dmapool: simplify freeing
[platform/kernel/linux-starfive.git] / mm / zsmalloc.c
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *      page->private: points to zspage
20  *      page->index: links together all component pages of a zspage
21  *              For the huge page, this is always 0, so we use this field
22  *              to store handle.
23  *      page->page_type: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *      PG_private: identifies the first component page
27  *      PG_owner_priv_1: identifies the huge component page
28  *
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 /*
34  * lock ordering:
35  *      page_lock
36  *      pool->lock
37  *      zspage->lock
38  */
39
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/sched.h>
43 #include <linux/bitops.h>
44 #include <linux/errno.h>
45 #include <linux/highmem.h>
46 #include <linux/string.h>
47 #include <linux/slab.h>
48 #include <linux/pgtable.h>
49 #include <asm/tlbflush.h>
50 #include <linux/cpumask.h>
51 #include <linux/cpu.h>
52 #include <linux/vmalloc.h>
53 #include <linux/preempt.h>
54 #include <linux/spinlock.h>
55 #include <linux/shrinker.h>
56 #include <linux/types.h>
57 #include <linux/debugfs.h>
58 #include <linux/zsmalloc.h>
59 #include <linux/zpool.h>
60 #include <linux/migrate.h>
61 #include <linux/wait.h>
62 #include <linux/pagemap.h>
63 #include <linux/fs.h>
64 #include <linux/local_lock.h>
65
66 #define ZSPAGE_MAGIC    0x58
67
68 /*
69  * This must be power of 2 and greater than or equal to sizeof(link_free).
70  * These two conditions ensure that any 'struct link_free' itself doesn't
71  * span more than 1 page which avoids complex case of mapping 2 pages simply
72  * to restore link_free pointer values.
73  */
74 #define ZS_ALIGN                8
75
76 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
77
78 /*
79  * Object location (<PFN>, <obj_idx>) is encoded as
80  * a single (unsigned long) handle value.
81  *
82  * Note that object index <obj_idx> starts from 0.
83  *
84  * This is made more complicated by various memory models and PAE.
85  */
86
87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
88 #ifdef MAX_PHYSMEM_BITS
89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
90 #else
91 /*
92  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93  * be PAGE_SHIFT
94  */
95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
96 #endif
97 #endif
98
99 #define _PFN_BITS               (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
100
101 /*
102  * Head in allocated object should have OBJ_ALLOCATED_TAG
103  * to identify the object was allocated or not.
104  * It's okay to add the status bit in the least bit because
105  * header keeps handle which is 4byte-aligned address so we
106  * have room for two bit at least.
107  */
108 #define OBJ_ALLOCATED_TAG 1
109
110 #ifdef CONFIG_ZPOOL
111 /*
112  * The second least-significant bit in the object's header identifies if the
113  * value stored at the header is a deferred handle from the last reclaim
114  * attempt.
115  *
116  * As noted above, this is valid because we have room for two bits.
117  */
118 #define OBJ_DEFERRED_HANDLE_TAG 2
119 #define OBJ_TAG_BITS    2
120 #define OBJ_TAG_MASK    (OBJ_ALLOCATED_TAG | OBJ_DEFERRED_HANDLE_TAG)
121 #else
122 #define OBJ_TAG_BITS    1
123 #define OBJ_TAG_MASK    OBJ_ALLOCATED_TAG
124 #endif /* CONFIG_ZPOOL */
125
126 #define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
127 #define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
128
129 #define HUGE_BITS       1
130 #define FULLNESS_BITS   4
131 #define CLASS_BITS      8
132 #define ISOLATED_BITS   5
133 #define MAGIC_VAL_BITS  8
134
135 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
136
137 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
138
139 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
140 #define ZS_MIN_ALLOC_SIZE \
141         MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
142 /* each chunk includes extra space to keep handle */
143 #define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
144
145 /*
146  * On systems with 4K page size, this gives 255 size classes! There is a
147  * trader-off here:
148  *  - Large number of size classes is potentially wasteful as free page are
149  *    spread across these classes
150  *  - Small number of size classes causes large internal fragmentation
151  *  - Probably its better to use specific size classes (empirically
152  *    determined). NOTE: all those class sizes must be set as multiple of
153  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
154  *
155  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
156  *  (reason above)
157  */
158 #define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
159 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
160                                       ZS_SIZE_CLASS_DELTA) + 1)
161
162 /*
163  * Pages are distinguished by the ratio of used memory (that is the ratio
164  * of ->inuse objects to all objects that page can store). For example,
165  * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
166  *
167  * The number of fullness groups is not random. It allows us to keep
168  * difference between the least busy page in the group (minimum permitted
169  * number of ->inuse objects) and the most busy page (maximum permitted
170  * number of ->inuse objects) at a reasonable value.
171  */
172 enum fullness_group {
173         ZS_INUSE_RATIO_0,
174         ZS_INUSE_RATIO_10,
175         /* NOTE: 8 more fullness groups here */
176         ZS_INUSE_RATIO_99       = 10,
177         ZS_INUSE_RATIO_100,
178         NR_FULLNESS_GROUPS,
179 };
180
181 enum class_stat_type {
182         /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
183         ZS_OBJS_ALLOCATED       = NR_FULLNESS_GROUPS,
184         ZS_OBJS_INUSE,
185         NR_CLASS_STAT_TYPES,
186 };
187
188 struct zs_size_stat {
189         unsigned long objs[NR_CLASS_STAT_TYPES];
190 };
191
192 #ifdef CONFIG_ZSMALLOC_STAT
193 static struct dentry *zs_stat_root;
194 #endif
195
196 static size_t huge_class_size;
197
198 struct size_class {
199         struct list_head fullness_list[NR_FULLNESS_GROUPS];
200         /*
201          * Size of objects stored in this class. Must be multiple
202          * of ZS_ALIGN.
203          */
204         int size;
205         int objs_per_zspage;
206         /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
207         int pages_per_zspage;
208
209         unsigned int index;
210         struct zs_size_stat stats;
211 };
212
213 /*
214  * Placed within free objects to form a singly linked list.
215  * For every zspage, zspage->freeobj gives head of this list.
216  *
217  * This must be power of 2 and less than or equal to ZS_ALIGN
218  */
219 struct link_free {
220         union {
221                 /*
222                  * Free object index;
223                  * It's valid for non-allocated object
224                  */
225                 unsigned long next;
226                 /*
227                  * Handle of allocated object.
228                  */
229                 unsigned long handle;
230 #ifdef CONFIG_ZPOOL
231                 /*
232                  * Deferred handle of a reclaimed object.
233                  */
234                 unsigned long deferred_handle;
235 #endif
236         };
237 };
238
239 struct zs_pool {
240         const char *name;
241
242         struct size_class *size_class[ZS_SIZE_CLASSES];
243         struct kmem_cache *handle_cachep;
244         struct kmem_cache *zspage_cachep;
245
246         atomic_long_t pages_allocated;
247
248         struct zs_pool_stats stats;
249
250         /* Compact classes */
251         struct shrinker shrinker;
252
253 #ifdef CONFIG_ZPOOL
254         /* List tracking the zspages in LRU order by most recently added object */
255         struct list_head lru;
256         struct zpool *zpool;
257         const struct zpool_ops *zpool_ops;
258 #endif
259
260 #ifdef CONFIG_ZSMALLOC_STAT
261         struct dentry *stat_dentry;
262 #endif
263 #ifdef CONFIG_COMPACTION
264         struct work_struct free_work;
265 #endif
266         spinlock_t lock;
267         atomic_t compaction_in_progress;
268 };
269
270 struct zspage {
271         struct {
272                 unsigned int huge:HUGE_BITS;
273                 unsigned int fullness:FULLNESS_BITS;
274                 unsigned int class:CLASS_BITS + 1;
275                 unsigned int isolated:ISOLATED_BITS;
276                 unsigned int magic:MAGIC_VAL_BITS;
277         };
278         unsigned int inuse;
279         unsigned int freeobj;
280         struct page *first_page;
281         struct list_head list; /* fullness list */
282
283 #ifdef CONFIG_ZPOOL
284         /* links the zspage to the lru list in the pool */
285         struct list_head lru;
286         bool under_reclaim;
287 #endif
288
289         struct zs_pool *pool;
290         rwlock_t lock;
291 };
292
293 struct mapping_area {
294         local_lock_t lock;
295         char *vm_buf; /* copy buffer for objects that span pages */
296         char *vm_addr; /* address of kmap_atomic()'ed pages */
297         enum zs_mapmode vm_mm; /* mapping mode */
298 };
299
300 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
301 static void SetZsHugePage(struct zspage *zspage)
302 {
303         zspage->huge = 1;
304 }
305
306 static bool ZsHugePage(struct zspage *zspage)
307 {
308         return zspage->huge;
309 }
310
311 static void migrate_lock_init(struct zspage *zspage);
312 static void migrate_read_lock(struct zspage *zspage);
313 static void migrate_read_unlock(struct zspage *zspage);
314
315 #ifdef CONFIG_COMPACTION
316 static void migrate_write_lock(struct zspage *zspage);
317 static void migrate_write_lock_nested(struct zspage *zspage);
318 static void migrate_write_unlock(struct zspage *zspage);
319 static void kick_deferred_free(struct zs_pool *pool);
320 static void init_deferred_free(struct zs_pool *pool);
321 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
322 #else
323 static void migrate_write_lock(struct zspage *zspage) {}
324 static void migrate_write_lock_nested(struct zspage *zspage) {}
325 static void migrate_write_unlock(struct zspage *zspage) {}
326 static void kick_deferred_free(struct zs_pool *pool) {}
327 static void init_deferred_free(struct zs_pool *pool) {}
328 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
329 #endif
330
331 static int create_cache(struct zs_pool *pool)
332 {
333         pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
334                                         0, 0, NULL);
335         if (!pool->handle_cachep)
336                 return 1;
337
338         pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
339                                         0, 0, NULL);
340         if (!pool->zspage_cachep) {
341                 kmem_cache_destroy(pool->handle_cachep);
342                 pool->handle_cachep = NULL;
343                 return 1;
344         }
345
346         return 0;
347 }
348
349 static void destroy_cache(struct zs_pool *pool)
350 {
351         kmem_cache_destroy(pool->handle_cachep);
352         kmem_cache_destroy(pool->zspage_cachep);
353 }
354
355 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
356 {
357         return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
358                         gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
359 }
360
361 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
362 {
363         kmem_cache_free(pool->handle_cachep, (void *)handle);
364 }
365
366 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
367 {
368         return kmem_cache_zalloc(pool->zspage_cachep,
369                         flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
370 }
371
372 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
373 {
374         kmem_cache_free(pool->zspage_cachep, zspage);
375 }
376
377 /* pool->lock(which owns the handle) synchronizes races */
378 static void record_obj(unsigned long handle, unsigned long obj)
379 {
380         *(unsigned long *)handle = obj;
381 }
382
383 /* zpool driver */
384
385 #ifdef CONFIG_ZPOOL
386
387 static void *zs_zpool_create(const char *name, gfp_t gfp,
388                              const struct zpool_ops *zpool_ops,
389                              struct zpool *zpool)
390 {
391         /*
392          * Ignore global gfp flags: zs_malloc() may be invoked from
393          * different contexts and its caller must provide a valid
394          * gfp mask.
