block: sync part's ->bd_has_submit_bio with disk's
[platform/kernel/linux-starfive.git] / mm / zsmalloc.c
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *      page->private: points to zspage
20  *      page->index: links together all component pages of a zspage
21  *              For the huge page, this is always 0, so we use this field
22  *              to store handle.
23  *      page->page_type: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *      PG_private: identifies the first component page
27  *      PG_owner_priv_1: identifies the huge component page
28  *
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 /*
34  * lock ordering:
35  *      page_lock
36  *      pool->lock
37  *      zspage->lock
38  */
39
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/sched.h>
43 #include <linux/bitops.h>
44 #include <linux/errno.h>
45 #include <linux/highmem.h>
46 #include <linux/string.h>
47 #include <linux/slab.h>
48 #include <linux/pgtable.h>
49 #include <asm/tlbflush.h>
50 #include <linux/cpumask.h>
51 #include <linux/cpu.h>
52 #include <linux/vmalloc.h>
53 #include <linux/preempt.h>
54 #include <linux/spinlock.h>
55 #include <linux/shrinker.h>
56 #include <linux/types.h>
57 #include <linux/debugfs.h>
58 #include <linux/zsmalloc.h>
59 #include <linux/zpool.h>
60 #include <linux/migrate.h>
61 #include <linux/wait.h>
62 #include <linux/pagemap.h>
63 #include <linux/fs.h>
64 #include <linux/local_lock.h>
65
66 #define ZSPAGE_MAGIC    0x58
67
68 /*
69  * This must be power of 2 and greater than or equal to sizeof(link_free).
70  * These two conditions ensure that any 'struct link_free' itself doesn't
71  * span more than 1 page which avoids complex case of mapping 2 pages simply
72  * to restore link_free pointer values.
73  */
74 #define ZS_ALIGN                8
75
76 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
77
78 /*
79  * Object location (<PFN>, <obj_idx>) is encoded as
80  * a single (unsigned long) handle value.
81  *
82  * Note that object index <obj_idx> starts from 0.
83  *
84  * This is made more complicated by various memory models and PAE.
85  */
86
87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
88 #ifdef MAX_PHYSMEM_BITS
89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
90 #else
91 /*
92  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93  * be PAGE_SHIFT
94  */
95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
96 #endif
97 #endif
98
99 #define _PFN_BITS               (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
100
101 /*
102  * Head in allocated object should have OBJ_ALLOCATED_TAG
103  * to identify the object was allocated or not.
104  * It's okay to add the status bit in the least bit because
105  * header keeps handle which is 4byte-aligned address so we
106  * have room for two bit at least.
107  */
108 #define OBJ_ALLOCATED_TAG 1
109
110 #ifdef CONFIG_ZPOOL
111 /*
112  * The second least-significant bit in the object's header identifies if the
113  * value stored at the header is a deferred handle from the last reclaim
114  * attempt.
115  *
116  * As noted above, this is valid because we have room for two bits.
117  */
118 #define OBJ_DEFERRED_HANDLE_TAG 2
119 #define OBJ_TAG_BITS    2
120 #define OBJ_TAG_MASK    (OBJ_ALLOCATED_TAG | OBJ_DEFERRED_HANDLE_TAG)
121 #else
122 #define OBJ_TAG_BITS    1
123 #define OBJ_TAG_MASK    OBJ_ALLOCATED_TAG
124 #endif /* CONFIG_ZPOOL */
125
126 #define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
127 #define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
128
129 #define HUGE_BITS       1
130 #define FULLNESS_BITS   2
131 #define CLASS_BITS      8
132 #define ISOLATED_BITS   5
133 #define MAGIC_VAL_BITS  8
134
135 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
136
137 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
138
139 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
140 #define ZS_MIN_ALLOC_SIZE \
141         MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
142 /* each chunk includes extra space to keep handle */
143 #define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
144
145 /*
146  * On systems with 4K page size, this gives 255 size classes! There is a
147  * trader-off here:
148  *  - Large number of size classes is potentially wasteful as free page are
149  *    spread across these classes
150  *  - Small number of size classes causes large internal fragmentation
151  *  - Probably its better to use specific size classes (empirically
152  *    determined). NOTE: all those class sizes must be set as multiple of
153  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
154  *
155  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
156  *  (reason above)
157  */
158 #define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
159 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
160                                       ZS_SIZE_CLASS_DELTA) + 1)
161
162 enum fullness_group {
163         ZS_EMPTY,
164         ZS_ALMOST_EMPTY,
165         ZS_ALMOST_FULL,
166         ZS_FULL,
167         NR_ZS_FULLNESS,
168 };
169
170 enum class_stat_type {
171         CLASS_EMPTY,
172         CLASS_ALMOST_EMPTY,
173         CLASS_ALMOST_FULL,
174         CLASS_FULL,
175         OBJ_ALLOCATED,
176         OBJ_USED,
177         NR_ZS_STAT_TYPE,
178 };
179
180 struct zs_size_stat {
181         unsigned long objs[NR_ZS_STAT_TYPE];
182 };
183
184 #ifdef CONFIG_ZSMALLOC_STAT
185 static struct dentry *zs_stat_root;
186 #endif
187
188 /*
189  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
190  *      n <= N / f, where
191  * n = number of allocated objects
192  * N = total number of objects zspage can store
193  * f = fullness_threshold_frac
194  *
195  * Similarly, we assign zspage to:
196  *      ZS_ALMOST_FULL  when n > N / f
197  *      ZS_EMPTY        when n == 0
198  *      ZS_FULL         when n == N
199  *
200  * (see: fix_fullness_group())
201  */
202 static const int fullness_threshold_frac = 4;
203 static size_t huge_class_size;
204
205 struct size_class {
206         struct list_head fullness_list[NR_ZS_FULLNESS];
207         /*
208          * Size of objects stored in this class. Must be multiple
209          * of ZS_ALIGN.
210          */
211         int size;
212         int objs_per_zspage;
213         /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
214         int pages_per_zspage;
215
216         unsigned int index;
217         struct zs_size_stat stats;
218 };
219
220 /*
221  * Placed within free objects to form a singly linked list.
222  * For every zspage, zspage->freeobj gives head of this list.
223  *
224  * This must be power of 2 and less than or equal to ZS_ALIGN
225  */
226 struct link_free {
227         union {
228                 /*
229                  * Free object index;
230                  * It's valid for non-allocated object
231                  */
232                 unsigned long next;
233                 /*
234                  * Handle of allocated object.
235                  */
236                 unsigned long handle;
237 #ifdef CONFIG_ZPOOL
238                 /*
239                  * Deferred handle of a reclaimed object.
240                  */
241                 unsigned long deferred_handle;
242 #endif
243         };
244 };
245
246 struct zs_pool {
247         const char *name;
248
249         struct size_class *size_class[ZS_SIZE_CLASSES];
250         struct kmem_cache *handle_cachep;
251         struct kmem_cache *zspage_cachep;
252
253         atomic_long_t pages_allocated;
254
255         struct zs_pool_stats stats;
256
257         /* Compact classes */
258         struct shrinker shrinker;
259
260 #ifdef CONFIG_ZPOOL
261         /* List tracking the zspages in LRU order by most recently added object */
262         struct list_head lru;
263         struct zpool *zpool;
264         const struct zpool_ops *zpool_ops;
265 #endif
266
267 #ifdef CONFIG_ZSMALLOC_STAT
268         struct dentry *stat_dentry;
269 #endif
270 #ifdef CONFIG_COMPACTION
271         struct work_struct free_work;
272 #endif
273         spinlock_t lock;
274 };
275
276 struct zspage {
277         struct {
278                 unsigned int huge:HUGE_BITS;
279                 unsigned int fullness:FULLNESS_BITS;
280                 unsigned int class:CLASS_BITS + 1;
281                 unsigned int isolated:ISOLATED_BITS;
282                 unsigned int magic:MAGIC_VAL_BITS;
283         };
284         unsigned int inuse;
285         unsigned int freeobj;
286         struct page *first_page;
287         struct list_head list; /* fullness list */
288
289 #ifdef CONFIG_ZPOOL
290         /* links the zspage to the lru list in the pool */
291         struct list_head lru;
292         bool under_reclaim;
293 #endif
294
295         struct zs_pool *pool;
296         rwlock_t lock;
297 };
298
299 struct mapping_area {
300         local_lock_t lock;
301         char *vm_buf; /* copy buffer for objects that span pages */
302         char *vm_addr; /* address of kmap_atomic()'ed pages */
303         enum zs_mapmode vm_mm; /* mapping mode */
304 };
305
306 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
307 static void SetZsHugePage(struct zspage *zspage)
308 {
309         zspage->huge = 1;
310 }
311
312 static bool ZsHugePage(struct zspage *zspage)
313 {
314         return zspage->huge;
315 }
316
317 static void migrate_lock_init(struct zspage *zspage);
318 static void migrate_read_lock(struct zspage *zspage);
319 static void migrate_read_unlock(struct zspage *zspage);
320
321 #ifdef CONFIG_COMPACTION
322 static void migrate_write_lock(struct zspage *zspage);
323 static void migrate_write_lock_nested(struct zspage *zspage);
324 static void migrate_write_unlock(struct zspage *zspage);
325 static void kick_deferred_free(struct zs_pool *pool);
326 static void init_deferred_free(struct zs_pool *pool);
327 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
328 #else
329 static void migrate_write_lock(struct zspage *zspage) {}
330 static void migrate_write_lock_nested(struct zspage *zspage) {}
331 static void migrate_write_unlock(struct zspage *zspage) {}
332 static void kick_deferred_free(struct zs_pool *pool) {}
333 static void init_deferred_free(struct zs_pool *pool) {}
334 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
335 #endif
336
337 static int create_cache(struct zs_pool *pool)
338 {
339         pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
340                                         0, 0, NULL);
341         if (!pool->handle_cachep)
342                 return 1;
343
344         pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
345                                         0, 0, NULL);
346         if (!pool->zspage_cachep) {
347                 kmem_cache_destroy(pool->handle_cachep);
348                 pool->handle_cachep = NULL;
349                 return 1;
350         }
351
352         return 0;
353 }
354
355 static void destroy_cache(struct zs_pool *pool)
356 {
357         kmem_cache_destroy(pool->handle_cachep);
358         kmem_cache_destroy(pool->zspage_cachep);
359 }
360
361 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
362 {
363         return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
364                         gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
365 }
366
367 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
368 {
369         kmem_cache_free(pool->handle_cachep, (void *)handle);
370 }
371
372 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
373 {
374         return kmem_cache_zalloc(pool->zspage_cachep,
375                         flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
376 }
377
378 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
379 {
380         kmem_cache_free(pool->zspage_cachep, zspage);
381 }
382
383 /* pool->lock(which owns the handle) synchronizes races */
384 static void record_obj(unsigned long handle, unsigned long obj)
385 {
386         *(unsigned long *)handle = obj;
387 }
388
389 /* zpool driver */
390
391 #ifdef CONFIG_ZPOOL
392
393 static void *zs_zpool_create(const char *name, gfp_t gfp,
394                              const struct zpool_ops *zpool_ops,
395                              struct zpool *zpool)
396 {
397         /*
398          * Ignore global gfp flags: zs_malloc() may be invoked from
399          * different contexts and its caller must provide a valid
400          * gfp mask.
