2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->index: links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
23 * page->page_type: first object offset in a subpage of zspage
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 #include <linux/module.h>
42 #include <linux/kernel.h>
43 #include <linux/sched.h>
44 #include <linux/magic.h>
45 #include <linux/bitops.h>
46 #include <linux/errno.h>
47 #include <linux/highmem.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/pgtable.h>
51 #include <asm/tlbflush.h>
52 #include <linux/cpumask.h>
53 #include <linux/cpu.h>
54 #include <linux/vmalloc.h>
55 #include <linux/preempt.h>
56 #include <linux/spinlock.h>
57 #include <linux/shrinker.h>
58 #include <linux/types.h>
59 #include <linux/debugfs.h>
60 #include <linux/zsmalloc.h>
61 #include <linux/zpool.h>
62 #include <linux/mount.h>
63 #include <linux/pseudo_fs.h>
64 #include <linux/migrate.h>
65 #include <linux/wait.h>
66 #include <linux/pagemap.h>
68 #include <linux/local_lock.h>
70 #define ZSPAGE_MAGIC 0x58
73 * This must be power of 2 and greater than or equal to sizeof(link_free).
74 * These two conditions ensure that any 'struct link_free' itself doesn't
75 * span more than 1 page which avoids complex case of mapping 2 pages simply
76 * to restore link_free pointer values.
81 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
82 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
84 #define ZS_MAX_ZSPAGE_ORDER 2
85 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
87 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
90 * Object location (<PFN>, <obj_idx>) is encoded as
91 * a single (unsigned long) handle value.
93 * Note that object index <obj_idx> starts from 0.
95 * This is made more complicated by various memory models and PAE.
98 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
99 #ifdef MAX_PHYSMEM_BITS
100 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
103 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
106 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
110 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
113 * Head in allocated object should have OBJ_ALLOCATED_TAG
114 * to identify the object was allocated or not.
115 * It's okay to add the status bit in the least bit because
116 * header keeps handle which is 4byte-aligned address so we
117 * have room for two bit at least.
119 #define OBJ_ALLOCATED_TAG 1
120 #define OBJ_TAG_BITS 1
121 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
122 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
125 #define FULLNESS_BITS 2
127 #define ISOLATED_BITS 3
128 #define MAGIC_VAL_BITS 8
130 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
131 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
132 #define ZS_MIN_ALLOC_SIZE \
133 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
134 /* each chunk includes extra space to keep handle */
135 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
138 * On systems with 4K page size, this gives 255 size classes! There is a
140 * - Large number of size classes is potentially wasteful as free page are
141 * spread across these classes
142 * - Small number of size classes causes large internal fragmentation
143 * - Probably its better to use specific size classes (empirically
144 * determined). NOTE: all those class sizes must be set as multiple of
145 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
147 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
150 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
151 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
152 ZS_SIZE_CLASS_DELTA) + 1)
154 enum fullness_group {
162 enum class_stat_type {
172 struct zs_size_stat {
173 unsigned long objs[NR_ZS_STAT_TYPE];
176 #ifdef CONFIG_ZSMALLOC_STAT
177 static struct dentry *zs_stat_root;
180 #ifdef CONFIG_COMPACTION
181 static struct vfsmount *zsmalloc_mnt;
185 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
187 * n = number of allocated objects
188 * N = total number of objects zspage can store
189 * f = fullness_threshold_frac
191 * Similarly, we assign zspage to:
192 * ZS_ALMOST_FULL when n > N / f
193 * ZS_EMPTY when n == 0
194 * ZS_FULL when n == N
196 * (see: fix_fullness_group())
198 static const int fullness_threshold_frac = 4;
199 static size_t huge_class_size;
203 struct list_head fullness_list[NR_ZS_FULLNESS];
205 * Size of objects stored in this class. Must be multiple
210 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
211 int pages_per_zspage;
214 struct zs_size_stat stats;
218 * Placed within free objects to form a singly linked list.
219 * For every zspage, zspage->freeobj gives head of this list.
221 * This must be power of 2 and less than or equal to ZS_ALIGN
227 * It's valid for non-allocated object
231 * Handle of allocated object.
233 unsigned long handle;
240 struct size_class *size_class[ZS_SIZE_CLASSES];
241 struct kmem_cache *handle_cachep;
242 struct kmem_cache *zspage_cachep;
244 atomic_long_t pages_allocated;
246 struct zs_pool_stats stats;
248 /* Compact classes */
249 struct shrinker shrinker;
251 #ifdef CONFIG_ZSMALLOC_STAT
252 struct dentry *stat_dentry;
254 #ifdef CONFIG_COMPACTION
256 struct work_struct free_work;
258 /* protect page/zspage migration */
259 rwlock_t migrate_lock;
264 unsigned int huge:HUGE_BITS;
265 unsigned int fullness:FULLNESS_BITS;
266 unsigned int class:CLASS_BITS + 1;
267 unsigned int isolated:ISOLATED_BITS;
268 unsigned int magic:MAGIC_VAL_BITS;
271 unsigned int freeobj;
272 struct page *first_page;
273 struct list_head list; /* fullness list */
274 #ifdef CONFIG_COMPACTION
279 struct mapping_area {
281 char *vm_buf; /* copy buffer for objects that span pages */
282 char *vm_addr; /* address of kmap_atomic()'ed pages */
283 enum zs_mapmode vm_mm; /* mapping mode */
286 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
287 static void SetZsHugePage(struct zspage *zspage)
292 static bool ZsHugePage(struct zspage *zspage)
297 #ifdef CONFIG_COMPACTION
298 static int zs_register_migration(struct zs_pool *pool);
299 static void zs_unregister_migration(struct zs_pool *pool);
300 static void migrate_lock_init(struct zspage *zspage);
301 static void migrate_read_lock(struct zspage *zspage);
302 static void migrate_read_unlock(struct zspage *zspage);
303 static void migrate_write_lock(struct zspage *zspage);
304 static void migrate_write_lock_nested(struct zspage *zspage);
305 static void migrate_write_unlock(struct zspage *zspage);
306 static void kick_deferred_free(struct zs_pool *pool);
307 static void init_deferred_free(struct zs_pool *pool);
308 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
310 static int zsmalloc_mount(void) { return 0; }
311 static void zsmalloc_unmount(void) {}
312 static int zs_register_migration(struct zs_pool *pool) { return 0; }
313 static void zs_unregister_migration(struct zs_pool *pool) {}
314 static void migrate_lock_init(struct zspage *zspage) {}
315 static void migrate_read_lock(struct zspage *zspage) {}
316 static void migrate_read_unlock(struct zspage *zspage) {}
317 static void migrate_write_lock(struct zspage *zspage) {}
318 static void migrate_write_lock_nested(struct zspage *zspage) {}
319 static void migrate_write_unlock(struct zspage *zspage) {}
320 static void kick_deferred_free(struct zs_pool *pool) {}
321 static void init_deferred_free(struct zs_pool *pool) {}
322 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
325 static int create_cache(struct zs_pool *pool)
327 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
329 if (!pool->handle_cachep)
332 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
334 if (!pool->zspage_cachep) {
335 kmem_cache_destroy(pool->handle_cachep);
336 pool->handle_cachep = NULL;
343 static void destroy_cache(struct zs_pool *pool)
345 kmem_cache_destroy(pool->handle_cachep);
346 kmem_cache_destroy(pool->zspage_cachep);
349 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