395          */
396         struct zs_pool *pool = zs_create_pool(name);
397
398         if (pool) {
399                 pool->zpool = zpool;
400                 pool->zpool_ops = zpool_ops;
401         }
402
403         return pool;
404 }
405
406 static void zs_zpool_destroy(void *pool)
407 {
408         zs_destroy_pool(pool);
409 }
410
411 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
412                         unsigned long *handle)
413 {
414         *handle = zs_malloc(pool, size, gfp);
415
416         if (IS_ERR_VALUE(*handle))
417                 return PTR_ERR((void *)*handle);
418         return 0;
419 }
420 static void zs_zpool_free(void *pool, unsigned long handle)
421 {
422         zs_free(pool, handle);
423 }
424
425 static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries);
426
427 static int zs_zpool_shrink(void *pool, unsigned int pages,
428                         unsigned int *reclaimed)
429 {
430         unsigned int total = 0;
431         int ret = -EINVAL;
432
433         while (total < pages) {
434                 ret = zs_reclaim_page(pool, 8);
435                 if (ret < 0)
436                         break;
437                 total++;
438         }
439
440         if (reclaimed)
441                 *reclaimed = total;
442
443         return ret;
444 }
445
446 static void *zs_zpool_map(void *pool, unsigned long handle,
447                         enum zpool_mapmode mm)
448 {
449         enum zs_mapmode zs_mm;
450
451         switch (mm) {
452         case ZPOOL_MM_RO:
453                 zs_mm = ZS_MM_RO;
454                 break;
455         case ZPOOL_MM_WO:
456                 zs_mm = ZS_MM_WO;
457                 break;
458         case ZPOOL_MM_RW:
459         default:
460                 zs_mm = ZS_MM_RW;
461                 break;
462         }
463
464         return zs_map_object(pool, handle, zs_mm);
465 }
466 static void zs_zpool_unmap(void *pool, unsigned long handle)
467 {
468         zs_unmap_object(pool, handle);
469 }
470
471 static u64 zs_zpool_total_size(void *pool)
472 {
473         return zs_get_total_pages(pool) << PAGE_SHIFT;
474 }
475
476 static struct zpool_driver zs_zpool_driver = {
477         .type =                   "zsmalloc",
478         .owner =                  THIS_MODULE,
479         .create =                 zs_zpool_create,
480         .destroy =                zs_zpool_destroy,
481         .malloc_support_movable = true,
482         .malloc =                 zs_zpool_malloc,
483         .free =                   zs_zpool_free,
484         .shrink =                 zs_zpool_shrink,
485         .map =                    zs_zpool_map,
486         .unmap =                  zs_zpool_unmap,
487         .total_size =             zs_zpool_total_size,
488 };
489
490 MODULE_ALIAS("zpool-zsmalloc");
491 #endif /* CONFIG_ZPOOL */
492
493 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
494 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
495         .lock   = INIT_LOCAL_LOCK(lock),
496 };
497
498 static __maybe_unused int is_first_page(struct page *page)
499 {
500         return PagePrivate(page);
501 }
502
503 /* Protected by pool->lock */
504 static inline int get_zspage_inuse(struct zspage *zspage)
505 {
506         return zspage->inuse;
507 }
508
509
510 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
511 {
512         zspage->inuse += val;
513 }
514
515 static inline struct page *get_first_page(struct zspage *zspage)
516 {
517         struct page *first_page = zspage->first_page;
518
519         VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
520         return first_page;
521 }
522
523 static inline unsigned int get_first_obj_offset(struct page *page)
524 {
525         return page->page_type;
526 }
527
528 static inline void set_first_obj_offset(struct page *page, unsigned int offset)
529 {
530         page->page_type = offset;
531 }
532
533 static inline unsigned int get_freeobj(struct zspage *zspage)
534 {
535         return zspage->freeobj;
536 }
537
538 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
539 {
540         zspage->freeobj = obj;
541 }
542
543 static void get_zspage_mapping(struct zspage *zspage,
544                                unsigned int *class_idx,
545                                int *fullness)
546 {
547         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
548
549         *fullness = zspage->fullness;
550         *class_idx = zspage->class;
551 }
552
553 static struct size_class *zspage_class(struct zs_pool *pool,
554                                        struct zspage *zspage)
555 {
556         return pool->size_class[zspage->class];
557 }
558
559 static void set_zspage_mapping(struct zspage *zspage,
560                                unsigned int class_idx,
561                                int fullness)
562 {
563         zspage->class = class_idx;
564         zspage->fullness = fullness;
565 }
566
567 /*
568  * zsmalloc divides the pool into various size classes where each
569  * class maintains a list of zspages where each zspage is divided
570  * into equal sized chunks. Each allocation falls into one of these
571  * classes depending on its size. This function returns index of the
572  * size class which has chunk size big enough to hold the given size.
573  */
574 static int get_size_class_index(int size)
575 {
576         int idx = 0;
577
578         if (likely(size > ZS_MIN_ALLOC_SIZE))
579                 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
580                                 ZS_SIZE_CLASS_DELTA);
581
582         return min_t(int, ZS_SIZE_CLASSES - 1, idx);
583 }
584
585 static inline void class_stat_inc(struct size_class *class,
586                                 int type, unsigned long cnt)
587 {
588         class->stats.objs[type] += cnt;
589 }
590
591 static inline void class_stat_dec(struct size_class *class,
592                                 int type, unsigned long cnt)
593 {
594         class->stats.objs[type] -= cnt;
595 }
596
597 static inline unsigned long zs_stat_get(struct size_class *class, int type)
598 {
599         return class->stats.objs[type];
600 }
601
602 #ifdef CONFIG_ZSMALLOC_STAT
603
604 static void __init zs_stat_init(void)
605 {
606         if (!debugfs_initialized()) {
607                 pr_warn("debugfs not available, stat dir not created\n");
608                 return;
609         }
610
611         zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
612 }
613
614 static void __exit zs_stat_exit(void)
615 {
616         debugfs_remove_recursive(zs_stat_root);
617 }
618
619 static unsigned long zs_can_compact(struct size_class *class);
620
621 static int zs_stats_size_show(struct seq_file *s, void *v)
622 {
623         int i, fg;
624         struct zs_pool *pool = s->private;
625         struct size_class *class;
626         int objs_per_zspage;
627         unsigned long obj_allocated, obj_used, pages_used, freeable;
628         unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
629         unsigned long total_freeable = 0;
630         unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
631
632         seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
633                         "class", "size", "10%", "20%", "30%", "40%",
634                         "50%", "60%", "70%", "80%", "90%", "99%", "100%",
635                         "obj_allocated", "obj_used", "pages_used",
636                         "pages_per_zspage", "freeable");
637
638         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
639
640                 class = pool->size_class[i];
641
642                 if (class->index != i)
643                         continue;
644
645                 spin_lock(&pool->lock);
646
647                 seq_printf(s, " %5u %5u ", i, class->size);
648                 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
649                         inuse_totals[fg] += zs_stat_get(class, fg);
650                         seq_printf(s, "%9lu ", zs_stat_get(class, fg));
651                 }
652
653                 obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED);
654                 obj_used = zs_stat_get(class, ZS_OBJS_INUSE);
655                 freeable = zs_can_compact(class);
656                 spin_unlock(&pool->lock);
657
658                 objs_per_zspage = class->objs_per_zspage;
659                 pages_used = obj_allocated / objs_per_zspage *
660                                 class->pages_per_zspage;
661
662                 seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
663                            obj_allocated, obj_used, pages_used,
664                            class->pages_per_zspage, freeable);
665
666                 total_objs += obj_allocated;
667                 total_used_objs += obj_used;
668                 total_pages += pages_used;
669                 total_freeable += freeable;
670         }
671
672         seq_puts(s, "\n");
673         seq_printf(s, " %5s %5s ", "Total", "");
674
675         for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
676                 seq_printf(s, "%9lu ", inuse_totals[fg]);
677
678         seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
679                    total_objs, total_used_objs, total_pages, "",
680                    total_freeable);
681
682         return 0;
683 }
684 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
685
686 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
687 {
688         if (!zs_stat_root) {
689                 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
690                 return;
691         }
692
693         pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
694
695         debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
696                             &zs_stats_size_fops);
697 }
698
699 static void zs_pool_stat_destroy(struct zs_pool *pool)
700 {
701         debugfs_remove_recursive(pool->stat_dentry);
702 }
703
704 #else /* CONFIG_ZSMALLOC_STAT */
705 static void __init zs_stat_init(void)
706 {
707 }
708
709 static void __exit zs_stat_exit(void)
710 {
711 }
712
713 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
714 {
715 }
716
717 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
718 {
719 }
720 #endif
721
722
723 /*
724  * For each size class, zspages are divided into different groups
725  * depending on their usage ratio. This function returns fullness
726  * status of the given page.
727  */
728 static int get_fullness_group(struct size_class *class, struct zspage *zspage)
729 {
730         int inuse, objs_per_zspage, ratio;
731
732         inuse = get_zspage_inuse(zspage);
733         objs_per_zspage = class->objs_per_zspage;
734
735         if (inuse == 0)
736                 return ZS_INUSE_RATIO_0;
737         if (inuse == objs_per_zspage)
738                 return ZS_INUSE_RATIO_100;
739
740         ratio = 100 * inuse / objs_per_zspage;
741         /*
742          * Take integer division into consideration: a page with one inuse
743          * object out of 127 possible, will end up having 0 usage ratio,
744          * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
745          */
746         return ratio / 10 + 1;
747 }
748
749 /*
750  * Each size class maintains various freelists and zspages are assigned
751  * to one of these freelists based on the number of live objects they
752  * have. This functions inserts the given zspage into the freelist
753  * identified by <class, fullness_group>.
