watchdog: pm8916_wdt: Handle watchdog enabled by bootloader
[platform/kernel/linux-starfive.git] / mm / zsmalloc.c
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *      page->private: points to zspage
20  *      page->index: links together all component pages of a zspage
21  *              For the huge page, this is always 0, so we use this field
22  *              to store handle.
23  *      page->page_type: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *      PG_private: identifies the first component page
27  *      PG_owner_priv_1: identifies the huge component page
28  *
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 /*
34  * lock ordering:
35  *      page_lock
36  *      pool->migrate_lock
37  *      class->lock
38  *      zspage->lock
39  */
40
41 #include <linux/module.h>
42 #include <linux/kernel.h>
43 #include <linux/sched.h>
44 #include <linux/magic.h>
45 #include <linux/bitops.h>
46 #include <linux/errno.h>
47 #include <linux/highmem.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/pgtable.h>
51 #include <asm/tlbflush.h>
52 #include <linux/cpumask.h>
53 #include <linux/cpu.h>
54 #include <linux/vmalloc.h>
55 #include <linux/preempt.h>
56 #include <linux/spinlock.h>
57 #include <linux/shrinker.h>
58 #include <linux/types.h>
59 #include <linux/debugfs.h>
60 #include <linux/zsmalloc.h>
61 #include <linux/zpool.h>
62 #include <linux/mount.h>
63 #include <linux/pseudo_fs.h>
64 #include <linux/migrate.h>
65 #include <linux/wait.h>
66 #include <linux/pagemap.h>
67 #include <linux/fs.h>
68 #include <linux/local_lock.h>
69
70 #define ZSPAGE_MAGIC    0x58
71
72 /*
73  * This must be power of 2 and greater than or equal to sizeof(link_free).
74  * These two conditions ensure that any 'struct link_free' itself doesn't
75  * span more than 1 page which avoids complex case of mapping 2 pages simply
76  * to restore link_free pointer values.
77  */
78 #define ZS_ALIGN                8
79
80 /*
81  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
82  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
83  */
84 #define ZS_MAX_ZSPAGE_ORDER 2
85 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
86
87 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
88
89 /*
90  * Object location (<PFN>, <obj_idx>) is encoded as
91  * a single (unsigned long) handle value.
92  *
93  * Note that object index <obj_idx> starts from 0.
94  *
95  * This is made more complicated by various memory models and PAE.
96  */
97
98 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
99 #ifdef MAX_PHYSMEM_BITS
100 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
101 #else
102 /*
103  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
104  * be PAGE_SHIFT
105  */
106 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
107 #endif
108 #endif
109
110 #define _PFN_BITS               (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
111
112 /*
113  * Head in allocated object should have OBJ_ALLOCATED_TAG
114  * to identify the object was allocated or not.
115  * It's okay to add the status bit in the least bit because
116  * header keeps handle which is 4byte-aligned address so we
117  * have room for two bit at least.
118  */
119 #define OBJ_ALLOCATED_TAG 1
120 #define OBJ_TAG_BITS 1
121 #define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
122 #define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
123
124 #define HUGE_BITS       1
125 #define FULLNESS_BITS   2
126 #define CLASS_BITS      8
127 #define ISOLATED_BITS   3
128 #define MAGIC_VAL_BITS  8
129
130 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
131 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
132 #define ZS_MIN_ALLOC_SIZE \
133         MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
134 /* each chunk includes extra space to keep handle */
135 #define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
136
137 /*
138  * On systems with 4K page size, this gives 255 size classes! There is a
139  * trader-off here:
140  *  - Large number of size classes is potentially wasteful as free page are
141  *    spread across these classes
142  *  - Small number of size classes causes large internal fragmentation
143  *  - Probably its better to use specific size classes (empirically
144  *    determined). NOTE: all those class sizes must be set as multiple of
145  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
146  *
147  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
148  *  (reason above)
149  */
150 #define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
151 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
152                                       ZS_SIZE_CLASS_DELTA) + 1)
153
154 enum fullness_group {
155         ZS_EMPTY,
156         ZS_ALMOST_EMPTY,
157         ZS_ALMOST_FULL,
158         ZS_FULL,
159         NR_ZS_FULLNESS,
160 };
161
162 enum class_stat_type {
163         CLASS_EMPTY,
164         CLASS_ALMOST_EMPTY,
165         CLASS_ALMOST_FULL,
166         CLASS_FULL,
167         OBJ_ALLOCATED,
168         OBJ_USED,
169         NR_ZS_STAT_TYPE,
170 };
171
172 struct zs_size_stat {
173         unsigned long objs[NR_ZS_STAT_TYPE];
174 };
175
176 #ifdef CONFIG_ZSMALLOC_STAT
177 static struct dentry *zs_stat_root;
178 #endif
179
180 #ifdef CONFIG_COMPACTION
181 static struct vfsmount *zsmalloc_mnt;
182 #endif
183
184 /*
185  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
186  *      n <= N / f, where
187  * n = number of allocated objects
188  * N = total number of objects zspage can store
189  * f = fullness_threshold_frac
190  *
191  * Similarly, we assign zspage to:
192  *      ZS_ALMOST_FULL  when n > N / f
193  *      ZS_EMPTY        when n == 0
194  *      ZS_FULL         when n == N
195  *
196  * (see: fix_fullness_group())
197  */
198 static const int fullness_threshold_frac = 4;
199 static size_t huge_class_size;
200
201 struct size_class {
202         spinlock_t lock;
203         struct list_head fullness_list[NR_ZS_FULLNESS];
204         /*
205          * Size of objects stored in this class. Must be multiple
206          * of ZS_ALIGN.
207          */
208         int size;
209         int objs_per_zspage;
210         /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
211         int pages_per_zspage;
212
213         unsigned int index;
214         struct zs_size_stat stats;
215 };
216
217 /*
218  * Placed within free objects to form a singly linked list.
219  * For every zspage, zspage->freeobj gives head of this list.
220  *
221  * This must be power of 2 and less than or equal to ZS_ALIGN
222  */
223 struct link_free {
224         union {
225                 /*
226                  * Free object index;
227                  * It's valid for non-allocated object
228                  */
229                 unsigned long next;
230                 /*
231                  * Handle of allocated object.
232                  */
233                 unsigned long handle;
234         };
235 };
236
237 struct zs_pool {
238         const char *name;
239
240         struct size_class *size_class[ZS_SIZE_CLASSES];
241         struct kmem_cache *handle_cachep;
242         struct kmem_cache *zspage_cachep;
243
244         atomic_long_t pages_allocated;
245
246         struct zs_pool_stats stats;
247
248         /* Compact classes */
249         struct shrinker shrinker;
250
251 #ifdef CONFIG_ZSMALLOC_STAT
252         struct dentry *stat_dentry;
253 #endif
254 #ifdef CONFIG_COMPACTION
255         struct inode *inode;
256         struct work_struct free_work;
257 #endif
258         /* protect page/zspage migration */
259         rwlock_t migrate_lock;
260 };
261
262 struct zspage {
263         struct {
264                 unsigned int huge:HUGE_BITS;
265                 unsigned int fullness:FULLNESS_BITS;
266                 unsigned int class:CLASS_BITS + 1;
267                 unsigned int isolated:ISOLATED_BITS;
268                 unsigned int magic:MAGIC_VAL_BITS;
269         };
270         unsigned int inuse;
271         unsigned int freeobj;
272         struct page *first_page;
273         struct list_head list; /* fullness list */
274 #ifdef CONFIG_COMPACTION
275         rwlock_t lock;
276 #endif
277 };
278
279 struct mapping_area {
280         local_lock_t lock;
281         char *vm_buf; /* copy buffer for objects that span pages */
282         char *vm_addr; /* address of kmap_atomic()'ed pages */
283         enum zs_mapmode vm_mm; /* mapping mode */
284 };
285
286 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
287 static void SetZsHugePage(struct zspage *zspage)
288 {
289         zspage->huge = 1;
290 }
291
292 static bool ZsHugePage(struct zspage *zspage)
293 {
294         return zspage->huge;
295 }
296
297 #ifdef CONFIG_COMPACTION
298 static int zs_register_migration(struct zs_pool *pool);
299 static void zs_unregister_migration(struct zs_pool *pool);
300 static void migrate_lock_init(struct zspage *zspage);
301 static void migrate_read_lock(struct zspage *zspage);
302 static void migrate_read_unlock(struct zspage *zspage);
303 static void migrate_write_lock(struct zspage *zspage);
304 static void migrate_write_lock_nested(struct zspage *zspage);
305 static void migrate_write_unlock(struct zspage *zspage);
306 static void kick_deferred_free(struct zs_pool *pool);
307 static void init_deferred_free(struct zs_pool *pool);
308 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
309 #else
310 static int zsmalloc_mount(void) { return 0; }
311 static void zsmalloc_unmount(void) {}
312 static int zs_register_migration(struct zs_pool *pool) { return 0; }
313 static void zs_unregister_migration(struct zs_pool *pool) {}
314 static void migrate_lock_init(struct zspage *zspage) {}
315 static void migrate_read_lock(struct zspage *zspage) {}
316 static void migrate_read_unlock(struct zspage *zspage) {}
317 static void migrate_write_lock(struct zspage *zspage) {}
318 static void migrate_write_lock_nested(struct zspage *zspage) {}
319 static void migrate_write_unlock(struct zspage *zspage) {}
320 static void kick_deferred_free(struct zs_pool *pool) {}
321 static void init_deferred_free(struct zs_pool *pool) {}
322 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
323 #endif
324
325 static int create_cache(struct zs_pool *pool)
326 {
327         pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
328                                         0, 0, NULL);
329         if (!pool->handle_cachep)
330                 return 1;
331
332         pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
333                                         0, 0, NULL);
334         if (!pool->zspage_cachep) {
335                 kmem_cache_destroy(pool->handle_cachep);
336                 pool->handle_cachep = NULL;
337                 return 1;
338         }
339
340         return 0;
341 }
342
343 static void destroy_cache(struct zs_pool *pool)
344 {
345         kmem_cache_destroy(pool->handle_cachep);
346         kmem_cache_destroy(pool->zspage_cachep);
347 }
348
349 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
350 {
351         return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
352                         gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
353 }
354
355 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
356 {
357         kmem_cache_free(pool->handle_cachep, (void *)handle);
358 }
359
360 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
361 {
362         return kmem_cache_zalloc(pool->zspage_cachep,
363                         flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
364 }
365
366 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
367 {
368         kmem_cache_free(pool->zspage_cachep, zspage);
369 }
370
371 /* class->lock(which owns the handle) synchronizes races */
372 static void record_obj(unsigned long handle, unsigned long obj)
373 {
374         *(unsigned long *)handle = obj;
375 }
376
377 /* zpool driver */
378
379 #ifdef CONFIG_ZPOOL
380
381 static void *zs_zpool_create(const char *name, gfp_t gfp,
382                              const struct zpool_ops *zpool_ops,
383                              struct zpool *zpool)
384 {
385         /*
386          * Ignore global gfp flags: zs_malloc() may be invoked from
387          * different contexts and its caller must provide a valid
388          * gfp mask.