351 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
352 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
355 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
357 kmem_cache_free(pool->handle_cachep, (void *)handle);
360 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
362 return kmem_cache_zalloc(pool->zspage_cachep,
363 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
366 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
368 kmem_cache_free(pool->zspage_cachep, zspage);
371 /* class->lock(which owns the handle) synchronizes races */
372 static void record_obj(unsigned long handle, unsigned long obj)
374 *(unsigned long *)handle = obj;
381 static void *zs_zpool_create(const char *name, gfp_t gfp,
382 const struct zpool_ops *zpool_ops,
386 * Ignore global gfp flags: zs_malloc() may be invoked from
387 * different contexts and its caller must provide a valid
390 return zs_create_pool(name);
393 static void zs_zpool_destroy(void *pool)
395 zs_destroy_pool(pool);
398 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
399 unsigned long *handle)
401 *handle = zs_malloc(pool, size, gfp);
402 return *handle ? 0 : -1;
404 static void zs_zpool_free(void *pool, unsigned long handle)
406 zs_free(pool, handle);
409 static void *zs_zpool_map(void *pool, unsigned long handle,
410 enum zpool_mapmode mm)
412 enum zs_mapmode zs_mm;
427 return zs_map_object(pool, handle, zs_mm);
429 static void zs_zpool_unmap(void *pool, unsigned long handle)
431 zs_unmap_object(pool, handle);
434 static u64 zs_zpool_total_size(void *pool)
436 return zs_get_total_pages(pool) << PAGE_SHIFT;
439 static struct zpool_driver zs_zpool_driver = {
441 .owner = THIS_MODULE,
442 .create = zs_zpool_create,
443 .destroy = zs_zpool_destroy,
444 .malloc_support_movable = true,
445 .malloc = zs_zpool_malloc,
446 .free = zs_zpool_free,
448 .unmap = zs_zpool_unmap,
449 .total_size = zs_zpool_total_size,
452 MODULE_ALIAS("zpool-zsmalloc");
453 #endif /* CONFIG_ZPOOL */
455 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
456 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
457 .lock = INIT_LOCAL_LOCK(lock),
460 static __maybe_unused int is_first_page(struct page *page)
462 return PagePrivate(page);
465 /* Protected by class->lock */
466 static inline int get_zspage_inuse(struct zspage *zspage)
468 return zspage->inuse;
472 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
474 zspage->inuse += val;
477 static inline struct page *get_first_page(struct zspage *zspage)
479 struct page *first_page = zspage->first_page;
481 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
485 static inline int get_first_obj_offset(struct page *page)
487 return page->page_type;
490 static inline void set_first_obj_offset(struct page *page, int offset)
492 page->page_type = offset;
495 static inline unsigned int get_freeobj(struct zspage *zspage)
497 return zspage->freeobj;
500 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
502 zspage->freeobj = obj;
505 static void get_zspage_mapping(struct zspage *zspage,
506 unsigned int *class_idx,
507 enum fullness_group *fullness)
509 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
511 *fullness = zspage->fullness;
512 *class_idx = zspage->class;
515 static struct size_class *zspage_class(struct zs_pool *pool,
516 struct zspage *zspage)
518 return pool->size_class[zspage->class];
521 static void set_zspage_mapping(struct zspage *zspage,
522 unsigned int class_idx,
523 enum fullness_group fullness)
525 zspage->class = class_idx;
526 zspage->fullness = fullness;
530 * zsmalloc divides the pool into various size classes where each
531 * class maintains a list of zspages where each zspage is divided
532 * into equal sized chunks. Each allocation falls into one of these
533 * classes depending on its size. This function returns index of the
534 * size class which has chunk size big enough to hold the given size.
536 static int get_size_class_index(int size)
540 if (likely(size > ZS_MIN_ALLOC_SIZE))
541 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
542 ZS_SIZE_CLASS_DELTA);
544 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
547 /* type can be of enum type class_stat_type or fullness_group */
548 static inline void class_stat_inc(struct size_class *class,
549 int type, unsigned long cnt)
551 class->stats.objs[type] += cnt;
554 /* type can be of enum type class_stat_type or fullness_group */
555 static inline void class_stat_dec(struct size_class *class,
556 int type, unsigned long cnt)
558 class->stats.objs[type] -= cnt;
561 /* type can be of enum type class_stat_type or fullness_group */
562 static inline unsigned long zs_stat_get(struct size_class *class,
565 return class->stats.objs[type];
568 #ifdef CONFIG_ZSMALLOC_STAT
570 static void __init zs_stat_init(void)
572 if (!debugfs_initialized()) {
573 pr_warn("debugfs not available, stat dir not created\n");
577 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
580 static void __exit zs_stat_exit(void)
582 debugfs_remove_recursive(zs_stat_root);
585 static unsigned long zs_can_compact(struct size_class *class);
587 static int zs_stats_size_show(struct seq_file *s, void *v)
590 struct zs_pool *pool = s->private;
591 struct size_class *class;
593 unsigned long class_almost_full, class_almost_empty;
594 unsigned long obj_allocated, obj_used, pages_used, freeable;
595 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
596 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
597 unsigned long total_freeable = 0;
599 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
600 "class", "size", "almost_full", "almost_empty",
601 "obj_allocated", "obj_used", "pages_used",
602 "pages_per_zspage", "freeable");
604 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
605 class = pool->size_class[i];
607 if (class->index != i)
610 spin_lock(&class->lock);
611 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
612 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
613 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
614 obj_used = zs_stat_get(class, OBJ_USED);
615 freeable = zs_can_compact(class);
616 spin_unlock(&class->lock);
618 objs_per_zspage = class->objs_per_zspage;
619 pages_used = obj_allocated / objs_per_zspage *
620 class->pages_per_zspage;
622 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
623 " %10lu %10lu %16d %8lu\n",
624 i, class->size, class_almost_full, class_almost_empty,
625 obj_allocated, obj_used, pages_used,
626 class->pages_per_zspage, freeable);
628 total_class_almost_full += class_almost_full;
629 total_class_almost_empty += class_almost_empty;
630 total_objs += obj_allocated;
631 total_used_objs += obj_used;
632 total_pages += pages_used;
633 total_freeable += freeable;
637 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
638 "Total", "", total_class_almost_full,
639 total_class_almost_empty, total_objs,
640 total_used_objs, total_pages, "", total_freeable);
644 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
646 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
649 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
653 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
655 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
656 &zs_stats_size_fops);
659 static void zs_pool_stat_destroy(struct zs_pool *pool)
661 debugfs_remove_recursive(pool->stat_dentry);
664 #else /* CONFIG_ZSMALLOC_STAT */
665 static void __init zs_stat_init(void)
669 static void __exit zs_stat_exit(void)
673 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
677 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
684 * For each size class, zspages are divided into different groups
685 * depending on how "full" they are. This was done so that we could
686 * easily find empty or nearly empty zspages when we try to shrink
687 * the pool (not yet implemented). This function returns fullness
688 * status of the given page.