401          */
402         struct zs_pool *pool = zs_create_pool(name);
403
404         if (pool) {
405                 pool->zpool = zpool;
406                 pool->zpool_ops = zpool_ops;
407         }
408
409         return pool;
410 }
411
412 static void zs_zpool_destroy(void *pool)
413 {
414         zs_destroy_pool(pool);
415 }
416
417 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
418                         unsigned long *handle)
419 {
420         *handle = zs_malloc(pool, size, gfp);
421
422         if (IS_ERR_VALUE(*handle))
423                 return PTR_ERR((void *)*handle);
424         return 0;
425 }
426 static void zs_zpool_free(void *pool, unsigned long handle)
427 {
428         zs_free(pool, handle);
429 }
430
431 static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries);
432
433 static int zs_zpool_shrink(void *pool, unsigned int pages,
434                         unsigned int *reclaimed)
435 {
436         unsigned int total = 0;
437         int ret = -EINVAL;
438
439         while (total < pages) {
440                 ret = zs_reclaim_page(pool, 8);
441                 if (ret < 0)
442                         break;
443                 total++;
444         }
445
446         if (reclaimed)
447                 *reclaimed = total;
448
449         return ret;
450 }
451
452 static void *zs_zpool_map(void *pool, unsigned long handle,
453                         enum zpool_mapmode mm)
454 {
455         enum zs_mapmode zs_mm;
456
457         switch (mm) {
458         case ZPOOL_MM_RO:
459                 zs_mm = ZS_MM_RO;
460                 break;
461         case ZPOOL_MM_WO:
462                 zs_mm = ZS_MM_WO;
463                 break;
464         case ZPOOL_MM_RW:
465         default:
466                 zs_mm = ZS_MM_RW;
467                 break;
468         }
469
470         return zs_map_object(pool, handle, zs_mm);
471 }
472 static void zs_zpool_unmap(void *pool, unsigned long handle)
473 {
474         zs_unmap_object(pool, handle);
475 }
476
477 static u64 zs_zpool_total_size(void *pool)
478 {
479         return zs_get_total_pages(pool) << PAGE_SHIFT;
480 }
481
482 static struct zpool_driver zs_zpool_driver = {
483         .type =                   "zsmalloc",
484         .owner =                  THIS_MODULE,
485         .create =                 zs_zpool_create,
486         .destroy =                zs_zpool_destroy,
487         .malloc_support_movable = true,
488         .malloc =                 zs_zpool_malloc,
489         .free =                   zs_zpool_free,
490         .shrink =                 zs_zpool_shrink,
491         .map =                    zs_zpool_map,
492         .unmap =                  zs_zpool_unmap,
493         .total_size =             zs_zpool_total_size,
494 };
495
496 MODULE_ALIAS("zpool-zsmalloc");
497 #endif /* CONFIG_ZPOOL */
498
499 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
500 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
501         .lock   = INIT_LOCAL_LOCK(lock),
502 };
503
504 static __maybe_unused int is_first_page(struct page *page)
505 {
506         return PagePrivate(page);
507 }
508
509 /* Protected by pool->lock */
510 static inline int get_zspage_inuse(struct zspage *zspage)
511 {
512         return zspage->inuse;
513 }
514
515
516 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
517 {
518         zspage->inuse += val;
519 }
520
521 static inline struct page *get_first_page(struct zspage *zspage)
522 {
523         struct page *first_page = zspage->first_page;
524
525         VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
526         return first_page;
527 }
528
529 static inline unsigned int get_first_obj_offset(struct page *page)
530 {
531         return page->page_type;
532 }
533
534 static inline void set_first_obj_offset(struct page *page, unsigned int offset)
535 {
536         page->page_type = offset;
537 }
538
539 static inline unsigned int get_freeobj(struct zspage *zspage)
540 {
541         return zspage->freeobj;
542 }
543
544 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
545 {
546         zspage->freeobj = obj;
547 }
548
549 static void get_zspage_mapping(struct zspage *zspage,
550                                 unsigned int *class_idx,
551                                 enum fullness_group *fullness)
552 {
553         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
554
555         *fullness = zspage->fullness;
556         *class_idx = zspage->class;
557 }
558
559 static struct size_class *zspage_class(struct zs_pool *pool,
560                                              struct zspage *zspage)
561 {
562         return pool->size_class[zspage->class];
563 }
564
565 static void set_zspage_mapping(struct zspage *zspage,
566                                 unsigned int class_idx,
567                                 enum fullness_group fullness)
568 {
569         zspage->class = class_idx;
570         zspage->fullness = fullness;
571 }
572
573 /*
574  * zsmalloc divides the pool into various size classes where each
575  * class maintains a list of zspages where each zspage is divided
576  * into equal sized chunks. Each allocation falls into one of these
577  * classes depending on its size. This function returns index of the
578  * size class which has chunk size big enough to hold the given size.
579  */
580 static int get_size_class_index(int size)
581 {
582         int idx = 0;
583
584         if (likely(size > ZS_MIN_ALLOC_SIZE))
585                 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
586                                 ZS_SIZE_CLASS_DELTA);
587
588         return min_t(int, ZS_SIZE_CLASSES - 1, idx);
589 }
590
591 /* type can be of enum type class_stat_type or fullness_group */
592 static inline void class_stat_inc(struct size_class *class,
593                                 int type, unsigned long cnt)
594 {
595         class->stats.objs[type] += cnt;
596 }
597
598 /* type can be of enum type class_stat_type or fullness_group */
599 static inline void class_stat_dec(struct size_class *class,
600                                 int type, unsigned long cnt)
601 {
602         class->stats.objs[type] -= cnt;
603 }
604
605 /* type can be of enum type class_stat_type or fullness_group */
606 static inline unsigned long zs_stat_get(struct size_class *class,
607                                 int type)
608 {
609         return class->stats.objs[type];
610 }
611
612 #ifdef CONFIG_ZSMALLOC_STAT
613
614 static void __init zs_stat_init(void)
615 {
616         if (!debugfs_initialized()) {
617                 pr_warn("debugfs not available, stat dir not created\n");
618                 return;
619         }
620
621         zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
622 }
623
624 static void __exit zs_stat_exit(void)
625 {
626         debugfs_remove_recursive(zs_stat_root);
627 }
628
629 static unsigned long zs_can_compact(struct size_class *class);
630
631 static int zs_stats_size_show(struct seq_file *s, void *v)
632 {
633         int i;
634         struct zs_pool *pool = s->private;
635         struct size_class *class;
636         int objs_per_zspage;
637         unsigned long class_almost_full, class_almost_empty;
638         unsigned long obj_allocated, obj_used, pages_used, freeable;
639         unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
640         unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
641         unsigned long total_freeable = 0;
642
643         seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
644                         "class", "size", "almost_full", "almost_empty",
645                         "obj_allocated", "obj_used", "pages_used",
646                         "pages_per_zspage", "freeable");
647
648         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
649                 class = pool->size_class[i];
650
651                 if (class->index != i)
652                         continue;
653
654                 spin_lock(&pool->lock);
655                 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
656                 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
657                 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
658                 obj_used = zs_stat_get(class, OBJ_USED);
659                 freeable = zs_can_compact(class);
660                 spin_unlock(&pool->lock);
661
662                 objs_per_zspage = class->objs_per_zspage;
663                 pages_used = obj_allocated / objs_per_zspage *
664                                 class->pages_per_zspage;
665
666                 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
667                                 " %10lu %10lu %16d %8lu\n",
668                         i, class->size, class_almost_full, class_almost_empty,
669                         obj_allocated, obj_used, pages_used,
670                         class->pages_per_zspage, freeable);
671
672                 total_class_almost_full += class_almost_full;
673                 total_class_almost_empty += class_almost_empty;
674                 total_objs += obj_allocated;
675                 total_used_objs += obj_used;
676                 total_pages += pages_used;
677                 total_freeable += freeable;
678         }
679
680         seq_puts(s, "\n");
681         seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
682                         "Total", "", total_class_almost_full,
683                         total_class_almost_empty, total_objs,
684                         total_used_objs, total_pages, "", total_freeable);
685
686         return 0;
687 }
688 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
689
690 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
691 {
692         if (!zs_stat_root) {
693                 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
694                 return;
695         }
696
697         pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
698
699         debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
700                             &zs_stats_size_fops);
701 }
702
703 static void zs_pool_stat_destroy(struct zs_pool *pool)
704 {
705         debugfs_remove_recursive(pool->stat_dentry);
706 }
707
708 #else /* CONFIG_ZSMALLOC_STAT */
709 static void __init zs_stat_init(void)
710 {
711 }
712
713 static void __exit zs_stat_exit(void)
714 {
715 }
716
717 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
718 {
719 }
720
721 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
722 {
723 }
724 #endif
725
726
727 /*
728  * For each size class, zspages are divided into different groups
729  * depending on how "full" they are. This was done so that we could
730  * easily find empty or nearly empty zspages when we try to shrink
731  * the pool (not yet implemented). This function returns fullness
732  * status of the given page.
733  */
734 static enum fullness_group get_fullness_group(struct size_class *class,
735                                                 struct zspage *zspage)
736 {
737         int inuse, objs_per_zspage;
738         enum fullness_group fg;
739
740         inuse = get_zspage_inuse(zspage);
741         objs_per_zspage = class->objs_per_zspage;
742
743         if (inuse == 0)
744                 fg = ZS_EMPTY;
745         else if (inuse == objs_per_zspage)
746                 fg = ZS_FULL;
747         else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
748                 fg = ZS_ALMOST_EMPTY;
749         else
750                 fg = ZS_ALMOST_FULL;
751
752         return fg;
753 }
754
755 /*
756  * Each size class maintains various freelists and zspages are assigned
757  * to one of these freelists based on the number of live objects they
758  * have. This functions inserts the given zspage into the freelist
759  * identified by <class, fullness_group>.