389          */
390         return zs_create_pool(name);
391 }
392
393 static void zs_zpool_destroy(void *pool)
394 {
395         zs_destroy_pool(pool);
396 }
397
398 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
399                         unsigned long *handle)
400 {
401         *handle = zs_malloc(pool, size, gfp);
402         return *handle ? 0 : -1;
403 }
404 static void zs_zpool_free(void *pool, unsigned long handle)
405 {
406         zs_free(pool, handle);
407 }
408
409 static void *zs_zpool_map(void *pool, unsigned long handle,
410                         enum zpool_mapmode mm)
411 {
412         enum zs_mapmode zs_mm;
413
414         switch (mm) {
415         case ZPOOL_MM_RO:
416                 zs_mm = ZS_MM_RO;
417                 break;
418         case ZPOOL_MM_WO:
419                 zs_mm = ZS_MM_WO;
420                 break;
421         case ZPOOL_MM_RW:
422         default:
423                 zs_mm = ZS_MM_RW;
424                 break;
425         }
426
427         return zs_map_object(pool, handle, zs_mm);
428 }
429 static void zs_zpool_unmap(void *pool, unsigned long handle)
430 {
431         zs_unmap_object(pool, handle);
432 }
433
434 static u64 zs_zpool_total_size(void *pool)
435 {
436         return zs_get_total_pages(pool) << PAGE_SHIFT;
437 }
438
439 static struct zpool_driver zs_zpool_driver = {
440         .type =                   "zsmalloc",
441         .owner =                  THIS_MODULE,
442         .create =                 zs_zpool_create,
443         .destroy =                zs_zpool_destroy,
444         .malloc_support_movable = true,
445         .malloc =                 zs_zpool_malloc,
446         .free =                   zs_zpool_free,
447         .map =                    zs_zpool_map,
448         .unmap =                  zs_zpool_unmap,
449         .total_size =             zs_zpool_total_size,
450 };
451
452 MODULE_ALIAS("zpool-zsmalloc");
453 #endif /* CONFIG_ZPOOL */
454
455 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
456 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
457         .lock   = INIT_LOCAL_LOCK(lock),
458 };
459
460 static __maybe_unused int is_first_page(struct page *page)
461 {
462         return PagePrivate(page);
463 }
464
465 /* Protected by class->lock */
466 static inline int get_zspage_inuse(struct zspage *zspage)
467 {
468         return zspage->inuse;
469 }
470
471
472 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
473 {
474         zspage->inuse += val;
475 }
476
477 static inline struct page *get_first_page(struct zspage *zspage)
478 {
479         struct page *first_page = zspage->first_page;
480
481         VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
482         return first_page;
483 }
484
485 static inline int get_first_obj_offset(struct page *page)
486 {
487         return page->page_type;
488 }
489
490 static inline void set_first_obj_offset(struct page *page, int offset)
491 {
492         page->page_type = offset;
493 }
494
495 static inline unsigned int get_freeobj(struct zspage *zspage)
496 {
497         return zspage->freeobj;
498 }
499
500 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
501 {
502         zspage->freeobj = obj;
503 }
504
505 static void get_zspage_mapping(struct zspage *zspage,
506                                 unsigned int *class_idx,
507                                 enum fullness_group *fullness)
508 {
509         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
510
511         *fullness = zspage->fullness;
512         *class_idx = zspage->class;
513 }
514
515 static struct size_class *zspage_class(struct zs_pool *pool,
516                                              struct zspage *zspage)
517 {
518         return pool->size_class[zspage->class];
519 }
520
521 static void set_zspage_mapping(struct zspage *zspage,
522                                 unsigned int class_idx,
523                                 enum fullness_group fullness)
524 {
525         zspage->class = class_idx;
526         zspage->fullness = fullness;
527 }
528
529 /*
530  * zsmalloc divides the pool into various size classes where each
531  * class maintains a list of zspages where each zspage is divided
532  * into equal sized chunks. Each allocation falls into one of these
533  * classes depending on its size. This function returns index of the
534  * size class which has chunk size big enough to hold the given size.
535  */
536 static int get_size_class_index(int size)
537 {
538         int idx = 0;
539
540         if (likely(size > ZS_MIN_ALLOC_SIZE))
541                 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
542                                 ZS_SIZE_CLASS_DELTA);
543
544         return min_t(int, ZS_SIZE_CLASSES - 1, idx);
545 }
546
547 /* type can be of enum type class_stat_type or fullness_group */
548 static inline void class_stat_inc(struct size_class *class,
549                                 int type, unsigned long cnt)
550 {
551         class->stats.objs[type] += cnt;
552 }
553
554 /* type can be of enum type class_stat_type or fullness_group */
555 static inline void class_stat_dec(struct size_class *class,
556                                 int type, unsigned long cnt)
557 {
558         class->stats.objs[type] -= cnt;
559 }
560
561 /* type can be of enum type class_stat_type or fullness_group */
562 static inline unsigned long zs_stat_get(struct size_class *class,
563                                 int type)
564 {
565         return class->stats.objs[type];
566 }
567
568 #ifdef CONFIG_ZSMALLOC_STAT
569
570 static void __init zs_stat_init(void)
571 {
572         if (!debugfs_initialized()) {
573                 pr_warn("debugfs not available, stat dir not created\n");
574                 return;
575         }
576
577         zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
578 }
579
580 static void __exit zs_stat_exit(void)
581 {
582         debugfs_remove_recursive(zs_stat_root);
583 }
584
585 static unsigned long zs_can_compact(struct size_class *class);
586
587 static int zs_stats_size_show(struct seq_file *s, void *v)
588 {
589         int i;
590         struct zs_pool *pool = s->private;
591         struct size_class *class;
592         int objs_per_zspage;
593         unsigned long class_almost_full, class_almost_empty;
594         unsigned long obj_allocated, obj_used, pages_used, freeable;
595         unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
596         unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
597         unsigned long total_freeable = 0;
598
599         seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
600                         "class", "size", "almost_full", "almost_empty",
601                         "obj_allocated", "obj_used", "pages_used",
602                         "pages_per_zspage", "freeable");
603
604         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
605                 class = pool->size_class[i];
606
607                 if (class->index != i)
608                         continue;
609
610                 spin_lock(&class->lock);
611                 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
612                 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
613                 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
614                 obj_used = zs_stat_get(class, OBJ_USED);
615                 freeable = zs_can_compact(class);
616                 spin_unlock(&class->lock);
617
618                 objs_per_zspage = class->objs_per_zspage;
619                 pages_used = obj_allocated / objs_per_zspage *
620                                 class->pages_per_zspage;
621
622                 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
623                                 " %10lu %10lu %16d %8lu\n",
624                         i, class->size, class_almost_full, class_almost_empty,
625                         obj_allocated, obj_used, pages_used,
626                         class->pages_per_zspage, freeable);
627
628                 total_class_almost_full += class_almost_full;
629                 total_class_almost_empty += class_almost_empty;
630                 total_objs += obj_allocated;
631                 total_used_objs += obj_used;
632                 total_pages += pages_used;
633                 total_freeable += freeable;
634         }
635
636         seq_puts(s, "\n");
637         seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
638                         "Total", "", total_class_almost_full,
639                         total_class_almost_empty, total_objs,
640                         total_used_objs, total_pages, "", total_freeable);
641
642         return 0;
643 }
644 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
645
646 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
647 {
648         if (!zs_stat_root) {
649                 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
650                 return;
651         }
652
653         pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
654
655         debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
656                             &zs_stats_size_fops);
657 }
658
659 static void zs_pool_stat_destroy(struct zs_pool *pool)
660 {
661         debugfs_remove_recursive(pool->stat_dentry);
662 }
663
664 #else /* CONFIG_ZSMALLOC_STAT */
665 static void __init zs_stat_init(void)
666 {
667 }
668
669 static void __exit zs_stat_exit(void)
670 {
671 }
672
673 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
674 {
675 }
676
677 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
678 {
679 }
680 #endif
681
682
683 /*
684  * For each size class, zspages are divided into different groups
685  * depending on how "full" they are. This was done so that we could
686  * easily find empty or nearly empty zspages when we try to shrink
687  * the pool (not yet implemented). This function returns fullness
688  * status of the given page.
