages[])
1126 {
1127         int i;
1128         struct page *page;
1129         struct page *prev_page = NULL;
1130         int nr_pages = class->pages_per_zspage;
1131
1132         /*
1133          * Allocate individual pages and link them together as:
1134          * 1. all pages are linked together using page->index
1135          * 2. each sub-page point to zspage using page->private
1136          *
1137          * we set PG_private to identify the first page (i.e. no other sub-page
1138          * has this flag set).
1139          */
1140         for (i = 0; i < nr_pages; i++) {
1141                 page = pages[i];
1142                 set_page_private(page, (unsigned long)zspage);
1143                 page->index = 0;
1144                 if (i == 0) {
1145                         zspage->first_page = page;
1146                         SetPagePrivate(page);
1147                         if (unlikely(class->objs_per_zspage == 1 &&
1148                                         class->pages_per_zspage == 1))
1149                                 SetZsHugePage(zspage);
1150                 } else {
1151                         prev_page->index = (unsigned long)page;
1152                 }
1153                 prev_page = page;
1154         }
1155 }
1156
1157 /*
1158  * Allocate a zspage for the given size class
1159  */
1160 static struct zspage *alloc_zspage(struct zs_pool *pool,
1161                                         struct size_class *class,
1162                                         gfp_t gfp)
1163 {
1164         int i;
1165         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1166         struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1167
1168         if (!zspage)
1169                 return NULL;
1170
1171         zspage->magic = ZSPAGE_MAGIC;
1172         migrate_lock_init(zspage);
1173
1174         for (i = 0; i < class->pages_per_zspage; i++) {
1175                 struct page *page;
1176
1177                 page = alloc_page(gfp);
1178                 if (!page) {
1179                         while (--i >= 0) {
1180                                 dec_zone_page_state(pages[i], NR_ZSPAGES);
1181                                 __free_page(pages[i]);
1182                         }
1183                         cache_free_zspage(pool, zspage);
1184                         return NULL;
1185                 }
1186
1187                 inc_zone_page_state(page, NR_ZSPAGES);
1188                 pages[i] = page;
1189         }
1190
1191         create_page_chain(class, zspage, pages);
1192         init_zspage(class, zspage);
1193         zspage->pool = pool;
1194
1195         return zspage;
1196 }
1197
1198 static struct zspage *find_get_zspage(struct size_class *class)
1199 {
1200         int i;
1201         struct zspage *zspage;
1202
1203         for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1204                 zspage = list_first_entry_or_null(&class->fullness_list[i],
1205                                 struct zspage, list);
1206                 if (zspage)
1207                         break;
1208         }
1209
1210         return zspage;
1211 }
1212
1213 static inline int __zs_cpu_up(struct mapping_area *area)
1214 {
1215         /*
1216          * Make sure we don't leak memory if a cpu UP notification
1217          * and zs_init() race and both call zs_cpu_up() on the same cpu
1218          */
1219         if (area->vm_buf)
1220                 return 0;
1221         area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1222         if (!area->vm_buf)
1223                 return -ENOMEM;
1224         return 0;
1225 }
1226
1227 static inline void __zs_cpu_down(struct mapping_area *area)
1228 {
1229         kfree(area->vm_buf);
1230         area->vm_buf = NULL;
1231 }
1232
1233 static void *__zs_map_object(struct mapping_area *area,
1234                         struct page *pages[2], int off, int size)
1235 {
1236         int sizes[2];
1237         void *addr;
1238         char *buf = area->vm_buf;
1239
1240         /* disable page faults to match kmap_atomic() return conditions */
1241         pagefault_disable();
1242
1243         /* no read fastpath */
1244         if (area->vm_mm == ZS_MM_WO)
1245                 goto out;
1246
1247         sizes[0] = PAGE_SIZE - off;
1248         sizes[1] = size - sizes[0];
1249
1250         /* copy object to per-cpu buffer */
1251         addr = kmap_atomic(pages[0]);
1252         memcpy(buf, addr + off, sizes[0]);
1253         kunmap_atomic(addr);
1254         addr = kmap_atomic(pages[1]);
1255         memcpy(buf + sizes[0], addr, sizes[1]);
1256         kunmap_atomic(addr);
1257 out:
1258         return area->vm_buf;
1259 }
1260
1261 static void __zs_unmap_object(struct mapping_area *area,
1262                         struct page *pages[2], int off, int size)
1263 {
1264         int sizes[2];
1265         void *addr;
1266         char *buf;
1267
1268         /* no write fastpath */
1269         if (area->vm_mm == ZS_MM_RO)
1270                 goto out;
1271
1272         buf = area->vm_buf;
1273         buf = buf + ZS_HANDLE_SIZE;
1274         size -= ZS_HANDLE_SIZE;
1275         off += ZS_HANDLE_SIZE;
1276
1277         sizes[0] = PAGE_SIZE - off;
1278         sizes[1] = size - sizes[0];
1279
1280         /* copy per-cpu buffer to object */
1281         addr = kmap_atomic(pages[0]);
1282         memcpy(addr + off, buf, sizes[0]);
1283         kunmap_atomic(addr);
1284         addr = kmap_atomic(pages[1]);
1285         memcpy(addr, buf + sizes[0], sizes[1]);
1286         kunmap_atomic(addr);
1287
1288 out:
1289         /* enable page faults to match kunmap_atomic() return conditions */
1290         pagefault_enable();
1291 }
1292
1293 static int zs_cpu_prepare(unsigned int cpu)
1294 {
1295         struct mapping_area *area;
1296
1297         area = &per_cpu(zs_map_area, cpu);
1298         return __zs_cpu_up(area);
1299 }
1300
1301 static int zs_cpu_dead(unsigned int cpu)
1302 {
1303         struct mapping_area *area;
1304
1305         area = &per_cpu(zs_map_area, cpu);
1306         __zs_cpu_down(area);
1307         return 0;
1308 }
1309
1310 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1311                                         int objs_per_zspage)
1312 {
1313         if (prev->pages_per_zspage == pages_per_zspage &&
1314                 prev->objs_per_zspage == objs_per_zspage)
1315                 return true;
1316
1317         return false;
1318 }
1319
1320 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1321 {
1322         return get_zspage_inuse(zspage) == class->objs_per_zspage;
1323 }
1324
1325 /**
1326  * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1327  * that hold objects of the provided size.
1328  * @pool: zsmalloc pool to use
1329  * @size: object size
1330  *
1331  * Context: Any context.
1332  *
1333  * Return: the index of the zsmalloc &size_class that hold objects of the
1334  * provided size.