760  */
761 static void insert_zspage(struct size_class *class,
762                                 struct zspage *zspage,
763                                 enum fullness_group fullness)
764 {
765         struct zspage *head;
766
767         class_stat_inc(class, fullness, 1);
768         head = list_first_entry_or_null(&class->fullness_list[fullness],
769                                         struct zspage, list);
770         /*
771          * We want to see more ZS_FULL pages and less almost empty/full.
772          * Put pages with higher ->inuse first.
773          */
774         if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
775                 list_add(&zspage->list, &head->list);
776         else
777                 list_add(&zspage->list, &class->fullness_list[fullness]);
778 }
779
780 /*
781  * This function removes the given zspage from the freelist identified
782  * by <class, fullness_group>.
783  */
784 static void remove_zspage(struct size_class *class,
785                                 struct zspage *zspage,
786                                 enum fullness_group fullness)
787 {
788         VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
789
790         list_del_init(&zspage->list);
791         class_stat_dec(class, fullness, 1);
792 }
793
794 /*
795  * Each size class maintains zspages in different fullness groups depending
796  * on the number of live objects they contain. When allocating or freeing
797  * objects, the fullness status of the page can change, say, from ALMOST_FULL
798  * to ALMOST_EMPTY when freeing an object. This function checks if such
799  * a status change has occurred for the given page and accordingly moves the
800  * page from the freelist of the old fullness group to that of the new
801  * fullness group.
802  */
803 static enum fullness_group fix_fullness_group(struct size_class *class,
804                                                 struct zspage *zspage)
805 {
806         int class_idx;
807         enum fullness_group currfg, newfg;
808
809         get_zspage_mapping(zspage, &class_idx, &currfg);
810         newfg = get_fullness_group(class, zspage);
811         if (newfg == currfg)
812                 goto out;
813
814         remove_zspage(class, zspage, currfg);
815         insert_zspage(class, zspage, newfg);
816         set_zspage_mapping(zspage, class_idx, newfg);
817 out:
818         return newfg;
819 }
820
821 static struct zspage *get_zspage(struct page *page)
822 {
823         struct zspage *zspage = (struct zspage *)page_private(page);
824
825         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
826         return zspage;
827 }
828
829 static struct page *get_next_page(struct page *page)
830 {
831         struct zspage *zspage = get_zspage(page);
832
833         if (unlikely(ZsHugePage(zspage)))
834                 return NULL;
835
836         return (struct page *)page->index;
837 }
838
839 /**
840  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
841  * @obj: the encoded object value
842  * @page: page object resides in zspage
843  * @obj_idx: object index
844  */
845 static void obj_to_location(unsigned long obj, struct page **page,
846                                 unsigned int *obj_idx)
847 {
848         obj >>= OBJ_TAG_BITS;
849         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
850         *obj_idx = (obj & OBJ_INDEX_MASK);
851 }
852
853 static void obj_to_page(unsigned long obj, struct page **page)
854 {
855         obj >>= OBJ_TAG_BITS;
856         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
857 }
858
859 /**
860  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
861  * @page: page object resides in zspage
862  * @obj_idx: object index
863  */
864 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
865 {
866         unsigned long obj;
867
868         obj = page_to_pfn(page) << OBJ_INDEX_BITS;
869         obj |= obj_idx & OBJ_INDEX_MASK;
870         obj <<= OBJ_TAG_BITS;
871
872         return obj;
873 }
874
875 static unsigned long handle_to_obj(unsigned long handle)
876 {
877         return *(unsigned long *)handle;
878 }
879
880 static bool obj_tagged(struct page *page, void *obj, unsigned long *phandle,
881                 int tag)
882 {
883         unsigned long handle;
884         struct zspage *zspage = get_zspage(page);
885
886         if (unlikely(ZsHugePage(zspage))) {
887                 VM_BUG_ON_PAGE(!is_first_page(page), page);
888                 handle = page->index;
889         } else
890                 handle = *(unsigned long *)obj;
891
892         if (!(handle & tag))
893                 return false;
894
895         /* Clear all tags before returning the handle */
896         *phandle = handle & ~OBJ_TAG_MASK;
897         return true;
898 }
899
900 static inline bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
901 {
902         return obj_tagged(page, obj, phandle, OBJ_ALLOCATED_TAG);
903 }
904
905 #ifdef CONFIG_ZPOOL
906 static bool obj_stores_deferred_handle(struct page *page, void *obj,
907                 unsigned long *phandle)
908 {
909         return obj_tagged(page, obj, phandle, OBJ_DEFERRED_HANDLE_TAG);
910 }
911 #endif
912
913 static void reset_page(struct page *page)
914 {
915         __ClearPageMovable(page);
916         ClearPagePrivate(page);
917         set_page_private(page, 0);
918         page_mapcount_reset(page);
919         page->index = 0;
920 }
921
922 static int trylock_zspage(struct zspage *zspage)
923 {
924         struct page *cursor, *fail;
925
926         for (cursor = get_first_page(zspage); cursor != NULL; cursor =
927                                         get_next_page(cursor)) {
928                 if (!trylock_page(cursor)) {
929                         fail = cursor;
930                         goto unlock;
931                 }
932         }
933
934         return 1;
935 unlock:
936         for (cursor = get_first_page(zspage); cursor != fail; cursor =
937                                         get_next_page(cursor))
938                 unlock_page(cursor);
939
940         return 0;
941 }
942
943 #ifdef CONFIG_ZPOOL
944 static unsigned long find_deferred_handle_obj(struct size_class *class,
945                 struct page *page, int *obj_idx);
946
947 /*
948  * Free all the deferred handles whose objects are freed in zs_free.
949  */
950 static void free_handles(struct zs_pool *pool, struct size_class *class,
951                 struct zspage *zspage)
952 {
953         int obj_idx = 0;
954         struct page *page = get_first_page(zspage);
955         unsigned long handle;
956
957         while (1) {
958                 handle = find_deferred_handle_obj(class, page, &obj_idx);
959                 if (!handle) {
960                         page = get_next_page(page);
961                         if (!page)
962                                 break;
963                         obj_idx = 0;
964                         continue;
965                 }
966
967                 cache_free_handle(pool, handle);
968                 obj_idx++;
969         }
970 }
971 #else
972 static inline void free_handles(struct zs_pool *pool, struct size_class *class,
973                 struct zspage *zspage) {}
974 #endif
975
976 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
977                                 struct zspage *zspage)
978 {
979         struct page *page, *next;
980         enum fullness_group fg;
981         unsigned int class_idx;
982
983         get_zspage_mapping(zspage, &class_idx, &fg);
984
985         assert_spin_locked(&pool->lock);
986
987         VM_BUG_ON(get_zspage_inuse(zspage));
988         VM_BUG_ON(fg != ZS_EMPTY);
989
990         /* Free all deferred handles from zs_free */
991         free_handles(pool, class, zspage);
992
993         next = page = get_first_page(zspage);
994         do {
995                 VM_BUG_ON_PAGE(!PageLocked(page), page);
996                 next = get_next_page(page);
997                 reset_page(page);
998                 unlock_page(page);
999                 dec_zone_page_state(page, NR_ZSPAGES);
1000                 put_page(page);
1001                 page = next;
1002         } while (page != NULL);
1003
1004         cache_free_zspage(pool, zspage);
1005
1006         class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
1007         atomic_long_sub(class->pages_per_zspage,
1008                                         &pool->pages_allocated);
1009 }
1010
1011 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1012                                 struct zspage *zspage)
1013 {
1014         VM_BUG_ON(get_zspage_inuse(zspage));
1015         VM_BUG_ON(list_empty(&zspage->list));
1016
1017         /*
1018          * Since zs_free couldn't be sleepable, this function cannot call
1019          * lock_page. The page locks trylock_zspage got will be released
1020          * by __free_zspage.
1021          */
1022         if (!trylock_zspage(zspage)) {
1023                 kick_deferred_free(pool);
1024                 return;
1025         }
1026
1027         remove_zspage(class, zspage, ZS_EMPTY);
1028 #ifdef CONFIG_ZPOOL
1029         list_del(&zspage->lru);
1030 #endif
1031         __free_zspage(pool, class, zspage);
1032 }
1033
1034 /* Initialize a newly allocated zspage */
1035 static void init_zspage(struct size_class *class, struct zspage *zspage)
1036 {
1037         unsigned int freeobj = 1;
1038         unsigned long off = 0;
1039         struct page *page = get_first_page(zspage);
1040
1041         while (page) {
1042                 struct page *next_page;
1043                 struct link_free *link;
1044                 void *vaddr;
1045
1046                 set_first_obj_offset(page, off);
1047
1048                 vaddr = kmap_atomic(page);
1049                 link = (struct link_free *)vaddr + off / sizeof(*link);
1050
1051                 while ((off += class->size) < PAGE_SIZE) {
1052                         link->next = freeobj++ << OBJ_TAG_BITS;
1053                         link += class->size / sizeof(*link);
1054                 }
1055
1056                 /*
1057                  * We now come to the last (full or partial) object on this
1058                  * page, which must point to the first object on the next
1059                  * page (if present)
1060                  */
1061                 next_page = get_next_page(page);
1062                 if (next_page) {
1063                         link->next = freeobj++ << OBJ_TAG_BITS;
1064                 } else {
1065                         /*
1066                          * Reset OBJ_TAG_BITS bit to last link to tell
1067                          * whether it's allocated object or not.
1068                          */
1069                         link->next = -1UL << OBJ_TAG_BITS;
1070                 }
1071                 kunmap_atomic(vaddr);
1072                 page = next_page;
1073                 off %= PAGE_SIZE;
1074         }
1075
1076 #ifdef CONFIG_ZPOOL
1077         INIT_LIST_HEAD(&zspage->lru);
1078         zspage->under_reclaim = false;
1079 #endif
1080
1081         set_freeobj(zspage, 0);
1082 }
1083
1084 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1085                                 struct page *pages[])
1086 {
1087         int i;
1088         struct page *page;
1089         struct page *prev_page = NULL;
1090         int nr_pages = class->pages_per_zspage;
1091
1092         /*
1093          * Allocate individual pages and link them together as:
1094          * 1. all pages are linked together using page->index
1095          * 2. each sub-page point to zspage using page->private
1096          *
1097          * we set PG_private to identify the first page (i.e. no other sub-page
1098          * has this flag set).