689  */
690 static enum fullness_group get_fullness_group(struct size_class *class,
691                                                 struct zspage *zspage)
692 {
693         int inuse, objs_per_zspage;
694         enum fullness_group fg;
695
696         inuse = get_zspage_inuse(zspage);
697         objs_per_zspage = class->objs_per_zspage;
698
699         if (inuse == 0)
700                 fg = ZS_EMPTY;
701         else if (inuse == objs_per_zspage)
702                 fg = ZS_FULL;
703         else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
704                 fg = ZS_ALMOST_EMPTY;
705         else
706                 fg = ZS_ALMOST_FULL;
707
708         return fg;
709 }
710
711 /*
712  * Each size class maintains various freelists and zspages are assigned
713  * to one of these freelists based on the number of live objects they
714  * have. This functions inserts the given zspage into the freelist
715  * identified by <class, fullness_group>.
716  */
717 static void insert_zspage(struct size_class *class,
718                                 struct zspage *zspage,
719                                 enum fullness_group fullness)
720 {
721         struct zspage *head;
722
723         class_stat_inc(class, fullness, 1);
724         head = list_first_entry_or_null(&class->fullness_list[fullness],
725                                         struct zspage, list);
726         /*
727          * We want to see more ZS_FULL pages and less almost empty/full.
728          * Put pages with higher ->inuse first.
729          */
730         if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
731                 list_add(&zspage->list, &head->list);
732         else
733                 list_add(&zspage->list, &class->fullness_list[fullness]);
734 }
735
736 /*
737  * This function removes the given zspage from the freelist identified
738  * by <class, fullness_group>.
739  */
740 static void remove_zspage(struct size_class *class,
741                                 struct zspage *zspage,
742                                 enum fullness_group fullness)
743 {
744         VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
745
746         list_del_init(&zspage->list);
747         class_stat_dec(class, fullness, 1);
748 }
749
750 /*
751  * Each size class maintains zspages in different fullness groups depending
752  * on the number of live objects they contain. When allocating or freeing
753  * objects, the fullness status of the page can change, say, from ALMOST_FULL
754  * to ALMOST_EMPTY when freeing an object. This function checks if such
755  * a status change has occurred for the given page and accordingly moves the
756  * page from the freelist of the old fullness group to that of the new
757  * fullness group.
758  */
759 static enum fullness_group fix_fullness_group(struct size_class *class,
760                                                 struct zspage *zspage)
761 {
762         int class_idx;
763         enum fullness_group currfg, newfg;
764
765         get_zspage_mapping(zspage, &class_idx, &currfg);
766         newfg = get_fullness_group(class, zspage);
767         if (newfg == currfg)
768                 goto out;
769
770         remove_zspage(class, zspage, currfg);
771         insert_zspage(class, zspage, newfg);
772         set_zspage_mapping(zspage, class_idx, newfg);
773 out:
774         return newfg;
775 }
776
777 /*
778  * We have to decide on how many pages to link together
779  * to form a zspage for each size class. This is important
780  * to reduce wastage due to unusable space left at end of
781  * each zspage which is given as:
782  *     wastage = Zp % class_size
783  *     usage = Zp - wastage
784  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
785  *
786  * For example, for size class of 3/8 * PAGE_SIZE, we should
787  * link together 3 PAGE_SIZE sized pages to form a zspage
788  * since then we can perfectly fit in 8 such objects.
789  */
790 static int get_pages_per_zspage(int class_size)
791 {
792         int i, max_usedpc = 0;
793         /* zspage order which gives maximum used size per KB */
794         int max_usedpc_order = 1;
795
796         for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
797                 int zspage_size;
798                 int waste, usedpc;
799
800                 zspage_size = i * PAGE_SIZE;
801                 waste = zspage_size % class_size;
802                 usedpc = (zspage_size - waste) * 100 / zspage_size;
803
804                 if (usedpc > max_usedpc) {
805                         max_usedpc = usedpc;
806                         max_usedpc_order = i;
807                 }
808         }
809
810         return max_usedpc_order;
811 }
812
813 static struct zspage *get_zspage(struct page *page)
814 {
815         struct zspage *zspage = (struct zspage *)page_private(page);
816
817         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
818         return zspage;
819 }
820
821 static struct page *get_next_page(struct page *page)
822 {
823         struct zspage *zspage = get_zspage(page);
824
825         if (unlikely(ZsHugePage(zspage)))
826                 return NULL;
827
828         return (struct page *)page->index;
829 }
830
831 /**
832  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
833  * @obj: the encoded object value
834  * @page: page object resides in zspage
835  * @obj_idx: object index
836  */
837 static void obj_to_location(unsigned long obj, struct page **page,
838                                 unsigned int *obj_idx)
839 {
840         obj >>= OBJ_TAG_BITS;
841         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
842         *obj_idx = (obj & OBJ_INDEX_MASK);
843 }
844
845 static void obj_to_page(unsigned long obj, struct page **page)
846 {
847         obj >>= OBJ_TAG_BITS;
848         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
849 }
850
851 /**
852  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
853  * @page: page object resides in zspage
854  * @obj_idx: object index
855  */
856 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
857 {
858         unsigned long obj;
859
860         obj = page_to_pfn(page) << OBJ_INDEX_BITS;
861         obj |= obj_idx & OBJ_INDEX_MASK;
862         obj <<= OBJ_TAG_BITS;
863
864         return obj;
865 }
866
867 static unsigned long handle_to_obj(unsigned long handle)
868 {
869         return *(unsigned long *)handle;
870 }
871
872 static bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
873 {
874         unsigned long handle;
875         struct zspage *zspage = get_zspage(page);
876
877         if (unlikely(ZsHugePage(zspage))) {
878                 VM_BUG_ON_PAGE(!is_first_page(page), page);
879                 handle = page->index;
880         } else
881                 handle = *(unsigned long *)obj;
882
883         if (!(handle & OBJ_ALLOCATED_TAG))
884                 return false;
885
886         *phandle = handle & ~OBJ_ALLOCATED_TAG;
887         return true;
888 }
889
890 static void reset_page(struct page *page)
891 {
892         __ClearPageMovable(page);
893         ClearPagePrivate(page);
894         set_page_private(page, 0);
895         page_mapcount_reset(page);
896         page->index = 0;
897 }
898
899 static int trylock_zspage(struct zspage *zspage)
900 {
901         struct page *cursor, *fail;
902
903         for (cursor = get_first_page(zspage); cursor != NULL; cursor =
904                                         get_next_page(cursor)) {
905                 if (!trylock_page(cursor)) {
906                         fail = cursor;
907                         goto unlock;
908                 }
909         }
910
911         return 1;
912 unlock:
913         for (cursor = get_first_page(zspage); cursor != fail; cursor =
914                                         get_next_page(cursor))
915                 unlock_page(cursor);
916
917         return 0;
918 }
919
920 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
921                                 struct zspage *zspage)
922 {
923         struct page *page, *next;
924         enum fullness_group fg;
925         unsigned int class_idx;
926
927         get_zspage_mapping(zspage, &class_idx, &fg);
928
929         assert_spin_locked(&class->lock);
930
931         VM_BUG_ON(get_zspage_inuse(zspage));
932         VM_BUG_ON(fg != ZS_EMPTY);
933
934         next = page = get_first_page(zspage);
935         do {
936                 VM_BUG_ON_PAGE(!PageLocked(page), page);
937                 next = get_next_page(page);
938                 reset_page(page);
939                 unlock_page(page);
940                 dec_zone_page_state(page, NR_ZSPAGES);
941                 put_page(page);
942                 page = next;
943         } while (page != NULL);
944
945         cache_free_zspage(pool, zspage);
946
947         class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
948         atomic_long_sub(class->pages_per_zspage,
949                                         &pool->pages_allocated);
950 }
951
952 static void free_zspage(struct zs_pool *pool, struct size_class *class,
953                                 struct zspage *zspage)
954 {
955         VM_BUG_ON(get_zspage_inuse(zspage));
956         VM_BUG_ON(list_empty(&zspage->list));
957
958         /*
959          * Since zs_free couldn't be sleepable, this function cannot call
960          * lock_page. The page locks trylock_zspage got will be released
961          * by __free_zspage.