1335  */
1336 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1337 {
1338         struct size_class *class;
1339
1340         class = pool->size_class[get_size_class_index(size)];
1341
1342         return class->index;
1343 }
1344 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1345
1346 unsigned long zs_get_total_pages(struct zs_pool *pool)
1347 {
1348         return atomic_long_read(&pool->pages_allocated);
1349 }
1350 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1351
1352 /**
1353  * zs_map_object - get address of allocated object from handle.
1354  * @pool: pool from which the object was allocated
1355  * @handle: handle returned from zs_malloc
1356  * @mm: mapping mode to use
1357  *
1358  * Before using an object allocated from zs_malloc, it must be mapped using
1359  * this function. When done with the object, it must be unmapped using
1360  * zs_unmap_object.
1361  *
1362  * Only one object can be mapped per cpu at a time. There is no protection
1363  * against nested mappings.
1364  *
1365  * This function returns with preemption and page faults disabled.
1366  */
1367 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1368                         enum zs_mapmode mm)
1369 {
1370         struct zspage *zspage;
1371         struct page *page;
1372         unsigned long obj, off;
1373         unsigned int obj_idx;
1374
1375         struct size_class *class;
1376         struct mapping_area *area;
1377         struct page *pages[2];
1378         void *ret;
1379
1380         /*
1381          * Because we use per-cpu mapping areas shared among the
1382          * pools/users, we can't allow mapping in interrupt context
1383          * because it can corrupt another users mappings.
1384          */
1385         BUG_ON(in_interrupt());
1386
1387         /* It guarantees it can get zspage from handle safely */
1388         spin_lock(&pool->lock);
1389         obj = handle_to_obj(handle);
1390         obj_to_location(obj, &page, &obj_idx);
1391         zspage = get_zspage(page);
1392
1393 #ifdef CONFIG_ZPOOL
1394         /*
1395          * Move the zspage to front of pool's LRU.
1396          *
1397          * Note that this is swap-specific, so by definition there are no ongoing
1398          * accesses to the memory while the page is swapped out that would make
1399          * it "hot". A new entry is hot, then ages to the tail until it gets either
1400          * written back or swaps back in.
1401          *
1402          * Furthermore, map is also called during writeback. We must not put an
1403          * isolated page on the LRU mid-reclaim.
1404          *
1405          * As a result, only update the LRU when the page is mapped for write
1406          * when it's first instantiated.
1407          *
1408          * This is a deviation from the other backends, which perform this update
1409          * in the allocation function (zbud_alloc, z3fold_alloc).
1410          */
1411         if (mm == ZS_MM_WO) {
1412                 if (!list_empty(&zspage->lru))
1413                         list_del(&zspage->lru);
1414                 list_add(&zspage->lru, &pool->lru);
1415         }
1416 #endif
1417
1418         /*
1419          * migration cannot move any zpages in this zspage. Here, pool->lock
1420          * is too heavy since callers would take some time until they calls
1421          * zs_unmap_object API so delegate the locking from class to zspage
1422          * which is smaller granularity.
1423          */
1424         migrate_read_lock(zspage);
1425         spin_unlock(&pool->lock);
1426
1427         class = zspage_class(pool, zspage);
1428         off = (class->size * obj_idx) & ~PAGE_MASK;
1429
1430         local_lock(&zs_map_area.lock);
1431         area = this_cpu_ptr(&zs_map_area);
1432         area->vm_mm = mm;
1433         if (off + class->size <= PAGE_SIZE) {
1434                 /* this object is contained entirely within a page */
1435                 area->vm_addr = kmap_atomic(page);
1436                 ret = area->vm_addr + off;
1437                 goto out;
1438         }
1439
1440         /* this object spans two pages */
1441         pages[0] = page;
1442         pages[1] = get_next_page(page);
1443         BUG_ON(!pages[1]);
1444
1445         ret = __zs_map_object(area, pages, off, class->size);
1446 out:
1447         if (likely(!ZsHugePage(zspage)))
1448                 ret += ZS_HANDLE_SIZE;
1449
1450         return ret;
1451 }
1452 EXPORT_SYMBOL_GPL(zs_map_object);
1453
1454 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1455 {
1456         struct zspage *zspage;
1457         struct page *page;
1458         unsigned long obj, off;
1459         unsigned int obj_idx;
1460
1461         struct size_class *class;
1462         struct mapping_area *area;
1463
1464         obj = handle_to_obj(handle);
1465         obj_to_location(obj, &page, &obj_idx);
1466         zspage = get_zspage(page);
1467         class = zspage_class(pool, zspage);
1468         off = (class->size * obj_idx) & ~PAGE_MASK;
1469
1470         area = this_cpu_ptr(&zs_map_area);
1471         if (off + class->size <= PAGE_SIZE)
1472                 kunmap_atomic(area->vm_addr);
1473         else {
1474                 struct page *pages[2];
1475
1476                 pages[0] = page;
1477                 pages[1] = get_next_page(page);
1478                 BUG_ON(!pages[1]);
1479
1480                 __zs_unmap_object(area, pages, off, class->size);
1481         }
1482         local_unlock(&zs_map_area.lock);
1483
1484         migrate_read_unlock(zspage);
1485 }
1486 EXPORT_SYMBOL_GPL(zs_unmap_object);
1487
1488 /**
1489  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1490  *                        zsmalloc &size_class.
1491  * @pool: zsmalloc pool to use
1492  *
1493  * The function returns the size of the first huge class - any object of equal
1494  * or bigger size will be stored in zspage consisting of a single physical
1495  * page.
1496  *
1497  * Context: Any context.
1498  *
1499  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1500  */
1501 size_t zs_huge_class_size(struct zs_pool *pool)
1502 {
1503         return huge_class_size;
1504 }
1505 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1506
1507 static unsigned long obj_malloc(struct zs_pool *pool,
1508                                 struct zspage *zspage, unsigned long handle)
1509 {
1510         int i, nr_page, offset;
1511         unsigned long obj;
1512         struct link_free *link;
1513         struct size_class *class;
1514
1515         struct page *m_page;
1516         unsigned long m_offset;
1517         void *vaddr;
1518
1519         class = pool->size_class[zspage->class];
1520         handle |= OBJ_ALLOCATED_TAG;
1521         obj = get_freeobj(zspage);
1522
1523         offset = obj * class->size;
1524         nr_page = offset >> PAGE_SHIFT;
1525         m_offset = offset & ~PAGE_MASK;
1526         m_page = get_first_page(zspage);
1527
1528         for (i = 0; i < nr_page; i++)
1529                 m_page = get_next_page(m_page);
1530
1531         vaddr = kmap_atomic(m_page);
1532         link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1533         set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1534         if (likely(!ZsHugePage(zspage)))
1535                 /* record handle in the header of allocated chunk */
1536                 link->handle = handle;
1537         else
1538                 /* record handle to page->index */
1539                 zspage->first_page->index = handle;
1540
1541         kunmap_atomic(vaddr);
1542         mod_zspage_inuse(zspage, 1);
1543
1544         obj = location_to_obj(m_page, obj);
1545
1546         return obj;
1547 }
1548
1549
1550 /**
1551  * zs_malloc - Allocate block of given size from pool.