690 static enum fullness_group get_fullness_group(struct size_class *class,
691 struct zspage *zspage)
693 int inuse, objs_per_zspage;
694 enum fullness_group fg;
696 inuse = get_zspage_inuse(zspage);
697 objs_per_zspage = class->objs_per_zspage;
701 else if (inuse == objs_per_zspage)
703 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
704 fg = ZS_ALMOST_EMPTY;
712 * Each size class maintains various freelists and zspages are assigned
713 * to one of these freelists based on the number of live objects they
714 * have. This functions inserts the given zspage into the freelist
715 * identified by <class, fullness_group>.
717 static void insert_zspage(struct size_class *class,
718 struct zspage *zspage,
719 enum fullness_group fullness)
723 class_stat_inc(class, fullness, 1);
724 head = list_first_entry_or_null(&class->fullness_list[fullness],
725 struct zspage, list);
727 * We want to see more ZS_FULL pages and less almost empty/full.
728 * Put pages with higher ->inuse first.
730 if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
731 list_add(&zspage->list, &head->list);
733 list_add(&zspage->list, &class->fullness_list[fullness]);
737 * This function removes the given zspage from the freelist identified
738 * by <class, fullness_group>.
740 static void remove_zspage(struct size_class *class,
741 struct zspage *zspage,
742 enum fullness_group fullness)
744 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
746 list_del_init(&zspage->list);
747 class_stat_dec(class, fullness, 1);
751 * Each size class maintains zspages in different fullness groups depending
752 * on the number of live objects they contain. When allocating or freeing
753 * objects, the fullness status of the page can change, say, from ALMOST_FULL
754 * to ALMOST_EMPTY when freeing an object. This function checks if such
755 * a status change has occurred for the given page and accordingly moves the
756 * page from the freelist of the old fullness group to that of the new
759 static enum fullness_group fix_fullness_group(struct size_class *class,
760 struct zspage *zspage)
763 enum fullness_group currfg, newfg;
765 get_zspage_mapping(zspage, &class_idx, &currfg);
766 newfg = get_fullness_group(class, zspage);
770 remove_zspage(class, zspage, currfg);
771 insert_zspage(class, zspage, newfg);
772 set_zspage_mapping(zspage, class_idx, newfg);
778 * We have to decide on how many pages to link together
779 * to form a zspage for each size class. This is important
780 * to reduce wastage due to unusable space left at end of
781 * each zspage which is given as:
782 * wastage = Zp % class_size
783 * usage = Zp - wastage
784 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
786 * For example, for size class of 3/8 * PAGE_SIZE, we should
787 * link together 3 PAGE_SIZE sized pages to form a zspage
788 * since then we can perfectly fit in 8 such objects.
790 static int get_pages_per_zspage(int class_size)
792 int i, max_usedpc = 0;
793 /* zspage order which gives maximum used size per KB */
794 int max_usedpc_order = 1;
796 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
800 zspage_size = i * PAGE_SIZE;
801 waste = zspage_size % class_size;
802 usedpc = (zspage_size - waste) * 100 / zspage_size;
804 if (usedpc > max_usedpc) {
806 max_usedpc_order = i;
810 return max_usedpc_order;
813 static struct zspage *get_zspage(struct page *page)
815 struct zspage *zspage = (struct zspage *)page_private(page);
817 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
821 static struct page *get_next_page(struct page *page)
823 struct zspage *zspage = get_zspage(page);
825 if (unlikely(ZsHugePage(zspage)))
828 return (struct page *)page->index;
832 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
833 * @obj: the encoded object value
834 * @page: page object resides in zspage
835 * @obj_idx: object index
837 static void obj_to_location(unsigned long obj, struct page **page,
838 unsigned int *obj_idx)
840 obj >>= OBJ_TAG_BITS;
841 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
842 *obj_idx = (obj & OBJ_INDEX_MASK);
845 static void obj_to_page(unsigned long obj, struct page **page)
847 obj >>= OBJ_TAG_BITS;
848 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
852 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
853 * @page: page object resides in zspage
854 * @obj_idx: object index
856 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
860 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
861 obj |= obj_idx & OBJ_INDEX_MASK;
862 obj <<= OBJ_TAG_BITS;
867 static unsigned long handle_to_obj(unsigned long handle)
869 return *(unsigned long *)handle;
872 static bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
874 unsigned long handle;
875 struct zspage *zspage = get_zspage(page);
877 if (unlikely(ZsHugePage(zspage))) {
878 VM_BUG_ON_PAGE(!is_first_page(page), page);
879 handle = page->index;
881 handle = *(unsigned long *)obj;
883 if (!(handle & OBJ_ALLOCATED_TAG))
886 *phandle = handle & ~OBJ_ALLOCATED_TAG;
890 static void reset_page(struct page *page)
892 __ClearPageMovable(page);
893 ClearPagePrivate(page);
894 set_page_private(page, 0);
895 page_mapcount_reset(page);
899 static int trylock_zspage(struct zspage *zspage)
901 struct page *cursor, *fail;
903 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
904 get_next_page(cursor)) {
905 if (!trylock_page(cursor)) {
913 for (cursor = get_first_page(zspage); cursor != fail; cursor =
914 get_next_page(cursor))
920 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
921 struct zspage *zspage)
923 struct page *page, *next;
924 enum fullness_group fg;
925 unsigned int class_idx;
927 get_zspage_mapping(zspage, &class_idx, &fg);
929 assert_spin_locked(&class->lock);
931 VM_BUG_ON(get_zspage_inuse(zspage));
932 VM_BUG_ON(fg != ZS_EMPTY);
934 next = page = get_first_page(zspage);
936 VM_BUG_ON_PAGE(!PageLocked(page), page);
937 next = get_next_page(page);
940 dec_zone_page_state(page, NR_ZSPAGES);
943 } while (page != NULL);
945 cache_free_zspage(pool, zspage);
947 class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
948 atomic_long_sub(class->pages_per_zspage,
949 &pool->pages_allocated);
952 static void free_zspage(struct zs_pool *pool, struct size_class *class,
953 struct zspage *zspage)
955 VM_BUG_ON(get_zspage_inuse(zspage));
956 VM_BUG_ON(list_empty(&zspage->list));
959 * Since zs_free couldn't be sleepable, this function cannot call
960 * lock_page. The page locks trylock_zspage got will be released
963 if (!trylock_zspage(zspage)) {
964 kick_deferred_free(pool);
968 remove_zspage(class, zspage, ZS_EMPTY);
969 __free_zspage(pool, class, zspage);
972 /* Initialize a newly allocated zspage */
973 static void init_zspage(struct size_class *class, struct zspage *zspage)
975 unsigned int freeobj = 1;
976 unsigned long off = 0;
977 struct page *page = get_first_page(zspage);
980 struct page *next_page;
981 struct link_free *link;
984 set_first_obj_offset(page, off);
986 vaddr = kmap_atomic(page);
987 link = (struct link_free *)vaddr + off / sizeof(*link);
989 while ((off += class->size) < PAGE_SIZE) {
990 link->next = freeobj++ << OBJ_TAG_BITS;
991 link += class->size / sizeof(*link);
995 * We now come to the last (full or partial) object on this
996 * page, which must point to the first object on the next
999 next_page = get_next_page(page);
1001 link->next = freeobj++ << OBJ_TAG_BITS;
1004 * Reset OBJ_TAG_BITS bit to last link to tell
1005 * whether it's allocated object or not.