962          */
963         if (!trylock_zspage(zspage)) {
964                 kick_deferred_free(pool);
965                 return;
966         }
967
968         remove_zspage(class, zspage, ZS_EMPTY);
969         __free_zspage(pool, class, zspage);
970 }
971
972 /* Initialize a newly allocated zspage */
973 static void init_zspage(struct size_class *class, struct zspage *zspage)
974 {
975         unsigned int freeobj = 1;
976         unsigned long off = 0;
977         struct page *page = get_first_page(zspage);
978
979         while (page) {
980                 struct page *next_page;
981                 struct link_free *link;
982                 void *vaddr;
983
984                 set_first_obj_offset(page, off);
985
986                 vaddr = kmap_atomic(page);
987                 link = (struct link_free *)vaddr + off / sizeof(*link);
988
989                 while ((off += class->size) < PAGE_SIZE) {
990                         link->next = freeobj++ << OBJ_TAG_BITS;
991                         link += class->size / sizeof(*link);
992                 }
993
994                 /*
995                  * We now come to the last (full or partial) object on this
996                  * page, which must point to the first object on the next
997                  * page (if present)
998                  */
999                 next_page = get_next_page(page);
1000                 if (next_page) {
1001                         link->next = freeobj++ << OBJ_TAG_BITS;
1002                 } else {
1003                         /*
1004                          * Reset OBJ_TAG_BITS bit to last link to tell
1005                          * whether it's allocated object or not.
1006                          */
1007                         link->next = -1UL << OBJ_TAG_BITS;
1008                 }
1009                 kunmap_atomic(vaddr);
1010                 page = next_page;
1011                 off %= PAGE_SIZE;
1012         }
1013
1014         set_freeobj(zspage, 0);
1015 }
1016
1017 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1018                                 struct page *pages[])
1019 {
1020         int i;
1021         struct page *page;
1022         struct page *prev_page = NULL;
1023         int nr_pages = class->pages_per_zspage;
1024
1025         /*
1026          * Allocate individual pages and link them together as:
1027          * 1. all pages are linked together using page->index
1028          * 2. each sub-page point to zspage using page->private
1029          *
1030          * we set PG_private to identify the first page (i.e. no other sub-page
1031          * has this flag set).
1032          */
1033         for (i = 0; i < nr_pages; i++) {
1034                 page = pages[i];
1035                 set_page_private(page, (unsigned long)zspage);
1036                 page->index = 0;
1037                 if (i == 0) {
1038                         zspage->first_page = page;
1039                         SetPagePrivate(page);
1040                         if (unlikely(class->objs_per_zspage == 1 &&
1041                                         class->pages_per_zspage == 1))
1042                                 SetZsHugePage(zspage);
1043                 } else {
1044                         prev_page->index = (unsigned long)page;
1045                 }
1046                 prev_page = page;
1047         }
1048 }
1049
1050 /*
1051  * Allocate a zspage for the given size class
1052  */
1053 static struct zspage *alloc_zspage(struct zs_pool *pool,
1054                                         struct size_class *class,
1055                                         gfp_t gfp)
1056 {
1057         int i;
1058         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1059         struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1060
1061         if (!zspage)
1062                 return NULL;
1063
1064         zspage->magic = ZSPAGE_MAGIC;
1065         migrate_lock_init(zspage);
1066
1067         for (i = 0; i < class->pages_per_zspage; i++) {
1068                 struct page *page;
1069
1070                 page = alloc_page(gfp);
1071                 if (!page) {
1072                         while (--i >= 0) {
1073                                 dec_zone_page_state(pages[i], NR_ZSPAGES);
1074                                 __free_page(pages[i]);
1075                         }
1076                         cache_free_zspage(pool, zspage);
1077                         return NULL;
1078                 }
1079
1080                 inc_zone_page_state(page, NR_ZSPAGES);
1081                 pages[i] = page;
1082         }
1083
1084         create_page_chain(class, zspage, pages);
1085         init_zspage(class, zspage);
1086
1087         return zspage;
1088 }
1089
1090 static struct zspage *find_get_zspage(struct size_class *class)
1091 {
1092         int i;
1093         struct zspage *zspage;
1094
1095         for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1096                 zspage = list_first_entry_or_null(&class->fullness_list[i],
1097                                 struct zspage, list);
1098                 if (zspage)
1099                         break;
1100         }
1101
1102         return zspage;
1103 }
1104
1105 static inline int __zs_cpu_up(struct mapping_area *area)
1106 {
1107         /*
1108          * Make sure we don't leak memory if a cpu UP notification
1109          * and zs_init() race and both call zs_cpu_up() on the same cpu
1110          */
1111         if (area->vm_buf)
1112                 return 0;
1113         area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1114         if (!area->vm_buf)
1115                 return -ENOMEM;
1116         return 0;
1117 }
1118
1119 static inline void __zs_cpu_down(struct mapping_area *area)
1120 {
1121         kfree(area->vm_buf);
1122         area->vm_buf = NULL;
1123 }
1124
1125 static void *__zs_map_object(struct mapping_area *area,
1126                         struct page *pages[2], int off, int size)
1127 {
1128         int sizes[2];
1129         void *addr;
1130         char *buf = area->vm_buf;
1131
1132         /* disable page faults to match kmap_atomic() return conditions */
1133         pagefault_disable();
1134
1135         /* no read fastpath */
1136         if (area->vm_mm == ZS_MM_WO)
1137                 goto out;
1138
1139         sizes[0] = PAGE_SIZE - off;
1140         sizes[1] = size - sizes[0];
1141
1142         /* copy object to per-cpu buffer */
1143         addr = kmap_atomic(pages[0]);
1144         memcpy(buf, addr + off, sizes[0]);
1145         kunmap_atomic(addr);
1146         addr = kmap_atomic(pages[1]);
1147         memcpy(buf + sizes[0], addr, sizes[1]);
1148         kunmap_atomic(addr);
1149 out:
1150         return area->vm_buf;
1151 }
1152
1153 static void __zs_unmap_object(struct mapping_area *area,
1154                         struct page *pages[2], int off, int size)
1155 {
1156         int sizes[2];
1157         void *addr;
1158         char *buf;
1159
1160         /* no write fastpath */
1161         if (area->vm_mm == ZS_MM_RO)
1162                 goto out;
1163
1164         buf = area->vm_buf;
1165         buf = buf + ZS_HANDLE_SIZE;
1166         size -= ZS_HANDLE_SIZE;
1167         off += ZS_HANDLE_SIZE;
1168
1169         sizes[0] = PAGE_SIZE - off;
1170         sizes[1] = size - sizes[0];
1171
1172         /* copy per-cpu buffer to object */
1173         addr = kmap_atomic(pages[0]);
1174         memcpy(addr + off, buf, sizes[0]);
1175         kunmap_atomic(addr);
1176         addr = kmap_atomic(pages[1]);
1177         memcpy(addr, buf + sizes[0], sizes[1]);
1178         kunmap_atomic(addr);
1179
1180 out:
1181         /* enable page faults to match kunmap_atomic() return conditions */
1182         pagefault_enable();
1183 }
1184
1185 static int zs_cpu_prepare(unsigned int cpu)
1186 {
1187         struct mapping_area *area;
1188
1189         area = &per_cpu(zs_map_area, cpu);
1190         return __zs_cpu_up(area);
1191 }
1192
1193 static int zs_cpu_dead(unsigned int cpu)
1194 {
1195         struct mapping_area *area;
1196
1197         area = &per_cpu(zs_map_area, cpu);
1198         __zs_cpu_down(area);
1199         return 0;
1200 }
1201
1202 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1203                                         int objs_per_zspage)
1204 {
1205         if (prev->pages_per_zspage == pages_per_zspage &&
1206                 prev->objs_per_zspage == objs_per_zspage)
1207                 return true;
1208
1209         return false;
1210 }
1211
1212 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1213 {
1214         return get_zspage_inuse(zspage) == class->objs_per_zspage;
1215 }
1216
1217 unsigned long zs_get_total_pages(struct zs_pool *pool)
1218 {
1219         return atomic_long_read(&pool->pages_allocated);
1220 }
1221 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1222
1223 /**
1224  * zs_map_object - get address of allocated object from handle.
1225  * @pool: pool from which the object was allocated
1226  * @handle: handle returned from zs_malloc
1227  * @mm: mapping mode to use
1228  *
1229  * Before using an object allocated from zs_malloc, it must be mapped using
1230  * this function. When done with the object, it must be unmapped using
1231  * zs_unmap_object.
1232  *
1233  * Only one object can be mapped per cpu at a time. There is no protection
1234  * against nested mappings.
1235  *
1236  * This function returns with preemption and page faults disabled.
1237  */
1238 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1239                         enum zs_mapmode mm)
1240 {
1241         struct zspage *zspage;
1242         struct page *page;
1243         unsigned long obj, off;
1244         unsigned int obj_idx;
1245
1246         struct size_class *class;
1247         struct mapping_area *area;
1248         struct page *pages[2];
1249         void *ret;
1250
1251         /*
1252          * Because we use per-cpu mapping areas shared among the
1253          * pools/users, we can't allow mapping in interrupt context
1254          * because it can corrupt another users mappings.