1552  * @pool: pool to allocate from
1553  * @size: size of block to allocate
1554  * @gfp: gfp flags when allocating object
1555  *
1556  * On success, handle to the allocated object is returned,
1557  * otherwise an ERR_PTR().
1558  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1559  */
1560 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1561 {
1562         unsigned long handle, obj;
1563         struct size_class *class;
1564         enum fullness_group newfg;
1565         struct zspage *zspage;
1566
1567         if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1568                 return (unsigned long)ERR_PTR(-EINVAL);
1569
1570         handle = cache_alloc_handle(pool, gfp);
1571         if (!handle)
1572                 return (unsigned long)ERR_PTR(-ENOMEM);
1573
1574         /* extra space in chunk to keep the handle */
1575         size += ZS_HANDLE_SIZE;
1576         class = pool->size_class[get_size_class_index(size)];
1577
1578         /* pool->lock effectively protects the zpage migration */
1579         spin_lock(&pool->lock);
1580         zspage = find_get_zspage(class);
1581         if (likely(zspage)) {
1582                 obj = obj_malloc(pool, zspage, handle);
1583                 /* Now move the zspage to another fullness group, if required */
1584                 fix_fullness_group(class, zspage);
1585                 record_obj(handle, obj);
1586                 class_stat_inc(class, OBJ_USED, 1);
1587                 spin_unlock(&pool->lock);
1588
1589                 return handle;
1590         }
1591
1592         spin_unlock(&pool->lock);
1593
1594         zspage = alloc_zspage(pool, class, gfp);
1595         if (!zspage) {
1596                 cache_free_handle(pool, handle);
1597                 return (unsigned long)ERR_PTR(-ENOMEM);
1598         }
1599
1600         spin_lock(&pool->lock);
1601         obj = obj_malloc(pool, zspage, handle);
1602         newfg = get_fullness_group(class, zspage);
1603         insert_zspage(class, zspage, newfg);
1604         set_zspage_mapping(zspage, class->index, newfg);
1605         record_obj(handle, obj);
1606         atomic_long_add(class->pages_per_zspage,
1607                                 &pool->pages_allocated);
1608         class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1609         class_stat_inc(class, OBJ_USED, 1);
1610
1611         /* We completely set up zspage so mark them as movable */
1612         SetZsPageMovable(pool, zspage);
1613         spin_unlock(&pool->lock);
1614
1615         return handle;
1616 }
1617 EXPORT_SYMBOL_GPL(zs_malloc);
1618
1619 static void obj_free(int class_size, unsigned long obj, unsigned long *handle)
1620 {
1621         struct link_free *link;
1622         struct zspage *zspage;
1623         struct page *f_page;
1624         unsigned long f_offset;
1625         unsigned int f_objidx;
1626         void *vaddr;
1627
1628         obj_to_location(obj, &f_page, &f_objidx);
1629         f_offset = (class_size * f_objidx) & ~PAGE_MASK;
1630         zspage = get_zspage(f_page);
1631
1632         vaddr = kmap_atomic(f_page);
1633         link = (struct link_free *)(vaddr + f_offset);
1634
1635         if (handle) {
1636 #ifdef CONFIG_ZPOOL
1637                 /* Stores the (deferred) handle in the object's header */
1638                 *handle |= OBJ_DEFERRED_HANDLE_TAG;
1639                 *handle &= ~OBJ_ALLOCATED_TAG;
1640
1641                 if (likely(!ZsHugePage(zspage)))
1642                         link->deferred_handle = *handle;
1643                 else
1644                         f_page->index = *handle;
1645 #endif
1646         } else {
1647                 /* Insert this object in containing zspage's freelist */
1648                 if (likely(!ZsHugePage(zspage)))
1649                         link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1650                 else
1651                         f_page->index = 0;
1652                 set_freeobj(zspage, f_objidx);
1653         }
1654
1655         kunmap_atomic(vaddr);
1656         mod_zspage_inuse(zspage, -1);
1657 }
1658
1659 void zs_free(struct zs_pool *pool, unsigned long handle)
1660 {
1661         struct zspage *zspage;
1662         struct page *f_page;
1663         unsigned long obj;
1664         struct size_class *class;
1665         enum fullness_group fullness;
1666
1667         if (IS_ERR_OR_NULL((void *)handle))
1668                 return;
1669
1670         /*
1671          * The pool->lock protects the race with zpage's migration
1672          * so it's safe to get the page from handle.
1673          */
1674         spin_lock(&pool->lock);
1675         obj = handle_to_obj(handle);
1676         obj_to_page(obj, &f_page);
1677         zspage = get_zspage(f_page);
1678         class = zspage_class(pool, zspage);
1679
1680         class_stat_dec(class, OBJ_USED, 1);
1681
1682 #ifdef CONFIG_ZPOOL
1683         if (zspage->under_reclaim) {
1684                 /*
1685                  * Reclaim needs the handles during writeback. It'll free
1686                  * them along with the zspage when it's done with them.
1687                  *
1688                  * Record current deferred handle in the object's header.
1689                  */
1690                 obj_free(class->size, obj, &handle);
1691                 spin_unlock(&pool->lock);
1692                 return;
1693         }
1694 #endif
1695         obj_free(class->size, obj, NULL);
1696
1697         fullness = fix_fullness_group(class, zspage);
1698         if (fullness == ZS_EMPTY)
1699                 free_zspage(pool, class, zspage);
1700
1701         spin_unlock(&pool->lock);
1702         cache_free_handle(pool, handle);
1703 }
1704 EXPORT_SYMBOL_GPL(zs_free);
1705
1706 static void zs_object_copy(struct size_class *class, unsigned long dst,
1707                                 unsigned long src)
1708 {
1709         struct page *s_page, *d_page;
1710         unsigned int s_objidx, d_objidx;
1711         unsigned long s_off, d_off;
1712         void *s_addr, *d_addr;
1713         int s_size, d_size, size;
1714         int written = 0;
1715
1716         s_size = d_size = class->size;
1717
1718         obj_to_location(src, &s_page, &s_objidx);
1719         obj_to_location(dst, &d_page, &d_objidx);
1720
1721         s_off = (class->size * s_objidx) & ~PAGE_MASK;
1722         d_off = (class->size * d_objidx) & ~PAGE_MASK;
1723
1724         if (s_off + class->size > PAGE_SIZE)
1725                 s_size = PAGE_SIZE - s_off;
1726
1727         if (d_off + class->size > PAGE_SIZE)
1728                 d_size = PAGE_SIZE - d_off;
1729
1730         s_addr = kmap_atomic(s_page);
1731         d_addr = kmap_atomic(d_page);
1732
1733         while (1) {
1734                 size = min(s_size, d_size);
1735                 memcpy(d_addr + d_off, s_addr + s_off, size);
1736                 written += size;
1737
1738                 if (written == class->size)
1739                         break;
1740
1741                 s_off += size;
1742                 s_size -= size;
1743                 d_off += size;
1744                 d_size -= size;
1745
1746                 /*
1747                  * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1748                  * calls must occurs in reverse order of calls to kmap_atomic().