1007 link->next = -1UL << OBJ_TAG_BITS;
1009 kunmap_atomic(vaddr);
1014 set_freeobj(zspage, 0);
1017 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1018 struct page *pages[])
1022 struct page *prev_page = NULL;
1023 int nr_pages = class->pages_per_zspage;
1026 * Allocate individual pages and link them together as:
1027 * 1. all pages are linked together using page->index
1028 * 2. each sub-page point to zspage using page->private
1030 * we set PG_private to identify the first page (i.e. no other sub-page
1031 * has this flag set).
1033 for (i = 0; i < nr_pages; i++) {
1035 set_page_private(page, (unsigned long)zspage);
1038 zspage->first_page = page;
1039 SetPagePrivate(page);
1040 if (unlikely(class->objs_per_zspage == 1 &&
1041 class->pages_per_zspage == 1))
1042 SetZsHugePage(zspage);
1044 prev_page->index = (unsigned long)page;
1051 * Allocate a zspage for the given size class
1053 static struct zspage *alloc_zspage(struct zs_pool *pool,
1054 struct size_class *class,
1058 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1059 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1064 zspage->magic = ZSPAGE_MAGIC;
1065 migrate_lock_init(zspage);
1067 for (i = 0; i < class->pages_per_zspage; i++) {
1070 page = alloc_page(gfp);
1073 dec_zone_page_state(pages[i], NR_ZSPAGES);
1074 __free_page(pages[i]);
1076 cache_free_zspage(pool, zspage);
1080 inc_zone_page_state(page, NR_ZSPAGES);
1084 create_page_chain(class, zspage, pages);
1085 init_zspage(class, zspage);
1090 static struct zspage *find_get_zspage(struct size_class *class)
1093 struct zspage *zspage;
1095 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1096 zspage = list_first_entry_or_null(&class->fullness_list[i],
1097 struct zspage, list);
1105 static inline int __zs_cpu_up(struct mapping_area *area)
1108 * Make sure we don't leak memory if a cpu UP notification
1109 * and zs_init() race and both call zs_cpu_up() on the same cpu
1113 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1119 static inline void __zs_cpu_down(struct mapping_area *area)
1121 kfree(area->vm_buf);
1122 area->vm_buf = NULL;
1125 static void *__zs_map_object(struct mapping_area *area,
1126 struct page *pages[2], int off, int size)
1130 char *buf = area->vm_buf;
1132 /* disable page faults to match kmap_atomic() return conditions */
1133 pagefault_disable();
1135 /* no read fastpath */
1136 if (area->vm_mm == ZS_MM_WO)
1139 sizes[0] = PAGE_SIZE - off;
1140 sizes[1] = size - sizes[0];
1142 /* copy object to per-cpu buffer */
1143 addr = kmap_atomic(pages[0]);
1144 memcpy(buf, addr + off, sizes[0]);
1145 kunmap_atomic(addr);
1146 addr = kmap_atomic(pages[1]);
1147 memcpy(buf + sizes[0], addr, sizes[1]);
1148 kunmap_atomic(addr);
1150 return area->vm_buf;
1153 static void __zs_unmap_object(struct mapping_area *area,
1154 struct page *pages[2], int off, int size)
1160 /* no write fastpath */
1161 if (area->vm_mm == ZS_MM_RO)
1165 buf = buf + ZS_HANDLE_SIZE;
1166 size -= ZS_HANDLE_SIZE;
1167 off += ZS_HANDLE_SIZE;
1169 sizes[0] = PAGE_SIZE - off;
1170 sizes[1] = size - sizes[0];
1172 /* copy per-cpu buffer to object */
1173 addr = kmap_atomic(pages[0]);
1174 memcpy(addr + off, buf, sizes[0]);
1175 kunmap_atomic(addr);
1176 addr = kmap_atomic(pages[1]);
1177 memcpy(addr, buf + sizes[0], sizes[1]);
1178 kunmap_atomic(addr);
1181 /* enable page faults to match kunmap_atomic() return conditions */
1185 static int zs_cpu_prepare(unsigned int cpu)
1187 struct mapping_area *area;
1189 area = &per_cpu(zs_map_area, cpu);
1190 return __zs_cpu_up(area);
1193 static int zs_cpu_dead(unsigned int cpu)
1195 struct mapping_area *area;
1197 area = &per_cpu(zs_map_area, cpu);
1198 __zs_cpu_down(area);
1202 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1203 int objs_per_zspage)
1205 if (prev->pages_per_zspage == pages_per_zspage &&
1206 prev->objs_per_zspage == objs_per_zspage)
1212 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1214 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1217 unsigned long zs_get_total_pages(struct zs_pool *pool)
1219 return atomic_long_read(&pool->pages_allocated);
1221 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1224 * zs_map_object - get address of allocated object from handle.
1225 * @pool: pool from which the object was allocated
1226 * @handle: handle returned from zs_malloc
1227 * @mm: mapping mode to use
1229 * Before using an object allocated from zs_malloc, it must be mapped using
1230 * this function. When done with the object, it must be unmapped using
1233 * Only one object can be mapped per cpu at a time. There is no protection
1234 * against nested mappings.
1236 * This function returns with preemption and page faults disabled.
1238 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1241 struct zspage *zspage;
1243 unsigned long obj, off;
1244 unsigned int obj_idx;
1246 struct size_class *class;
1247 struct mapping_area *area;
1248 struct page *pages[2];
1252 * Because we use per-cpu mapping areas shared among the
1253 * pools/users, we can't allow mapping in interrupt context
1254 * because it can corrupt another users mappings.