1255          */
1256         BUG_ON(in_interrupt());
1257
1258         /* It guarantees it can get zspage from handle safely */
1259         read_lock(&pool->migrate_lock);
1260         obj = handle_to_obj(handle);
1261         obj_to_location(obj, &page, &obj_idx);
1262         zspage = get_zspage(page);
1263
1264         /*
1265          * migration cannot move any zpages in this zspage. Here, class->lock
1266          * is too heavy since callers would take some time until they calls
1267          * zs_unmap_object API so delegate the locking from class to zspage
1268          * which is smaller granularity.
1269          */
1270         migrate_read_lock(zspage);
1271         read_unlock(&pool->migrate_lock);
1272
1273         class = zspage_class(pool, zspage);
1274         off = (class->size * obj_idx) & ~PAGE_MASK;
1275
1276         local_lock(&zs_map_area.lock);
1277         area = this_cpu_ptr(&zs_map_area);
1278         area->vm_mm = mm;
1279         if (off + class->size <= PAGE_SIZE) {
1280                 /* this object is contained entirely within a page */
1281                 area->vm_addr = kmap_atomic(page);
1282                 ret = area->vm_addr + off;
1283                 goto out;
1284         }
1285
1286         /* this object spans two pages */
1287         pages[0] = page;
1288         pages[1] = get_next_page(page);
1289         BUG_ON(!pages[1]);
1290
1291         ret = __zs_map_object(area, pages, off, class->size);
1292 out:
1293         if (likely(!ZsHugePage(zspage)))
1294                 ret += ZS_HANDLE_SIZE;
1295
1296         return ret;
1297 }
1298 EXPORT_SYMBOL_GPL(zs_map_object);
1299
1300 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1301 {
1302         struct zspage *zspage;
1303         struct page *page;
1304         unsigned long obj, off;
1305         unsigned int obj_idx;
1306
1307         struct size_class *class;
1308         struct mapping_area *area;
1309
1310         obj = handle_to_obj(handle);
1311         obj_to_location(obj, &page, &obj_idx);
1312         zspage = get_zspage(page);
1313         class = zspage_class(pool, zspage);
1314         off = (class->size * obj_idx) & ~PAGE_MASK;
1315
1316         area = this_cpu_ptr(&zs_map_area);
1317         if (off + class->size <= PAGE_SIZE)
1318                 kunmap_atomic(area->vm_addr);
1319         else {
1320                 struct page *pages[2];
1321
1322                 pages[0] = page;
1323                 pages[1] = get_next_page(page);
1324                 BUG_ON(!pages[1]);
1325
1326                 __zs_unmap_object(area, pages, off, class->size);
1327         }
1328         local_unlock(&zs_map_area.lock);
1329
1330         migrate_read_unlock(zspage);
1331 }
1332 EXPORT_SYMBOL_GPL(zs_unmap_object);
1333
1334 /**
1335  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1336  *                        zsmalloc &size_class.
1337  * @pool: zsmalloc pool to use
1338  *
1339  * The function returns the size of the first huge class - any object of equal
1340  * or bigger size will be stored in zspage consisting of a single physical
1341  * page.
1342  *
1343  * Context: Any context.
1344  *
1345  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1346  */
1347 size_t zs_huge_class_size(struct zs_pool *pool)
1348 {
1349         return huge_class_size;
1350 }
1351 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1352
1353 static unsigned long obj_malloc(struct zs_pool *pool,
1354                                 struct zspage *zspage, unsigned long handle)
1355 {
1356         int i, nr_page, offset;
1357         unsigned long obj;
1358         struct link_free *link;
1359         struct size_class *class;
1360
1361         struct page *m_page;
1362         unsigned long m_offset;
1363         void *vaddr;
1364
1365         class = pool->size_class[zspage->class];
1366         handle |= OBJ_ALLOCATED_TAG;
1367         obj = get_freeobj(zspage);
1368
1369         offset = obj * class->size;
1370         nr_page = offset >> PAGE_SHIFT;
1371         m_offset = offset & ~PAGE_MASK;
1372         m_page = get_first_page(zspage);
1373
1374         for (i = 0; i < nr_page; i++)
1375                 m_page = get_next_page(m_page);
1376
1377         vaddr = kmap_atomic(m_page);
1378         link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1379         set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1380         if (likely(!ZsHugePage(zspage)))
1381                 /* record handle in the header of allocated chunk */
1382                 link->handle = handle;
1383         else
1384                 /* record handle to page->index */
1385                 zspage->first_page->index = handle;
1386
1387         kunmap_atomic(vaddr);
1388         mod_zspage_inuse(zspage, 1);
1389
1390         obj = location_to_obj(m_page, obj);
1391
1392         return obj;
1393 }
1394
1395
1396 /**
1397  * zs_malloc - Allocate block of given size from pool.
1398  * @pool: pool to allocate from
1399  * @size: size of block to allocate
1400  * @gfp: gfp flags when allocating object
1401  *
1402  * On success, handle to the allocated object is returned,
1403  * otherwise 0.
1404  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1405  */
1406 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1407 {
1408         unsigned long handle, obj;
1409         struct size_class *class;
1410         enum fullness_group newfg;
1411         struct zspage *zspage;
1412
1413         if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1414                 return 0;
1415
1416         handle = cache_alloc_handle(pool, gfp);
1417         if (!handle)
1418                 return 0;
1419
1420         /* extra space in chunk to keep the handle */
1421         size += ZS_HANDLE_SIZE;
1422         class = pool->size_class[get_size_class_index(size)];
1423
1424         /* class->lock effectively protects the zpage migration */
1425         spin_lock(&class->lock);
1426         zspage = find_get_zspage(class);
1427         if (likely(zspage)) {
1428                 obj = obj_malloc(pool, zspage, handle);
1429                 /* Now move the zspage to another fullness group, if required */
1430                 fix_fullness_group(class, zspage);
1431                 record_obj(handle, obj);
1432                 class_stat_inc(class, OBJ_USED, 1);
1433                 spin_unlock(&class->lock);
1434
1435                 return handle;
1436         }
1437
1438         spin_unlock(&class->lock);
1439
1440         zspage = alloc_zspage(pool, class, gfp);
1441         if (!zspage) {
1442                 cache_free_handle(pool, handle);
1443                 return 0;
1444         }
1445
1446         spin_lock(&class->lock);
1447         obj = obj_malloc(pool, zspage, handle);
1448         newfg = get_fullness_group(class, zspage);
1449         insert_zspage(class, zspage, newfg);
1450         set_zspage_mapping(zspage, class->index, newfg);
1451         record_obj(handle, obj);
1452         atomic_long_add(class->pages_per_zspage,
1453                                 &pool->pages_allocated);
1454         class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1455         class_stat_inc(class, OBJ_USED, 1);
1456
1457         /* We completely set up zspage so mark them as movable */
1458         SetZsPageMovable(pool, zspage);
1459         spin_unlock(&class->lock);
1460
1461         return handle;
1462 }
1463 EXPORT_SYMBOL_GPL(zs_malloc);
1464
1465 static void obj_free(int class_size, unsigned long obj)
1466 {
1467         struct link_free *link;
1468         struct zspage *zspage;
1469         struct page *f_page;
1470         unsigned long f_offset;
1471         unsigned int f_objidx;
1472         void *vaddr;
1473
1474         obj_to_location(obj, &f_page, &f_objidx);
1475         f_offset = (class_size * f_objidx) & ~PAGE_MASK;
1476         zspage = get_zspage(f_page);
1477
1478         vaddr = kmap_atomic(f_page);
1479
1480         /* Insert this object in containing zspage's freelist */
1481         link = (struct link_free *)(vaddr + f_offset);
1482         if (likely(!ZsHugePage(zspage)))
1483                 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1484         else
1485                 f_page->index = 0;
1486         kunmap_atomic(vaddr);
1487         set_freeobj(zspage, f_objidx);
1488         mod_zspage_inuse(zspage, -1);
1489 }
1490
1491 void zs_free(struct zs_pool *pool, unsigned long handle)
1492 {
1493         struct zspage *zspage;
1494         struct page *f_page;
1495         unsigned long obj;
1496         struct size_class *class;
1497         enum fullness_group fullness;
1498
1499         if (unlikely(!handle))
1500                 return;
1501
1502         /*
1503          * The pool->migrate_lock protects the race with zpage's migration
1504          * so it's safe to get the page from handle.