1749                  * So, to call kunmap_atomic(s_addr) we should first call
1750                  * kunmap_atomic(d_addr). For more details see
1751                  * Documentation/mm/highmem.rst.
1752                  */
1753                 if (s_off >= PAGE_SIZE) {
1754                         kunmap_atomic(d_addr);
1755                         kunmap_atomic(s_addr);
1756                         s_page = get_next_page(s_page);
1757                         s_addr = kmap_atomic(s_page);
1758                         d_addr = kmap_atomic(d_page);
1759                         s_size = class->size - written;
1760                         s_off = 0;
1761                 }
1762
1763                 if (d_off >= PAGE_SIZE) {
1764                         kunmap_atomic(d_addr);
1765                         d_page = get_next_page(d_page);
1766                         d_addr = kmap_atomic(d_page);
1767                         d_size = class->size - written;
1768                         d_off = 0;
1769                 }
1770         }
1771
1772         kunmap_atomic(d_addr);
1773         kunmap_atomic(s_addr);
1774 }
1775
1776 /*
1777  * Find object with a certain tag in zspage from index object and
1778  * return handle.
1779  */
1780 static unsigned long find_tagged_obj(struct size_class *class,
1781                                         struct page *page, int *obj_idx, int tag)
1782 {
1783         unsigned int offset;
1784         int index = *obj_idx;
1785         unsigned long handle = 0;
1786         void *addr = kmap_atomic(page);
1787
1788         offset = get_first_obj_offset(page);
1789         offset += class->size * index;
1790
1791         while (offset < PAGE_SIZE) {
1792                 if (obj_tagged(page, addr + offset, &handle, tag))
1793                         break;
1794
1795                 offset += class->size;
1796                 index++;
1797         }
1798
1799         kunmap_atomic(addr);
1800
1801         *obj_idx = index;
1802
1803         return handle;
1804 }
1805
1806 /*
1807  * Find alloced object in zspage from index object and
1808  * return handle.
1809  */
1810 static unsigned long find_alloced_obj(struct size_class *class,
1811                                         struct page *page, int *obj_idx)
1812 {
1813         return find_tagged_obj(class, page, obj_idx, OBJ_ALLOCATED_TAG);
1814 }
1815
1816 #ifdef CONFIG_ZPOOL
1817 /*
1818  * Find object storing a deferred handle in header in zspage from index object
1819  * and return handle.
1820  */
1821 static unsigned long find_deferred_handle_obj(struct size_class *class,
1822                 struct page *page, int *obj_idx)
1823 {
1824         return find_tagged_obj(class, page, obj_idx, OBJ_DEFERRED_HANDLE_TAG);
1825 }
1826 #endif
1827
1828 struct zs_compact_control {
1829         /* Source spage for migration which could be a subpage of zspage */
1830         struct page *s_page;
1831         /* Destination page for migration which should be a first page
1832          * of zspage. */
1833         struct page *d_page;
1834          /* Starting object index within @s_page which used for live object
1835           * in the subpage. */
1836         int obj_idx;
1837 };
1838
1839 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1840                                 struct zs_compact_control *cc)
1841 {
1842         unsigned long used_obj, free_obj;
1843         unsigned long handle;
1844         struct page *s_page = cc->s_page;
1845         struct page *d_page = cc->d_page;
1846         int obj_idx = cc->obj_idx;
1847         int ret = 0;
1848
1849         while (1) {
1850                 handle = find_alloced_obj(class, s_page, &obj_idx);
1851                 if (!handle) {
1852                         s_page = get_next_page(s_page);
1853                         if (!s_page)
1854                                 break;
1855                         obj_idx = 0;
1856                         continue;
1857                 }
1858
1859                 /* Stop if there is no more space */
1860                 if (zspage_full(class, get_zspage(d_page))) {
1861                         ret = -ENOMEM;
1862                         break;
1863                 }
1864
1865                 used_obj = handle_to_obj(handle);
1866                 free_obj = obj_malloc(pool, get_zspage(d_page), handle);
1867                 zs_object_copy(class, free_obj, used_obj);
1868                 obj_idx++;
1869                 record_obj(handle, free_obj);
1870                 obj_free(class->size, used_obj, NULL);
1871         }
1872
1873         /* Remember last position in this iteration */
1874         cc->s_page = s_page;
1875         cc->obj_idx = obj_idx;
1876
1877         return ret;
1878 }
1879
1880 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1881 {
1882         int i;
1883         struct zspage *zspage;
1884         enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1885
1886         if (!source) {
1887                 fg[0] = ZS_ALMOST_FULL;
1888                 fg[1] = ZS_ALMOST_EMPTY;
1889         }
1890
1891         for (i = 0; i < 2; i++) {
1892                 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1893                                                         struct zspage, list);
1894                 if (zspage) {
1895                         remove_zspage(class, zspage, fg[i]);
1896                         return zspage;
1897                 }
1898         }
1899
1900         return zspage;
1901 }
1902
1903 /*
1904  * putback_zspage - add @zspage into right class's fullness list
1905  * @class: destination class
1906  * @zspage: target page
1907  *
1908  * Return @zspage's fullness_group
1909  */
1910 static enum fullness_group putback_zspage(struct size_class *class,
1911                         struct zspage *zspage)
1912 {
1913         enum fullness_group fullness;
1914
1915         fullness = get_fullness_group(class, zspage);
1916         insert_zspage(class, zspage, fullness);
1917         set_zspage_mapping(zspage, class->index, fullness);
1918
1919         return fullness;
1920 }
1921
1922 #if defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION)
1923 /*
1924  * To prevent zspage destroy during migration, zspage freeing should
1925  * hold locks of all pages in the zspage.
1926  */
1927 static void lock_zspage(struct zspage *zspage)
1928 {
1929         struct page *curr_page, *page;
1930
1931         /*
1932          * Pages we haven't locked yet can be migrated off the list while we're
1933          * trying to lock them, so we need to be careful and only attempt to
1934          * lock each page under migrate_read_lock(). Otherwise, the page we lock
1935          * may no longer belong to the zspage. This means that we may wait for
1936          * the wrong page to unlock, so we must take a reference to the page
1937          * prior to waiting for it to unlock outside migrate_read_lock().