754  */
755 static void insert_zspage(struct size_class *class,
756                                 struct zspage *zspage,
757                                 int fullness)
758 {
759         class_stat_inc(class, fullness, 1);
760         list_add(&zspage->list, &class->fullness_list[fullness]);
761 }
762
763 /*
764  * This function removes the given zspage from the freelist identified
765  * by <class, fullness_group>.
766  */
767 static void remove_zspage(struct size_class *class,
768                                 struct zspage *zspage,
769                                 int fullness)
770 {
771         VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
772
773         list_del_init(&zspage->list);
774         class_stat_dec(class, fullness, 1);
775 }
776
777 /*
778  * Each size class maintains zspages in different fullness groups depending
779  * on the number of live objects they contain. When allocating or freeing
780  * objects, the fullness status of the page can change, for instance, from
781  * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
782  * checks if such a status change has occurred for the given page and
783  * accordingly moves the page from the list of the old fullness group to that
784  * of the new fullness group.
785  */
786 static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
787 {
788         int class_idx;
789         int currfg, newfg;
790
791         get_zspage_mapping(zspage, &class_idx, &currfg);
792         newfg = get_fullness_group(class, zspage);
793         if (newfg == currfg)
794                 goto out;
795
796         remove_zspage(class, zspage, currfg);
797         insert_zspage(class, zspage, newfg);
798         set_zspage_mapping(zspage, class_idx, newfg);
799 out:
800         return newfg;
801 }
802
803 static struct zspage *get_zspage(struct page *page)
804 {
805         struct zspage *zspage = (struct zspage *)page_private(page);
806
807         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
808         return zspage;
809 }
810
811 static struct page *get_next_page(struct page *page)
812 {
813         struct zspage *zspage = get_zspage(page);
814
815         if (unlikely(ZsHugePage(zspage)))
816                 return NULL;
817
818         return (struct page *)page->index;
819 }
820
821 /**
822  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
823  * @obj: the encoded object value
824  * @page: page object resides in zspage
825  * @obj_idx: object index
826  */
827 static void obj_to_location(unsigned long obj, struct page **page,
828                                 unsigned int *obj_idx)
829 {
830         obj >>= OBJ_TAG_BITS;
831         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
832         *obj_idx = (obj & OBJ_INDEX_MASK);
833 }
834
835 static void obj_to_page(unsigned long obj, struct page **page)
836 {
837         obj >>= OBJ_TAG_BITS;
838         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
839 }
840
841 /**
842  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
843  * @page: page object resides in zspage
844  * @obj_idx: object index
845  */
846 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
847 {
848         unsigned long obj;
849
850         obj = page_to_pfn(page) << OBJ_INDEX_BITS;
851         obj |= obj_idx & OBJ_INDEX_MASK;
852         obj <<= OBJ_TAG_BITS;
853
854         return obj;
855 }
856
857 static unsigned long handle_to_obj(unsigned long handle)
858 {
859         return *(unsigned long *)handle;
860 }
861
862 static bool obj_tagged(struct page *page, void *obj, unsigned long *phandle,
863                 int tag)
864 {
865         unsigned long handle;
866         struct zspage *zspage = get_zspage(page);
867
868         if (unlikely(ZsHugePage(zspage))) {
869                 VM_BUG_ON_PAGE(!is_first_page(page), page);
870                 handle = page->index;
871         } else
872                 handle = *(unsigned long *)obj;
873
874         if (!(handle & tag))
875                 return false;
876
877         /* Clear all tags before returning the handle */
878         *phandle = handle & ~OBJ_TAG_MASK;
879         return true;
880 }
881
882 static inline bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
883 {
884         return obj_tagged(page, obj, phandle, OBJ_ALLOCATED_TAG);
885 }
886
887 #ifdef CONFIG_ZPOOL
888 static bool obj_stores_deferred_handle(struct page *page, void *obj,
889                 unsigned long *phandle)
890 {
891         return obj_tagged(page, obj, phandle, OBJ_DEFERRED_HANDLE_TAG);
892 }
893 #endif
894
895 static void reset_page(struct page *page)
896 {
897         __ClearPageMovable(page);
898         ClearPagePrivate(page);
899         set_page_private(page, 0);
900         page_mapcount_reset(page);
901         page->index = 0;
902 }
903
904 static int trylock_zspage(struct zspage *zspage)
905 {
906         struct page *cursor, *fail;
907
908         for (cursor = get_first_page(zspage); cursor != NULL; cursor =
909                                         get_next_page(cursor)) {
910                 if (!trylock_page(cursor)) {
911                         fail = cursor;
912                         goto unlock;
913                 }
914         }
915
916         return 1;
917 unlock:
918         for (cursor = get_first_page(zspage); cursor != fail; cursor =
919                                         get_next_page(cursor))
920                 unlock_page(cursor);
921
922         return 0;
923 }
924
925 #ifdef CONFIG_ZPOOL
926 static unsigned long find_deferred_handle_obj(struct size_class *class,
927                 struct page *page, int *obj_idx);
928
929 /*
930  * Free all the deferred handles whose objects are freed in zs_free.
931  */
932 static void free_handles(struct zs_pool *pool, struct size_class *class,
933                 struct zspage *zspage)
934 {
935         int obj_idx = 0;
936         struct page *page = get_first_page(zspage);
937         unsigned long handle;
938
939         while (1) {
940                 handle = find_deferred_handle_obj(class, page, &obj_idx);
941                 if (!handle) {
942                         page = get_next_page(page);
943                         if (!page)
944                                 break;
945                         obj_idx = 0;
946                         continue;
947                 }
948
949                 cache_free_handle(pool, handle);
950                 obj_idx++;
951         }
952 }
953 #else
954 static inline void free_handles(struct zs_pool *pool, struct size_class *class,
955                 struct zspage *zspage) {}
956 #endif
957
958 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
959                                 struct zspage *zspage)
960 {
961         struct page *page, *next;
962         int fg;
963         unsigned int class_idx;
964
965         get_zspage_mapping(zspage, &class_idx, &fg);
966
967         assert_spin_locked(&pool->lock);
968
969         VM_BUG_ON(get_zspage_inuse(zspage));
970         VM_BUG_ON(fg != ZS_INUSE_RATIO_0);
971
972         /* Free all deferred handles from zs_free */
973         free_handles(pool, class, zspage);
974
975         next = page = get_first_page(zspage);
976         do {
977                 VM_BUG_ON_PAGE(!PageLocked(page), page);
978                 next = get_next_page(page);
979                 reset_page(page);
980                 unlock_page(page);
981                 dec_zone_page_state(page, NR_ZSPAGES);
982                 put_page(page);
983                 page = next;
984         } while (page != NULL);
985
986         cache_free_zspage(pool, zspage);
987
988         class_stat_dec(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
989         atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
990 }
991
992 static void free_zspage(struct zs_pool *pool, struct size_class *class,
993                                 struct zspage *zspage)
994 {
995         VM_BUG_ON(get_zspage_inuse(zspage));
996         VM_BUG_ON(list_empty(&zspage->list));
997
998         /*
999          * Since zs_free couldn't be sleepable, this function cannot call
1000          * lock_page. The page locks trylock_zspage got will be released
1001          * by __free_zspage.
1002          */
1003         if (!trylock_zspage(zspage)) {
1004                 kick_deferred_free(pool);
1005                 return;
1006         }
1007
1008         remove_zspage(class, zspage, ZS_INUSE_RATIO_0);
1009 #ifdef CONFIG_ZPOOL
1010         list_del(&zspage->lru);
1011 #endif
1012         __free_zspage(pool, class, zspage);
1013 }
1014
1015 /* Initialize a newly allocated zspage */
1016 static void init_zspage(struct size_class *class, struct zspage *zspage)
1017 {
1018         unsigned int freeobj = 1;
1019         unsigned long off = 0;
1020         struct page *page = get_first_page(zspage);
1021
1022         while (page) {
1023                 struct page *next_page;
1024                 struct link_free *link;
1025                 void *vaddr;
1026
1027                 set_first_obj_offset(page, off);
1028
1029                 vaddr = kmap_atomic(page);
1030                 link = (struct link_free *)vaddr + off / sizeof(*link);
1031
1032                 while ((off += class->size) < PAGE_SIZE) {
1033                         link->next = freeobj++ << OBJ_TAG_BITS;
1034                         link += class->size / sizeof(*link);
1035                 }
1036
1037                 /*
1038                  * We now come to the last (full or partial) object on this
1039                  * page, which must point to the first object on the next
1040                  * page (if present)
1041                  */
1042                 next_page = get_next_page(page);
1043                 if (next_page) {
1044                         link->next = freeobj++ << OBJ_TAG_BITS;
1045                 } else {
1046                         /*
1047                          * Reset OBJ_TAG_BITS bit to last link to tell
1048                          * whether it's allocated object or not.
1049                          */
1050                         link->next = -1UL << OBJ_TAG_BITS;
1051                 }
1052                 kunmap_atomic(vaddr);
1053                 page = next_page;
1054                 off %= PAGE_SIZE;
1055         }
1056
1057 #ifdef CONFIG_ZPOOL
1058         INIT_LIST_HEAD(&zspage->lru);
1059         zspage->under_reclaim = false;
1060 #endif
1061
1062         set_freeobj(zspage, 0);
1063 }
1064
1065 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1066                                 struct page *pages[])
1067 {
1068         int i;
1069         struct page *page;
1070         struct page *prev_page = NULL;
1071         int nr_pages = class->pages_per_zspage;
1072
1073         /*
1074          * Allocate individual pages and link them together as:
1075          * 1. all pages are linked together using page->index
1076          * 2. each sub-page point to zspage using page->private
1077          *
1078          * we set PG_private to identify the first page (i.e. no other sub-page
1079          * has this flag set).