1505          */
1506         read_lock(&pool->migrate_lock);
1507         obj = handle_to_obj(handle);
1508         obj_to_page(obj, &f_page);
1509         zspage = get_zspage(f_page);
1510         class = zspage_class(pool, zspage);
1511         spin_lock(&class->lock);
1512         read_unlock(&pool->migrate_lock);
1513
1514         obj_free(class->size, obj);
1515         class_stat_dec(class, OBJ_USED, 1);
1516         fullness = fix_fullness_group(class, zspage);
1517         if (fullness != ZS_EMPTY)
1518                 goto out;
1519
1520         free_zspage(pool, class, zspage);
1521 out:
1522         spin_unlock(&class->lock);
1523         cache_free_handle(pool, handle);
1524 }
1525 EXPORT_SYMBOL_GPL(zs_free);
1526
1527 static void zs_object_copy(struct size_class *class, unsigned long dst,
1528                                 unsigned long src)
1529 {
1530         struct page *s_page, *d_page;
1531         unsigned int s_objidx, d_objidx;
1532         unsigned long s_off, d_off;
1533         void *s_addr, *d_addr;
1534         int s_size, d_size, size;
1535         int written = 0;
1536
1537         s_size = d_size = class->size;
1538
1539         obj_to_location(src, &s_page, &s_objidx);
1540         obj_to_location(dst, &d_page, &d_objidx);
1541
1542         s_off = (class->size * s_objidx) & ~PAGE_MASK;
1543         d_off = (class->size * d_objidx) & ~PAGE_MASK;
1544
1545         if (s_off + class->size > PAGE_SIZE)
1546                 s_size = PAGE_SIZE - s_off;
1547
1548         if (d_off + class->size > PAGE_SIZE)
1549                 d_size = PAGE_SIZE - d_off;
1550
1551         s_addr = kmap_atomic(s_page);
1552         d_addr = kmap_atomic(d_page);
1553
1554         while (1) {
1555                 size = min(s_size, d_size);
1556                 memcpy(d_addr + d_off, s_addr + s_off, size);
1557                 written += size;
1558
1559                 if (written == class->size)
1560                         break;
1561
1562                 s_off += size;
1563                 s_size -= size;
1564                 d_off += size;
1565                 d_size -= size;
1566
1567                 if (s_off >= PAGE_SIZE) {
1568                         kunmap_atomic(d_addr);
1569                         kunmap_atomic(s_addr);
1570                         s_page = get_next_page(s_page);
1571                         s_addr = kmap_atomic(s_page);
1572                         d_addr = kmap_atomic(d_page);
1573                         s_size = class->size - written;
1574                         s_off = 0;
1575                 }
1576
1577                 if (d_off >= PAGE_SIZE) {
1578                         kunmap_atomic(d_addr);
1579                         d_page = get_next_page(d_page);
1580                         d_addr = kmap_atomic(d_page);
1581                         d_size = class->size - written;
1582                         d_off = 0;
1583                 }
1584         }
1585
1586         kunmap_atomic(d_addr);
1587         kunmap_atomic(s_addr);
1588 }
1589
1590 /*
1591  * Find alloced object in zspage from index object and
1592  * return handle.
1593  */
1594 static unsigned long find_alloced_obj(struct size_class *class,
1595                                         struct page *page, int *obj_idx)
1596 {
1597         int offset = 0;
1598         int index = *obj_idx;
1599         unsigned long handle = 0;
1600         void *addr = kmap_atomic(page);
1601
1602         offset = get_first_obj_offset(page);
1603         offset += class->size * index;
1604
1605         while (offset < PAGE_SIZE) {
1606                 if (obj_allocated(page, addr + offset, &handle))
1607                         break;
1608
1609                 offset += class->size;
1610                 index++;
1611         }
1612
1613         kunmap_atomic(addr);
1614
1615         *obj_idx = index;
1616
1617         return handle;
1618 }
1619
1620 struct zs_compact_control {
1621         /* Source spage for migration which could be a subpage of zspage */
1622         struct page *s_page;
1623         /* Destination page for migration which should be a first page
1624          * of zspage. */
1625         struct page *d_page;
1626          /* Starting object index within @s_page which used for live object
1627           * in the subpage. */
1628         int obj_idx;
1629 };
1630
1631 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1632                                 struct zs_compact_control *cc)
1633 {
1634         unsigned long used_obj, free_obj;
1635         unsigned long handle;
1636         struct page *s_page = cc->s_page;
1637         struct page *d_page = cc->d_page;
1638         int obj_idx = cc->obj_idx;
1639         int ret = 0;
1640
1641         while (1) {
1642                 handle = find_alloced_obj(class, s_page, &obj_idx);
1643                 if (!handle) {
1644                         s_page = get_next_page(s_page);
1645                         if (!s_page)
1646                                 break;
1647                         obj_idx = 0;
1648                         continue;
1649                 }
1650
1651                 /* Stop if there is no more space */
1652                 if (zspage_full(class, get_zspage(d_page))) {
1653                         ret = -ENOMEM;
1654                         break;
1655                 }
1656
1657                 used_obj = handle_to_obj(handle);
1658                 free_obj = obj_malloc(pool, get_zspage(d_page), handle);
1659                 zs_object_copy(class, free_obj, used_obj);
1660                 obj_idx++;
1661                 record_obj(handle, free_obj);
1662                 obj_free(class->size, used_obj);
1663         }
1664
1665         /* Remember last position in this iteration */
1666         cc->s_page = s_page;
1667         cc->obj_idx = obj_idx;
1668
1669         return ret;
1670 }
1671
1672 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1673 {
1674         int i;
1675         struct zspage *zspage;
1676         enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1677
1678         if (!source) {
1679                 fg[0] = ZS_ALMOST_FULL;
1680                 fg[1] = ZS_ALMOST_EMPTY;
1681         }
1682
1683         for (i = 0; i < 2; i++) {
1684                 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1685                                                         struct zspage, list);
1686                 if (zspage) {
1687                         remove_zspage(class, zspage, fg[i]);
1688                         return zspage;
1689                 }
1690         }
1691
1692         return zspage;
1693 }
1694
1695 /*
1696  * putback_zspage - add @zspage into right class's fullness list
1697  * @class: destination class
1698  * @zspage: target page
1699  *
1700  * Return @zspage's fullness_group
1701  */
1702 static enum fullness_group putback_zspage(struct size_class *class,
1703                         struct zspage *zspage)
1704 {
1705         enum fullness_group fullness;
1706
1707         fullness = get_fullness_group(class, zspage);
1708         insert_zspage(class, zspage, fullness);
1709         set_zspage_mapping(zspage, class->index, fullness);
1710
1711         return fullness;
1712 }
1713
1714 #ifdef CONFIG_COMPACTION
1715 /*
1716  * To prevent zspage destroy during migration, zspage freeing should
1717  * hold locks of all pages in the zspage.
1718  */
1719 static void lock_zspage(struct zspage *zspage)
1720 {
1721         struct page *curr_page, *page;
1722
1723         /*
1724          * Pages we haven't locked yet can be migrated off the list while we're
1725          * trying to lock them, so we need to be careful and only attempt to
1726          * lock each page under migrate_read_lock(). Otherwise, the page we lock
1727          * may no longer belong to the zspage. This means that we may wait for
1728          * the wrong page to unlock, so we must take a reference to the page
1729          * prior to waiting for it to unlock outside migrate_read_lock().
1730          */
1731         while (1) {
1732                 migrate_read_lock(zspage);
1733                 page = get_first_page(zspage);
1734                 if (trylock_page(page))
1735                         break;
1736                 get_page(page);
1737                 migrate_read_unlock(zspage);
1738                 wait_on_page_locked(page);
1739                 put_page(page);
1740         }
1741
1742         curr_page = page;
1743         while ((page = get_next_page(curr_page))) {
1744                 if (trylock_page(page)) {
1745                         curr_page = page;
1746                 } else {
1747                         get_page(page);
1748                         migrate_read_unlock(zspage);
1749                         wait_on_page_locked(page);
1750                         put_page(page);
1751                         migrate_read_lock(zspage);
1752                 }
1753         }
1754         migrate_read_unlock(zspage);
1755 }
1756
1757 static int zs_init_fs_context(struct fs_context *fc)
1758 {
1759         return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
1760 }
1761
1762 static struct file_system_type zsmalloc_fs = {
1763         .name           = "zsmalloc",
1764         .init_fs_context = zs_init_fs_context,
1765         .kill_sb        = kill_anon_super,
1766 };
1767
1768 static int zsmalloc_mount(void)
1769 {
1770         int ret = 0;
1771
1772         zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1773         if (IS_ERR(zsmalloc_mnt))
1774                 ret = PTR_ERR(zsmalloc_mnt);
1775
1776         return ret;
1777 }
1778
1779 static void zsmalloc_unmount(void)
1780 {
1781         kern_unmount(zsmalloc_mnt);
1782 }
1783
1784 static void migrate_lock_init(struct zspage *zspage)
1785 {
1786         rwlock_init(&zspage->lock);
1787 }
1788
1789 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1790 {
1791         read_lock(&zspage->lock);
1792 }
1793
1794 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1795 {
1796         read_unlock(&zspage->lock);
1797 }
1798
1799 static void migrate_write_lock(struct zspage *zspage)
1800 {
1801         write_lock(&zspage->lock);
1802 }
1803
1804 static void migrate_write_lock_nested(struct zspage *zspage)
1805 {
1806         write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
1807 }
1808
1809 static void migrate_write_unlock(struct zspage *zspage)
1810 {
1811         write_unlock(&zspage->lock);
1812 }
1813
1814 /* Number of isolated subpage for *page migration* in this zspage */
1815 static void inc_zspage_isolation(struct zspage *zspage)
1816 {
1817         zspage->isolated++;
1818 }
1819
1820 static void dec_zspage_isolation(struct zspage *zspage)
1821 {
1822         VM_BUG_ON(zspage->isolated == 0);
1823         zspage->isolated--;
1824 }
1825
1826 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1827                                 struct page *newpage, struct page *oldpage)
1828 {
1829         struct page *page;
1830         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1831         int idx = 0;
1832
1833         page = get_first_page(zspage);
1834         do {
1835                 if (page == oldpage)
1836                         pages[idx] = newpage;
1837                 else
1838                         pages[idx] = page;
1839                 idx++;
1840         } while ((page = get_next_page(page)) != NULL);
1841
1842         create_page_chain(class, zspage, pages);
1843         set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1844         if (unlikely(ZsHugePage(zspage)))
1845                 newpage->index = oldpage->index;
1846         __SetPageMovable(newpage, page_mapping(oldpage));
1847 }
1848
1849 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1850 {
1851         struct zspage *zspage;
1852
1853         /*
1854          * Page is locked so zspage couldn't be destroyed. For detail, look at
1855          * lock_zspage in free_zspage.