1256 BUG_ON(in_interrupt());
1258 /* It guarantees it can get zspage from handle safely */
1259 read_lock(&pool->migrate_lock);
1260 obj = handle_to_obj(handle);
1261 obj_to_location(obj, &page, &obj_idx);
1262 zspage = get_zspage(page);
1265 * migration cannot move any zpages in this zspage. Here, class->lock
1266 * is too heavy since callers would take some time until they calls
1267 * zs_unmap_object API so delegate the locking from class to zspage
1268 * which is smaller granularity.
1270 migrate_read_lock(zspage);
1271 read_unlock(&pool->migrate_lock);
1273 class = zspage_class(pool, zspage);
1274 off = (class->size * obj_idx) & ~PAGE_MASK;
1276 local_lock(&zs_map_area.lock);
1277 area = this_cpu_ptr(&zs_map_area);
1279 if (off + class->size <= PAGE_SIZE) {
1280 /* this object is contained entirely within a page */
1281 area->vm_addr = kmap_atomic(page);
1282 ret = area->vm_addr + off;
1286 /* this object spans two pages */
1288 pages[1] = get_next_page(page);
1291 ret = __zs_map_object(area, pages, off, class->size);
1293 if (likely(!ZsHugePage(zspage)))
1294 ret += ZS_HANDLE_SIZE;
1298 EXPORT_SYMBOL_GPL(zs_map_object);
1300 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1302 struct zspage *zspage;
1304 unsigned long obj, off;
1305 unsigned int obj_idx;
1307 struct size_class *class;
1308 struct mapping_area *area;
1310 obj = handle_to_obj(handle);
1311 obj_to_location(obj, &page, &obj_idx);
1312 zspage = get_zspage(page);
1313 class = zspage_class(pool, zspage);
1314 off = (class->size * obj_idx) & ~PAGE_MASK;
1316 area = this_cpu_ptr(&zs_map_area);
1317 if (off + class->size <= PAGE_SIZE)
1318 kunmap_atomic(area->vm_addr);
1320 struct page *pages[2];
1323 pages[1] = get_next_page(page);
1326 __zs_unmap_object(area, pages, off, class->size);
1328 local_unlock(&zs_map_area.lock);
1330 migrate_read_unlock(zspage);
1332 EXPORT_SYMBOL_GPL(zs_unmap_object);
1335 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1336 * zsmalloc &size_class.
1337 * @pool: zsmalloc pool to use
1339 * The function returns the size of the first huge class - any object of equal
1340 * or bigger size will be stored in zspage consisting of a single physical
1343 * Context: Any context.
1345 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1347 size_t zs_huge_class_size(struct zs_pool *pool)
1349 return huge_class_size;
1351 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1353 static unsigned long obj_malloc(struct zs_pool *pool,
1354 struct zspage *zspage, unsigned long handle)
1356 int i, nr_page, offset;
1358 struct link_free *link;
1359 struct size_class *class;
1361 struct page *m_page;
1362 unsigned long m_offset;
1365 class = pool->size_class[zspage->class];
1366 handle |= OBJ_ALLOCATED_TAG;
1367 obj = get_freeobj(zspage);
1369 offset = obj * class->size;
1370 nr_page = offset >> PAGE_SHIFT;
1371 m_offset = offset & ~PAGE_MASK;
1372 m_page = get_first_page(zspage);
1374 for (i = 0; i < nr_page; i++)
1375 m_page = get_next_page(m_page);
1377 vaddr = kmap_atomic(m_page);
1378 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1379 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1380 if (likely(!ZsHugePage(zspage)))
1381 /* record handle in the header of allocated chunk */
1382 link->handle = handle;
1384 /* record handle to page->index */
1385 zspage->first_page->index = handle;
1387 kunmap_atomic(vaddr);
1388 mod_zspage_inuse(zspage, 1);
1390 obj = location_to_obj(m_page, obj);
1397 * zs_malloc - Allocate block of given size from pool.
1398 * @pool: pool to allocate from
1399 * @size: size of block to allocate
1400 * @gfp: gfp flags when allocating object
1402 * On success, handle to the allocated object is returned,
1404 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1406 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1408 unsigned long handle, obj;
1409 struct size_class *class;
1410 enum fullness_group newfg;
1411 struct zspage *zspage;
1413 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1416 handle = cache_alloc_handle(pool, gfp);
1420 /* extra space in chunk to keep the handle */
1421 size += ZS_HANDLE_SIZE;
1422 class = pool->size_class[get_size_class_index(size)];
1424 /* class->lock effectively protects the zpage migration */
1425 spin_lock(&class->lock);
1426 zspage = find_get_zspage(class);
1427 if (likely(zspage)) {
1428 obj = obj_malloc(pool, zspage, handle);
1429 /* Now move the zspage to another fullness group, if required */
1430 fix_fullness_group(class, zspage);
1431 record_obj(handle, obj);
1432 class_stat_inc(class, OBJ_USED, 1);
1433 spin_unlock(&class->lock);
1438 spin_unlock(&class->lock);
1440 zspage = alloc_zspage(pool, class, gfp);
1442 cache_free_handle(pool, handle);
1446 spin_lock(&class->lock);
1447 obj = obj_malloc(pool, zspage, handle);
1448 newfg = get_fullness_group(class, zspage);
1449 insert_zspage(class, zspage, newfg);
1450 set_zspage_mapping(zspage, class->index, newfg);
1451 record_obj(handle, obj);
1452 atomic_long_add(class->pages_per_zspage,
1453 &pool->pages_allocated);
1454 class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1455 class_stat_inc(class, OBJ_USED, 1);
1457 /* We completely set up zspage so mark them as movable */
1458 SetZsPageMovable(pool, zspage);
1459 spin_unlock(&class->lock);
1463 EXPORT_SYMBOL_GPL(zs_malloc);
1465 static void obj_free(int class_size, unsigned long obj)
1467 struct link_free *link;
1468 struct zspage *zspage;
1469 struct page *f_page;
1470 unsigned long f_offset;
1471 unsigned int f_objidx;
1474 obj_to_location(obj, &f_page, &f_objidx);
1475 f_offset = (class_size * f_objidx) & ~PAGE_MASK;
1476 zspage = get_zspage(f_page);
1478 vaddr = kmap_atomic(f_page);
1480 /* Insert this object in containing zspage's freelist */
1481 link = (struct link_free *)(vaddr + f_offset);
1482 if (likely(!ZsHugePage(zspage)))
1483 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1486 kunmap_atomic(vaddr);
1487 set_freeobj(zspage, f_objidx);
1488 mod_zspage_inuse(zspage, -1);
1491 void zs_free(struct zs_pool *pool, unsigned long handle)
1493 struct zspage *zspage;
1494 struct page *f_page;
1496 struct size_class *class;
1497 enum fullness_group fullness;
1499 if (unlikely(!handle))
1503 * The pool->migrate_lock protects the race with zpage's migration
1504 * so it's safe to get the page from handle.