1938          */
1939         while (1) {
1940                 migrate_read_lock(zspage);
1941                 page = get_first_page(zspage);
1942                 if (trylock_page(page))
1943                         break;
1944                 get_page(page);
1945                 migrate_read_unlock(zspage);
1946                 wait_on_page_locked(page);
1947                 put_page(page);
1948         }
1949
1950         curr_page = page;
1951         while ((page = get_next_page(curr_page))) {
1952                 if (trylock_page(page)) {
1953                         curr_page = page;
1954                 } else {
1955                         get_page(page);
1956                         migrate_read_unlock(zspage);
1957                         wait_on_page_locked(page);
1958                         put_page(page);
1959                         migrate_read_lock(zspage);
1960                 }
1961         }
1962         migrate_read_unlock(zspage);
1963 }
1964 #endif /* defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION) */
1965
1966 #ifdef CONFIG_ZPOOL
1967 /*
1968  * Unlocks all the pages of the zspage.
1969  *
1970  * pool->lock must be held before this function is called
1971  * to prevent the underlying pages from migrating.
1972  */
1973 static void unlock_zspage(struct zspage *zspage)
1974 {
1975         struct page *page = get_first_page(zspage);
1976
1977         do {
1978                 unlock_page(page);
1979         } while ((page = get_next_page(page)) != NULL);
1980 }
1981 #endif /* CONFIG_ZPOOL */
1982
1983 static void migrate_lock_init(struct zspage *zspage)
1984 {
1985         rwlock_init(&zspage->lock);
1986 }
1987
1988 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1989 {
1990         read_lock(&zspage->lock);
1991 }
1992
1993 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1994 {
1995         read_unlock(&zspage->lock);
1996 }
1997
1998 #ifdef CONFIG_COMPACTION
1999 static void migrate_write_lock(struct zspage *zspage)
2000 {
2001         write_lock(&zspage->lock);
2002 }
2003
2004 static void migrate_write_lock_nested(struct zspage *zspage)
2005 {
2006         write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
2007 }
2008
2009 static void migrate_write_unlock(struct zspage *zspage)
2010 {
2011         write_unlock(&zspage->lock);
2012 }
2013
2014 /* Number of isolated subpage for *page migration* in this zspage */
2015 static void inc_zspage_isolation(struct zspage *zspage)
2016 {
2017         zspage->isolated++;
2018 }
2019
2020 static void dec_zspage_isolation(struct zspage *zspage)
2021 {
2022         VM_BUG_ON(zspage->isolated == 0);
2023         zspage->isolated--;
2024 }
2025
2026 static const struct movable_operations zsmalloc_mops;
2027
2028 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
2029                                 struct page *newpage, struct page *oldpage)
2030 {
2031         struct page *page;
2032         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
2033         int idx = 0;
2034
2035         page = get_first_page(zspage);
2036         do {
2037                 if (page == oldpage)
2038                         pages[idx] = newpage;
2039                 else
2040                         pages[idx] = page;
2041                 idx++;
2042         } while ((page = get_next_page(page)) != NULL);
2043
2044         create_page_chain(class, zspage, pages);
2045         set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
2046         if (unlikely(ZsHugePage(zspage)))
2047                 newpage->index = oldpage->index;
2048         __SetPageMovable(newpage, &zsmalloc_mops);
2049 }
2050
2051 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
2052 {
2053         struct zspage *zspage;
2054
2055         /*
2056          * Page is locked so zspage couldn't be destroyed. For detail, look at
2057          * lock_zspage in free_zspage.
2058          */
2059         VM_BUG_ON_PAGE(!PageMovable(page), page);
2060         VM_BUG_ON_PAGE(PageIsolated(page), page);
2061
2062         zspage = get_zspage(page);
2063         migrate_write_lock(zspage);
2064         inc_zspage_isolation(zspage);
2065         migrate_write_unlock(zspage);
2066
2067         return true;
2068 }
2069
2070 static int zs_page_migrate(struct page *newpage, struct page *page,
2071                 enum migrate_mode mode)
2072 {
2073         struct zs_pool *pool;
2074         struct size_class *class;
2075         struct zspage *zspage;
2076         struct page *dummy;
2077         void *s_addr, *d_addr, *addr;
2078         unsigned int offset;
2079         unsigned long handle;
2080         unsigned long old_obj, new_obj;
2081         unsigned int obj_idx;
2082
2083         /*
2084          * We cannot support the _NO_COPY case here, because copy needs to
2085          * happen under the zs lock, which does not work with
2086          * MIGRATE_SYNC_NO_COPY workflow.
2087          */
2088         if (mode == MIGRATE_SYNC_NO_COPY)
2089                 return -EINVAL;
2090
2091         VM_BUG_ON_PAGE(!PageMovable(page), page);
2092         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2093
2094         /* The page is locked, so this pointer must remain valid */
2095         zspage = get_zspage(page);
2096         pool = zspage->pool;
2097
2098         /*
2099          * The pool's lock protects the race between zpage migration
2100          * and zs_free.
2101          */
2102         spin_lock(&pool->lock);
2103         class = zspage_class(pool, zspage);
2104
2105         /* the migrate_write_lock protects zpage access via zs_map_object */
2106         migrate_write_lock(zspage);
2107
2108         offset = get_first_obj_offset(page);
2109         s_addr = kmap_atomic(page);
2110
2111         /*
2112          * Here, any user cannot access all objects in the zspage so let's move.
2113          */
2114         d_addr = kmap_atomic(newpage);
2115         memcpy(d_addr, s_addr, PAGE_SIZE);
2116         kunmap_atomic(d_addr);
2117
2118         for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
2119                                         addr += class->size) {
2120                 if (obj_allocated(page, addr, &handle)) {
2121
2122                         old_obj = handle_to_obj(handle);
2123                         obj_to_location(old_obj, &dummy, &obj_idx);
2124                         new_obj = (unsigned long)location_to_obj(newpage,
2125                                                                 obj_idx);
2126                         record_obj(handle, new_obj);
2127                 }
2128         }
2129         kunmap_atomic(s_addr);
2130
2131         replace_sub_page(class, zspage, newpage, page);
2132         /*
2133          * Since we complete the data copy and set up new zspage structure,
2134          * it's okay to release the pool's lock.