1856          */
1857         VM_BUG_ON_PAGE(!PageMovable(page), page);
1858         VM_BUG_ON_PAGE(PageIsolated(page), page);
1859
1860         zspage = get_zspage(page);
1861         migrate_write_lock(zspage);
1862         inc_zspage_isolation(zspage);
1863         migrate_write_unlock(zspage);
1864
1865         return true;
1866 }
1867
1868 static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1869                 struct page *page, enum migrate_mode mode)
1870 {
1871         struct zs_pool *pool;
1872         struct size_class *class;
1873         struct zspage *zspage;
1874         struct page *dummy;
1875         void *s_addr, *d_addr, *addr;
1876         int offset;
1877         unsigned long handle;
1878         unsigned long old_obj, new_obj;
1879         unsigned int obj_idx;
1880
1881         /*
1882          * We cannot support the _NO_COPY case here, because copy needs to
1883          * happen under the zs lock, which does not work with
1884          * MIGRATE_SYNC_NO_COPY workflow.
1885          */
1886         if (mode == MIGRATE_SYNC_NO_COPY)
1887                 return -EINVAL;
1888
1889         VM_BUG_ON_PAGE(!PageMovable(page), page);
1890         VM_BUG_ON_PAGE(!PageIsolated(page), page);
1891
1892         pool = mapping->private_data;
1893
1894         /*
1895          * The pool migrate_lock protects the race between zpage migration
1896          * and zs_free.
1897          */
1898         write_lock(&pool->migrate_lock);
1899         zspage = get_zspage(page);
1900         class = zspage_class(pool, zspage);
1901
1902         /*
1903          * the class lock protects zpage alloc/free in the zspage.
1904          */
1905         spin_lock(&class->lock);
1906         /* the migrate_write_lock protects zpage access via zs_map_object */
1907         migrate_write_lock(zspage);
1908
1909         offset = get_first_obj_offset(page);
1910         s_addr = kmap_atomic(page);
1911
1912         /*
1913          * Here, any user cannot access all objects in the zspage so let's move.
1914          */
1915         d_addr = kmap_atomic(newpage);
1916         memcpy(d_addr, s_addr, PAGE_SIZE);
1917         kunmap_atomic(d_addr);
1918
1919         for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1920                                         addr += class->size) {
1921                 if (obj_allocated(page, addr, &handle)) {
1922
1923                         old_obj = handle_to_obj(handle);
1924                         obj_to_location(old_obj, &dummy, &obj_idx);
1925                         new_obj = (unsigned long)location_to_obj(newpage,
1926                                                                 obj_idx);
1927                         record_obj(handle, new_obj);
1928                 }
1929         }
1930         kunmap_atomic(s_addr);
1931
1932         replace_sub_page(class, zspage, newpage, page);
1933         /*
1934          * Since we complete the data copy and set up new zspage structure,
1935          * it's okay to release migration_lock.
1936          */
1937         write_unlock(&pool->migrate_lock);
1938         spin_unlock(&class->lock);
1939         dec_zspage_isolation(zspage);
1940         migrate_write_unlock(zspage);
1941
1942         get_page(newpage);
1943         if (page_zone(newpage) != page_zone(page)) {
1944                 dec_zone_page_state(page, NR_ZSPAGES);
1945                 inc_zone_page_state(newpage, NR_ZSPAGES);
1946         }
1947
1948         reset_page(page);
1949         put_page(page);
1950
1951         return MIGRATEPAGE_SUCCESS;
1952 }
1953
1954 static void zs_page_putback(struct page *page)
1955 {
1956         struct zspage *zspage;
1957
1958         VM_BUG_ON_PAGE(!PageMovable(page), page);
1959         VM_BUG_ON_PAGE(!PageIsolated(page), page);
1960
1961         zspage = get_zspage(page);
1962         migrate_write_lock(zspage);
1963         dec_zspage_isolation(zspage);
1964         migrate_write_unlock(zspage);
1965 }
1966
1967 static const struct address_space_operations zsmalloc_aops = {
1968         .isolate_page = zs_page_isolate,
1969         .migratepage = zs_page_migrate,
1970         .putback_page = zs_page_putback,
1971 };
1972
1973 static int zs_register_migration(struct zs_pool *pool)
1974 {
1975         pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
1976         if (IS_ERR(pool->inode)) {
1977                 pool->inode = NULL;
1978                 return 1;
1979         }
1980
1981         pool->inode->i_mapping->private_data = pool;
1982         pool->inode->i_mapping->a_ops = &zsmalloc_aops;
1983         return 0;
1984 }
1985
1986 static void zs_unregister_migration(struct zs_pool *pool)
1987 {
1988         flush_work(&pool->free_work);
1989         iput(pool->inode);
1990 }
1991
1992 /*
1993  * Caller should hold page_lock of all pages in the zspage
1994  * In here, we cannot use zspage meta data.
1995  */
1996 static void async_free_zspage(struct work_struct *work)
1997 {
1998         int i;
1999         struct size_class *class;
2000         unsigned int class_idx;
2001         enum fullness_group fullness;
2002         struct zspage *zspage, *tmp;
2003         LIST_HEAD(free_pages);
2004         struct zs_pool *pool = container_of(work, struct zs_pool,
2005                                         free_work);
2006
2007         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2008                 class = pool->size_class[i];
2009                 if (class->index != i)
2010                         continue;
2011
2012                 spin_lock(&class->lock);
2013                 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2014                 spin_unlock(&class->lock);
2015         }
2016
2017         list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2018                 list_del(&zspage->list);
2019                 lock_zspage(zspage);
2020
2021                 get_zspage_mapping(zspage, &class_idx, &fullness);
2022                 VM_BUG_ON(fullness != ZS_EMPTY);
2023                 class = pool->size_class[class_idx];
2024                 spin_lock(&class->lock);
2025                 __free_zspage(pool, class, zspage);
2026                 spin_unlock(&class->lock);
2027         }
2028 };
2029
2030 static void kick_deferred_free(struct zs_pool *pool)
2031 {
2032         schedule_work(&pool->free_work);
2033 }
2034
2035 static void init_deferred_free(struct zs_pool *pool)
2036 {
2037         INIT_WORK(&pool->free_work, async_free_zspage);
2038 }
2039
2040 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2041 {
2042         struct page *page = get_first_page(zspage);
2043
2044         do {
2045                 WARN_ON(!trylock_page(page));
2046                 __SetPageMovable(page, pool->inode->i_mapping);
2047                 unlock_page(page);
2048         } while ((page = get_next_page(page)) != NULL);
2049 }
2050 #endif
2051
2052 /*
2053  *
2054  * Based on the number of unused allocated objects calculate
2055  * and return the number of pages that we can free.
2056  */
2057 static unsigned long zs_can_compact(struct size_class *class)
2058 {
2059         unsigned long obj_wasted;
2060         unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2061         unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2062
2063         if (obj_allocated <= obj_used)
2064                 return 0;
2065
2066         obj_wasted = obj_allocated - obj_used;
2067         obj_wasted /= class->objs_per_zspage;
2068
2069         return obj_wasted * class->pages_per_zspage;
2070 }
2071
2072 static unsigned long __zs_compact(struct zs_pool *pool,
2073                                   struct size_class *class)
2074 {
2075         struct zs_compact_control cc;
2076         struct zspage *src_zspage;
2077         struct zspage *dst_zspage = NULL;
2078         unsigned long pages_freed = 0;
2079
2080         /* protect the race between zpage migration and zs_free */
2081         write_lock(&pool->migrate_lock);
2082         /* protect zpage allocation/free */
2083         spin_lock(&class->lock);
2084         while ((src_zspage = isolate_zspage(class, true))) {
2085                 /* protect someone accessing the zspage(i.e., zs_map_object) */
2086                 migrate_write_lock(src_zspage);
2087
2088                 if (!zs_can_compact(class))
2089                         break;
2090
2091                 cc.obj_idx = 0;
2092                 cc.s_page = get_first_page(src_zspage);
2093
2094                 while ((dst_zspage = isolate_zspage(class, false))) {
2095                         migrate_write_lock_nested(dst_zspage);
2096
2097                         cc.d_page = get_first_page(dst_zspage);
2098                         /*
2099                          * If there is no more space in dst_page, resched
2100                          * and see if anyone had allocated another zspage.