1506 read_lock(&pool->migrate_lock);
1507 obj = handle_to_obj(handle);
1508 obj_to_page(obj, &f_page);
1509 zspage = get_zspage(f_page);
1510 class = zspage_class(pool, zspage);
1511 spin_lock(&class->lock);
1512 read_unlock(&pool->migrate_lock);
1514 obj_free(class->size, obj);
1515 class_stat_dec(class, OBJ_USED, 1);
1516 fullness = fix_fullness_group(class, zspage);
1517 if (fullness != ZS_EMPTY)
1520 free_zspage(pool, class, zspage);
1522 spin_unlock(&class->lock);
1523 cache_free_handle(pool, handle);
1525 EXPORT_SYMBOL_GPL(zs_free);
1527 static void zs_object_copy(struct size_class *class, unsigned long dst,
1530 struct page *s_page, *d_page;
1531 unsigned int s_objidx, d_objidx;
1532 unsigned long s_off, d_off;
1533 void *s_addr, *d_addr;
1534 int s_size, d_size, size;
1537 s_size = d_size = class->size;
1539 obj_to_location(src, &s_page, &s_objidx);
1540 obj_to_location(dst, &d_page, &d_objidx);
1542 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1543 d_off = (class->size * d_objidx) & ~PAGE_MASK;
1545 if (s_off + class->size > PAGE_SIZE)
1546 s_size = PAGE_SIZE - s_off;
1548 if (d_off + class->size > PAGE_SIZE)
1549 d_size = PAGE_SIZE - d_off;
1551 s_addr = kmap_atomic(s_page);
1552 d_addr = kmap_atomic(d_page);
1555 size = min(s_size, d_size);
1556 memcpy(d_addr + d_off, s_addr + s_off, size);
1559 if (written == class->size)
1567 if (s_off >= PAGE_SIZE) {
1568 kunmap_atomic(d_addr);
1569 kunmap_atomic(s_addr);
1570 s_page = get_next_page(s_page);
1571 s_addr = kmap_atomic(s_page);
1572 d_addr = kmap_atomic(d_page);
1573 s_size = class->size - written;
1577 if (d_off >= PAGE_SIZE) {
1578 kunmap_atomic(d_addr);
1579 d_page = get_next_page(d_page);
1580 d_addr = kmap_atomic(d_page);
1581 d_size = class->size - written;
1586 kunmap_atomic(d_addr);
1587 kunmap_atomic(s_addr);
1591 * Find alloced object in zspage from index object and
1594 static unsigned long find_alloced_obj(struct size_class *class,
1595 struct page *page, int *obj_idx)
1598 int index = *obj_idx;
1599 unsigned long handle = 0;
1600 void *addr = kmap_atomic(page);
1602 offset = get_first_obj_offset(page);
1603 offset += class->size * index;
1605 while (offset < PAGE_SIZE) {
1606 if (obj_allocated(page, addr + offset, &handle))
1609 offset += class->size;
1613 kunmap_atomic(addr);
1620 struct zs_compact_control {
1621 /* Source spage for migration which could be a subpage of zspage */
1622 struct page *s_page;
1623 /* Destination page for migration which should be a first page
1625 struct page *d_page;
1626 /* Starting object index within @s_page which used for live object
1627 * in the subpage. */
1631 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1632 struct zs_compact_control *cc)
1634 unsigned long used_obj, free_obj;
1635 unsigned long handle;
1636 struct page *s_page = cc->s_page;
1637 struct page *d_page = cc->d_page;
1638 int obj_idx = cc->obj_idx;
1642 handle = find_alloced_obj(class, s_page, &obj_idx);
1644 s_page = get_next_page(s_page);
1651 /* Stop if there is no more space */
1652 if (zspage_full(class, get_zspage(d_page))) {
1657 used_obj = handle_to_obj(handle);
1658 free_obj = obj_malloc(pool, get_zspage(d_page), handle);
1659 zs_object_copy(class, free_obj, used_obj);
1661 record_obj(handle, free_obj);
1662 obj_free(class->size, used_obj);
1665 /* Remember last position in this iteration */
1666 cc->s_page = s_page;
1667 cc->obj_idx = obj_idx;
1672 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1675 struct zspage *zspage;
1676 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1679 fg[0] = ZS_ALMOST_FULL;
1680 fg[1] = ZS_ALMOST_EMPTY;
1683 for (i = 0; i < 2; i++) {
1684 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1685 struct zspage, list);
1687 remove_zspage(class, zspage, fg[i]);
1696 * putback_zspage - add @zspage into right class's fullness list
1697 * @class: destination class
1698 * @zspage: target page
1700 * Return @zspage's fullness_group
1702 static enum fullness_group putback_zspage(struct size_class *class,
1703 struct zspage *zspage)
1705 enum fullness_group fullness;
1707 fullness = get_fullness_group(class, zspage);
1708 insert_zspage(class, zspage, fullness);
1709 set_zspage_mapping(zspage, class->index, fullness);
1714 #ifdef CONFIG_COMPACTION
1716 * To prevent zspage destroy during migration, zspage freeing should
1717 * hold locks of all pages in the zspage.
1719 static void lock_zspage(struct zspage *zspage)
1721 struct page *curr_page, *page;
1724 * Pages we haven't locked yet can be migrated off the list while we're
1725 * trying to lock them, so we need to be careful and only attempt to
1726 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1727 * may no longer belong to the zspage. This means that we may wait for
1728 * the wrong page to unlock, so we must take a reference to the page
1729 * prior to waiting for it to unlock outside migrate_read_lock().
1732 migrate_read_lock(zspage);
1733 page = get_first_page(zspage);
1734 if (trylock_page(page))
1737 migrate_read_unlock(zspage);
1738 wait_on_page_locked(page);
1743 while ((page = get_next_page(curr_page))) {
1744 if (trylock_page(page)) {
1748 migrate_read_unlock(zspage);
1749 wait_on_page_locked(page);
1751 migrate_read_lock(zspage);
1754 migrate_read_unlock(zspage);
1757 static int zs_init_fs_context(struct fs_context *fc)
1759 return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
1762 static struct file_system_type zsmalloc_fs = {
1764 .init_fs_context = zs_init_fs_context,
1765 .kill_sb = kill_anon_super,
1768 static int zsmalloc_mount(void)
1772 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1773 if (IS_ERR(zsmalloc_mnt))
1774 ret = PTR_ERR(zsmalloc_mnt);
1779 static void zsmalloc_unmount(void)
1781 kern_unmount(zsmalloc_mnt);
1784 static void migrate_lock_init(struct zspage *zspage)
1786 rwlock_init(&zspage->lock);
1789 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1791 read_lock(&zspage->lock);
1794 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1796 read_unlock(&zspage->lock);
1799 static void migrate_write_lock(struct zspage *zspage)
1801 write_lock(&zspage->lock);
1804 static void migrate_write_lock_nested(struct zspage *zspage)
1806 write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
1809 static void migrate_write_unlock(struct zspage *zspage)
1811 write_unlock(&zspage->lock);
1814 /* Number of isolated subpage for *page migration* in this zspage */
1815 static void inc_zspage_isolation(struct zspage *zspage)
1820 static void dec_zspage_isolation(struct zspage *zspage)
1822 VM_BUG_ON(zspage->isolated == 0);
1826 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1827 struct page *newpage, struct page *oldpage)
1830 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1833 page = get_first_page(zspage);
1835 if (page == oldpage)
1836 pages[idx] = newpage;
1840 } while ((page = get_next_page(page)) != NULL);
1842 create_page_chain(class, zspage, pages);
1843 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1844 if (unlikely(ZsHugePage(zspage)))
1845 newpage->index = oldpage->index;
1846 __SetPageMovable(newpage, page_mapping(oldpage));
1849 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1851 struct zspage *zspage;
1854 * Page is locked so zspage couldn't be destroyed. For detail, look at
1855 * lock_zspage in free_zspage.