1080          */
1081         for (i = 0; i < nr_pages; i++) {
1082                 page = pages[i];
1083                 set_page_private(page, (unsigned long)zspage);
1084                 page->index = 0;
1085                 if (i == 0) {
1086                         zspage->first_page = page;
1087                         SetPagePrivate(page);
1088                         if (unlikely(class->objs_per_zspage == 1 &&
1089                                         class->pages_per_zspage == 1))
1090                                 SetZsHugePage(zspage);
1091                 } else {
1092                         prev_page->index = (unsigned long)page;
1093                 }
1094                 prev_page = page;
1095         }
1096 }
1097
1098 /*
1099  * Allocate a zspage for the given size class
1100  */
1101 static struct zspage *alloc_zspage(struct zs_pool *pool,
1102                                         struct size_class *class,
1103                                         gfp_t gfp)
1104 {
1105         int i;
1106         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1107         struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1108
1109         if (!zspage)
1110                 return NULL;
1111
1112         zspage->magic = ZSPAGE_MAGIC;
1113         migrate_lock_init(zspage);
1114
1115         for (i = 0; i < class->pages_per_zspage; i++) {
1116                 struct page *page;
1117
1118                 page = alloc_page(gfp);
1119                 if (!page) {
1120                         while (--i >= 0) {
1121                                 dec_zone_page_state(pages[i], NR_ZSPAGES);
1122                                 __free_page(pages[i]);
1123                         }
1124                         cache_free_zspage(pool, zspage);
1125                         return NULL;
1126                 }
1127
1128                 inc_zone_page_state(page, NR_ZSPAGES);
1129                 pages[i] = page;
1130         }
1131
1132         create_page_chain(class, zspage, pages);
1133         init_zspage(class, zspage);
1134         zspage->pool = pool;
1135
1136         return zspage;
1137 }
1138
1139 static struct zspage *find_get_zspage(struct size_class *class)
1140 {
1141         int i;
1142         struct zspage *zspage;
1143
1144         for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
1145                 zspage = list_first_entry_or_null(&class->fullness_list[i],
1146                                                   struct zspage, list);
1147                 if (zspage)
1148                         break;
1149         }
1150
1151         return zspage;
1152 }
1153
1154 static inline int __zs_cpu_up(struct mapping_area *area)
1155 {
1156         /*
1157          * Make sure we don't leak memory if a cpu UP notification
1158          * and zs_init() race and both call zs_cpu_up() on the same cpu
1159          */
1160         if (area->vm_buf)
1161                 return 0;
1162         area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1163         if (!area->vm_buf)
1164                 return -ENOMEM;
1165         return 0;
1166 }
1167
1168 static inline void __zs_cpu_down(struct mapping_area *area)
1169 {
1170         kfree(area->vm_buf);
1171         area->vm_buf = NULL;
1172 }
1173
1174 static void *__zs_map_object(struct mapping_area *area,
1175                         struct page *pages[2], int off, int size)
1176 {
1177         int sizes[2];
1178         void *addr;
1179         char *buf = area->vm_buf;
1180
1181         /* disable page faults to match kmap_atomic() return conditions */
1182         pagefault_disable();
1183
1184         /* no read fastpath */
1185         if (area->vm_mm == ZS_MM_WO)
1186                 goto out;
1187
1188         sizes[0] = PAGE_SIZE - off;
1189         sizes[1] = size - sizes[0];
1190
1191         /* copy object to per-cpu buffer */
1192         addr = kmap_atomic(pages[0]);
1193         memcpy(buf, addr + off, sizes[0]);
1194         kunmap_atomic(addr);
1195         addr = kmap_atomic(pages[1]);
1196         memcpy(buf + sizes[0], addr, sizes[1]);
1197         kunmap_atomic(addr);
1198 out:
1199         return area->vm_buf;
1200 }
1201
1202 static void __zs_unmap_object(struct mapping_area *area,
1203                         struct page *pages[2], int off, int size)
1204 {
1205         int sizes[2];
1206         void *addr;
1207         char *buf;
1208
1209         /* no write fastpath */
1210         if (area->vm_mm == ZS_MM_RO)
1211                 goto out;
1212
1213         buf = area->vm_buf;
1214         buf = buf + ZS_HANDLE_SIZE;
1215         size -= ZS_HANDLE_SIZE;
1216         off += ZS_HANDLE_SIZE;
1217
1218         sizes[0] = PAGE_SIZE - off;
1219         sizes[1] = size - sizes[0];
1220
1221         /* copy per-cpu buffer to object */
1222         addr = kmap_atomic(pages[0]);
1223         memcpy(addr + off, buf, sizes[0]);
1224         kunmap_atomic(addr);
1225         addr = kmap_atomic(pages[1]);
1226         memcpy(addr, buf + sizes[0], sizes[1]);
1227         kunmap_atomic(addr);
1228
1229 out:
1230         /* enable page faults to match kunmap_atomic() return conditions */
1231         pagefault_enable();
1232 }
1233
1234 static int zs_cpu_prepare(unsigned int cpu)
1235 {
1236         struct mapping_area *area;
1237
1238         area = &per_cpu(zs_map_area, cpu);
1239         return __zs_cpu_up(area);
1240 }
1241
1242 static int zs_cpu_dead(unsigned int cpu)
1243 {
1244         struct mapping_area *area;
1245
1246         area = &per_cpu(zs_map_area, cpu);
1247         __zs_cpu_down(area);
1248         return 0;
1249 }
1250
1251 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1252                                         int objs_per_zspage)
1253 {
1254         if (prev->pages_per_zspage == pages_per_zspage &&
1255                 prev->objs_per_zspage == objs_per_zspage)
1256                 return true;
1257
1258         return false;
1259 }
1260
1261 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1262 {
1263         return get_zspage_inuse(zspage) == class->objs_per_zspage;
1264 }
1265
1266 /**
1267  * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1268  * that hold objects of the provided size.
1269  * @pool: zsmalloc pool to use
1270  * @size: object size
1271  *
1272  * Context: Any context.
1273  *
1274  * Return: the index of the zsmalloc &size_class that hold objects of the
1275  * provided size.
1276  */
1277 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1278 {
1279         struct size_class *class;
1280
1281         class = pool->size_class[get_size_class_index(size)];
1282
1283         return class->index;
1284 }
1285 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1286
1287 unsigned long zs_get_total_pages(struct zs_pool *pool)
1288 {
1289         return atomic_long_read(&pool->pages_allocated);
1290 }
1291 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1292
1293 /**
1294  * zs_map_object - get address of allocated object from handle.
1295  * @pool: pool from which the object was allocated
1296  * @handle: handle returned from zs_malloc
1297  * @mm: mapping mode to use
1298  *
1299  * Before using an object allocated from zs_malloc, it must be mapped using
1300  * this function. When done with the object, it must be unmapped using
1301  * zs_unmap_object.
1302  *
1303  * Only one object can be mapped per cpu at a time. There is no protection
1304  * against nested mappings.
1305  *
1306  * This function returns with preemption and page faults disabled.
1307  */
1308 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1309                         enum zs_mapmode mm)
1310 {
1311         struct zspage *zspage;
1312         struct page *page;
1313         unsigned long obj, off;
1314         unsigned int obj_idx;
1315
1316         struct size_class *class;
1317         struct mapping_area *area;
1318         struct page *pages[2];
1319         void *ret;
1320
1321         /*
1322          * Because we use per-cpu mapping areas shared among the
1323          * pools/users, we can't allow mapping in interrupt context
1324          * because it can corrupt another users mappings.
1325          */
1326         BUG_ON(in_interrupt());
1327
1328         /* It guarantees it can get zspage from handle safely */
1329         spin_lock(&pool->lock);
1330         obj = handle_to_obj(handle);
1331         obj_to_location(obj, &page, &obj_idx);
1332         zspage = get_zspage(page);
1333
1334 #ifdef CONFIG_ZPOOL
1335         /*
1336          * Move the zspage to front of pool's LRU.
1337          *
1338          * Note that this is swap-specific, so by definition there are no ongoing
1339          * accesses to the memory while the page is swapped out that would make
1340          * it "hot". A new entry is hot, then ages to the tail until it gets either
1341          * written back or swaps back in.
1342          *
1343          * Furthermore, map is also called during writeback. We must not put an
1344          * isolated page on the LRU mid-reclaim.
1345          *
1346          * As a result, only update the LRU when the page is mapped for write
1347          * when it's first instantiated.
1348          *
1349          * This is a deviation from the other backends, which perform this update
1350          * in the allocation function (zbud_alloc, z3fold_alloc).
1351          */
1352         if (mm == ZS_MM_WO) {
1353                 if (!list_empty(&zspage->lru))
1354                         list_del(&zspage->lru);
1355                 list_add(&zspage->lru, &pool->lru);
1356         }
1357 #endif
1358
1359         /*
1360          * migration cannot move any zpages in this zspage. Here, pool->lock
1361          * is too heavy since callers would take some time until they calls
1362          * zs_unmap_object API so delegate the locking from class to zspage
1363          * which is smaller granularity.
1364          */
1365         migrate_read_lock(zspage);
1366         spin_unlock(&pool->lock);
1367
1368         class = zspage_class(pool, zspage);
1369         off = (class->size * obj_idx) & ~PAGE_MASK;
1370
1371         local_lock(&zs_map_area.lock);
1372         area = this_cpu_ptr(&zs_map_area);
1373         area->vm_mm = mm;
1374         if (off + class->size <= PAGE_SIZE) {
1375                 /* this object is contained entirely within a page */
1376                 area->vm_addr = kmap_atomic(page);
1377                 ret = area->vm_addr + off;
1378                 goto out;
1379         }
1380
1381         /* this object spans two pages */
1382         pages[0] = page;
1383         pages[1] = get_next_page(page);
1384         BUG_ON(!pages[1]);
1385
1386         ret = __zs_map_object(area, pages, off, class->size);
1387 out:
1388         if (likely(!ZsHugePage(zspage)))
1389                 ret += ZS_HANDLE_SIZE;
1390
1391         return ret;
1392 }
1393 EXPORT_SYMBOL_GPL(zs_map_object);
1394
1395 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1396 {
1397         struct zspage *zspage;
1398         struct page *page;
1399         unsigned long obj, off;
1400         unsigned int obj_idx;
1401
1402         struct size_class *class;
1403         struct mapping_area *area;
1404
1405         obj = handle_to_obj(handle);
1406         obj_to_location(obj, &page, &obj_idx);
1407         zspage = get_zspage(page);
1408         class = zspage_class(pool, zspage);
1409         off = (class->size * obj_idx) & ~PAGE_MASK;
1410
1411         area = this_cpu_ptr(&zs_map_area);
1412         if (off + class->size <= PAGE_SIZE)
1413                 kunmap_atomic(area->vm_addr);
1414         else {
1415                 struct page *pages[2];
1416
1417                 pages[0] = page;
1418                 pages[1] = get_next_page(page);
1419                 BUG_ON(!pages[1]);
1420
1421                 __zs_unmap_object(area, pages, off, class->size);
1422         }
1423         local_unlock(&zs_map_area.lock);
1424
1425         migrate_read_unlock(zspage);
1426 }
1427 EXPORT_SYMBOL_GPL(zs_unmap_object);
1428
1429 /**
1430  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1431  *                        zsmalloc &size_class.
1432  * @pool: zsmalloc pool to use
1433  *
1434  * The function returns the size of the first huge class - any object of equal
1435  * or bigger size will be stored in zspage consisting of a single physical
1436  * page.
1437  *
1438  * Context: Any context.