1099          */
1100         for (i = 0; i < nr_pages; i++) {
1101                 page = pages[i];
1102                 set_page_private(page, (unsigned long)zspage);
1103                 page->index = 0;
1104                 if (i == 0) {
1105                         zspage->first_page = page;
1106                         SetPagePrivate(page);
1107                         if (unlikely(class->objs_per_zspage == 1 &&
1108                                         class->pages_per_zspage == 1))
1109                                 SetZsHugePage(zspage);
1110                 } else {
1111                         prev_page->index = (unsigned long)page;
1112                 }
1113                 prev_page = page;
1114         }
1115 }
1116
1117 /*
1118  * Allocate a zspage for the given size class
1119  */
1120 static struct zspage *alloc_zspage(struct zs_pool *pool,
1121                                         struct size_class *class,
1122                                         gfp_t gfp)
1123 {
1124         int i;
1125         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1126         struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1127
1128         if (!zspage)
1129                 return NULL;
1130
1131         zspage->magic = ZSPAGE_MAGIC;
1132         migrate_lock_init(zspage);
1133
1134         for (i = 0; i < class->pages_per_zspage; i++) {
1135                 struct page *page;
1136
1137                 page = alloc_page(gfp);
1138                 if (!page) {
1139                         while (--i >= 0) {
1140                                 dec_zone_page_state(pages[i], NR_ZSPAGES);
1141                                 __free_page(pages[i]);
1142                         }
1143                         cache_free_zspage(pool, zspage);
1144                         return NULL;
1145                 }
1146
1147                 inc_zone_page_state(page, NR_ZSPAGES);
1148                 pages[i] = page;
1149         }
1150
1151         create_page_chain(class, zspage, pages);
1152         init_zspage(class, zspage);
1153         zspage->pool = pool;
1154
1155         return zspage;
1156 }
1157
1158 static struct zspage *find_get_zspage(struct size_class *class)
1159 {
1160         int i;
1161         struct zspage *zspage;
1162
1163         for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1164                 zspage = list_first_entry_or_null(&class->fullness_list[i],
1165                                 struct zspage, list);
1166                 if (zspage)
1167                         break;
1168         }
1169
1170         return zspage;
1171 }
1172
1173 static inline int __zs_cpu_up(struct mapping_area *area)
1174 {
1175         /*
1176          * Make sure we don't leak memory if a cpu UP notification
1177          * and zs_init() race and both call zs_cpu_up() on the same cpu
1178          */
1179         if (area->vm_buf)
1180                 return 0;
1181         area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1182         if (!area->vm_buf)
1183                 return -ENOMEM;
1184         return 0;
1185 }
1186
1187 static inline void __zs_cpu_down(struct mapping_area *area)
1188 {
1189         kfree(area->vm_buf);
1190         area->vm_buf = NULL;
1191 }
1192
1193 static void *__zs_map_object(struct mapping_area *area,
1194                         struct page *pages[2], int off, int size)
1195 {
1196         int sizes[2];
1197         void *addr;
1198         char *buf = area->vm_buf;
1199
1200         /* disable page faults to match kmap_atomic() return conditions */
1201         pagefault_disable();
1202
1203         /* no read fastpath */
1204         if (area->vm_mm == ZS_MM_WO)
1205                 goto out;
1206
1207         sizes[0] = PAGE_SIZE - off;
1208         sizes[1] = size - sizes[0];
1209
1210         /* copy object to per-cpu buffer */
1211         addr = kmap_atomic(pages[0]);
1212         memcpy(buf, addr + off, sizes[0]);
1213         kunmap_atomic(addr);
1214         addr = kmap_atomic(pages[1]);
1215         memcpy(buf + sizes[0], addr, sizes[1]);
1216         kunmap_atomic(addr);
1217 out:
1218         return area->vm_buf;
1219 }
1220
1221 static void __zs_unmap_object(struct mapping_area *area,
1222                         struct page *pages[2], int off, int size)
1223 {
1224         int sizes[2];
1225         void *addr;
1226         char *buf;
1227
1228         /* no write fastpath */
1229         if (area->vm_mm == ZS_MM_RO)
1230                 goto out;
1231
1232         buf = area->vm_buf;
1233         buf = buf + ZS_HANDLE_SIZE;
1234         size -= ZS_HANDLE_SIZE;
1235         off += ZS_HANDLE_SIZE;
1236
1237         sizes[0] = PAGE_SIZE - off;
1238         sizes[1] = size - sizes[0];
1239
1240         /* copy per-cpu buffer to object */
1241         addr = kmap_atomic(pages[0]);
1242         memcpy(addr + off, buf, sizes[0]);
1243         kunmap_atomic(addr);
1244         addr = kmap_atomic(pages[1]);
1245         memcpy(addr, buf + sizes[0], sizes[1]);
1246         kunmap_atomic(addr);
1247
1248 out:
1249         /* enable page faults to match kunmap_atomic() return conditions */
1250         pagefault_enable();
1251 }
1252
1253 static int zs_cpu_prepare(unsigned int cpu)
1254 {
1255         struct mapping_area *area;
1256
1257         area = &per_cpu(zs_map_area, cpu);
1258         return __zs_cpu_up(area);
1259 }
1260
1261 static int zs_cpu_dead(unsigned int cpu)
1262 {
1263         struct mapping_area *area;
1264
1265         area = &per_cpu(zs_map_area, cpu);
1266         __zs_cpu_down(area);
1267         return 0;
1268 }
1269
1270 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1271                                         int objs_per_zspage)
1272 {
1273         if (prev->pages_per_zspage == pages_per_zspage &&
1274                 prev->objs_per_zspage == objs_per_zspage)
1275                 return true;
1276
1277         return false;
1278 }
1279
1280 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1281 {
1282         return get_zspage_inuse(zspage) == class->objs_per_zspage;
1283 }
1284
1285 /**
1286  * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1287  * that hold objects of the provided size.
1288  * @pool: zsmalloc pool to use
1289  * @size: object size
1290  *
1291  * Context: Any context.
1292  *
1293  * Return: the index of the zsmalloc &size_class that hold objects of the
1294  * provided size.
1295  */
1296 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1297 {
1298         struct size_class *class;
1299
1300         class = pool->size_class[get_size_class_index(size)];
1301
1302         return class->index;
1303 }
1304 EXPORT_SYMBOL_GPL(zs_lookup_class_index);
1305
1306 unsigned long zs_get_total_pages(struct zs_pool *pool)
1307 {
1308         return atomic_long_read(&pool->pages_allocated);
1309 }
1310 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1311
1312 /**
1313  * zs_map_object - get address of allocated object from handle.
1314  * @pool: pool from which the object was allocated
1315  * @handle: handle returned from zs_malloc
1316  * @mm: mapping mode to use
1317  *
1318  * Before using an object allocated from zs_malloc, it must be mapped using
1319  * this function. When done with the object, it must be unmapped using
1320  * zs_unmap_object.
1321  *
1322  * Only one object can be mapped per cpu at a time. There is no protection
1323  * against nested mappings.
1324  *
1325  * This function returns with preemption and page faults disabled.
1326  */
1327 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1328                         enum zs_mapmode mm)
1329 {
1330         struct zspage *zspage;
1331         struct page *page;
1332         unsigned long obj, off;
1333         unsigned int obj_idx;
1334
1335         struct size_class *class;
1336         struct mapping_area *area;
1337         struct page *pages[2];
1338         void *ret;
1339
1340         /*
1341          * Because we use per-cpu mapping areas shared among the
1342          * pools/users, we can't allow mapping in interrupt context
1343          * because it can corrupt another users mappings.
1344          */
1345         BUG_ON(in_interrupt());
1346
1347         /* It guarantees it can get zspage from handle safely */
1348         spin_lock(&pool->lock);
1349         obj = handle_to_obj(handle);
1350         obj_to_location(obj, &page, &obj_idx);
1351         zspage = get_zspage(page);
1352
1353 #ifdef CONFIG_ZPOOL
1354         /*
1355          * Move the zspage to front of pool's LRU.
1356          *
1357          * Note that this is swap-specific, so by definition there are no ongoing
1358          * accesses to the memory while the page is swapped out that would make
1359          * it "hot". A new entry is hot, then ages to the tail until it gets either
1360          * written back or swaps back in.
1361          *
1362          * Furthermore, map is also called during writeback. We must not put an
1363          * isolated page on the LRU mid-reclaim.
1364          *
1365          * As a result, only update the LRU when the page is mapped for write
1366          * when it's first instantiated.
1367          *
1368          * This is a deviation from the other backends, which perform this update
1369          * in the allocation function (zbud_alloc, z3fold_alloc).
1370          */
1371         if (mm == ZS_MM_WO) {
1372                 if (!list_empty(&zspage->lru))
1373                         list_del(&zspage->lru);
1374                 list_add(&zspage->lru, &pool->lru);
1375         }
1376 #endif
1377
1378         /*
1379          * migration cannot move any zpages in this zspage. Here, pool->lock
1380          * is too heavy since callers would take some time until they calls
1381          * zs_unmap_object API so delegate the locking from class to zspage
1382          * which is smaller granularity.
1383          */
1384         migrate_read_lock(zspage);
1385         spin_unlock(&pool->lock);
1386
1387         class = zspage_class(pool, zspage);
1388         off = (class->size * obj_idx) & ~PAGE_MASK;
1389
1390         local_lock(&zs_map_area.lock);
1391         area = this_cpu_ptr(&zs_map_area);
1392         area->vm_mm = mm;
1393         if (off + class->size <= PAGE_SIZE) {
1394                 /* this object is contained entirely within a page */
1395                 area->vm_addr = kmap_atomic(page);
1396                 ret = area->vm_addr + off;
1397                 goto out;
1398         }
1399
1400         /* this object spans two pages */
1401         pages[0] = page;
1402         pages[1] = get_next_page(page);
1403         BUG_ON(!pages[1]);
1404
1405         ret = __zs_map_object(area, pages, off, class->size);
1406 out:
1407         if (likely(!ZsHugePage(zspage)))
1408                 ret += ZS_HANDLE_SIZE;
1409
1410         return ret;
1411 }
1412 EXPORT_SYMBOL_GPL(zs_map_object);
1413
1414 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1415 {
1416         struct zspage *zspage;
1417         struct page *page;
1418         unsigned long obj, off;
1419         unsigned int obj_idx;
1420
1421         struct size_class *class;
1422         struct mapping_area *area;
1423
1424         obj = handle_to_obj(handle);
1425         obj_to_location(obj, &page, &obj_idx);
1426         zspage = get_zspage(page);
1427         class = zspage_class(pool, zspage);
1428         off = (class->size * obj_idx) & ~PAGE_MASK;
1429
1430         area = this_cpu_ptr(&zs_map_area);
1431         if (off + class->size <= PAGE_SIZE)
1432                 kunmap_atomic(area->vm_addr);
1433         else {
1434                 struct page *pages[2];
1435
1436                 pages[0] = page;
1437                 pages[1] = get_next_page(page);
1438                 BUG_ON(!pages[1]);
1439
1440                 __zs_unmap_object(area, pages, off, class->size);
1441         }
1442         local_unlock(&zs_map_area.lock);
1443
1444         migrate_read_unlock(zspage);
1445 }
1446 EXPORT_SYMBOL_GPL(zs_unmap_object);
1447
1448 /**
1449  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1450  *                        zsmalloc &size_class.