2135          */
2136         spin_unlock(&pool->lock);
2137         dec_zspage_isolation(zspage);
2138         migrate_write_unlock(zspage);
2139
2140         get_page(newpage);
2141         if (page_zone(newpage) != page_zone(page)) {
2142                 dec_zone_page_state(page, NR_ZSPAGES);
2143                 inc_zone_page_state(newpage, NR_ZSPAGES);
2144         }
2145
2146         reset_page(page);
2147         put_page(page);
2148
2149         return MIGRATEPAGE_SUCCESS;
2150 }
2151
2152 static void zs_page_putback(struct page *page)
2153 {
2154         struct zspage *zspage;
2155
2156         VM_BUG_ON_PAGE(!PageMovable(page), page);
2157         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2158
2159         zspage = get_zspage(page);
2160         migrate_write_lock(zspage);
2161         dec_zspage_isolation(zspage);
2162         migrate_write_unlock(zspage);
2163 }
2164
2165 static const struct movable_operations zsmalloc_mops = {
2166         .isolate_page = zs_page_isolate,
2167         .migrate_page = zs_page_migrate,
2168         .putback_page = zs_page_putback,
2169 };
2170
2171 /*
2172  * Caller should hold page_lock of all pages in the zspage
2173  * In here, we cannot use zspage meta data.
2174  */
2175 static void async_free_zspage(struct work_struct *work)
2176 {
2177         int i;
2178         struct size_class *class;
2179         unsigned int class_idx;
2180         enum fullness_group fullness;
2181         struct zspage *zspage, *tmp;
2182         LIST_HEAD(free_pages);
2183         struct zs_pool *pool = container_of(work, struct zs_pool,
2184                                         free_work);
2185
2186         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2187                 class = pool->size_class[i];
2188                 if (class->index != i)
2189                         continue;
2190
2191                 spin_lock(&pool->lock);
2192                 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2193                 spin_unlock(&pool->lock);
2194         }
2195
2196         list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2197                 list_del(&zspage->list);
2198                 lock_zspage(zspage);
2199
2200                 get_zspage_mapping(zspage, &class_idx, &fullness);
2201                 VM_BUG_ON(fullness != ZS_EMPTY);
2202                 class = pool->size_class[class_idx];
2203                 spin_lock(&pool->lock);
2204 #ifdef CONFIG_ZPOOL
2205                 list_del(&zspage->lru);
2206 #endif
2207                 __free_zspage(pool, class, zspage);
2208                 spin_unlock(&pool->lock);
2209         }
2210 };
2211
2212 static void kick_deferred_free(struct zs_pool *pool)
2213 {
2214         schedule_work(&pool->free_work);
2215 }
2216
2217 static void zs_flush_migration(struct zs_pool *pool)
2218 {
2219         flush_work(&pool->free_work);
2220 }
2221
2222 static void init_deferred_free(struct zs_pool *pool)
2223 {
2224         INIT_WORK(&pool->free_work, async_free_zspage);
2225 }
2226
2227 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2228 {
2229         struct page *page = get_first_page(zspage);
2230
2231         do {
2232                 WARN_ON(!trylock_page(page));
2233                 __SetPageMovable(page, &zsmalloc_mops);
2234                 unlock_page(page);
2235         } while ((page = get_next_page(page)) != NULL);
2236 }
2237 #else
2238 static inline void zs_flush_migration(struct zs_pool *pool) { }
2239 #endif
2240
2241 /*
2242  *
2243  * Based on the number of unused allocated objects calculate
2244  * and return the number of pages that we can free.
2245  */
2246 static unsigned long zs_can_compact(struct size_class *class)
2247 {
2248         unsigned long obj_wasted;
2249         unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2250         unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2251
2252         if (obj_allocated <= obj_used)
2253                 return 0;
2254
2255         obj_wasted = obj_allocated - obj_used;
2256         obj_wasted /= class->objs_per_zspage;
2257
2258         return obj_wasted * class->pages_per_zspage;
2259 }
2260
2261 static unsigned long __zs_compact(struct zs_pool *pool,
2262                                   struct size_class *class)
2263 {
2264         struct zs_compact_control cc;
2265         struct zspage *src_zspage;
2266         struct zspage *dst_zspage = NULL;
2267         unsigned long pages_freed = 0;
2268
2269         /*
2270          * protect the race between zpage migration and zs_free
2271          * as well as zpage allocation/free
2272          */
2273         spin_lock(&pool->lock);
2274         while ((src_zspage = isolate_zspage(class, true))) {
2275                 /* protect someone accessing the zspage(i.e., zs_map_object) */
2276                 migrate_write_lock(src_zspage);
2277
2278                 if (!zs_can_compact(class))
2279                         break;
2280
2281                 cc.obj_idx = 0;
2282                 cc.s_page = get_first_page(src_zspage);
2283
2284                 while ((dst_zspage = isolate_zspage(class, false))) {
2285                         migrate_write_lock_nested(dst_zspage);
2286
2287                         cc.d_page = get_first_page(dst_zspage);
2288                         /*
2289                          * If there is no more space in dst_page, resched
2290                          * and see if anyone had allocated another zspage.
2291                          */
2292                         if (!migrate_zspage(pool, class, &cc))
2293                                 break;
2294
2295                         putback_zspage(class, dst_zspage);
2296                         migrate_write_unlock(dst_zspage);
2297                         dst_zspage = NULL;
2298                         if (spin_is_contended(&pool->lock))
2299                                 break;
2300                 }
2301
2302                 /* Stop if we couldn't find slot */
2303                 if (dst_zspage == NULL)
2304                         break;
2305
2306                 putback_zspage(class, dst_zspage);
2307                 migrate_write_unlock(dst_zspage);
2308
2309                 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2310                         migrate_write_unlock(src_zspage);
2311                         free_zspage(pool, class, src_zspage);
2312                         pages_freed += class->pages_per_zspage;
2313                 } else
2314                         migrate_write_unlock(src_zspage);
2315                 spin_unlock(&pool->lock);
2316                 cond_resched();
2317                 spin_lock(&pool->lock);
2318         }
2319
2320         if (src_zspage) {
2321                 putback_zspage(class, src_zspage);
2322                 migrate_write_unlock(src_zspage);
2323         }
2324
2325         spin_unlock(&pool->lock);
2326
2327         return pages_freed;
2328 }
2329
2330 unsigned long zs_compact(struct zs_pool *pool)
2331 {
2332         int i;
2333         struct size_class *class;
2334         unsigned long pages_freed = 0;
2335
2336         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2337                 class = pool->size_class[i];
2338                 if (class->index != i)
2339                         continue;
2340                 pages_freed += __zs_compact(pool, class);
2341         }
2342         atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2343
2344         return pages_freed;
2345 }
2346 EXPORT_SYMBOL_GPL(zs_compact);
2347
2348 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2349 {
2350         memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2351 }
2352 EXPORT_SYMBOL_GPL(zs_pool_stats);
2353
2354 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2355                 struct shrink_control *sc)
2356 {
2357         unsigned long pages_freed;
2358         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2359                         shrinker);
2360
2361         /*
2362          * Compact classes and calculate compaction delta.