1857 VM_BUG_ON_PAGE(!PageMovable(page), page);
1858 VM_BUG_ON_PAGE(PageIsolated(page), page);
1860 zspage = get_zspage(page);
1861 migrate_write_lock(zspage);
1862 inc_zspage_isolation(zspage);
1863 migrate_write_unlock(zspage);
1868 static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1869 struct page *page, enum migrate_mode mode)
1871 struct zs_pool *pool;
1872 struct size_class *class;
1873 struct zspage *zspage;
1875 void *s_addr, *d_addr, *addr;
1877 unsigned long handle;
1878 unsigned long old_obj, new_obj;
1879 unsigned int obj_idx;
1882 * We cannot support the _NO_COPY case here, because copy needs to
1883 * happen under the zs lock, which does not work with
1884 * MIGRATE_SYNC_NO_COPY workflow.
1886 if (mode == MIGRATE_SYNC_NO_COPY)
1889 VM_BUG_ON_PAGE(!PageMovable(page), page);
1890 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1892 pool = mapping->private_data;
1895 * The pool migrate_lock protects the race between zpage migration
1898 write_lock(&pool->migrate_lock);
1899 zspage = get_zspage(page);
1900 class = zspage_class(pool, zspage);
1903 * the class lock protects zpage alloc/free in the zspage.
1905 spin_lock(&class->lock);
1906 /* the migrate_write_lock protects zpage access via zs_map_object */
1907 migrate_write_lock(zspage);
1909 offset = get_first_obj_offset(page);
1910 s_addr = kmap_atomic(page);
1913 * Here, any user cannot access all objects in the zspage so let's move.
1915 d_addr = kmap_atomic(newpage);
1916 memcpy(d_addr, s_addr, PAGE_SIZE);
1917 kunmap_atomic(d_addr);
1919 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1920 addr += class->size) {
1921 if (obj_allocated(page, addr, &handle)) {
1923 old_obj = handle_to_obj(handle);
1924 obj_to_location(old_obj, &dummy, &obj_idx);
1925 new_obj = (unsigned long)location_to_obj(newpage,
1927 record_obj(handle, new_obj);
1930 kunmap_atomic(s_addr);
1932 replace_sub_page(class, zspage, newpage, page);
1934 * Since we complete the data copy and set up new zspage structure,
1935 * it's okay to release migration_lock.
1937 write_unlock(&pool->migrate_lock);
1938 spin_unlock(&class->lock);
1939 dec_zspage_isolation(zspage);
1940 migrate_write_unlock(zspage);
1943 if (page_zone(newpage) != page_zone(page)) {
1944 dec_zone_page_state(page, NR_ZSPAGES);
1945 inc_zone_page_state(newpage, NR_ZSPAGES);
1951 return MIGRATEPAGE_SUCCESS;
1954 static void zs_page_putback(struct page *page)
1956 struct zspage *zspage;
1958 VM_BUG_ON_PAGE(!PageMovable(page), page);
1959 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1961 zspage = get_zspage(page);
1962 migrate_write_lock(zspage);
1963 dec_zspage_isolation(zspage);
1964 migrate_write_unlock(zspage);
1967 static const struct address_space_operations zsmalloc_aops = {
1968 .isolate_page = zs_page_isolate,
1969 .migratepage = zs_page_migrate,
1970 .putback_page = zs_page_putback,
1973 static int zs_register_migration(struct zs_pool *pool)
1975 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
1976 if (IS_ERR(pool->inode)) {
1981 pool->inode->i_mapping->private_data = pool;
1982 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
1986 static void zs_unregister_migration(struct zs_pool *pool)
1988 flush_work(&pool->free_work);
1993 * Caller should hold page_lock of all pages in the zspage
1994 * In here, we cannot use zspage meta data.
1996 static void async_free_zspage(struct work_struct *work)
1999 struct size_class *class;
2000 unsigned int class_idx;
2001 enum fullness_group fullness;
2002 struct zspage *zspage, *tmp;
2003 LIST_HEAD(free_pages);
2004 struct zs_pool *pool = container_of(work, struct zs_pool,
2007 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2008 class = pool->size_class[i];
2009 if (class->index != i)
2012 spin_lock(&class->lock);
2013 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2014 spin_unlock(&class->lock);
2017 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2018 list_del(&zspage->list);
2019 lock_zspage(zspage);
2021 get_zspage_mapping(zspage, &class_idx, &fullness);
2022 VM_BUG_ON(fullness != ZS_EMPTY);
2023 class = pool->size_class[class_idx];
2024 spin_lock(&class->lock);
2025 __free_zspage(pool, class, zspage);
2026 spin_unlock(&class->lock);
2030 static void kick_deferred_free(struct zs_pool *pool)
2032 schedule_work(&pool->free_work);
2035 static void init_deferred_free(struct zs_pool *pool)
2037 INIT_WORK(&pool->free_work, async_free_zspage);
2040 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2042 struct page *page = get_first_page(zspage);
2045 WARN_ON(!trylock_page(page));
2046 __SetPageMovable(page, pool->inode->i_mapping);
2048 } while ((page = get_next_page(page)) != NULL);
2054 * Based on the number of unused allocated objects calculate
2055 * and return the number of pages that we can free.
2057 static unsigned long zs_can_compact(struct size_class *class)
2059 unsigned long obj_wasted;
2060 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2061 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2063 if (obj_allocated <= obj_used)
2066 obj_wasted = obj_allocated - obj_used;
2067 obj_wasted /= class->objs_per_zspage;
2069 return obj_wasted * class->pages_per_zspage;
2072 static unsigned long __zs_compact(struct zs_pool *pool,
2073 struct size_class *class)
2075 struct zs_compact_control cc;
2076 struct zspage *src_zspage;
2077 struct zspage *dst_zspage = NULL;
2078 unsigned long pages_freed = 0;
2080 /* protect the race between zpage migration and zs_free */
2081 write_lock(&pool->migrate_lock);
2082 /* protect zpage allocation/free */
2083 spin_lock(&class->lock);
2084 while ((src_zspage = isolate_zspage(class, true))) {
2085 /* protect someone accessing the zspage(i.e., zs_map_object) */
2086 migrate_write_lock(src_zspage);
2088 if (!zs_can_compact(class))
2092 cc.s_page = get_first_page(src_zspage);
2094 while ((dst_zspage = isolate_zspage(class, false))) {
2095 migrate_write_lock_nested(dst_zspage);
2097 cc.d_page = get_first_page(dst_zspage);
2099 * If there is no more space in dst_page, resched
2100 * and see if anyone had allocated another zspage.