1451  * @pool: zsmalloc pool to use
1452  *
1453  * The function returns the size of the first huge class - any object of equal
1454  * or bigger size will be stored in zspage consisting of a single physical
1455  * page.
1456  *
1457  * Context: Any context.
1458  *
1459  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1460  */
1461 size_t zs_huge_class_size(struct zs_pool *pool)
1462 {
1463         return huge_class_size;
1464 }
1465 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1466
1467 static unsigned long obj_malloc(struct zs_pool *pool,
1468                                 struct zspage *zspage, unsigned long handle)
1469 {
1470         int i, nr_page, offset;
1471         unsigned long obj;
1472         struct link_free *link;
1473         struct size_class *class;
1474
1475         struct page *m_page;
1476         unsigned long m_offset;
1477         void *vaddr;
1478
1479         class = pool->size_class[zspage->class];
1480         handle |= OBJ_ALLOCATED_TAG;
1481         obj = get_freeobj(zspage);
1482
1483         offset = obj * class->size;
1484         nr_page = offset >> PAGE_SHIFT;
1485         m_offset = offset & ~PAGE_MASK;
1486         m_page = get_first_page(zspage);
1487
1488         for (i = 0; i < nr_page; i++)
1489                 m_page = get_next_page(m_page);
1490
1491         vaddr = kmap_atomic(m_page);
1492         link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1493         set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1494         if (likely(!ZsHugePage(zspage)))
1495                 /* record handle in the header of allocated chunk */
1496                 link->handle = handle;
1497         else
1498                 /* record handle to page->index */
1499                 zspage->first_page->index = handle;
1500
1501         kunmap_atomic(vaddr);
1502         mod_zspage_inuse(zspage, 1);
1503
1504         obj = location_to_obj(m_page, obj);
1505
1506         return obj;
1507 }
1508
1509
1510 /**
1511  * zs_malloc - Allocate block of given size from pool.
1512  * @pool: pool to allocate from
1513  * @size: size of block to allocate
1514  * @gfp: gfp flags when allocating object
1515  *
1516  * On success, handle to the allocated object is returned,
1517  * otherwise an ERR_PTR().
1518  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1519  */
1520 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1521 {
1522         unsigned long handle, obj;
1523         struct size_class *class;
1524         enum fullness_group newfg;
1525         struct zspage *zspage;
1526
1527         if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1528                 return (unsigned long)ERR_PTR(-EINVAL);
1529
1530         handle = cache_alloc_handle(pool, gfp);
1531         if (!handle)
1532                 return (unsigned long)ERR_PTR(-ENOMEM);
1533
1534         /* extra space in chunk to keep the handle */
1535         size += ZS_HANDLE_SIZE;
1536         class = pool->size_class[get_size_class_index(size)];
1537
1538         /* pool->lock effectively protects the zpage migration */
1539         spin_lock(&pool->lock);
1540         zspage = find_get_zspage(class);
1541         if (likely(zspage)) {
1542                 obj = obj_malloc(pool, zspage, handle);
1543                 /* Now move the zspage to another fullness group, if required */
1544                 fix_fullness_group(class, zspage);
1545                 record_obj(handle, obj);
1546                 class_stat_inc(class, OBJ_USED, 1);
1547                 spin_unlock(&pool->lock);
1548
1549                 return handle;
1550         }
1551
1552         spin_unlock(&pool->lock);
1553
1554         zspage = alloc_zspage(pool, class, gfp);
1555         if (!zspage) {
1556                 cache_free_handle(pool, handle);
1557                 return (unsigned long)ERR_PTR(-ENOMEM);
1558         }
1559
1560         spin_lock(&pool->lock);
1561         obj = obj_malloc(pool, zspage, handle);
1562         newfg = get_fullness_group(class, zspage);
1563         insert_zspage(class, zspage, newfg);
1564         set_zspage_mapping(zspage, class->index, newfg);
1565         record_obj(handle, obj);
1566         atomic_long_add(class->pages_per_zspage,
1567                                 &pool->pages_allocated);
1568         class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1569         class_stat_inc(class, OBJ_USED, 1);
1570
1571         /* We completely set up zspage so mark them as movable */
1572         SetZsPageMovable(pool, zspage);
1573         spin_unlock(&pool->lock);
1574
1575         return handle;
1576 }
1577 EXPORT_SYMBOL_GPL(zs_malloc);
1578
1579 static void obj_free(int class_size, unsigned long obj, unsigned long *handle)
1580 {
1581         struct link_free *link;
1582         struct zspage *zspage;
1583         struct page *f_page;
1584         unsigned long f_offset;
1585         unsigned int f_objidx;
1586         void *vaddr;
1587
1588         obj_to_location(obj, &f_page, &f_objidx);
1589         f_offset = (class_size * f_objidx) & ~PAGE_MASK;
1590         zspage = get_zspage(f_page);
1591
1592         vaddr = kmap_atomic(f_page);
1593         link = (struct link_free *)(vaddr + f_offset);
1594
1595         if (handle) {
1596 #ifdef CONFIG_ZPOOL
1597                 /* Stores the (deferred) handle in the object's header */
1598                 *handle |= OBJ_DEFERRED_HANDLE_TAG;
1599                 *handle &= ~OBJ_ALLOCATED_TAG;
1600
1601                 if (likely(!ZsHugePage(zspage)))
1602                         link->deferred_handle = *handle;
1603                 else
1604                         f_page->index = *handle;
1605 #endif
1606         } else {
1607                 /* Insert this object in containing zspage's freelist */
1608                 if (likely(!ZsHugePage(zspage)))
1609                         link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1610                 else
1611                         f_page->index = 0;
1612                 set_freeobj(zspage, f_objidx);
1613         }
1614
1615         kunmap_atomic(vaddr);
1616         mod_zspage_inuse(zspage, -1);
1617 }
1618
1619 void zs_free(struct zs_pool *pool, unsigned long handle)
1620 {
1621         struct zspage *zspage;
1622         struct page *f_page;
1623         unsigned long obj;
1624         struct size_class *class;
1625         enum fullness_group fullness;
1626
1627         if (IS_ERR_OR_NULL((void *)handle))
1628                 return;
1629
1630         /*
1631          * The pool->lock protects the race with zpage's migration
1632          * so it's safe to get the page from handle.
1633          */
1634         spin_lock(&pool->lock);
1635         obj = handle_to_obj(handle);
1636         obj_to_page(obj, &f_page);
1637         zspage = get_zspage(f_page);
1638         class = zspage_class(pool, zspage);
1639
1640         class_stat_dec(class, OBJ_USED, 1);
1641
1642 #ifdef CONFIG_ZPOOL
1643         if (zspage->under_reclaim) {
1644                 /*
1645                  * Reclaim needs the handles during writeback. It'll free
1646                  * them along with the zspage when it's done with them.
1647                  *
1648                  * Record current deferred handle in the object's header.
1649                  */
1650                 obj_free(class->size, obj, &handle);
1651                 spin_unlock(&pool->lock);
1652                 return;
1653         }
1654 #endif
1655         obj_free(class->size, obj, NULL);
1656
1657         fullness = fix_fullness_group(class, zspage);
1658         if (fullness == ZS_EMPTY)
1659                 free_zspage(pool, class, zspage);
1660
1661         spin_unlock(&pool->lock);
1662         cache_free_handle(pool, handle);
1663 }
1664 EXPORT_SYMBOL_GPL(zs_free);
1665
1666 static void zs_object_copy(struct size_class *class, unsigned long dst,
1667                                 unsigned long src)
1668 {
1669         struct page *s_page, *d_page;
1670         unsigned int s_objidx, d_objidx;
1671         unsigned long s_off, d_off;
1672         void *s_addr, *d_addr;
1673         int s_size, d_size, size;
1674         int written = 0;
1675
1676         s_size = d_size = class->size;
1677
1678         obj_to_location(src, &s_page, &s_objidx);
1679         obj_to_location(dst, &d_page, &d_objidx);
1680
1681         s_off = (class->size * s_objidx) & ~PAGE_MASK;
1682         d_off = (class->size * d_objidx) & ~PAGE_MASK;
1683
1684         if (s_off + class->size > PAGE_SIZE)
1685                 s_size = PAGE_SIZE - s_off;
1686
1687         if (d_off + class->size > PAGE_SIZE)
1688                 d_size = PAGE_SIZE - d_off;
1689
1690         s_addr = kmap_atomic(s_page);
1691         d_addr = kmap_atomic(d_page);
1692
1693         while (1) {
1694                 size = min(s_size, d_size);
1695                 memcpy(d_addr + d_off, s_addr + s_off, size);
1696                 written += size;
1697
1698                 if (written == class->size)
1699                         break;
1700
1701                 s_off += size;
1702                 s_size -= size;
1703                 d_off += size;
1704                 d_size -= size;
1705
1706                 /*
1707                  * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1708                  * calls must occurs in reverse order of calls to kmap_atomic().
1709                  * So, to call kunmap_atomic(s_addr) we should first call
1710                  * kunmap_atomic(d_addr). For more details see
1711                  * Documentation/mm/highmem.rst.
1712                  */
1713                 if (s_off >= PAGE_SIZE) {
1714                         kunmap_atomic(d_addr);
1715                         kunmap_atomic(s_addr);
1716                         s_page = get_next_page(s_page);
1717                         s_addr = kmap_atomic(s_page);
1718                         d_addr = kmap_atomic(d_page);
1719                         s_size = class->size - written;
1720                         s_off = 0;
1721                 }
1722
1723                 if (d_off >= PAGE_SIZE) {
1724                         kunmap_atomic(d_addr);
1725                         d_page = get_next_page(d_page);
1726                         d_addr = kmap_atomic(d_page);
1727                         d_size = class->size - written;
1728                         d_off = 0;
1729                 }
1730         }
1731
1732         kunmap_atomic(d_addr);
1733         kunmap_atomic(s_addr);
1734 }
1735
1736 /*
1737  * Find object with a certain tag in zspage from index object and
1738  * return handle.