2363          * Can run concurrently with a manually triggered
2364          * (by user) compaction.
2365          */
2366         pages_freed = zs_compact(pool);
2367
2368         return pages_freed ? pages_freed : SHRINK_STOP;
2369 }
2370
2371 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2372                 struct shrink_control *sc)
2373 {
2374         int i;
2375         struct size_class *class;
2376         unsigned long pages_to_free = 0;
2377         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2378                         shrinker);
2379
2380         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2381                 class = pool->size_class[i];
2382                 if (class->index != i)
2383                         continue;
2384
2385                 pages_to_free += zs_can_compact(class);
2386         }
2387
2388         return pages_to_free;
2389 }
2390
2391 static void zs_unregister_shrinker(struct zs_pool *pool)
2392 {
2393         unregister_shrinker(&pool->shrinker);
2394 }
2395
2396 static int zs_register_shrinker(struct zs_pool *pool)
2397 {
2398         pool->shrinker.scan_objects = zs_shrinker_scan;
2399         pool->shrinker.count_objects = zs_shrinker_count;
2400         pool->shrinker.batch = 0;
2401         pool->shrinker.seeks = DEFAULT_SEEKS;
2402
2403         return register_shrinker(&pool->shrinker, "mm-zspool:%s",
2404                                  pool->name);
2405 }
2406
2407 /**
2408  * zs_create_pool - Creates an allocation pool to work from.
2409  * @name: pool name to be created
2410  *
2411  * This function must be called before anything when using
2412  * the zsmalloc allocator.
2413  *
2414  * On success, a pointer to the newly created pool is returned,
2415  * otherwise NULL.
2416  */
2417 struct zs_pool *zs_create_pool(const char *name)
2418 {
2419         int i;
2420         struct zs_pool *pool;
2421         struct size_class *prev_class = NULL;
2422
2423         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2424         if (!pool)
2425                 return NULL;
2426
2427         init_deferred_free(pool);
2428         spin_lock_init(&pool->lock);
2429
2430         pool->name = kstrdup(name, GFP_KERNEL);
2431         if (!pool->name)
2432                 goto err;
2433
2434         if (create_cache(pool))
2435                 goto err;
2436
2437         /*
2438          * Iterate reversely, because, size of size_class that we want to use
2439          * for merging should be larger or equal to current size.
2440          */
2441         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2442                 int size;
2443                 int pages_per_zspage;
2444                 int objs_per_zspage;
2445                 struct size_class *class;
2446                 int fullness = 0;
2447
2448                 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2449                 if (size > ZS_MAX_ALLOC_SIZE)
2450                         size = ZS_MAX_ALLOC_SIZE;
2451                 pages_per_zspage = get_pages_per_zspage(size);
2452                 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2453
2454                 /*
2455                  * We iterate from biggest down to smallest classes,
2456                  * so huge_class_size holds the size of the first huge
2457                  * class. Any object bigger than or equal to that will
2458                  * endup in the huge class.
2459                  */
2460                 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2461                                 !huge_class_size) {
2462                         huge_class_size = size;
2463                         /*
2464                          * The object uses ZS_HANDLE_SIZE bytes to store the
2465                          * handle. We need to subtract it, because zs_malloc()
2466                          * unconditionally adds handle size before it performs
2467                          * size class search - so object may be smaller than
2468                          * huge class size, yet it still can end up in the huge
2469                          * class because it grows by ZS_HANDLE_SIZE extra bytes
2470                          * right before class lookup.
2471                          */
2472                         huge_class_size -= (ZS_HANDLE_SIZE - 1);
2473                 }
2474
2475                 /*
2476                  * size_class is used for normal zsmalloc operation such
2477                  * as alloc/free for that size. Although it is natural that we
2478                  * have one size_class for each size, there is a chance that we
2479                  * can get more memory utilization if we use one size_class for
2480                  * many different sizes whose size_class have same
2481                  * characteristics. So, we makes size_class point to
2482                  * previous size_class if possible.
2483                  */
2484                 if (prev_class) {
2485                         if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2486                                 pool->size_class[i] = prev_class;
2487                                 continue;
2488                         }
2489                 }
2490
2491                 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2492                 if (!class)
2493                         goto err;
2494
2495                 class->size = size;
2496                 class->index = i;
2497                 class->pages_per_zspage = pages_per_zspage;
2498                 class->objs_per_zspage = objs_per_zspage;
2499                 pool->size_class[i] = class;
2500                 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2501                                                         fullness++)
2502                         INIT_LIST_HEAD(&class->fullness_list[fullness]);
2503
2504                 prev_class = class;
2505         }
2506
2507         /* debug only, don't abort if it fails */
2508         zs_pool_stat_create(pool, name);
2509
2510         /*
2511          * Not critical since shrinker is only used to trigger internal
2512          * defragmentation of the pool which is pretty optional thing.  If
2513          * registration fails we still can use the pool normally and user can
2514          * trigger compaction manually. Thus, ignore return code.
2515          */
2516         zs_register_shrinker(pool);
2517
2518 #ifdef CONFIG_ZPOOL
2519         INIT_LIST_HEAD(&pool->lru);
2520 #endif
2521
2522         return pool;
2523
2524 err:
2525         zs_destroy_pool(pool);
2526         return NULL;
2527 }
2528 EXPORT_SYMBOL_GPL(zs_create_pool);
2529
2530 void zs_destroy_pool(struct zs_pool *pool)
2531 {
2532         int i;
2533
2534         zs_unregister_shrinker(pool);
2535         zs_flush_migration(pool);
2536         zs_pool_stat_destroy(pool);
2537
2538         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2539                 int fg;
2540                 struct size_class *class = pool->size_class[i];
2541
2542                 if (!class)
2543                         continue;
2544
2545                 if (class->index != i)
2546                         continue;
2547
2548                 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2549                         if (!list_empty(&class->fullness_list[fg])) {
2550                                 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2551                                         class->size, fg);
2552                         }
2553                 }
2554                 kfree(class);
2555         }
2556
2557         destroy_cache(pool);
2558         kfree(pool->name);
2559         kfree(pool);
2560 }
2561 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2562
2563 #ifdef CONFIG_ZPOOL
2564 static void restore_freelist(struct zs_pool *pool, struct size_class *class,
2565                 struct zspage *zspage)
2566 {
2567         unsigned int obj_idx = 0;
2568         unsigned long handle, off = 0; /* off is within-page offset */
2569         struct page *page = get_first_page(zspage);
2570         struct link_free *prev_free = NULL;
2571         void *prev_page_vaddr = NULL;
2572
2573         /* in case no free object found */
2574         set_freeobj(zspage, (unsigned int)(-1UL));
2575
2576         while (page) {
2577                 void *vaddr = kmap_atomic(page);
2578                 struct page *next_page;
2579
2580                 while (off < PAGE_SIZE) {
2581                         void *obj_addr = vaddr + off;
2582
2583                         /* skip allocated object */
2584                         if (obj_allocated(page, obj_addr, &handle)) {
2585                                 obj_idx++;
2586                                 off += class->size;
2587                                 continue;
2588                         }
2589
2590                         /* free deferred handle from reclaim attempt */
2591                         if (obj_stores_deferred_handle(page, obj_addr, &handle))
2592                                 cache_free_handle(pool, handle);
2593
2594                         if (prev_free)
2595                                 prev_free->next = obj_idx << OBJ_TAG_BITS;
2596                         else /* first free object found */
2597                                 set_freeobj(zspage, obj_idx);
2598
2599                         prev_free = (struct link_free *)vaddr + off / sizeof(*prev_free);
2600                         /* if last free object in a previous page, need to unmap */
2601                         if (prev_page_vaddr) {
2602                                 kunmap_atomic(prev_page_vaddr);
2603                                 prev_page_vaddr = NULL;
2604                         }
2605
2606                         obj_idx++;
2607                         off += class->size;
2608                 }
2609
2610                 /*
2611                  * Handle the last (full or partial) object on this page.