1439  *
1440  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1441  */
1442 size_t zs_huge_class_size(struct zs_pool *pool)
1443 {
1444         return huge_class_size;
1445 }
1446 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1447
1448 static unsigned long obj_malloc(struct zs_pool *pool,
1449                                 struct zspage *zspage, unsigned long handle)
1450 {
1451         int i, nr_page, offset;
1452         unsigned long obj;
1453         struct link_free *link;
1454         struct size_class *class;
1455
1456         struct page *m_page;
1457         unsigned long m_offset;
1458         void *vaddr;
1459
1460         class = pool->size_class[zspage->class];
1461         handle |= OBJ_ALLOCATED_TAG;
1462         obj = get_freeobj(zspage);
1463
1464         offset = obj * class->size;
1465         nr_page = offset >> PAGE_SHIFT;
1466         m_offset = offset & ~PAGE_MASK;
1467         m_page = get_first_page(zspage);
1468
1469         for (i = 0; i < nr_page; i++)
1470                 m_page = get_next_page(m_page);
1471
1472         vaddr = kmap_atomic(m_page);
1473         link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1474         set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1475         if (likely(!ZsHugePage(zspage)))
1476                 /* record handle in the header of allocated chunk */
1477                 link->handle = handle;
1478         else
1479                 /* record handle to page->index */
1480                 zspage->first_page->index = handle;
1481
1482         kunmap_atomic(vaddr);
1483         mod_zspage_inuse(zspage, 1);
1484
1485         obj = location_to_obj(m_page, obj);
1486
1487         return obj;
1488 }
1489
1490
1491 /**
1492  * zs_malloc - Allocate block of given size from pool.
1493  * @pool: pool to allocate from
1494  * @size: size of block to allocate
1495  * @gfp: gfp flags when allocating object
1496  *
1497  * On success, handle to the allocated object is returned,
1498  * otherwise an ERR_PTR().
1499  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1500  */
1501 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1502 {
1503         unsigned long handle, obj;
1504         struct size_class *class;
1505         int newfg;
1506         struct zspage *zspage;
1507
1508         if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1509                 return (unsigned long)ERR_PTR(-EINVAL);
1510
1511         handle = cache_alloc_handle(pool, gfp);
1512         if (!handle)
1513                 return (unsigned long)ERR_PTR(-ENOMEM);
1514
1515         /* extra space in chunk to keep the handle */
1516         size += ZS_HANDLE_SIZE;
1517         class = pool->size_class[get_size_class_index(size)];
1518
1519         /* pool->lock effectively protects the zpage migration */
1520         spin_lock(&pool->lock);
1521         zspage = find_get_zspage(class);
1522         if (likely(zspage)) {
1523                 obj = obj_malloc(pool, zspage, handle);
1524                 /* Now move the zspage to another fullness group, if required */
1525                 fix_fullness_group(class, zspage);
1526                 record_obj(handle, obj);
1527                 class_stat_inc(class, ZS_OBJS_INUSE, 1);
1528                 spin_unlock(&pool->lock);
1529
1530                 return handle;
1531         }
1532
1533         spin_unlock(&pool->lock);
1534
1535         zspage = alloc_zspage(pool, class, gfp);
1536         if (!zspage) {
1537                 cache_free_handle(pool, handle);
1538                 return (unsigned long)ERR_PTR(-ENOMEM);
1539         }
1540
1541         spin_lock(&pool->lock);
1542         obj = obj_malloc(pool, zspage, handle);
1543         newfg = get_fullness_group(class, zspage);
1544         insert_zspage(class, zspage, newfg);
1545         set_zspage_mapping(zspage, class->index, newfg);
1546         record_obj(handle, obj);
1547         atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1548         class_stat_inc(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1549         class_stat_inc(class, ZS_OBJS_INUSE, 1);
1550
1551         /* We completely set up zspage so mark them as movable */
1552         SetZsPageMovable(pool, zspage);
1553         spin_unlock(&pool->lock);
1554
1555         return handle;
1556 }
1557 EXPORT_SYMBOL_GPL(zs_malloc);
1558
1559 static void obj_free(int class_size, unsigned long obj, unsigned long *handle)
1560 {
1561         struct link_free *link;
1562         struct zspage *zspage;
1563         struct page *f_page;
1564         unsigned long f_offset;
1565         unsigned int f_objidx;
1566         void *vaddr;
1567
1568         obj_to_location(obj, &f_page, &f_objidx);
1569         f_offset = (class_size * f_objidx) & ~PAGE_MASK;
1570         zspage = get_zspage(f_page);
1571
1572         vaddr = kmap_atomic(f_page);
1573         link = (struct link_free *)(vaddr + f_offset);
1574
1575         if (handle) {
1576 #ifdef CONFIG_ZPOOL
1577                 /* Stores the (deferred) handle in the object's header */
1578                 *handle |= OBJ_DEFERRED_HANDLE_TAG;
1579                 *handle &= ~OBJ_ALLOCATED_TAG;
1580
1581                 if (likely(!ZsHugePage(zspage)))
1582                         link->deferred_handle = *handle;
1583                 else
1584                         f_page->index = *handle;
1585 #endif
1586         } else {
1587                 /* Insert this object in containing zspage's freelist */
1588                 if (likely(!ZsHugePage(zspage)))
1589                         link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1590                 else
1591                         f_page->index = 0;
1592                 set_freeobj(zspage, f_objidx);
1593         }
1594
1595         kunmap_atomic(vaddr);
1596         mod_zspage_inuse(zspage, -1);
1597 }
1598
1599 void zs_free(struct zs_pool *pool, unsigned long handle)
1600 {
1601         struct zspage *zspage;
1602         struct page *f_page;
1603         unsigned long obj;
1604         struct size_class *class;
1605         int fullness;
1606
1607         if (IS_ERR_OR_NULL((void *)handle))
1608                 return;
1609
1610         /*
1611          * The pool->lock protects the race with zpage's migration
1612          * so it's safe to get the page from handle.
1613          */
1614         spin_lock(&pool->lock);
1615         obj = handle_to_obj(handle);
1616         obj_to_page(obj, &f_page);
1617         zspage = get_zspage(f_page);
1618         class = zspage_class(pool, zspage);
1619
1620         class_stat_dec(class, ZS_OBJS_INUSE, 1);
1621
1622 #ifdef CONFIG_ZPOOL
1623         if (zspage->under_reclaim) {
1624                 /*
1625                  * Reclaim needs the handles during writeback. It'll free
1626                  * them along with the zspage when it's done with them.
1627                  *
1628                  * Record current deferred handle in the object's header.
1629                  */
1630                 obj_free(class->size, obj, &handle);
1631                 spin_unlock(&pool->lock);
1632                 return;
1633         }
1634 #endif
1635         obj_free(class->size, obj, NULL);
1636
1637         fullness = fix_fullness_group(class, zspage);
1638         if (fullness == ZS_INUSE_RATIO_0)
1639                 free_zspage(pool, class, zspage);
1640
1641         spin_unlock(&pool->lock);
1642         cache_free_handle(pool, handle);
1643 }
1644 EXPORT_SYMBOL_GPL(zs_free);
1645
1646 static void zs_object_copy(struct size_class *class, unsigned long dst,
1647                                 unsigned long src)
1648 {
1649         struct page *s_page, *d_page;
1650         unsigned int s_objidx, d_objidx;
1651         unsigned long s_off, d_off;
1652         void *s_addr, *d_addr;
1653         int s_size, d_size, size;
1654         int written = 0;
1655
1656         s_size = d_size = class->size;
1657
1658         obj_to_location(src, &s_page, &s_objidx);
1659         obj_to_location(dst, &d_page, &d_objidx);
1660
1661         s_off = (class->size * s_objidx) & ~PAGE_MASK;
1662         d_off = (class->size * d_objidx) & ~PAGE_MASK;
1663
1664         if (s_off + class->size > PAGE_SIZE)
1665                 s_size = PAGE_SIZE - s_off;
1666
1667         if (d_off + class->size > PAGE_SIZE)
1668                 d_size = PAGE_SIZE - d_off;
1669
1670         s_addr = kmap_atomic(s_page);
1671         d_addr = kmap_atomic(d_page);
1672
1673         while (1) {
1674                 size = min(s_size, d_size);
1675                 memcpy(d_addr + d_off, s_addr + s_off, size);
1676                 written += size;
1677
1678                 if (written == class->size)
1679                         break;
1680
1681                 s_off += size;
1682                 s_size -= size;
1683                 d_off += size;
1684                 d_size -= size;
1685
1686                 /*
1687                  * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1688                  * calls must occurs in reverse order of calls to kmap_atomic().
1689                  * So, to call kunmap_atomic(s_addr) we should first call
1690                  * kunmap_atomic(d_addr). For more details see
1691                  * Documentation/mm/highmem.rst.
1692                  */
1693                 if (s_off >= PAGE_SIZE) {
1694                         kunmap_atomic(d_addr);
1695                         kunmap_atomic(s_addr);
1696                         s_page = get_next_page(s_page);
1697                         s_addr = kmap_atomic(s_page);
1698                         d_addr = kmap_atomic(d_page);
1699                         s_size = class->size - written;
1700                         s_off = 0;
1701                 }
1702
1703                 if (d_off >= PAGE_SIZE) {
1704                         kunmap_atomic(d_addr);
1705                         d_page = get_next_page(d_page);
1706                         d_addr = kmap_atomic(d_page);
1707                         d_size = class->size - written;
1708                         d_off = 0;
1709                 }
1710         }
1711
1712         kunmap_atomic(d_addr);
1713         kunmap_atomic(s_addr);
1714 }
1715
1716 /*
1717  * Find object with a certain tag in zspage from index object and
1718  * return handle.
1719  */
1720 static unsigned long find_tagged_obj(struct size_class *class,
1721                                         struct page *page, int *obj_idx, int tag)
1722 {
1723         unsigned int offset;
1724         int index = *obj_idx;
1725         unsigned long handle = 0;
1726         void *addr = kmap_atomic(page);
1727
1728         offset = get_first_obj_offset(page);
1729         offset += class->size * index;
1730
1731         while (offset < PAGE_SIZE) {
1732                 if (obj_tagged(page, addr + offset, &handle, tag))
1733                         break;
1734
1735                 offset += class->size;
1736                 index++;
1737         }
1738
1739         kunmap_atomic(addr);
1740
1741         *obj_idx = index;
1742
1743         return handle;
1744 }
1745
1746 /*
1747  * Find alloced object in zspage from index object and
1748  * return handle.