1739  */
1740 static unsigned long find_tagged_obj(struct size_class *class,
1741                                         struct page *page, int *obj_idx, int tag)
1742 {
1743         unsigned int offset;
1744         int index = *obj_idx;
1745         unsigned long handle = 0;
1746         void *addr = kmap_atomic(page);
1747
1748         offset = get_first_obj_offset(page);
1749         offset += class->size * index;
1750
1751         while (offset < PAGE_SIZE) {
1752                 if (obj_tagged(page, addr + offset, &handle, tag))
1753                         break;
1754
1755                 offset += class->size;
1756                 index++;
1757         }
1758
1759         kunmap_atomic(addr);
1760
1761         *obj_idx = index;
1762
1763         return handle;
1764 }
1765
1766 /*
1767  * Find alloced object in zspage from index object and
1768  * return handle.
1769  */
1770 static unsigned long find_alloced_obj(struct size_class *class,
1771                                         struct page *page, int *obj_idx)
1772 {
1773         return find_tagged_obj(class, page, obj_idx, OBJ_ALLOCATED_TAG);
1774 }
1775
1776 #ifdef CONFIG_ZPOOL
1777 /*
1778  * Find object storing a deferred handle in header in zspage from index object
1779  * and return handle.
1780  */
1781 static unsigned long find_deferred_handle_obj(struct size_class *class,
1782                 struct page *page, int *obj_idx)
1783 {
1784         return find_tagged_obj(class, page, obj_idx, OBJ_DEFERRED_HANDLE_TAG);
1785 }
1786 #endif
1787
1788 struct zs_compact_control {
1789         /* Source spage for migration which could be a subpage of zspage */
1790         struct page *s_page;
1791         /* Destination page for migration which should be a first page
1792          * of zspage. */
1793         struct page *d_page;
1794          /* Starting object index within @s_page which used for live object
1795           * in the subpage. */
1796         int obj_idx;
1797 };
1798
1799 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1800                                 struct zs_compact_control *cc)
1801 {
1802         unsigned long used_obj, free_obj;
1803         unsigned long handle;
1804         struct page *s_page = cc->s_page;
1805         struct page *d_page = cc->d_page;
1806         int obj_idx = cc->obj_idx;
1807         int ret = 0;
1808
1809         while (1) {
1810                 handle = find_alloced_obj(class, s_page, &obj_idx);
1811                 if (!handle) {
1812                         s_page = get_next_page(s_page);
1813                         if (!s_page)
1814                                 break;
1815                         obj_idx = 0;
1816                         continue;
1817                 }
1818
1819                 /* Stop if there is no more space */
1820                 if (zspage_full(class, get_zspage(d_page))) {
1821                         ret = -ENOMEM;
1822                         break;
1823                 }
1824
1825                 used_obj = handle_to_obj(handle);
1826                 free_obj = obj_malloc(pool, get_zspage(d_page), handle);
1827                 zs_object_copy(class, free_obj, used_obj);
1828                 obj_idx++;
1829                 record_obj(handle, free_obj);
1830                 obj_free(class->size, used_obj, NULL);
1831         }
1832
1833         /* Remember last position in this iteration */
1834         cc->s_page = s_page;
1835         cc->obj_idx = obj_idx;
1836
1837         return ret;
1838 }
1839
1840 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1841 {
1842         int i;
1843         struct zspage *zspage;
1844         enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1845
1846         if (!source) {
1847                 fg[0] = ZS_ALMOST_FULL;
1848                 fg[1] = ZS_ALMOST_EMPTY;
1849         }
1850
1851         for (i = 0; i < 2; i++) {
1852                 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1853                                                         struct zspage, list);
1854                 if (zspage) {
1855                         remove_zspage(class, zspage, fg[i]);
1856                         return zspage;
1857                 }
1858         }
1859
1860         return zspage;
1861 }
1862
1863 /*
1864  * putback_zspage - add @zspage into right class's fullness list
1865  * @class: destination class
1866  * @zspage: target page
1867  *
1868  * Return @zspage's fullness_group
1869  */
1870 static enum fullness_group putback_zspage(struct size_class *class,
1871                         struct zspage *zspage)
1872 {
1873         enum fullness_group fullness;
1874
1875         fullness = get_fullness_group(class, zspage);
1876         insert_zspage(class, zspage, fullness);
1877         set_zspage_mapping(zspage, class->index, fullness);
1878
1879         return fullness;
1880 }
1881
1882 #if defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION)
1883 /*
1884  * To prevent zspage destroy during migration, zspage freeing should
1885  * hold locks of all pages in the zspage.
1886  */
1887 static void lock_zspage(struct zspage *zspage)
1888 {
1889         struct page *curr_page, *page;
1890
1891         /*
1892          * Pages we haven't locked yet can be migrated off the list while we're
1893          * trying to lock them, so we need to be careful and only attempt to
1894          * lock each page under migrate_read_lock(). Otherwise, the page we lock
1895          * may no longer belong to the zspage. This means that we may wait for
1896          * the wrong page to unlock, so we must take a reference to the page
1897          * prior to waiting for it to unlock outside migrate_read_lock().
1898          */
1899         while (1) {
1900                 migrate_read_lock(zspage);
1901                 page = get_first_page(zspage);
1902                 if (trylock_page(page))
1903                         break;
1904                 get_page(page);
1905                 migrate_read_unlock(zspage);
1906                 wait_on_page_locked(page);
1907                 put_page(page);
1908         }
1909
1910         curr_page = page;
1911         while ((page = get_next_page(curr_page))) {
1912                 if (trylock_page(page)) {
1913                         curr_page = page;
1914                 } else {
1915                         get_page(page);
1916                         migrate_read_unlock(zspage);
1917                         wait_on_page_locked(page);
1918                         put_page(page);
1919                         migrate_read_lock(zspage);
1920                 }
1921         }
1922         migrate_read_unlock(zspage);
1923 }
1924 #endif /* defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION) */
1925
1926 #ifdef CONFIG_ZPOOL
1927 /*
1928  * Unlocks all the pages of the zspage.
1929  *
1930  * pool->lock must be held before this function is called
1931  * to prevent the underlying pages from migrating.
1932  */
1933 static void unlock_zspage(struct zspage *zspage)
1934 {
1935         struct page *page = get_first_page(zspage);
1936
1937         do {
1938                 unlock_page(page);
1939         } while ((page = get_next_page(page)) != NULL);
1940 }
1941 #endif /* CONFIG_ZPOOL */
1942
1943 static void migrate_lock_init(struct zspage *zspage)
1944 {
1945         rwlock_init(&zspage->lock);
1946 }
1947
1948 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1949 {
1950         read_lock(&zspage->lock);
1951 }
1952
1953 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1954 {
1955         read_unlock(&zspage->lock);
1956 }
1957
1958 #ifdef CONFIG_COMPACTION
1959 static void migrate_write_lock(struct zspage *zspage)
1960 {
1961         write_lock(&zspage->lock);
1962 }
1963
1964 static void migrate_write_lock_nested(struct zspage *zspage)
1965 {
1966         write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
1967 }
1968
1969 static void migrate_write_unlock(struct zspage *zspage)
1970 {
1971         write_unlock(&zspage->lock);
1972 }
1973
1974 /* Number of isolated subpage for *page migration* in this zspage */
1975 static void inc_zspage_isolation(struct zspage *zspage)
1976 {
1977         zspage->isolated++;
1978 }
1979
1980 static void dec_zspage_isolation(struct zspage *zspage)
1981 {
1982         VM_BUG_ON(zspage->isolated == 0);
1983         zspage->isolated--;
1984 }
1985
1986 static const struct movable_operations zsmalloc_mops;
1987
1988 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1989                                 struct page *newpage, struct page *oldpage)
1990 {
1991         struct page *page;
1992         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1993         int idx = 0;
1994
1995         page = get_first_page(zspage);
1996         do {
1997                 if (page == oldpage)
1998                         pages[idx] = newpage;
1999                 else
2000                         pages[idx] = page;
2001                 idx++;
2002         } while ((page = get_next_page(page)) != NULL);
2003
2004         create_page_chain(class, zspage, pages);
2005         set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
2006         if (unlikely(ZsHugePage(zspage)))
2007                 newpage->index = oldpage->index;
2008         __SetPageMovable(newpage, &zsmalloc_mops);
2009 }
2010
2011 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
2012 {
2013         struct zspage *zspage;
2014
2015         /*
2016          * Page is locked so zspage couldn't be destroyed. For detail, look at
2017          * lock_zspage in free_zspage.
2018          */
2019         VM_BUG_ON_PAGE(PageIsolated(page), page);
2020
2021         zspage = get_zspage(page);
2022         migrate_write_lock(zspage);
2023         inc_zspage_isolation(zspage);
2024         migrate_write_unlock(zspage);
2025
2026         return true;
2027 }
2028
2029 static int zs_page_migrate(struct page *newpage, struct page *page,
2030                 enum migrate_mode mode)
2031 {
2032         struct zs_pool *pool;
2033         struct size_class *class;
2034         struct zspage *zspage;
2035         struct page *dummy;
2036         void *s_addr, *d_addr, *addr;
2037         unsigned int offset;
2038         unsigned long handle;
2039         unsigned long old_obj, new_obj;
2040         unsigned int obj_idx;
2041
2042         /*
2043          * We cannot support the _NO_COPY case here, because copy needs to
2044          * happen under the zs lock, which does not work with
2045          * MIGRATE_SYNC_NO_COPY workflow.
2046          */
2047         if (mode == MIGRATE_SYNC_NO_COPY)
2048                 return -EINVAL;
2049
2050         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2051
2052         /* The page is locked, so this pointer must remain valid */
2053         zspage = get_zspage(page);
2054         pool = zspage->pool;
2055
2056         /*
2057          * The pool's lock protects the race between zpage migration
2058          * and zs_free.
2059          */
2060         spin_lock(&pool->lock);
2061         class = zspage_class(pool, zspage);
2062
2063         /* the migrate_write_lock protects zpage access via zs_map_object */
2064         migrate_write_lock(zspage);
2065
2066         offset = get_first_obj_offset(page);
2067         s_addr = kmap_atomic(page);
2068
2069         /*
2070          * Here, any user cannot access all objects in the zspage so let's move.
2071          */
2072         d_addr = kmap_atomic(newpage);
2073         memcpy(d_addr, s_addr, PAGE_SIZE);
2074         kunmap_atomic(d_addr);
2075
2076         for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
2077                                         addr += class->size) {
2078                 if (obj_allocated(page, addr, &handle)) {
2079
2080                         old_obj = handle_to_obj(handle);
2081                         obj_to_location(old_obj, &dummy, &obj_idx);
2082                         new_obj = (unsigned long)location_to_obj(newpage,
2083                                                                 obj_idx);
2084                         record_obj(handle, new_obj);
2085                 }
2086         }
2087         kunmap_atomic(s_addr);
2088
2089         replace_sub_page(class, zspage, newpage, page);
2090         /*
2091          * Since we complete the data copy and set up new zspage structure,
2092          * it's okay to release the pool's lock.