2101                          */
2102                         if (!migrate_zspage(pool, class, &cc))
2103                                 break;
2104
2105                         putback_zspage(class, dst_zspage);
2106                         migrate_write_unlock(dst_zspage);
2107                         dst_zspage = NULL;
2108                         if (rwlock_is_contended(&pool->migrate_lock))
2109                                 break;
2110                 }
2111
2112                 /* Stop if we couldn't find slot */
2113                 if (dst_zspage == NULL)
2114                         break;
2115
2116                 putback_zspage(class, dst_zspage);
2117                 migrate_write_unlock(dst_zspage);
2118
2119                 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2120                         migrate_write_unlock(src_zspage);
2121                         free_zspage(pool, class, src_zspage);
2122                         pages_freed += class->pages_per_zspage;
2123                 } else
2124                         migrate_write_unlock(src_zspage);
2125                 spin_unlock(&class->lock);
2126                 write_unlock(&pool->migrate_lock);
2127                 cond_resched();
2128                 write_lock(&pool->migrate_lock);
2129                 spin_lock(&class->lock);
2130         }
2131
2132         if (src_zspage) {
2133                 putback_zspage(class, src_zspage);
2134                 migrate_write_unlock(src_zspage);
2135         }
2136
2137         spin_unlock(&class->lock);
2138         write_unlock(&pool->migrate_lock);
2139
2140         return pages_freed;
2141 }
2142
2143 unsigned long zs_compact(struct zs_pool *pool)
2144 {
2145         int i;
2146         struct size_class *class;
2147         unsigned long pages_freed = 0;
2148
2149         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2150                 class = pool->size_class[i];
2151                 if (!class)
2152                         continue;
2153                 if (class->index != i)
2154                         continue;
2155                 pages_freed += __zs_compact(pool, class);
2156         }
2157         atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2158
2159         return pages_freed;
2160 }
2161 EXPORT_SYMBOL_GPL(zs_compact);
2162
2163 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2164 {
2165         memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2166 }
2167 EXPORT_SYMBOL_GPL(zs_pool_stats);
2168
2169 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2170                 struct shrink_control *sc)
2171 {
2172         unsigned long pages_freed;
2173         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2174                         shrinker);
2175
2176         /*
2177          * Compact classes and calculate compaction delta.
2178          * Can run concurrently with a manually triggered
2179          * (by user) compaction.
2180          */
2181         pages_freed = zs_compact(pool);
2182
2183         return pages_freed ? pages_freed : SHRINK_STOP;
2184 }
2185
2186 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2187                 struct shrink_control *sc)
2188 {
2189         int i;
2190         struct size_class *class;
2191         unsigned long pages_to_free = 0;
2192         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2193                         shrinker);
2194
2195         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2196                 class = pool->size_class[i];
2197                 if (!class)
2198                         continue;
2199                 if (class->index != i)
2200                         continue;
2201
2202                 pages_to_free += zs_can_compact(class);
2203         }
2204
2205         return pages_to_free;
2206 }
2207
2208 static void zs_unregister_shrinker(struct zs_pool *pool)
2209 {
2210         unregister_shrinker(&pool->shrinker);
2211 }
2212
2213 static int zs_register_shrinker(struct zs_pool *pool)
2214 {
2215         pool->shrinker.scan_objects = zs_shrinker_scan;
2216         pool->shrinker.count_objects = zs_shrinker_count;
2217         pool->shrinker.batch = 0;
2218         pool->shrinker.seeks = DEFAULT_SEEKS;
2219
2220         return register_shrinker(&pool->shrinker);
2221 }
2222
2223 /**
2224  * zs_create_pool - Creates an allocation pool to work from.
2225  * @name: pool name to be created
2226  *
2227  * This function must be called before anything when using
2228  * the zsmalloc allocator.
2229  *
2230  * On success, a pointer to the newly created pool is returned,
2231  * otherwise NULL.
2232  */
2233 struct zs_pool *zs_create_pool(const char *name)
2234 {
2235         int i;
2236         struct zs_pool *pool;
2237         struct size_class *prev_class = NULL;
2238
2239         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2240         if (!pool)
2241                 return NULL;
2242
2243         init_deferred_free(pool);
2244         rwlock_init(&pool->migrate_lock);
2245
2246         pool->name = kstrdup(name, GFP_KERNEL);
2247         if (!pool->name)
2248                 goto err;
2249
2250         if (create_cache(pool))
2251                 goto err;
2252
2253         /*
2254          * Iterate reversely, because, size of size_class that we want to use
2255          * for merging should be larger or equal to current size.
2256          */
2257         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2258                 int size;
2259                 int pages_per_zspage;
2260                 int objs_per_zspage;
2261                 struct size_class *class;
2262                 int fullness = 0;
2263
2264                 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2265                 if (size > ZS_MAX_ALLOC_SIZE)
2266                         size = ZS_MAX_ALLOC_SIZE;
2267                 pages_per_zspage = get_pages_per_zspage(size);
2268                 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2269
2270                 /*
2271                  * We iterate from biggest down to smallest classes,
2272                  * so huge_class_size holds the size of the first huge
2273                  * class. Any object bigger than or equal to that will
2274                  * endup in the huge class.
2275                  */
2276                 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2277                                 !huge_class_size) {
2278                         huge_class_size = size;
2279                         /*
2280                          * The object uses ZS_HANDLE_SIZE bytes to store the
2281                          * handle. We need to subtract it, because zs_malloc()
2282                          * unconditionally adds handle size before it performs
2283                          * size class search - so object may be smaller than
2284                          * huge class size, yet it still can end up in the huge
2285                          * class because it grows by ZS_HANDLE_SIZE extra bytes
2286                          * right before class lookup.
2287                          */
2288                         huge_class_size -= (ZS_HANDLE_SIZE - 1);
2289                 }
2290
2291                 /*
2292                  * size_class is used for normal zsmalloc operation such
2293                  * as alloc/free for that size. Although it is natural that we
2294                  * have one size_class for each size, there is a chance that we
2295                  * can get more memory utilization if we use one size_class for
2296                  * many different sizes whose size_class have same
2297                  * characteristics. So, we makes size_class point to
2298                  * previous size_class if possible.
2299                  */
2300                 if (prev_class) {
2301                         if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2302                                 pool->size_class[i] = prev_class;
2303                                 continue;
2304                         }
2305                 }
2306
2307                 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2308                 if (!class)
2309                         goto err;
2310
2311                 class->size = size;
2312                 class->index = i;
2313                 class->pages_per_zspage = pages_per_zspage;
2314                 class->objs_per_zspage = objs_per_zspage;
2315                 spin_lock_init(&class->lock);
2316                 pool->size_class[i] = class;
2317                 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2318                                                         fullness++)
2319                         INIT_LIST_HEAD(&class->fullness_list[fullness]);
2320
2321                 prev_class = class;
2322         }
2323
2324         /* debug only, don't abort if it fails */
2325         zs_pool_stat_create(pool, name);
2326
2327         if (zs_register_migration(pool))
2328                 goto err;
2329
2330         /*
2331          * Not critical since shrinker is only used to trigger internal
2332          * defragmentation of the pool which is pretty optional thing.  If
2333          * registration fails we still can use the pool normally and user can
2334          * trigger compaction manually. Thus, ignore return code.
2335          */
2336         zs_register_shrinker(pool);
2337
2338         return pool;
2339
2340 err:
2341         zs_destroy_pool(pool);
2342         return NULL;
2343 }
2344 EXPORT_SYMBOL_GPL(zs_create_pool);
2345
2346 void zs_destroy_pool(struct zs_pool *pool)
2347 {
2348         int i;
2349
2350         zs_unregister_shrinker(pool);
2351         zs_unregister_migration(pool);
2352         zs_pool_stat_destroy(pool);
2353
2354         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2355                 int fg;
2356                 struct size_class *class = pool->size_class[i];
2357
2358                 if (!class)
2359                         continue;
2360
2361                 if (class->index != i)
2362                         continue;
2363
2364                 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2365                         if (!list_empty(&class->fullness_list[fg])) {
2366                                 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2367                                         class->size, fg);
2368                         }
2369                 }
2370                 kfree(class);
2371         }
2372
2373         destroy_cache(pool);
2374         kfree(pool->name);
2375         kfree(pool);
2376 }
2377 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2378
2379 static int __init zs_init(void)
2380 {
2381         int ret;
2382
2383         ret = zsmalloc_mount();
2384         if (ret)
2385                 goto out;
2386
2387         ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2388                                 zs_cpu_prepare, zs_cpu_dead);
2389         if (ret)
2390                 goto hp_setup_fail;
2391
2392 #ifdef CONFIG_ZPOOL
2393         zpool_register_driver(&zs_zpool_driver);
2394 #endif
2395
2396         zs_stat_init();
2397
2398         return 0;
2399
2400 hp_setup_fail:
2401         zsmalloc_unmount();
2402 out:
2403         return ret;
2404 }
2405
2406 static void __exit zs_exit(void)
2407 {
2408 #ifdef CONFIG_ZPOOL
2409         zpool_unregister_driver(&zs_zpool_driver);
2410 #endif
2411         zsmalloc_unmount();
2412         cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2413
2414         zs_stat_exit();
2415 }
2416
2417 module_init(zs_init);
2418 module_exit(zs_exit);
2419
2420 MODULE_LICENSE("Dual BSD/GPL");
2421 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");