2102 if (!migrate_zspage(pool, class, &cc))
2105 putback_zspage(class, dst_zspage);
2106 migrate_write_unlock(dst_zspage);
2108 if (rwlock_is_contended(&pool->migrate_lock))
2112 /* Stop if we couldn't find slot */
2113 if (dst_zspage == NULL)
2116 putback_zspage(class, dst_zspage);
2117 migrate_write_unlock(dst_zspage);
2119 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2120 migrate_write_unlock(src_zspage);
2121 free_zspage(pool, class, src_zspage);
2122 pages_freed += class->pages_per_zspage;
2124 migrate_write_unlock(src_zspage);
2125 spin_unlock(&class->lock);
2126 write_unlock(&pool->migrate_lock);
2128 write_lock(&pool->migrate_lock);
2129 spin_lock(&class->lock);
2133 putback_zspage(class, src_zspage);
2134 migrate_write_unlock(src_zspage);
2137 spin_unlock(&class->lock);
2138 write_unlock(&pool->migrate_lock);
2143 unsigned long zs_compact(struct zs_pool *pool)
2146 struct size_class *class;
2147 unsigned long pages_freed = 0;
2149 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2150 class = pool->size_class[i];
2153 if (class->index != i)
2155 pages_freed += __zs_compact(pool, class);
2157 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2161 EXPORT_SYMBOL_GPL(zs_compact);
2163 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2165 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2167 EXPORT_SYMBOL_GPL(zs_pool_stats);
2169 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2170 struct shrink_control *sc)
2172 unsigned long pages_freed;
2173 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2177 * Compact classes and calculate compaction delta.
2178 * Can run concurrently with a manually triggered
2179 * (by user) compaction.
2181 pages_freed = zs_compact(pool);
2183 return pages_freed ? pages_freed : SHRINK_STOP;
2186 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2187 struct shrink_control *sc)
2190 struct size_class *class;
2191 unsigned long pages_to_free = 0;
2192 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2195 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2196 class = pool->size_class[i];
2199 if (class->index != i)
2202 pages_to_free += zs_can_compact(class);
2205 return pages_to_free;
2208 static void zs_unregister_shrinker(struct zs_pool *pool)
2210 unregister_shrinker(&pool->shrinker);
2213 static int zs_register_shrinker(struct zs_pool *pool)
2215 pool->shrinker.scan_objects = zs_shrinker_scan;
2216 pool->shrinker.count_objects = zs_shrinker_count;
2217 pool->shrinker.batch = 0;
2218 pool->shrinker.seeks = DEFAULT_SEEKS;
2220 return register_shrinker(&pool->shrinker);
2224 * zs_create_pool - Creates an allocation pool to work from.
2225 * @name: pool name to be created
2227 * This function must be called before anything when using
2228 * the zsmalloc allocator.
2230 * On success, a pointer to the newly created pool is returned,
2233 struct zs_pool *zs_create_pool(const char *name)
2236 struct zs_pool *pool;
2237 struct size_class *prev_class = NULL;
2239 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2243 init_deferred_free(pool);
2244 rwlock_init(&pool->migrate_lock);
2246 pool->name = kstrdup(name, GFP_KERNEL);
2250 if (create_cache(pool))
2254 * Iterate reversely, because, size of size_class that we want to use
2255 * for merging should be larger or equal to current size.
2257 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2259 int pages_per_zspage;
2260 int objs_per_zspage;
2261 struct size_class *class;
2264 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2265 if (size > ZS_MAX_ALLOC_SIZE)
2266 size = ZS_MAX_ALLOC_SIZE;
2267 pages_per_zspage = get_pages_per_zspage(size);
2268 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2271 * We iterate from biggest down to smallest classes,
2272 * so huge_class_size holds the size of the first huge
2273 * class. Any object bigger than or equal to that will
2274 * endup in the huge class.
2276 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2278 huge_class_size = size;
2280 * The object uses ZS_HANDLE_SIZE bytes to store the
2281 * handle. We need to subtract it, because zs_malloc()
2282 * unconditionally adds handle size before it performs
2283 * size class search - so object may be smaller than
2284 * huge class size, yet it still can end up in the huge
2285 * class because it grows by ZS_HANDLE_SIZE extra bytes
2286 * right before class lookup.
2288 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2292 * size_class is used for normal zsmalloc operation such
2293 * as alloc/free for that size. Although it is natural that we
2294 * have one size_class for each size, there is a chance that we
2295 * can get more memory utilization if we use one size_class for
2296 * many different sizes whose size_class have same
2297 * characteristics. So, we makes size_class point to
2298 * previous size_class if possible.
2301 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2302 pool->size_class[i] = prev_class;
2307 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2313 class->pages_per_zspage = pages_per_zspage;
2314 class->objs_per_zspage = objs_per_zspage;
2315 spin_lock_init(&class->lock);
2316 pool->size_class[i] = class;
2317 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2319 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2324 /* debug only, don't abort if it fails */
2325 zs_pool_stat_create(pool, name);
2327 if (zs_register_migration(pool))
2331 * Not critical since shrinker is only used to trigger internal
2332 * defragmentation of the pool which is pretty optional thing. If
2333 * registration fails we still can use the pool normally and user can
2334 * trigger compaction manually. Thus, ignore return code.
2336 zs_register_shrinker(pool);
2341 zs_destroy_pool(pool);
2344 EXPORT_SYMBOL_GPL(zs_create_pool);
2346 void zs_destroy_pool(struct zs_pool *pool)
2350 zs_unregister_shrinker(pool);
2351 zs_unregister_migration(pool);
2352 zs_pool_stat_destroy(pool);
2354 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2356 struct size_class *class = pool->size_class[i];
2361 if (class->index != i)
2364 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2365 if (!list_empty(&class->fullness_list[fg])) {
2366 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2373 destroy_cache(pool);
2377 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2379 static int __init zs_init(void)
2383 ret = zsmalloc_mount();
2387 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2388 zs_cpu_prepare, zs_cpu_dead);
2393 zpool_register_driver(&zs_zpool_driver);
2406 static void __exit zs_exit(void)
2409 zpool_unregister_driver(&zs_zpool_driver);
2412 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2417 module_init(zs_init);
2418 module_exit(zs_exit);
2420 MODULE_LICENSE("Dual BSD/GPL");
2421 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");