2612                  */
2613                 next_page = get_next_page(page);
2614                 if (next_page) {
2615                         if (!prev_free || prev_page_vaddr) {
2616                                 /*
2617                                  * There is no free object in this page, so we can safely
2618                                  * unmap it.
2619                                  */
2620                                 kunmap_atomic(vaddr);
2621                         } else {
2622                                 /* update prev_page_vaddr since prev_free is on this page */
2623                                 prev_page_vaddr = vaddr;
2624                         }
2625                 } else { /* this is the last page */
2626                         if (prev_free) {
2627                                 /*
2628                                  * Reset OBJ_TAG_BITS bit to last link to tell
2629                                  * whether it's allocated object or not.
2630                                  */
2631                                 prev_free->next = -1UL << OBJ_TAG_BITS;
2632                         }
2633
2634                         /* unmap previous page (if not done yet) */
2635                         if (prev_page_vaddr) {
2636                                 kunmap_atomic(prev_page_vaddr);
2637                                 prev_page_vaddr = NULL;
2638                         }
2639
2640                         kunmap_atomic(vaddr);
2641                 }
2642
2643                 page = next_page;
2644                 off %= PAGE_SIZE;
2645         }
2646 }
2647
2648 static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries)
2649 {
2650         int i, obj_idx, ret = 0;
2651         unsigned long handle;
2652         struct zspage *zspage;
2653         struct page *page;
2654         enum fullness_group fullness;
2655
2656         /* Lock LRU and fullness list */
2657         spin_lock(&pool->lock);
2658         if (list_empty(&pool->lru)) {
2659                 spin_unlock(&pool->lock);
2660                 return -EINVAL;
2661         }
2662
2663         for (i = 0; i < retries; i++) {
2664                 struct size_class *class;
2665
2666                 zspage = list_last_entry(&pool->lru, struct zspage, lru);
2667                 list_del(&zspage->lru);
2668
2669                 /* zs_free may free objects, but not the zspage and handles */
2670                 zspage->under_reclaim = true;
2671
2672                 class = zspage_class(pool, zspage);
2673                 fullness = get_fullness_group(class, zspage);
2674
2675                 /* Lock out object allocations and object compaction */
2676                 remove_zspage(class, zspage, fullness);
2677
2678                 spin_unlock(&pool->lock);
2679                 cond_resched();
2680
2681                 /* Lock backing pages into place */
2682                 lock_zspage(zspage);
2683
2684                 obj_idx = 0;
2685                 page = get_first_page(zspage);
2686                 while (1) {
2687                         handle = find_alloced_obj(class, page, &obj_idx);
2688                         if (!handle) {
2689                                 page = get_next_page(page);
2690                                 if (!page)
2691                                         break;
2692                                 obj_idx = 0;
2693                                 continue;
2694                         }
2695
2696                         /*
2697                          * This will write the object and call zs_free.
2698                          *
2699                          * zs_free will free the object, but the
2700                          * under_reclaim flag prevents it from freeing
2701                          * the zspage altogether. This is necessary so
2702                          * that we can continue working with the
2703                          * zspage potentially after the last object
2704                          * has been freed.
2705                          */
2706                         ret = pool->zpool_ops->evict(pool->zpool, handle);
2707                         if (ret)
2708                                 goto next;
2709
2710                         obj_idx++;
2711                 }
2712
2713 next:
2714                 /* For freeing the zspage, or putting it back in the pool and LRU list. */
2715                 spin_lock(&pool->lock);
2716                 zspage->under_reclaim = false;
2717
2718                 if (!get_zspage_inuse(zspage)) {
2719                         /*
2720                          * Fullness went stale as zs_free() won't touch it
2721                          * while the page is removed from the pool. Fix it
2722                          * up for the check in __free_zspage().
2723                          */
2724                         zspage->fullness = ZS_EMPTY;
2725
2726                         __free_zspage(pool, class, zspage);
2727                         spin_unlock(&pool->lock);
2728                         return 0;
2729                 }
2730
2731                 /*
2732                  * Eviction fails on one of the handles, so we need to restore zspage.
2733                  * We need to rebuild its freelist (and free stored deferred handles),
2734                  * put it back to the correct size class, and add it to the LRU list.
2735                  */
2736                 restore_freelist(pool, class, zspage);
2737                 putback_zspage(class, zspage);
2738                 list_add(&zspage->lru, &pool->lru);
2739                 unlock_zspage(zspage);
2740         }
2741
2742         spin_unlock(&pool->lock);
2743         return -EAGAIN;
2744 }
2745 #endif /* CONFIG_ZPOOL */
2746
2747 static int __init zs_init(void)
2748 {
2749         int ret;
2750
2751         ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2752                                 zs_cpu_prepare, zs_cpu_dead);
2753         if (ret)
2754                 goto out;
2755
2756 #ifdef CONFIG_ZPOOL
2757         zpool_register_driver(&zs_zpool_driver);
2758 #endif
2759
2760         zs_stat_init();
2761
2762         return 0;
2763
2764 out:
2765         return ret;
2766 }
2767
2768 static void __exit zs_exit(void)
2769 {
2770 #ifdef CONFIG_ZPOOL
2771         zpool_unregister_driver(&zs_zpool_driver);
2772 #endif
2773         cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2774
2775         zs_stat_exit();
2776 }
2777
2778 module_init(zs_init);
2779 module_exit(zs_exit);
2780
2781 MODULE_LICENSE("Dual BSD/GPL");
2782 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");