1749  */
1750 static unsigned long find_alloced_obj(struct size_class *class,
1751                                         struct page *page, int *obj_idx)
1752 {
1753         return find_tagged_obj(class, page, obj_idx, OBJ_ALLOCATED_TAG);
1754 }
1755
1756 #ifdef CONFIG_ZPOOL
1757 /*
1758  * Find object storing a deferred handle in header in zspage from index object
1759  * and return handle.
1760  */
1761 static unsigned long find_deferred_handle_obj(struct size_class *class,
1762                 struct page *page, int *obj_idx)
1763 {
1764         return find_tagged_obj(class, page, obj_idx, OBJ_DEFERRED_HANDLE_TAG);
1765 }
1766 #endif
1767
1768 struct zs_compact_control {
1769         /* Source spage for migration which could be a subpage of zspage */
1770         struct page *s_page;
1771         /* Destination page for migration which should be a first page
1772          * of zspage. */
1773         struct page *d_page;
1774          /* Starting object index within @s_page which used for live object
1775           * in the subpage. */
1776         int obj_idx;
1777 };
1778
1779 static void migrate_zspage(struct zs_pool *pool, struct size_class *class,
1780                            struct zs_compact_control *cc)
1781 {
1782         unsigned long used_obj, free_obj;
1783         unsigned long handle;
1784         struct page *s_page = cc->s_page;
1785         struct page *d_page = cc->d_page;
1786         int obj_idx = cc->obj_idx;
1787
1788         while (1) {
1789                 handle = find_alloced_obj(class, s_page, &obj_idx);
1790                 if (!handle) {
1791                         s_page = get_next_page(s_page);
1792                         if (!s_page)
1793                                 break;
1794                         obj_idx = 0;
1795                         continue;
1796                 }
1797
1798                 /* Stop if there is no more space */
1799                 if (zspage_full(class, get_zspage(d_page)))
1800                         break;
1801
1802                 used_obj = handle_to_obj(handle);
1803                 free_obj = obj_malloc(pool, get_zspage(d_page), handle);
1804                 zs_object_copy(class, free_obj, used_obj);
1805                 obj_idx++;
1806                 record_obj(handle, free_obj);
1807                 obj_free(class->size, used_obj, NULL);
1808         }
1809
1810         /* Remember last position in this iteration */
1811         cc->s_page = s_page;
1812         cc->obj_idx = obj_idx;
1813 }
1814
1815 static struct zspage *isolate_src_zspage(struct size_class *class)
1816 {
1817         struct zspage *zspage;
1818         int fg;
1819
1820         for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1821                 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1822                                                   struct zspage, list);
1823                 if (zspage) {
1824                         remove_zspage(class, zspage, fg);
1825                         return zspage;
1826                 }
1827         }
1828
1829         return zspage;
1830 }
1831
1832 static struct zspage *isolate_dst_zspage(struct size_class *class)
1833 {
1834         struct zspage *zspage;
1835         int fg;
1836
1837         for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1838                 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1839                                                   struct zspage, list);
1840                 if (zspage) {
1841                         remove_zspage(class, zspage, fg);
1842                         return zspage;
1843                 }
1844         }
1845
1846         return zspage;
1847 }
1848
1849 /*
1850  * putback_zspage - add @zspage into right class's fullness list
1851  * @class: destination class
1852  * @zspage: target page
1853  *
1854  * Return @zspage's fullness status
1855  */
1856 static int putback_zspage(struct size_class *class, struct zspage *zspage)
1857 {
1858         int fullness;
1859
1860         fullness = get_fullness_group(class, zspage);
1861         insert_zspage(class, zspage, fullness);
1862         set_zspage_mapping(zspage, class->index, fullness);
1863
1864         return fullness;
1865 }
1866
1867 #if defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION)
1868 /*
1869  * To prevent zspage destroy during migration, zspage freeing should
1870  * hold locks of all pages in the zspage.
1871  */
1872 static void lock_zspage(struct zspage *zspage)
1873 {
1874         struct page *curr_page, *page;
1875
1876         /*
1877          * Pages we haven't locked yet can be migrated off the list while we're
1878          * trying to lock them, so we need to be careful and only attempt to
1879          * lock each page under migrate_read_lock(). Otherwise, the page we lock
1880          * may no longer belong to the zspage. This means that we may wait for
1881          * the wrong page to unlock, so we must take a reference to the page
1882          * prior to waiting for it to unlock outside migrate_read_lock().
1883          */
1884         while (1) {
1885                 migrate_read_lock(zspage);
1886                 page = get_first_page(zspage);
1887                 if (trylock_page(page))
1888                         break;
1889                 get_page(page);
1890                 migrate_read_unlock(zspage);
1891                 wait_on_page_locked(page);
1892                 put_page(page);
1893         }
1894
1895         curr_page = page;
1896         while ((page = get_next_page(curr_page))) {
1897                 if (trylock_page(page)) {
1898                         curr_page = page;
1899                 } else {
1900                         get_page(page);
1901                         migrate_read_unlock(zspage);
1902                         wait_on_page_locked(page);
1903                         put_page(page);
1904                         migrate_read_lock(zspage);
1905                 }
1906         }
1907         migrate_read_unlock(zspage);
1908 }
1909 #endif /* defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION) */
1910
1911 #ifdef CONFIG_ZPOOL
1912 /*
1913  * Unlocks all the pages of the zspage.
1914  *
1915  * pool->lock must be held before this function is called
1916  * to prevent the underlying pages from migrating.
1917  */
1918 static void unlock_zspage(struct zspage *zspage)
1919 {
1920         struct page *page = get_first_page(zspage);
1921
1922         do {
1923                 unlock_page(page);
1924         } while ((page = get_next_page(page)) != NULL);
1925 }
1926 #endif /* CONFIG_ZPOOL */
1927
1928 static void migrate_lock_init(struct zspage *zspage)
1929 {
1930         rwlock_init(&zspage->lock);
1931 }
1932
1933 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1934 {
1935         read_lock(&zspage->lock);
1936 }
1937
1938 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1939 {
1940         read_unlock(&zspage->lock);
1941 }
1942
1943 #ifdef CONFIG_COMPACTION
1944 static void migrate_write_lock(struct zspage *zspage)
1945 {
1946         write_lock(&zspage->lock);
1947 }
1948
1949 static void migrate_write_lock_nested(struct zspage *zspage)
1950 {
1951         write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
1952 }
1953
1954 static void migrate_write_unlock(struct zspage *zspage)
1955 {
1956         write_unlock(&zspage->lock);
1957 }
1958
1959 /* Number of isolated subpage for *page migration* in this zspage */
1960 static void inc_zspage_isolation(struct zspage *zspage)
1961 {
1962         zspage->isolated++;
1963 }
1964
1965 static void dec_zspage_isolation(struct zspage *zspage)
1966 {
1967         VM_BUG_ON(zspage->isolated == 0);
1968         zspage->isolated--;
1969 }
1970
1971 static const struct movable_operations zsmalloc_mops;
1972
1973 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1974                                 struct page *newpage, struct page *oldpage)
1975 {
1976         struct page *page;
1977         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1978         int idx = 0;
1979
1980         page = get_first_page(zspage);
1981         do {
1982                 if (page == oldpage)
1983                         pages[idx] = newpage;
1984                 else
1985                         pages[idx] = page;
1986                 idx++;
1987         } while ((page = get_next_page(page)) != NULL);
1988
1989         create_page_chain(class, zspage, pages);
1990         set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1991         if (unlikely(ZsHugePage(zspage)))
1992                 newpage->index = oldpage->index;
1993         __SetPageMovable(newpage, &zsmalloc_mops);
1994 }
1995
1996 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1997 {
1998         struct zspage *zspage;
1999
2000         /*
2001          * Page is locked so zspage couldn't be destroyed. For detail, look at
2002          * lock_zspage in free_zspage.
2003          */
2004         VM_BUG_ON_PAGE(PageIsolated(page), page);
2005
2006         zspage = get_zspage(page);
2007         migrate_write_lock(zspage);
2008         inc_zspage_isolation(zspage);
2009         migrate_write_unlock(zspage);
2010
2011         return true;
2012 }
2013
2014 static int zs_page_migrate(struct page *newpage, struct page *page,
2015                 enum migrate_mode mode)
2016 {
2017         struct zs_pool *pool;
2018         struct size_class *class;
2019         struct zspage *zspage;
2020         struct page *dummy;
2021         void *s_addr, *d_addr, *addr;
2022         unsigned int offset;
2023         unsigned long handle;
2024         unsigned long old_obj, new_obj;
2025         unsigned int obj_idx;
2026
2027         /*
2028          * We cannot support the _NO_COPY case here, because copy needs to
2029          * happen under the zs lock, which does not work with
2030          * MIGRATE_SYNC_NO_COPY workflow.
2031          */
2032         if (mode == MIGRATE_SYNC_NO_COPY)
2033                 return -EINVAL;
2034
2035         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2036
2037         /* The page is locked, so this pointer must remain valid */
2038         zspage = get_zspage(page);
2039         pool = zspage->pool;
2040
2041         /*
2042          * The pool's lock protects the race between zpage migration
2043          * and zs_free.
2044          */
2045         spin_lock(&pool->lock);
2046         class = zspage_class(pool, zspage);
2047
2048         /* the migrate_write_lock protects zpage access via zs_map_object */
2049         migrate_write_lock(zspage);
2050
2051         offset = get_first_obj_offset(page);
2052         s_addr = kmap_atomic(page);
2053
2054         /*
2055          * Here, any user cannot access all objects in the zspage so let's move.
2056          */
2057         d_addr = kmap_atomic(newpage);
2058         memcpy(d_addr, s_addr, PAGE_SIZE);
2059         kunmap_atomic(d_addr);
2060
2061         for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
2062                                         addr += class->size) {
2063                 if (obj_allocated(page, addr, &handle)) {
2064
2065                         old_obj = handle_to_obj(handle);
2066                         obj_to_location(old_obj, &dummy, &obj_idx);
2067                         new_obj = (unsigned long)location_to_obj(newpage,
2068                                                                 obj_idx);
2069                         record_obj(handle, new_obj);
2070                 }
2071         }
2072         kunmap_atomic(s_addr);
2073
2074         replace_sub_page(class, zspage, newpage, page);
2075         /*
2076          * Since we complete the data copy and set up new zspage structure,
2077          * it's okay to release the pool's lock.