2093          */
2094         spin_unlock(&pool->lock);
2095         dec_zspage_isolation(zspage);
2096         migrate_write_unlock(zspage);
2097
2098         get_page(newpage);
2099         if (page_zone(newpage) != page_zone(page)) {
2100                 dec_zone_page_state(page, NR_ZSPAGES);
2101                 inc_zone_page_state(newpage, NR_ZSPAGES);
2102         }
2103
2104         reset_page(page);
2105         put_page(page);
2106
2107         return MIGRATEPAGE_SUCCESS;
2108 }
2109
2110 static void zs_page_putback(struct page *page)
2111 {
2112         struct zspage *zspage;
2113
2114         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2115
2116         zspage = get_zspage(page);
2117         migrate_write_lock(zspage);
2118         dec_zspage_isolation(zspage);
2119         migrate_write_unlock(zspage);
2120 }
2121
2122 static const struct movable_operations zsmalloc_mops = {
2123         .isolate_page = zs_page_isolate,
2124         .migrate_page = zs_page_migrate,
2125         .putback_page = zs_page_putback,
2126 };
2127
2128 /*
2129  * Caller should hold page_lock of all pages in the zspage
2130  * In here, we cannot use zspage meta data.
2131  */
2132 static void async_free_zspage(struct work_struct *work)
2133 {
2134         int i;
2135         struct size_class *class;
2136         unsigned int class_idx;
2137         enum fullness_group fullness;
2138         struct zspage *zspage, *tmp;
2139         LIST_HEAD(free_pages);
2140         struct zs_pool *pool = container_of(work, struct zs_pool,
2141                                         free_work);
2142
2143         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2144                 class = pool->size_class[i];
2145                 if (class->index != i)
2146                         continue;
2147
2148                 spin_lock(&pool->lock);
2149                 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2150                 spin_unlock(&pool->lock);
2151         }
2152
2153         list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2154                 list_del(&zspage->list);
2155                 lock_zspage(zspage);
2156
2157                 get_zspage_mapping(zspage, &class_idx, &fullness);
2158                 VM_BUG_ON(fullness != ZS_EMPTY);
2159                 class = pool->size_class[class_idx];
2160                 spin_lock(&pool->lock);
2161 #ifdef CONFIG_ZPOOL
2162                 list_del(&zspage->lru);
2163 #endif
2164                 __free_zspage(pool, class, zspage);
2165                 spin_unlock(&pool->lock);
2166         }
2167 };
2168
2169 static void kick_deferred_free(struct zs_pool *pool)
2170 {
2171         schedule_work(&pool->free_work);
2172 }
2173
2174 static void zs_flush_migration(struct zs_pool *pool)
2175 {
2176         flush_work(&pool->free_work);
2177 }
2178
2179 static void init_deferred_free(struct zs_pool *pool)
2180 {
2181         INIT_WORK(&pool->free_work, async_free_zspage);
2182 }
2183
2184 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2185 {
2186         struct page *page = get_first_page(zspage);
2187
2188         do {
2189                 WARN_ON(!trylock_page(page));
2190                 __SetPageMovable(page, &zsmalloc_mops);
2191                 unlock_page(page);
2192         } while ((page = get_next_page(page)) != NULL);
2193 }
2194 #else
2195 static inline void zs_flush_migration(struct zs_pool *pool) { }
2196 #endif
2197
2198 /*
2199  *
2200  * Based on the number of unused allocated objects calculate
2201  * and return the number of pages that we can free.
2202  */
2203 static unsigned long zs_can_compact(struct size_class *class)
2204 {
2205         unsigned long obj_wasted;
2206         unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2207         unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2208
2209         if (obj_allocated <= obj_used)
2210                 return 0;
2211
2212         obj_wasted = obj_allocated - obj_used;
2213         obj_wasted /= class->objs_per_zspage;
2214
2215         return obj_wasted * class->pages_per_zspage;
2216 }
2217
2218 static unsigned long __zs_compact(struct zs_pool *pool,
2219                                   struct size_class *class)
2220 {
2221         struct zs_compact_control cc;
2222         struct zspage *src_zspage;
2223         struct zspage *dst_zspage = NULL;
2224         unsigned long pages_freed = 0;
2225
2226         /*
2227          * protect the race between zpage migration and zs_free
2228          * as well as zpage allocation/free
2229          */
2230         spin_lock(&pool->lock);
2231         while ((src_zspage = isolate_zspage(class, true))) {
2232                 /* protect someone accessing the zspage(i.e., zs_map_object) */
2233                 migrate_write_lock(src_zspage);
2234
2235                 if (!zs_can_compact(class))
2236                         break;
2237
2238                 cc.obj_idx = 0;
2239                 cc.s_page = get_first_page(src_zspage);
2240
2241                 while ((dst_zspage = isolate_zspage(class, false))) {
2242                         migrate_write_lock_nested(dst_zspage);
2243
2244                         cc.d_page = get_first_page(dst_zspage);
2245                         /*
2246                          * If there is no more space in dst_page, resched
2247                          * and see if anyone had allocated another zspage.
2248                          */
2249                         if (!migrate_zspage(pool, class, &cc))
2250                                 break;
2251
2252                         putback_zspage(class, dst_zspage);
2253                         migrate_write_unlock(dst_zspage);
2254                         dst_zspage = NULL;
2255                         if (spin_is_contended(&pool->lock))
2256                                 break;
2257                 }
2258
2259                 /* Stop if we couldn't find slot */
2260                 if (dst_zspage == NULL)
2261                         break;
2262
2263                 putback_zspage(class, dst_zspage);
2264                 migrate_write_unlock(dst_zspage);
2265
2266                 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2267                         migrate_write_unlock(src_zspage);
2268                         free_zspage(pool, class, src_zspage);
2269                         pages_freed += class->pages_per_zspage;
2270                 } else
2271                         migrate_write_unlock(src_zspage);
2272                 spin_unlock(&pool->lock);
2273                 cond_resched();
2274                 spin_lock(&pool->lock);
2275         }
2276
2277         if (src_zspage) {
2278                 putback_zspage(class, src_zspage);
2279                 migrate_write_unlock(src_zspage);
2280         }
2281
2282         spin_unlock(&pool->lock);
2283
2284         return pages_freed;
2285 }
2286
2287 unsigned long zs_compact(struct zs_pool *pool)
2288 {
2289         int i;
2290         struct size_class *class;
2291         unsigned long pages_freed = 0;
2292
2293         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2294                 class = pool->size_class[i];
2295                 if (class->index != i)
2296                         continue;
2297                 pages_freed += __zs_compact(pool, class);
2298         }
2299         atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2300
2301         return pages_freed;
2302 }
2303 EXPORT_SYMBOL_GPL(zs_compact);
2304
2305 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2306 {
2307         memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2308 }
2309 EXPORT_SYMBOL_GPL(zs_pool_stats);
2310
2311 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2312                 struct shrink_control *sc)
2313 {
2314         unsigned long pages_freed;
2315         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2316                         shrinker);
2317
2318         /*
2319          * Compact classes and calculate compaction delta.
2320          * Can run concurrently with a manually triggered
2321          * (by user) compaction.
2322          */
2323         pages_freed = zs_compact(pool);
2324
2325         return pages_freed ? pages_freed : SHRINK_STOP;
2326 }
2327
2328 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2329                 struct shrink_control *sc)
2330 {
2331         int i;
2332         struct size_class *class;
2333         unsigned long pages_to_free = 0;
2334         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2335                         shrinker);
2336
2337         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2338                 class = pool->size_class[i];
2339                 if (class->index != i)
2340                         continue;
2341
2342                 pages_to_free += zs_can_compact(class);
2343         }
2344
2345         return pages_to_free;
2346 }
2347
2348 static void zs_unregister_shrinker(struct zs_pool *pool)
2349 {
2350         unregister_shrinker(&pool->shrinker);
2351 }
2352
2353 static int zs_register_shrinker(struct zs_pool *pool)
2354 {
2355         pool->shrinker.scan_objects = zs_shrinker_scan;
2356         pool->shrinker.count_objects = zs_shrinker_count;
2357         pool->shrinker.batch = 0;
2358         pool->shrinker.seeks = DEFAULT_SEEKS;
2359
2360         return register_shrinker(&pool->shrinker, "mm-zspool:%s",
2361                                  pool->name);
2362 }
2363
2364 static int calculate_zspage_chain_size(int class_size)
2365 {
2366         int i, min_waste = INT_MAX;
2367         int chain_size = 1;
2368
2369         if (is_power_of_2(class_size))
2370                 return chain_size;
2371
2372         for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2373                 int waste;
2374
2375                 waste = (i * PAGE_SIZE) % class_size;
2376                 if (waste < min_waste) {
2377                         min_waste = waste;
2378                         chain_size = i;
2379                 }
2380         }
2381
2382         return chain_size;
2383 }
2384
2385 /**
2386  * zs_create_pool - Creates an allocation pool to work from.
2387  * @name: pool name to be created
2388  *
2389  * This function must be called before anything when using
2390  * the zsmalloc allocator.
2391  *
2392  * On success, a pointer to the newly created pool is returned,
2393  * otherwise NULL.
2394  */
2395 struct zs_pool *zs_create_pool(const char *name)
2396 {
2397         int i;
2398         struct zs_pool *pool;
2399         struct size_class *prev_class = NULL;
2400
2401         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2402         if (!pool)
2403                 return NULL;
2404
2405         init_deferred_free(pool);
2406         spin_lock_init(&pool->lock);
2407
2408         pool->name = kstrdup(name, GFP_KERNEL);
2409         if (!pool->name)
2410                 goto err;
2411
2412         if (create_cache(pool))
2413                 goto err;
2414
2415         /*
2416          * Iterate reversely, because, size of size_class that we want to use
2417          * for merging should be larger or equal to current size.
2418          */
2419         for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2420                 int size;
2421                 int pages_per_zspage;
2422                 int objs_per_zspage;
2423                 struct size_class *class;
2424                 int fullness = 0;
2425
2426                 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2427                 if (size > ZS_MAX_ALLOC_SIZE)
2428                         size = ZS_MAX_ALLOC_SIZE;
2429                 pages_per_zspage = calculate_zspage_chain_size(size);
2430                 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2431
2432                 /*
2433                  * We iterate from biggest down to smallest classes,
2434                  * so huge_class_size holds the size of the first huge
2435                  * class. Any object bigger than or equal to that will
2436                  * endup in the huge class.