2078          */
2079         spin_unlock(&pool->lock);
2080         dec_zspage_isolation(zspage);
2081         migrate_write_unlock(zspage);
2082
2083         get_page(newpage);
2084         if (page_zone(newpage) != page_zone(page)) {
2085                 dec_zone_page_state(page, NR_ZSPAGES);
2086                 inc_zone_page_state(newpage, NR_ZSPAGES);
2087         }
2088
2089         reset_page(page);
2090         put_page(page);
2091
2092         return MIGRATEPAGE_SUCCESS;
2093 }
2094
2095 static void zs_page_putback(struct page *page)
2096 {
2097         struct zspage *zspage;
2098
2099         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2100
2101         zspage = get_zspage(page);
2102         migrate_write_lock(zspage);
2103         dec_zspage_isolation(zspage);
2104         migrate_write_unlock(zspage);
2105 }
2106
2107 static const struct movable_operations zsmalloc_mops = {
2108         .isolate_page = zs_page_isolate,
2109         .migrate_page = zs_page_migrate,
2110         .putback_page = zs_page_putback,
2111 };
2112
2113 /*
2114  * Caller should hold page_lock of all pages in the zspage
2115  * In here, we cannot use zspage meta data.
2116  */
2117 static void async_free_zspage(struct work_struct *work)
2118 {
2119         int i;
2120         struct size_class *class;
2121         unsigned int class_idx;
2122         int fullness;
2123         struct zspage *zspage, *tmp;
2124         LIST_HEAD(free_pages);
2125         struct zs_pool *pool = container_of(work, struct zs_pool,
2126                                         free_work);
2127
2128         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2129                 class = pool->size_class[i];
2130                 if (class->index != i)
2131                         continue;
2132
2133                 spin_lock(&pool->lock);
2134                 list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
2135                                  &free_pages);
2136                 spin_unlock(&pool->lock);
2137         }
2138
2139         list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2140                 list_del(&zspage->list);
2141                 lock_zspage(zspage);
2142
2143                 get_zspage_mapping(zspage, &class_idx, &fullness);
2144                 VM_BUG_ON(fullness != ZS_INUSE_RATIO_0);
2145                 class = pool->size_class[class_idx];
2146                 spin_lock(&pool->lock);
2147 #ifdef CONFIG_ZPOOL
2148                 list_del(&zspage->lru);
2149 #endif
2150                 __free_zspage(pool, class, zspage);
2151                 spin_unlock(&pool->lock);
2152         }
2153 };
2154
2155 static void kick_deferred_free(struct zs_pool *pool)
2156 {
2157         schedule_work(&pool->free_work);
2158 }
2159
2160 static void zs_flush_migration(struct zs_pool *pool)
2161 {
2162         flush_work(&pool->free_work);
2163 }
2164
2165 static void init_deferred_free(struct zs_pool *pool)
2166 {
2167         INIT_WORK(&pool->free_work, async_free_zspage);
2168 }
2169
2170 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2171 {
2172         struct page *page = get_first_page(zspage);
2173
2174         do {
2175                 WARN_ON(!trylock_page(page));
2176                 __SetPageMovable(page, &zsmalloc_mops);
2177                 unlock_page(page);
2178         } while ((page = get_next_page(page)) != NULL);
2179 }
2180 #else
2181 static inline void zs_flush_migration(struct zs_pool *pool) { }
2182 #endif
2183
2184 /*
2185  *
2186  * Based on the number of unused allocated objects calculate
2187  * and return the number of pages that we can free.
2188  */
2189 static unsigned long zs_can_compact(struct size_class *class)
2190 {
2191         unsigned long obj_wasted;
2192         unsigned long obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED);
2193         unsigned long obj_used = zs_stat_get(class, ZS_OBJS_INUSE);
2194
2195         if (obj_allocated <= obj_used)
2196                 return 0;
2197
2198         obj_wasted = obj_allocated - obj_used;
2199         obj_wasted /= class->objs_per_zspage;
2200
2201         return obj_wasted * class->pages_per_zspage;
2202 }
2203
2204 static unsigned long __zs_compact(struct zs_pool *pool,
2205                                   struct size_class *class)
2206 {
2207         struct zs_compact_control cc;
2208         struct zspage *src_zspage = NULL;
2209         struct zspage *dst_zspage = NULL;
2210         unsigned long pages_freed = 0;
2211
2212         /*
2213          * protect the race between zpage migration and zs_free
2214          * as well as zpage allocation/free
2215          */
2216         spin_lock(&pool->lock);
2217         while (zs_can_compact(class)) {
2218                 int fg;
2219
2220                 if (!dst_zspage) {
2221                         dst_zspage = isolate_dst_zspage(class);
2222                         if (!dst_zspage)
2223                                 break;
2224                         migrate_write_lock(dst_zspage);
2225                         cc.d_page = get_first_page(dst_zspage);
2226                 }
2227
2228                 src_zspage = isolate_src_zspage(class);
2229                 if (!src_zspage)
2230                         break;
2231
2232                 migrate_write_lock_nested(src_zspage);
2233
2234                 cc.obj_idx = 0;
2235                 cc.s_page = get_first_page(src_zspage);
2236                 migrate_zspage(pool, class, &cc);
2237                 fg = putback_zspage(class, src_zspage);
2238                 migrate_write_unlock(src_zspage);
2239
2240                 if (fg == ZS_INUSE_RATIO_0) {
2241                         free_zspage(pool, class, src_zspage);
2242                         pages_freed += class->pages_per_zspage;
2243                 }
2244                 src_zspage = NULL;
2245
2246                 if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
2247                     || spin_is_contended(&pool->lock)) {
2248                         putback_zspage(class, dst_zspage);
2249                         migrate_write_unlock(dst_zspage);
2250                         dst_zspage = NULL;
2251
2252                         spin_unlock(&pool->lock);
2253                         cond_resched();
2254                         spin_lock(&pool->lock);
2255                 }
2256         }
2257
2258         if (src_zspage) {
2259                 putback_zspage(class, src_zspage);
2260                 migrate_write_unlock(src_zspage);
2261         }
2262
2263         if (dst_zspage) {
2264                 putback_zspage(class, dst_zspage);
2265                 migrate_write_unlock(dst_zspage);
2266         }
2267         spin_unlock(&pool->lock);
2268
2269         return pages_freed;
2270 }
2271
2272 unsigned long zs_compact(struct zs_pool *pool)
2273 {
2274         int i;
2275         struct size_class *class;
2276         unsigned long pages_freed = 0;
2277
2278         /*
2279          * Pool compaction is performed under pool->lock so it is basically
2280          * single-threaded. Having more than one thread in __zs_compact()
2281          * will increase pool->lock contention, which will impact other
2282          * zsmalloc operations that need pool->lock.
2283          */
2284         if (atomic_xchg(&pool->compaction_in_progress, 1))
2285                 return 0;
2286
2287         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2288                 class = pool->size_class[i];
2289                 if (class->index != i)
2290                         continue;
2291                 pages_freed += __zs_compact(pool, class);
2292         }
2293         atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2294         atomic_set(&pool->compaction_in_progress, 0);
2295
2296         return pages_freed;
2297 }
2298 EXPORT_SYMBOL_GPL(zs_compact);
2299
2300 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2301 {
2302         memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2303 }
2304 EXPORT_SYMBOL_GPL(zs_pool_stats);
2305
2306 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2307                 struct shrink_control *sc)
2308 {
2309         unsigned long pages_freed;
2310         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2311                         shrinker);
2312
2313         /*
2314          * Compact classes and calculate compaction delta.
2315          * Can run concurrently with a manually triggered
2316          * (by user) compaction.
2317          */
2318         pages_freed = zs_compact(pool);
2319
2320         return pages_freed ? pages_freed : SHRINK_STOP;
2321 }
2322
2323 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2324                 struct shrink_control *sc)
2325 {
2326         int i;
2327         struct size_class *class;
2328         unsigned long pages_to_free = 0;
2329         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2330                         shrinker);
2331
2332         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2333                 class = pool->size_class[i];
2334                 if (class->index != i)
2335                         continue;
2336
2337                 pages_to_free += zs_can_compact(class);
2338         }
2339
2340         return pages_to_free;
2341 }
2342
2343 static void zs_unregister_shrinker(struct zs_pool *pool)
2344 {
2345         unregister_shrinker(&pool->shrinker);
2346 }
2347
2348 static int zs_register_shrinker(struct zs_pool *pool)
2349 {
2350         pool->shrinker.scan_objects = zs_shrinker_scan;
2351         pool->shrinker.count_objects = zs_shrinker_count;
2352         pool->shrinker.batch = 0;
2353         pool->shrinker.seeks = DEFAULT_SEEKS;
2354
2355         return register_shrinker(&pool->shrinker, "mm-zspool:%s",
2356                                  pool->name);
2357 }
2358
2359 static int calculate_zspage_chain_size(int class_size)
2360 {
2361         int i, min_waste = INT_MAX;
2362         int chain_size = 1;
2363
2364         if (is_power_of_2(class_size))
2365                 return chain_size;
2366
2367         for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2368                 int waste;
2369
2370                 waste = (i * PAGE_SIZE) % class_size;
2371                 if (waste < min_waste) {
2372                         min_waste = waste;
2373                         chain_size = i;
2374                 }
2375         }
2376
2377         return chain_size;
2378 }
2379
2380 /**
2381  * zs_create_pool - Creates an allocation pool to work from.
2382  * @name: pool name to be created
2383  *
2384  * This function must be called before anything when using
2385  * the zsmalloc allocator.
2386  *
2387  * On success, a pointer to the newly created pool is returned,
2388  * otherwise NULL.
2389  */
2390 struct zs_pool *zs_create_pool(const char *name)
2391 {
2392         int i;
2393         struct zs_pool *pool;
2394         struct size_class *prev_class = NULL;
2395
2396         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2397         if (!pool)
2398                 return NULL;
2399
2400         init_deferred_free(pool);
2401         spin_lock_init(&pool->lock);
2402         atomic_set(&pool->compaction_in_progress, 0);
2403
2404         pool->name = kstrdup(name, GFP_KERNEL);
2405         if (!pool->name)
2406                 goto err;
2407
2408         if (create_cache(pool))
2409                 goto err;
2410
2411         /*
2412          * Iterate reversely, because, size of size_class that we want to use
2413          * for merging should be larger or equal to current size.
2414          */
2415         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2416                 int size;
2417                 int pages_per_zspage;
2418                 int objs_per_zspage;
2419                 struct size_class *class;
2420                 int fullness;
2421
2422                 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2423                 if (size > ZS_MAX_ALLOC_SIZE)
2424                         size = ZS_MAX_ALLOC_SIZE;
2425                 pages_per_zspage = calculate_zspage_chain_size(size);
2426                 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2427
2428                 /*
2429                  * We iterate from biggest down to smallest classes,
2430                  * so huge_class_size holds the size of the first huge
2431                  * class. Any object bigger than or equal to that will
2432                  * endup in the huge class.
2433                  */
2434                 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2435                                 !huge_class_size) {
2436                         huge_class_size = size;
2437                         /*
2438                          * The object uses ZS_HANDLE_SIZE bytes to store the
2439                          * handle. We need to subtract it, because zs_malloc()
2440                          * unconditionally adds handle size before it performs
2441                          * size class search - so object may be smaller than
2442                          * huge class size, yet it still can end up in the huge
2443                          * class because it grows by ZS_HANDLE_SIZE extra bytes
2444                          * right before class lookup.
2445                          */
2446                         huge_class_size -= (ZS_HANDLE_SIZE - 1);
2447                 }
2448
2449                 /*
2450                  * size_class is used for normal zsmalloc operation such
2451                  * as alloc/free for that size. Although it is natural that we
2452                  * have one size_class for each size, there is a chance that we
2453                  * can get more memory utilization if we use one size_class for
2454                  * many different sizes whose size_class have same
2455                  * characteristics. So, we makes size_class point to
2456                  * previous size_class if possible.
2457                  */
2458                 if (prev_class) {
2459                         if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2460                                 pool->size_class[i] = prev_class;
2461                                 continue;
2462                         }
2463                 }
2464
2465                 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2466                 if (!class)
2467                         goto err;
2468
2469                 class->size = size;
2470                 class->index = i;
2471                 class->pages_per_zspage = pages_per_zspage;
2472                 class->objs_per_zspage = objs_per_zspage;
2473                 pool->size_class[i] = class;
2474
2475                 fullness = ZS_INUSE_RATIO_0;
2476                 while (fullness < NR_FULLNESS_GROUPS) {
2477                         INIT_LIST_HEAD(&class->fullness_list[fullness]);
2478                         fullness++;
2479                 }
2480
2481                 prev_class = class;
2482         }
2483
2484         /* debug only, don't abort if it fails */
2485         zs_pool_stat_create(pool, name);
2486
2487         /*
2488          * Not critical since shrinker is only used to trigger internal
2489          * defragmentation of the pool which is pretty optional thing.  If
2490          * registration fails we still can use the pool normally and user can
2491          * trigger compaction manually. Thus, ignore return code.
2492          */
2493         zs_register_shrinker(pool);
2494
2495 #ifdef CONFIG_ZPOOL
2496         INIT_LIST_HEAD(&pool->lru);
2497 #endif
2498
2499         return pool;
2500
2501 err:
2502         zs_destroy_pool(pool);
2503         return NULL;
2504 }
2505 EXPORT_SYMBOL_GPL(zs_create_pool);
2506
2507 void zs_destroy_pool(struct zs_pool *pool)
2508 {
2509         int i;
2510
2511         zs_unregister_shrinker(pool);
2512         zs_flush_migration(pool);
2513         zs_pool_stat_destroy(pool);
2514
2515         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2516                 int fg;
2517                 struct size_class *class = pool->size_class[i];
2518
2519                 if (!class)
2520                         continue;
2521
2522                 if (class->index != i)
2523                         continue;
2524
2525                 for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2526                         if (list_empty(&class->fullness_list[fg]))
2527                                 continue;
2528
2529                         pr_err("Class-%d fullness group %d is not empty\n",
2530                                class->size, fg);
2531                 }
2532                 kfree(class);
2533         }
2534
2535         destroy_cache(pool);
2536         kfree(pool->name);
2537         kfree(pool);
2538 }
2539 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2540
2541 #ifdef CONFIG_ZPOOL
2542 static void restore_freelist(struct zs_pool *pool, struct size_class *class,
2543                 struct zspage *zspage)
2544 {
2545         unsigned int obj_idx = 0;
2546         unsigned long handle, off = 0; /* off is within-page offset */
2547         struct page *page = get_first_page(zspage);
2548         struct link_free *prev_free = NULL;
2549         void *prev_page_vaddr = NULL;
2550
2551         /* in case no free object found */
2552         set_freeobj(zspage, (unsigned int)(-1UL));
2553
2554         while (page) {
2555                 void *vaddr = kmap_atomic(page);
2556                 struct page *next_page;
2557
2558                 while (off < PAGE_SIZE) {
2559                         void *obj_addr = vaddr + off;
2560
2561                         /* skip allocated object */
2562                         if (obj_allocated(page, obj_addr, &handle)) {
2563                                 obj_idx++;
2564                                 off += class->size;
2565                                 continue;
2566                         }
2567
2568                         /* free deferred handle from reclaim attempt */
2569                         if (obj_stores_deferred_handle(page, obj_addr, &handle))
2570                                 cache_free_handle(pool, handle);
2571
2572                         if (prev_free)
2573                                 prev_free->next = obj_idx << OBJ_TAG_BITS;
2574                         else /* first free object found */
2575                                 set_freeobj(zspage, obj_idx);
2576
2577                         prev_free = (struct link_free *)vaddr + off / sizeof(*prev_free);
2578                         /* if last free object in a previous page, need to unmap */
2579                         if (prev_page_vaddr) {
2580                                 kunmap_atomic(prev_page_vaddr);
2581                                 prev_page_vaddr = NULL;
2582                         }
2583
2584                         obj_idx++;
2585                         off += class->size;
2586                 }
2587
2588                 /*
2589                  * Handle the last (full or partial) object on this page.
2590                  */
2591                 next_page = get_next_page(page);
2592                 if (next_page) {
2593                         if (!prev_free || prev_page_vaddr) {
2594                                 /*
2595                                  * There is no free object in this page, so we can safely
2596                                  * unmap it.
2597                                  */
2598                                 kunmap_atomic(vaddr);
2599                         } else {
2600                                 /* update prev_page_vaddr since prev_free is on this page */
2601                                 prev_page_vaddr = vaddr;
2602                         }
2603                 } else { /* this is the last page */
2604                         if (prev_free) {
2605                                 /*
2606                                  * Reset OBJ_TAG_BITS bit to last link to tell
2607                                  * whether it's allocated object or not.
2608                                  */
2609                                 prev_free->next = -1UL << OBJ_TAG_BITS;
2610                         }
2611
2612                         /* unmap previous page (if not done yet) */
2613                         if (prev_page_vaddr) {
2614                                 kunmap_atomic(prev_page_vaddr);
2615                                 prev_page_vaddr = NULL;
2616                         }
2617
2618                         kunmap_atomic(vaddr);
2619                 }
2620
2621                 page = next_page;
2622                 off %= PAGE_SIZE;
2623         }
2624 }
2625
2626 static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries)
2627 {
2628         int i, obj_idx, ret = 0;
2629         unsigned long handle;
2630         struct zspage *zspage;
2631         struct page *page;
2632         int fullness;
2633
2634         /* Lock LRU and fullness list */
2635         spin_lock(&pool->lock);
2636         if (list_empty(&pool->lru)) {
2637                 spin_unlock(&pool->lock);
2638                 return -EINVAL;
2639         }
2640
2641         for (i = 0; i < retries; i++) {
2642                 struct size_class *class;
2643
2644                 zspage = list_last_entry(&pool->lru, struct zspage, lru);
2645                 list_del(&zspage->lru);
2646
2647                 /* zs_free may free objects, but not the zspage and handles */
2648                 zspage->under_reclaim = true;
2649
2650                 class = zspage_class(pool, zspage);
2651                 fullness = get_fullness_group(class, zspage);
2652
2653                 /* Lock out object allocations and object compaction */
2654                 remove_zspage(class, zspage, fullness);
2655
2656                 spin_unlock(&pool->lock);
2657                 cond_resched();
2658
2659                 /* Lock backing pages into place */
2660                 lock_zspage(zspage);
2661
2662                 obj_idx = 0;
2663                 page = get_first_page(zspage);
2664                 while (1) {
2665                         handle = find_alloced_obj(class, page, &obj_idx);
2666                         if (!handle) {
2667                                 page = get_next_page(page);
2668                                 if (!page)
2669                                         break;
2670                                 obj_idx = 0;
2671                                 continue;
2672                         }
2673
2674                         /*
2675                          * This will write the object and call zs_free.
2676                          *
2677                          * zs_free will free the object, but the
2678                          * under_reclaim flag prevents it from freeing
2679                          * the zspage altogether. This is necessary so
2680                          * that we can continue working with the
2681                          * zspage potentially after the last object
2682                          * has been freed.
2683                          */
2684                         ret = pool->zpool_ops->evict(pool->zpool, handle);
2685                         if (ret)
2686                                 goto next;
2687
2688                         obj_idx++;
2689                 }
2690
2691 next:
2692                 /* For freeing the zspage, or putting it back in the pool and LRU list. */
2693                 spin_lock(&pool->lock);
2694                 zspage->under_reclaim = false;
2695
2696                 if (!get_zspage_inuse(zspage)) {
2697                         /*
2698                          * Fullness went stale as zs_free() won't touch it
2699                          * while the page is removed from the pool. Fix it
2700                          * up for the check in __free_zspage().
2701                          */
2702                         zspage->fullness = ZS_INUSE_RATIO_0;
2703
2704                         __free_zspage(pool, class, zspage);
2705                         spin_unlock(&pool->lock);
2706                         return 0;
2707                 }
2708
2709                 /*
2710                  * Eviction fails on one of the handles, so we need to restore zspage.
2711                  * We need to rebuild its freelist (and free stored deferred handles),
2712                  * put it back to the correct size class, and add it to the LRU list.
2713                  */
2714                 restore_freelist(pool, class, zspage);
2715                 putback_zspage(class, zspage);
2716                 list_add(&zspage->lru, &pool->lru);
2717                 unlock_zspage(zspage);
2718         }
2719
2720         spin_unlock(&pool->lock);
2721         return -EAGAIN;
2722 }
2723 #endif /* CONFIG_ZPOOL */
2724
2725 static int __init zs_init(void)
2726 {
2727         int ret;
2728
2729         ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2730                                 zs_cpu_prepare, zs_cpu_dead);
2731         if (ret)
2732                 goto out;
2733
2734 #ifdef CONFIG_ZPOOL
2735         zpool_register_driver(&zs_zpool_driver);
2736 #endif
2737
2738         zs_stat_init();
2739
2740         return 0;
2741
2742 out:
2743         return ret;
2744 }
2745
2746 static void __exit zs_exit(void)
2747 {
2748 #ifdef CONFIG_ZPOOL
2749         zpool_unregister_driver(&zs_zpool_driver);
2750 #endif
2751         cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2752
2753         zs_stat_exit();
2754 }
2755
2756 module_init(zs_init);
2757 module_exit(zs_exit);
2758
2759 MODULE_LICENSE("Dual BSD/GPL");
2760 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");