2437                  */
2438                 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2439                                 !huge_class_size) {
2440                         huge_class_size = size;
2441                         /*
2442                          * The object uses ZS_HANDLE_SIZE bytes to store the
2443                          * handle. We need to subtract it, because zs_malloc()
2444                          * unconditionally adds handle size before it performs
2445                          * size class search - so object may be smaller than
2446                          * huge class size, yet it still can end up in the huge
2447                          * class because it grows by ZS_HANDLE_SIZE extra bytes
2448                          * right before class lookup.
2449                          */
2450                         huge_class_size -= (ZS_HANDLE_SIZE - 1);
2451                 }
2452
2453                 /*
2454                  * size_class is used for normal zsmalloc operation such
2455                  * as alloc/free for that size. Although it is natural that we
2456                  * have one size_class for each size, there is a chance that we
2457                  * can get more memory utilization if we use one size_class for
2458                  * many different sizes whose size_class have same
2459                  * characteristics. So, we makes size_class point to
2460                  * previous size_class if possible.
2461                  */
2462                 if (prev_class) {
2463                         if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2464                                 pool->size_class[i] = prev_class;
2465                                 continue;
2466                         }
2467                 }
2468
2469                 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2470                 if (!class)
2471                         goto err;
2472
2473                 class->size = size;
2474                 class->index = i;
2475                 class->pages_per_zspage = pages_per_zspage;
2476                 class->objs_per_zspage = objs_per_zspage;
2477                 pool->size_class[i] = class;
2478                 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2479                                                         fullness++)
2480                         INIT_LIST_HEAD(&class->fullness_list[fullness]);
2481
2482                 prev_class = class;
2483         }
2484
2485         /* debug only, don't abort if it fails */
2486         zs_pool_stat_create(pool, name);
2487
2488         /*
2489          * Not critical since shrinker is only used to trigger internal
2490          * defragmentation of the pool which is pretty optional thing.  If
2491          * registration fails we still can use the pool normally and user can
2492          * trigger compaction manually. Thus, ignore return code.
2493          */
2494         zs_register_shrinker(pool);
2495
2496 #ifdef CONFIG_ZPOOL
2497         INIT_LIST_HEAD(&pool->lru);
2498 #endif
2499
2500         return pool;
2501
2502 err:
2503         zs_destroy_pool(pool);
2504         return NULL;
2505 }
2506 EXPORT_SYMBOL_GPL(zs_create_pool);
2507
2508 void zs_destroy_pool(struct zs_pool *pool)
2509 {
2510         int i;
2511
2512         zs_unregister_shrinker(pool);
2513         zs_flush_migration(pool);
2514         zs_pool_stat_destroy(pool);
2515
2516         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2517                 int fg;
2518                 struct size_class *class = pool->size_class[i];
2519
2520                 if (!class)
2521                         continue;
2522
2523                 if (class->index != i)
2524                         continue;
2525
2526                 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2527                         if (!list_empty(&class->fullness_list[fg])) {
2528                                 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2529                                         class->size, fg);
2530                         }
2531                 }
2532                 kfree(class);
2533         }
2534
2535         destroy_cache(pool);
2536         kfree(pool->name);
2537         kfree(pool);
2538 }
2539 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2540
2541 #ifdef CONFIG_ZPOOL
2542 static void restore_freelist(struct zs_pool *pool, struct size_class *class,
2543                 struct zspage *zspage)
2544 {
2545         unsigned int obj_idx = 0;
2546         unsigned long handle, off = 0; /* off is within-page offset */
2547         struct page *page = get_first_page(zspage);
2548         struct link_free *prev_free = NULL;
2549         void *prev_page_vaddr = NULL;
2550
2551         /* in case no free object found */
2552         set_freeobj(zspage, (unsigned int)(-1UL));
2553
2554         while (page) {
2555                 void *vaddr = kmap_atomic(page);
2556                 struct page *next_page;
2557
2558                 while (off < PAGE_SIZE) {
2559                         void *obj_addr = vaddr + off;
2560
2561                         /* skip allocated object */
2562                         if (obj_allocated(page, obj_addr, &handle)) {
2563                                 obj_idx++;
2564                                 off += class->size;
2565                                 continue;
2566                         }
2567
2568                         /* free deferred handle from reclaim attempt */
2569                         if (obj_stores_deferred_handle(page, obj_addr, &handle))
2570                                 cache_free_handle(pool, handle);
2571
2572                         if (prev_free)
2573                                 prev_free->next = obj_idx << OBJ_TAG_BITS;
2574                         else /* first free object found */
2575                                 set_freeobj(zspage, obj_idx);
2576
2577                         prev_free = (struct link_free *)vaddr + off / sizeof(*prev_free);
2578                         /* if last free object in a previous page, need to unmap */
2579                         if (prev_page_vaddr) {
2580                                 kunmap_atomic(prev_page_vaddr);
2581                                 prev_page_vaddr = NULL;
2582                         }
2583
2584                         obj_idx++;
2585                         off += class->size;
2586                 }
2587
2588                 /*
2589                  * Handle the last (full or partial) object on this page.
2590                  */
2591                 next_page = get_next_page(page);
2592                 if (next_page) {
2593                         if (!prev_free || prev_page_vaddr) {
2594                                 /*
2595                                  * There is no free object in this page, so we can safely
2596                                  * unmap it.
2597                                  */
2598                                 kunmap_atomic(vaddr);
2599                         } else {
2600                                 /* update prev_page_vaddr since prev_free is on this page */
2601                                 prev_page_vaddr = vaddr;
2602                         }
2603                 } else { /* this is the last page */
2604                         if (prev_free) {
2605                                 /*
2606                                  * Reset OBJ_TAG_BITS bit to last link to tell
2607                                  * whether it's allocated object or not.
2608                                  */
2609                                 prev_free->next = -1UL << OBJ_TAG_BITS;
2610                         }
2611
2612                         /* unmap previous page (if not done yet) */
2613                         if (prev_page_vaddr) {
2614                                 kunmap_atomic(prev_page_vaddr);
2615                                 prev_page_vaddr = NULL;
2616                         }
2617
2618                         kunmap_atomic(vaddr);
2619                 }
2620
2621                 page = next_page;
2622                 off %= PAGE_SIZE;
2623         }
2624 }
2625
2626 static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries)
2627 {
2628         int i, obj_idx, ret = 0;
2629         unsigned long handle;
2630         struct zspage *zspage;
2631         struct page *page;
2632         enum fullness_group fullness;
2633
2634         /* Lock LRU and fullness list */
2635         spin_lock(&pool->lock);
2636         if (list_empty(&pool->lru)) {
2637                 spin_unlock(&pool->lock);
2638                 return -EINVAL;
2639         }
2640
2641         for (i = 0; i < retries; i++) {
2642                 struct size_class *class;
2643
2644                 zspage = list_last_entry(&pool->lru, struct zspage, lru);
2645                 list_del(&zspage->lru);
2646
2647                 /* zs_free may free objects, but not the zspage and handles */
2648                 zspage->under_reclaim = true;
2649
2650                 class = zspage_class(pool, zspage);
2651                 fullness = get_fullness_group(class, zspage);
2652
2653                 /* Lock out object allocations and object compaction */
2654                 remove_zspage(class, zspage, fullness);
2655
2656                 spin_unlock(&pool->lock);
2657                 cond_resched();
2658
2659                 /* Lock backing pages into place */
2660                 lock_zspage(zspage);
2661
2662                 obj_idx = 0;
2663                 page = get_first_page(zspage);
2664                 while (1) {
2665                         handle = find_alloced_obj(class, page, &obj_idx);
2666                         if (!handle) {
2667                                 page = get_next_page(page);
2668                                 if (!page)
2669                                         break;
2670                                 obj_idx = 0;
2671                                 continue;
2672                         }
2673
2674                         /*
2675                          * This will write the object and call zs_free.
2676                          *
2677                          * zs_free will free the object, but the
2678                          * under_reclaim flag prevents it from freeing
2679                          * the zspage altogether. This is necessary so
2680                          * that we can continue working with the
2681                          * zspage potentially after the last object
2682                          * has been freed.
2683                          */
2684                         ret = pool->zpool_ops->evict(pool->zpool, handle);
2685                         if (ret)
2686                                 goto next;
2687
2688                         obj_idx++;
2689                 }
2690
2691 next:
2692                 /* For freeing the zspage, or putting it back in the pool and LRU list. */
2693                 spin_lock(&pool->lock);
2694                 zspage->under_reclaim = false;
2695
2696                 if (!get_zspage_inuse(zspage)) {
2697                         /*
2698                          * Fullness went stale as zs_free() won't touch it
2699                          * while the page is removed from the pool. Fix it
2700                          * up for the check in __free_zspage().
2701                          */
2702                         zspage->fullness = ZS_EMPTY;
2703
2704                         __free_zspage(pool, class, zspage);
2705                         spin_unlock(&pool->lock);
2706                         return 0;
2707                 }
2708
2709                 /*
2710                  * Eviction fails on one of the handles, so we need to restore zspage.
2711                  * We need to rebuild its freelist (and free stored deferred handles),
2712                  * put it back to the correct size class, and add it to the LRU list.
2713                  */
2714                 restore_freelist(pool, class, zspage);
2715                 putback_zspage(class, zspage);
2716                 list_add(&zspage->lru, &pool->lru);
2717                 unlock_zspage(zspage);
2718         }
2719
2720         spin_unlock(&pool->lock);
2721         return -EAGAIN;
2722 }
2723 #endif /* CONFIG_ZPOOL */
2724
2725 static int __init zs_init(void)
2726 {
2727         int ret;
2728
2729         ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2730                                 zs_cpu_prepare, zs_cpu_dead);
2731         if (ret)
2732                 goto out;
2733
2734 #ifdef CONFIG_ZPOOL
2735         zpool_register_driver(&zs_zpool_driver);
2736 #endif
2737
2738         zs_stat_init();
2739
2740         return 0;
2741
2742 out:
2743         return ret;
2744 }
2745
2746 static void __exit zs_exit(void)
2747 {
2748 #ifdef CONFIG_ZPOOL
2749         zpool_unregister_driver(&zs_zpool_driver);
2750 #endif
2751         cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2752
2753         zs_stat_exit();
2754 }
2755
2756 module_init(zs_init);
2757 module_exit(zs_exit);
2758
2759 MODULE_LICENSE("Dual BSD/GPL");
2760 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");